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A FINITE ELEMENT METHOD FOR NEARLY

INCOMPRESSIBLE ELASTICITY PROBLEMS

DIETRICH BRAESS AND PINGBING MING

Abstract. A finite element method is considered for dealing with nearly in-
compressible material. In the case of large deformations the nonlinear charac-
ter of the volumetric contribution has to be taken into account. The proposed
mixed method avoids volumetric locking also in this case and is robust for
λ → ∞ (with λ being the well-known Lamé constant). Error estimates for the
L∞ norm are crucial in the control of the nonlinear terms.

1. Introduction

Isoparametric low-order elements are very popular in solid mechanics due to their
simplicity. A major disadvantage, however, is the so-called locking effect [2]. Specif-
ically volume locking is encountered when the material is nearly incompressible. In
case of linear elasticity it is now well-known how to overcome locking numerically,
and several popular methods have been shown to be equivalent [6, 30]. Recently,
also the mathematical treatment has been simplified [8].

The situation is less satisfactory in nonlinear elasticity. In the present paper we
shall consider a nearly incompressible neo-Hookean material [27, 37]. Let v be a
displacement field in a bounded domain Ω ⊂ R

2 with smooth boundary. The stored
energy and the load yield the total energy

(1.1) Jλ(v) :=
C0

2

∫

Ω

(

|Id+∇v|2−2
)

dx+
λ

2

∫

Ω

|det(Id+∇v)−1|2 dx−
∫

Ω

fv dx.

Here C0 is a positive physical parameter related to the Lamé parameter µ while λ
is characteristic for the compressibility. In particular, here we have λ � C0. For
brevity, we let C0 ≡ 1 hereafter. This model (and its analysis) have a characteristic
feature of nonlinear theories. We find the determinant det(Id + ∇v) in expres-
sions at those places where div v is encountered in linear theories. The resulting
displacement u = (u1, u2) is characterized by the minimization of Jλ(v), i.e.,

(1.2) Jλ(u) = min
v∈W

Jλ(v),

where W := {v ∈W 1,4
0 (Ω) | det(Id + ∇v) > 0 a.e. in Ω}.

The above minimization problem is frequently used in industry [23, 29] to model
neo-Hookean nearly incompressible material. Natural rubber is a typical example
for nearly incompressible material, and materials that undergo plastic deformations
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may also be considered as nearly incompressible. This model is also encountered
when the hard incompressible constraint

det(Id + ∇v) = 1

is tackled by a penalty term in a way introduced by Ogden [26]. The above con-
straint reduces to the well-known linear incompressible condition in linear elasticity
or incompressible fluid dynamics, i.e.

div v = 0.

The model may also be viewed as the 2-D case of the Mooney-Rivlin material;
we refer to [12] for examples of other materials. Proceeding along the same line
as [22, Theorem II.2] (see also [32]), one can see that u and p converge to the
solutions for incompressible neo-Hookean material as λ approaches ∞ if the body
force f ∈ L2(Ω).

An advantage of this model is that it is based upon a displacement-oriented for-
mulation which facilitates the implementation. The model avoids hard constraints.
On the other hand, there is a large parameter and the danger of locking. In order
to avoid locking in the given nonlinear problem, we will employ a reduced energy
functional when the discretization with finite elements of low order is performed.
Let Xh be the finite elements space. The solution uh will minimize the reduced
energy functional

Jλ,h(v) : =
1

2

∫

Ω

(

|Id + ∇v|2 − 2
)

dx+
λ

2

∫

Ω

|Π0

(

det(Id + ∇v) − 1
)

|2dx

−
∫

Ω

fv dx,(1.3)

where Π0 denotes the L2-projection onto some finite element space Mh.
The analysis will be based on an equivalent mixed method. To this end the

pressure variable
p := λ(det(Id + ∇u) − 1)

is introduced, and a saddle point formulation with a penalty term arises. While
such a u-p formulation is equivalent to the method with enhanced assumed strains
in the linear case [6, 35], there are some differences in the nonlinear case. Instead
of using a projection of the determinant of Id + ∇u, one may for instance consider
projections of the four matrix elements. This will be exploited in a forthcoming
paper.

The nonlinear problem will be dealt with a homotopy argument. Since the
nonlinearities are bounded by L∞ norms, the L∞ error has to be controlled for
the homotopy. As a consequence, we obtain logarithmic terms with a higher power
than in the linear case.

We emphasize that we do not require smallness of the nonlinearities. It will
be enough to have a good discretization such that the nonlinear terms with the
differences u− uh and p− ph can be controlled.

The paper is organized as follows. Some notations are introduced, the main
result is stated, and the concept for its proof is outlined in Section 2. In Section
3, we provide some a priori estimates as well as the regularity estimates for the
linearized problem. A special Clément interpolant is constructed in Section 4. The
regularized Green’s functions and their application to the nonlinear problem are
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detailed in Section 5. Section 6 establishes the final error bounds. Appendix A
tackles the finite element approximation of the Green’s functions.

In this paper, we will concentrate on a variant of the 4–1 element [36]. The
commonly used 9–3 element also fits into our analysis; we will comment on this
element in Remark 2.8 and 4.2.

Throughout this paper, C denotes a generic constant that is independent of h
and λ.

2. Notations and preliminaries

2.1. Problem setting. Let Wm,p(Ω) denote the standard Sobolev space of func-
tions on Ω (see [20]) equipped with the norm and semi-norm

‖v‖p
m,p :=

m
∑

k=0

|v|pk,p and |v|pk,p :=

∫

Ω

∑

|α|=k

|Dαv|p dx.

Here α = (α1, α2) is a multi-index whose components αi are non-negative integers,
|α| = α1 + α2, and Dα = ∂|α|/∂xα1

1 xα2

2 . For brevity, if p = 2, the subscript
p will be dropped and Wm,2(Ω) is denoted as Hm(Ω). As usual, H1

0 (Ω) is the
subspace of H1(Ω) functions with vanishing traces on Γ := ∂Ω, and H1

0(Ω) is the
corresponding space of 2-vector-valued functions. More generally, we use boldface
letters to denote the vector-valued spaces and operators. Moreover H−1(Ω) is the
dual space of H1

0 (Ω), and 〈·, ·〉 denotes the dual pairing of H1
0 (Ω) and H−1(Ω) or

of H1
0(Ω) and H−1(Ω), respectively. The inner product in L2(Ω) is (·, ·)Ω or for

short (·, ·).
We set X := H1

0(Ω) and M := L2(Ω). As usual X ′ and M ′ are the dual spaces.
For a vector x ∈ R

2, we set x⊥ := (x2,−x1). For vectors x = (x1, x2) and
y = (y1, y2) ∈ R

2, x ⊗ y is a 2 × 2 matrix with elements (x ⊗ y)ij := xiyj . For a

matrix A, adjA := (CofA)T = CofAT , where CofA is the cofactor matrix of A.

A matrix product is defined by A : B = tr(ATB). Note that

(2.1) det(A+B) = detA+ CofA : B + detB

holds for any 2 × 2 matrices.
Problem (1.2) still has an undesirable constraint. We consider the minimiza-

tion of the elastic energy (1.2) over W 1,4
0 (Ω) instead of W and the restriction

det(Id + ∇v) > 0 has to be checked a posteriori. Since zero boundary conditions
are assumed,

∫

Ω

(

|Id + ∇v|2 − 2
)

dx =
∫

Ω
(∇v)2 dx. The Euler–Lagrange equation

for the minimization of (1.1) is

(2.2) A(u,v) = 〈f ,v〉, ∀v ∈W 1,4
0 (Ω),

with the nonlinear functional

A(u,v) := (∇u,∇v) + λ(det(Id + ∇u) − 1,Cof(Id + ∇u) : ∇v).

For problems with more general boundary conditions, see [33].
By virtue of the Piola identity [12, Theorem 1.7.1],

(2.3) div CofA = 0,

whenever A is the gradient of a smooth vector field. Therefore A(u,v) can be
rewritten

(2.4) A(u,v) = (∇u,∇v) + λ
(

det(Id + ∇u) − 1, div(adj(Id + ∇u)v)
)

.
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We introduce p := λ(det(Id + ∇u) − 1) to put the minimizing problem (1.2) and
the weak equations (2.2) into a saddle point formulation.

Problem 2.1. Find (u, p) ∈W 1,4
0 (Ω) ×M such that

(2.5)
a((u, p),v) = 〈f ,v〉, ∀v ∈W 1,4

0 (Ω),
b(u, q) − λ−1(p, q) = 0, ∀q ∈ M,

with

a((u, p),v) := (∇u,∇v) +
(

p, div(adj(Id + ∇u)v)
)

,

b(u, q) := (q, det(Id + ∇u) − 1).

As above, from the Piola identity we have div(Cof(Id + ∇u)) = 0 and

(2.6)
(

p, div(adj(Id + ∇u)v)
)

= (p,Cof(Id + ∇u) : ∇v),

which will be frequently used.
The existence of a solution (u, p) of Problem 2.1 can be proven as in [12, section

6.4–6.8]. Following [22], we also assume that

(2.7) u ∈ C
2(Ω), p ∈ C1(Ω).

This regularity is commonly assumed in investigations of nonlinear elasticity, al-
though the assumptions are restrictive. If Ω is a C3 domain, and the body force f
is sufficiently small in W 1,p(Ω) with p > 2, one has (u, p) ∈ W 3,p(Ω) ×W 2,p(Ω),
and (2.7) follows by the Sobolev imbedding theorem.

Let Th be a regular triangulation of Ω into ”quadrilaterals” with mesh parameter
h := maxK∈Th

hK . Interelement boundaries are located on straight lines, and
elements next to the boundary are transformed/modified to quadrilaterals such
that curved boundaries are matched. Moreover, we assume that Th is obtained by
first constructing a triangulation of Ω with mesh size 2h, and then dividing each
quadrilateral K into four sub-quadrilaterals by the lines connecting the mid-points
of the opposite edges of K. To define the isoparametric elements, let Qk(K) be the
space of polynomials of degree ≤ k in each variable, and set

Xh := {v ∈X | v|K ∈ Q1(K)2 ∀K ∈ Th},(2.8)

Mh := {q ∈M | q|K ∈ Q0(K) ∀K ∈ T2h},(2.9)

for the approximation of the displacement u and the pressure variable p, respec-
tively. In principle, (Xh,Mh) can be any pair of spaces that is stable for the
Stokes problem (provided that the interpolation process in Section 4 is adapted);
cf. Remark 4.2.

The finite element approximation of Problem 2.1 reads:

Problem 2.2. Find (uh, ph) ∈Xh ×Mh such that

(2.10)
a((uh, ph),v) = 〈f ,v〉, ∀v ∈Xh,

b(uh, q) − λ−1(ph, q) = 0, ∀q ∈Mh.

Note that functions in Mh are discontinuous, and the pressure variable ph can
be eliminated in finite element computations on an element level.



FINITE ELEMENTS FOR NEARLY INCOMPRESSIBLE MATERIALS 5

2.2. Final assumptions and main problem. Problems 2.1 and 2.2 will be em-
bedded later into one-parameter families of equations. When applying an implicit
function theorem, we make use of the derivatives of the nonlinear form a((u, p),v),

au(p;w,v) :=
(

∇w,∇v
)

+
(

p, div(adj ∇wv)
)

,

ap(u;v, q) :=
(

q, div(adj(Id + ∇u)v)
)

.

The derivatives of b can be expressed in terms of ap and b. Moreover, au is sym-
metrical in the last two arguments.

Let (u, p) be the solution of Problem 2.1, and let au(w,v) and ap(v, q) be
abbreviations of au(p;w,v) and ap(u;v, q), respectively. We consider the following
auxiliary linear problem.

Problem 2.3. Given (F , G) ∈ X ′ ×M ′, find (w, r) ∈X ×M such that

(2.11)
au(w,v) + ap(v, r) = 〈F ,v〉, ∀v ∈X,
ap(w, q) − λ−1(r, q) = (G, q), ∀q ∈ M.

We define a bilinear form A as

A(w, r;v, q) := au(w,v) + ap(v, r) + ap(w, q) − λ−1(r, q).

In particular, (2.11) is now rewritten:

(2.12) A(w, r;v, q) = 〈F ,v〉 + (G, q), ∀(v, q) ∈X ×M.

Since A is a bounded operator, it immediately induces a bounded linear operator
L : X ×M →X ′ ×M ′ by the relation L(w, r)(v, q) = A(w, r;v, q) for any (w, r)
and (v, q) ∈X×M . Note that we write L(w, r)(v, q) rather than (L(w, r), (v, q)).

For the linear problem (2.11), we have

Theorem 2.4. [15, Theorem 1] Assume that p ∈ C1(Ω) and u ∈ C
2(Ω).

(1) Let C1 := 1
2‖p‖2

C1(Ω)
. Then

(2.13)
1

2
‖∇v‖2

0 ≤ au(v,v) + C1‖v‖2
0, ∀v ∈X.

(2) There exists a constant C2 which may depend on ‖u‖
C2(Ω) such that

(2.14) sup
v∈X

ap(v, q)

‖v‖1
≥ C2‖q‖0, ∀q ∈M.

Theorem 2.4 provides only a G̊arding inequality for the bilinear form A in (2.12),
and thus the theorem does not exclude the case that Problem 2.3 is not solvable.
This is in accordance with the fact that the original problem is nonlinear, and large
loads can cause a breakdown of the mechanical system. On the other hand, it is
clear that the form au(·, ·) is coercive for small loads and if the solution (u, p) can
also be reached on a path without branch points or singularities. Roughly speaking
we have to stay in the region of stability.

After excluding the singularities above and having coercivity in addition to The-
orem 2.4, we can verify the following assumption by the general theory of saddle
point problems with penalty terms. We recall that the arguments heavily depend
on (2.7), and so we prefer the formulation as an assumption.

Assumption R. Given (F , G) ∈X ′ ×M ′, there exists a unique solution (w, r) ∈
X ×M of Problem 2.3 and

(2.15) ‖w‖1 + ‖r‖0 ≤ C(‖F ‖−1 + ‖G‖0).
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Here, C may depend on u and p.
The assumption above actually implies that the operator L is an isomorphism.
Now we are ready to state our main result.

Theorem 2.5. Let (u, p) ∈ C
2(Ω) × C1(Ω) be the solution of the Problem 2.1,

and let Assumption R hold. Then for sufficiently small h, there exists a solution
(uh, ph) ∈ Xh ×Mh of Problem 2.2 in a W 1,∞(Ω)×L∞(Ω)-neighborhood of (u, p)
such that

(2.16) ‖u− uh‖L∞ + h|lnh|3/2(‖∇(u− uh)‖L∞ + ‖p− ph‖L∞) ≤ Ch2|lnh|2,
where C may depend on ‖u‖

C2(Ω) and ‖p‖C1(Ω).

This theorem states that the isolated solution can be approximated with quasi-
optimal error bounds. For large data f , the uniqueness of the solution may be
violated, see [12, section 5.8].

Our result improves a similar one in [15, Theorem 2], since the convergence rate
presented there is only of order O(h2−ε) with ε > 0.

The main ingredient of our proof is a bound of the regularized Green’s functions
that will be derived in Section 5. Such kind of estimates cannot be found in the
present literature.

Remark 2.6. Notice that this theorem and its analysis also cover the limit case
λ→ ∞, i.e., the incompressible material.

Remark 2.7. The error bounds for the displacement with respect to the W 1,∞-
norm and the pressure variable with respect to the L∞-norm are the same with the
sharp results for the Stokes problem [16, Corollary 5.1 with k = 1]. The L∞ error
bound for the displacement, however, is polluted by an extra factor of |ln h|.
Remark 2.8. Theorem 2.5 is also valid while the finite element spaces are replaced
by the (Q2, P1) pair for u and p, respectively, called 9–3 element by the engineering
community [28, 36].

2.3. Embedding Problem 2.2. We will consider a one-parameter family of prob-
lems with solutions in a neighborhood of (u, p). For any h > 0 we define a mesh-
dependent norm on W 1,∞(Ω) × L∞(Ω),

(2.17) ‖v, q‖h := ‖v‖L∞ + h|lnh|3/2(‖∇v‖L∞ + ‖q‖L∞).

For γ > 0 which will be fixed later, set

Uγ := {(v, q) ∈W 1,∞(Ω) × L∞(Ω) | ‖v − u, q − p‖h ≤ γ}.
Next, we introduce a homotopy

(2.18) H
(

t, (w, q)
)

: [0, 1]×
(

(Xh ×Mh) ∩ Uγ

)

→X ′
h ×M ′

h,

between the original nonlinear problem and a linear one. When applied to (v, q) ∈
Xh ×Mh, the operator H

(

t, (w, r)
)

takes the form

H
(

t, (w, r)
)

(v, q) =



















t[a((w, r),v) − 〈f ,v〉]
+(1 − t)[au(p;w − u,v) + ap(u;v, r − p)],

t[b(w, q) − λ−1(r, q)]

+(1 − t)[ap(u;w − u, q) − λ−1(r − p, q)].
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H(t, (w, r)) is continuously differentiable with respect to (w, r) with derivatives

D(w,r)H
(

t, (w, r)
)(

(φ, s), (v, q)
)

=



















t[au(r;φ,v) + ap(w;v, s)]

+(1 − t)[au(p;φ,v) + ap(u;v, s)],

t ap(w;φ, q)

+(1 − t)ap(u;φ, q) − λ−1(s, q).

We will omit the subscript of D(w,q)H
(

t, (w, q)
)

when no confusion can occur.
Now we are prepared for the embedding of Problem 2.2.

Problem 2.9. Find
(

ut
h, p

t
h

)

∈ (Xh ×Mh) ∩ Uγ for some γ > 0 such that

(2.19) H
(

t, (ut
h, p

t
h)

)

(v, q) = 0, ∀(v, q) ∈ Xh ×Mh.

Here t is the deformation parameter. The problem is linear for t = 0, and for
t = 1 we end with the original nonlinear problem 2.2. In particular,

(

u0
h, p

0
h

)

can

be understood as the Fortin interpolant of
(

u, p
)

in Xh×Mh for the mapping given
by Problem 2.3. We will exploit the continuity method [19, 31] to prove existence
and to derive the error bounds simultaneously.

The linearized expressions are easily separated from the nonlinear variational
form by using (2.5) and (2.10)

a((ut
h, p

t
h),v) − 〈f ,v〉 = a((ut

h, p
t
h),v) − a((u, p),v)

= (∇(ut
h − u),v) + (pt

h, div(adj ∇ut
hv)) − (p, div(adj ∇uv))

= (∇(ut
h − u),v) + (p, div(adj ∇(ut

h − u)v))
+(pt

h − p, div(adj ∇uv)) + (pt
h − p, div(adj ∇(ut

h − u)v))
= au(p;u− ut

h,v) + ap(u;v, p− pt
h) + (pt

h − p; div adj ∇(ut
h − u)v)).

Similarly, by using in addition (2.1), we have

(det(Id + ∇ut
h) − 1, q) − λ−1(pt

h, q)

= (det(Id + ∇u) − 1, q) + (Cof(Id + ∇u) : ∇(ut
h − u), q)

+ (det ∇(ut
h − u), q) − λ−1(pt

h, q)
= λ−1(p, q) +

(

div(adj(Id + ∇u)(ut
h − u)), q

)

+ (det ∇(ut
h − u), q) − λ−1(pt

h, q)
= ap(u;ut

h − u, q) − λ−1(pt
h − p, q) + (det ∇(ut

h − u), q).

We insert these expressions in (2.19) to obtain an equation for the error:
(2.20)
au(u− ut

h,v) + ap(v, p− pt
h) = t(p− pt

h, div(adj ∇(u− ut
h)v)), ∀v ∈Xh,

ap(u− ut
h, q) − λ−1(q, p− pt

h) = t(det ∇(u− ut
h), q), ∀q ∈Mh.

When performing the homotopy method we define a subset of the interval [0, 1] by

Ξh(C) := { t ∈ [0, 1] | Problem 2.9 has a solution
(

ut
h, p

t
h

)

∈ Xh ×Mh

such that ‖u− ut
h, p− pt

h‖h ≤ Ch2|lnh|2 }.(2.21)

The set Ξh(K1) will be shown to be nonvoid, open and closed with respect to the
interval [0, 1] for sufficiently small h and some K1 > 0. Hence, it coincides with
[0, 1]. The cornerstones are an a priori estimate and the applicability of an inverse
function theorem. They are provided in the following two lemmas that will be
proven in Section 6.
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Lemma 2.10. Let (u, p) ∈ C
2(Ω) × C1(Ω) be the solution of Problem 2.1, and

assume that Assumption R holds. Then there exist positive constants h1 and K1

with the following property: If
(

ut
h, p

t
h

)

∈ Uγ is a solution of Problem 2.9, with

γ := 2K1h
2|lnh|2, 0 < h < h1, and t ∈ [0, 1], then we have

(2.22)
(

ut
h, p

t
h

)

∈ Uγ/2.

Furthermore, (u0
h, p

0
h) ∈ Uγ/2, i.e., the inclusion holds for t = 0.

Actually, we will show a stronger result. It is sufficient to have
(

ut
h, p

t
h

)

∈ Uγ0

for some γ0 of the order h|lnh|1/2 instead of h2|lnh|2.
Lemma 2.11. Let (ū, p̄) ∈ (Xh ×Mh) ∩ UK1h2|lnh|2 . If h is sufficiently small,

then the operator DH
(

t, (ū, p̄)
)

is a regular mapping from Xh ×Mh into itself for
all t ∈ [0, 1].

3. A priori Estimates and Regularity

First, we consider the regularity of Problem 2.3.

Theorem 3.1. For any (F , G) ∈ L2(Ω) ×H1(Ω), the solution (w, r) of Problem
2.3 belongs to H2(Ω) ×H1(Ω) and

(3.1) ‖w‖2 + ‖r‖1 ≤ C(‖F ‖0 + ‖G‖1).

Here C is independent of λ.

Proof. If we restrict λ to a bounded set, a proof of the theorem is essentially included
in [15, Lemma 3.5]. The key point is that (2.11) is elliptic in the sense of ADN [1]
as was observed by Le Dret [21].

Therefore, we only need to consider Problem 2.3 for large λ, and we assume that
λ ≥ λ0, with λ0 to be specified later. We consider an auxiliary problem without
penalty term. Find (w1, r1) ∈ X ×M such that

(3.2)
au(w1,v) + ap(v, r1) = 〈F ,v〉 ∀v ∈X,
ap(w1, q) = (G, q) ∀q ∈M.

In view of [15, Lemma 3.5], we have

(3.3) ‖w1‖2 + ‖r1‖1 ≤ C3(‖F ‖0 + ‖G‖1).

Next we define a mapping T from H1(Ω) into itself. Given r, let Tr := r̄ be
defined by

au(w̄,v) + ap(v, r̄) = 〈F ,v〉 ∀v ∈X,
ap(w̄, q) = (G+ λ−1r, q) ∀q ∈ M.

Given r1, r2 ∈ H1(Ω), it follows from (3.3) that ‖r̄1 − r̄2‖1 ≤ λ−1C3‖r1 − r2‖1 ≤
1
2‖r1 − r2‖1 whenever λ ≥ λ0 := 2C3. Hence, T is a contraction and it has a fixed

point r ∈ H1(Ω). Let w := w̄ be the other component of the solution with this r.
From

‖w‖2 + ‖r‖1 ≤ C3(‖F ‖0 + ‖G‖1) +
1

2
‖r‖1,

we conclude that (3.1) holds with C := 2C3, and the proof is complete. �

A duality argument [24], yields the following fact.
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Lemma 3.2. Let (F , G) ∈H2(Ω)′ ×H1(Ω)′. Then the solution (w, r) of Problem
2.3 belongs to L2(Ω) ×H−1(Ω) and

(3.4) ‖w‖0 + ‖r‖−1 ≤ C(‖F ‖−2 + ‖G‖−1).

Proof. Given (φ, s) ∈ L2(Ω)×H1
0(Ω), consider the auxiliary problem: Find (w, r) ∈

X ×M such that

(3.5) A(v, q;w, r) = (φ,v) + (s, q), ∀(v, q) ∈ X ×M.

Theorem 3.1 implies that ‖w‖2 + ‖r‖1 ≤ C(‖φ‖0 + ‖s‖1). By setting v := w and
q := r in (3.5) it follows that

|(w,φ) + (r, s)| = |A(w, r;w, r)| = |〈F ,w〉 + (G, r)|
≤ (‖F ‖−2 + ‖G‖−1)(‖w‖2 + ‖r‖1)

≤ C(‖F ‖−2 + ‖G‖−1)(‖φ‖0 + ‖s‖1),

which implies the bounds of ‖w‖0 and ‖r‖−1 as stated in (3.4). �

To achieve L∞ estimates, we consider error estimates for weighted Sobolev norms
with the weight function

(3.6) σ(x) := (|x− x0|2 + θ2)1/2, x,x0 ∈ Ω.

Here θ = Kh, with K ≥ 1 being a constant to be specified later. For α ∈ R and k
a nonnegative integer, we define the weighted semi-norms

(3.7) ‖Dkq‖2
σα :=

∑

|β|=k

∫

Ω

|∂βq(x)|2σ(x)α dx, q ∈ Hk(Ω).

The same notation will be used for vector-valued functions. We list some properties
of σ (see [9, p. 170] for more general cases),

max
x∈K

σ(x) ≤ C min
x∈K

σ(x), ∀K ∈ Th,(3.8)

[2pt]|Djσ(x)α| ≤ C(j, α)σα−j (x), ∀x ∈ Ω, α ∈ R.(3.9)

By [11, Theorem 3.3.2], if θ is small enough,

(3.10)

∫

Ω

σ−(2+α)(x) dx ≤
{

Cθ−α, for α > 0,

C|ln θ|, for α = 0.

Theorem 3.3. For any (F , G) ∈ L2(Ω) ×H1(Ω), the solution (w, r) of Problem
2.3 satisfies

‖D2w‖σ2 + ‖∇r‖σ2 ≤ Cθ(‖F ‖0 + ‖G‖1)

+ C(‖F ‖σ2 + ‖∇G‖σ2 + ‖F ‖−1 + ‖G‖0).(3.11)

Proof. As in [11, Chapter 3, Section 3.3], let µj = xj − xj
0, (j = 1, 2). From

µj∇r = ∇(µjr) − (∇xj)r and a similar formula for w it follows that

‖µjD2w‖0 + ‖µj∇r‖0 ≤ C(‖D2(µjw)‖0 + ‖∇(µjr)‖0 + ‖∇w‖0 + ‖r‖0).

We only need to establish a bound of the first two terms on the right-hand side since
the other terms are covered by (2.15). Observe that the strong form of Problem
2.3 reads

−4w − (adj ∇w)∇p− Cof(Id + ∇u)∇r = F ,

adj(Id + ∇u) : ∇w − λ−1r = G.
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A simple computation yields

−4(µjw) − (adj ∇(µjw))∇p− Cof(Id + ∇u)∇(µjr) = F ,

adj(Id + ∇u) : ∇(µjw) − λ−1µjr = G,

where the modified right-hand sides differ from the original ones only by terms of
lower order

F = µjF − 2∇µj∇w − ∇p∇µ⊥
j ⊗w⊥ − Cof(Id + ∇u)∇µjr,

G = µjG+ adj(Id + ∇u) : w ⊗ ∇µj .

By virtue of Theorem 3.1 and Assumption R it follows that

‖D2(µjw)‖0 + ‖∇(µjr)‖0 ≤ C(‖µjF ‖0 + ‖µj∇G‖0 + ‖∇w‖0 + ‖r‖0)

≤ C(‖µjF ‖0 + ‖µj∇G‖0 + ‖F ‖−1 + ‖G‖0).(3.12)

Next,

‖D2w‖2
σ2 = θ2‖D2w‖2

0 +

2
∑

j=1

‖µjD2w‖2
0.

Combining this with (3.12) and the analogous estimates of ∇r we obtain (3.11). �

Proceeding along the same line and using Lemma 3.2, we obtain

Lemma 3.4. For any (F , G) ∈ L2(Ω)×H1(Ω), the solution (w, r) of Problem 2.3
satisfies

‖∇w‖σ2 + ‖r‖σ2 ≤ Cθ(‖F ‖−1 + ‖G‖0)

+ C(

2
∑

j=1

‖µjF ‖−1 + ‖G‖σ2) + C(‖F ‖−2 + ‖G‖−1).(3.13)

4. An Interpolant of Clément Type

In this section, we provide some approximation properties of an interpolant of
Clément type. Consider a macroelement M of T2h; see Figure 1. Denote its four
edges by Ei (1 ≤ i ≤ 4), and the midpoint of Ei by ai. Let b0 be the center of M,
and bi (i = 1, 2, 3, 4) be the corner nodes labeled anticlockwise from the lower-left
corner, and the four corresponding squares are denoted by Ki (i = 1, 2, 3, 4).

K4

K1 K2

K3

a4

a1

a2

a3

b0

b1 b2

b3b4

E1

E2

E3

E4

Fig. 1. Macroelement M
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We start with the Clément type interpolation operator Rh defined in [3]. It will
be modified following [4] in order to preserve the integrals over the edges. If we
modify an interpolant vh at the midpoints a1, a2, a3, and a4, only the change of
vh(ai) will contribute to

∫

Ei
vhds. In this way we obtain an interpolation operator

Πh : H1(Ω) → {v ∈ H1(Ω) | v|K ∈ Q1(K) ∀K ∈ Th}
that is given by

(Πh)|Ki
: H1(M) → Q1(Ki), i = 1, 2, 3, 4,

Πhv(bi) := Rhv(bi), i = 0, 1, 2, 3, 4,
∫

Ei

(v − Πhv) ds = 0, 1 ≤ i ≤ 4.

(4.1)

The interpolation process preserves the nullity of traces due to (4.1)2 and (4.1)3.
For a vector function v = (v1, v2) ∈ H1

0(Ω), we define the interpolant Πhv by the
components,

(4.2) Πhv := (Πhv1,Πhv2).

Similarly Rhv := (Rhv1, Rhv2).
We note that the construction of a similar operator in [4] is based on a Ritz

projector. The quasi-local character of the operator (4.1) enables us, however, to
establish the estimates (4.6) and (4.7) below.

Theorem 4.1. The interpolation operator Πh defined by (4.1) and (4.2) has the
following properties:

(1) For any matrix A whose elements are piecewise constant on each K of T2h,
we have

(4.3)
∑

M∈T2h

∫

M

div
(

A(v −Πhv)
)

q dx = 0, ∀q ∈Mh.

(2) There exists a constant C such that

‖Dk(v − Πhv)‖Lp ≤ Chj−k‖Djv‖Lp , k = 0, 1 and j = 1, 2, p ∈ [1,∞],(4.4)

‖Dk(v −Πhv)‖σ2 ≤ Chj−k‖Djv‖σ2 , k = 0, 1 and j = 1, 2.(4.5)

(3) There exists a constant C such that

(4.6) ‖∇
(

σ2v −Πh(σ2v)
)

‖σ−2 ≤ Ch‖v‖σ−2 + Ch‖∇v‖0, ∀v ∈Xh.

(4) There exists a constant C such that for all p ∈ [1,∞]

(4.7) ‖∇Πhv‖Lp ≤ C‖∇v‖Lp and ‖∇Πhv‖σ2 ≤ C‖∇v‖σ2 .

Here and in the proof, D2v is understood in a piecewise manner for any v ∈ Xh,
so does ‖D2v‖Lp and ‖D2v‖σ2 .

A similar bound for the first part of (4.7) with p = 2 is included in [4, Theorem
3.1]. The main ingredient of the following proof is the scaled trace inequality as
well as an error estimate of Rh.

Proof. (1) Let A be a matrix whose elements are constant on each M in T2h. By
(4.1)3 we obtain for the normal components

∫

Ei
A(Πhv−v) ·n ds = 0 on each edge

Ei of the 2h-grid. Gauss’ theorem yields now (4.3).
(2) We restrict ourselves to p <∞ since the case p = ∞ follows the same lines.
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Referring to Figure 1, we select K1 as a typical element in Th. A simple scaling
argument yields

∫

K1

|(Πh −Rh)v|p dx ≤ Ch2
K1

4
∑

i=1

|(Πh −Rh)v(xi)|p,

where x1 = b1, x2 = a1, x3 = b0, x4 = a4. Since (Πh − Rh)v vanishes at b0
and b1, we obtain contributions only from a1 and a4. Similar estimates hold for the
integrals on K2,K3 and K4. Summing up, we have on the macro-element M ∈ T2h,

(4.8)

∫

M

|(Πh −Rh)v|p dx ≤ Ch2
M

4
∑

i=1

|(Πh −Rh)v(ai)|p.

Next, since (Πh −Rh)v is piecewise linear on Ei and vanishes at the vertices of M,
we have in view of (4.1)3,

(4.9) (Πh −Rh)v(ai) =
1

|Ei|

∫

Ei

(Πh −Rh)v ds =
1

|Ei|

∫

Ei

(v −Rhv) ds.

Combining (4.8) with (4.9) and using the scaled trace inequality [20, Theorem
1.5.1.10] and Hölder’s inequality we obtain for any j = 1, 2,

∫

M

|(Πh −Rh)v|p dx ≤ ChM

4
∑

i=1

∫

Ei

|v −Rhv|p ds

≤ ChM

(

h−1
M

∫

M

|v −Rhv|p dx+ hp−1
M

∫

M

|∇(v −Rhv)|p dx
)

≤ Chjp
M

∫

ω(M)

|Djv|p dx,(4.10)

where ω(M) := {M′ ∈ T2h | M′∩M 6= ∅}. An application of the inverse inequality
leads to

(4.11) ‖∇(Πh −Rh)v‖Lp(M) ≤ Ch
(j−1)p
M ‖Djv‖Lp(ω(M)), j = 1, 2.

Summing up all M ∈ T2h in (4.10) and (4.11), we obtain

‖Dk(Πhv −Rhv)‖Lp ≤ Chj−k‖Djv‖Lp , k = 0, 1 and j = 1, 2, p ∈ [1,∞).

This inequality together with the well-known estimates for Rh [3], namely

‖Dk(v −Rhv)‖Lp ≤ Chj−k‖Djv‖Lp , k = 0, 1 and j = 1, 2, p ∈ [1,∞),

leads to (4.4) for all j and k, which together with (3.8) immediately yields (4.5).
(3) Since the triangulation Th is quasi-uniform, we can derive in the same way

as (3.8),

(4.12) max
x∈K

σ(x) ≤ C min
x∈ω(M)

σ(x), ∀K ⊂ M ∈ T2h .

We recall (4.11) for p = 2, i.e., ‖∇(w − Πhw)‖L2(K) ≤ ChM‖D2w‖L2(ω(M)), for
K ⊂ M ∈ T2h. Together with (4.12) we have

∫

K

σ(x)−2|∇(w −Πhw)| dx ≤ Ch2
M

∫

ω(M)

σ(x)−2|D2w|2 dx.

Summing up for all K ∈ Th gives

‖∇(w −Πhw)‖σ−2 ≤ Ch‖D2(σ2w)‖σ−2 .
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For any v ∈ Th, let w be σ2v in the above inequality, we get

‖∇
(

σ2v−Πh(σ2v)
)

‖σ−2 ≤ Ch‖D2(σ2v)‖σ−2 ≤ C(h‖v‖σ−2 +h‖∇v‖0+h
2‖D2v‖0).

An inverse inequality for finite element spaces applied to the last term yields (4.6).
(4) Finally, by applying (4.4) and (4.5) with k = j = 1 and using the triangle

inequality we obtain the bound (4.7). �

Remark 4.2. The property (4.3) is similar to the key assumption in [16, (1.8)],
where the assumption was written for A being the identity matrix. The essential
point is that the pair (Xh,Mh) is stable for the Stokes problem and there is a locally
constructed operator with properties like the Fortin interpolant.

Similar constructions can be performed for other pairs of finite element spaces;
see [16, Section 5]. In particular the aforementioned (Q2, P1) element (see Remark
2.8), is easily treated by combining the procedure above with techniques in [7] and
[10].

A standard scaling argument together with an inverse inequality yields the fol-
lowing approximation and superapproximation properties that refer to the other
function in the variational problem.

Theorem 4.3. Let Qh be the L2 projection onto Mh.

(1) There exists a constant C such that

‖q −Qhq‖Lp ≤ Ch‖∇q‖Lp , ∀p ∈ [1,∞],(4.13)

‖q −Qhq‖σ2 ≤ Ch‖∇q‖σ2 .(4.14)

(2) Qh admits the following superapproximation property

(4.15) ‖σ2q −Qh(σ2q)‖σ−2 ≤ Ch‖q‖0, ∀q ∈ Mh.

5. Regularized Green’s Functions and L∞ Estimates

The proof of Lemma 2.10 will be based on L∞ estimates of the terms on the
right-hand side of (2.20). They will be obtained by the technique proposed by
Frehse and Rannacher [18] and refer to the regularized Green’s functions and the
weighted Sobolev norm estimates introduced by Natterer [25]. Our approach is
similar to that in [16]; the concept is even more transparent in the scalar case [9,
Chapter 7]. In the present situation, there is, however, an extra difficulty. We have
only a G̊arding inequality instead of the usual coercivity of au(·, ·). Thus the error
bounds with respect to the energy norm are interwoven with an L2 estimate, and
the latter requires an appropriate duality argument.

Lemma 2.10 could also be proven by weighted Sobolev norm estimates as in [15],
but only an order of h2−ε would be achieved in (2.16). Moreover, the estimates for
the regularized Green’s functions are of independent interest.

We start with a general argument following [18]. Let χ = χi (1 ≤ i ≤ 3) be a
piecewise polynomial, and let |χ| attain its maximum at some xi ∈ Ki. Since the
mesh Th is regular, we can find a ball Bi ⊂ Ki with radius αh, such that its center
yi satisfies |xi − yi| ≤ Cαh. Here α is assumed to be sufficiently small depending
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on the shape parameter of the triangulation Th. Next, let δi ∈ C∞
0 (Ω) satisfy

supp δi ⊂ Bi,(5.1)
∫

Ω

δi dx = 1, δi ≥ 0,(5.2)

‖Djδi‖L∞ ≤ Ch−2−j , j = 0, 1.(5.3)

The mean value theorem, combined with (5.2), yields
∫

Ω

χδ dx = χ(z) for some z ∈ Bi.

Using an inverse inequality for polynomials leads to

‖χ‖L∞(Ω) = |χ(xi)| ≤ |χ(z)| + Cαh‖∇χ‖L∞(K1) ≤ Cα‖χ‖L∞(Ω) +

∣

∣

∣

∣

∫

Ω

χδ dx

∣

∣

∣

∣

.

Choosing α such that Cα = 1/2, we may rewrite the previous inequality as

(5.4) ‖χ‖L∞(Ω) ≤ 2

∣

∣

∣

∣

∫

Ω

χδ dx

∣

∣

∣

∣

.

Therefore the required bound can be obtained from an estimate of a functional.
We define three families of regularized Green’s functions and describe simulta-

neously their relation to L∞ estimates. By duality first their L1 norms enter that
in turn will be bounded by weighted L2 norms.

Lemma 5.1. Let (G1, ζ1) ∈ X × M and the corresponding regularized Green’s

functions (Gh
1 , ζ

h
1 ) ∈Xh ×Mh satisfy

A(G1, ζ1;v, q) = (δ1,v), ∀(v, q) ∈X ×M,(5.5)

A(Gh
1 , ζ

h
1 ;v, q) = (δ1,v), ∀(v, q) ∈Xh ×Mh,(5.6)

respectively. Here δ1 = (δ1, 0) or δ1 = (0, δ1). Then we have

‖u− ut
h‖L∞ ≤ 2‖u−Πhu‖L∞ + C|lnh|1/2

(

‖∇(u−Πhu)‖L∞ + ‖p−Qhp‖L∞

)

×
(

‖∇(G1 −Gh
1 )‖σ2

1

+ ‖ζ1 − ζh
1 ‖σ2

1

)

+ Ct|lnh|1/2‖∇(u− ut
h)‖2

L∞‖ζh
1 ‖σ2

1

+ Ct|lnh|1/2‖∇(u− ut
h)‖L∞‖p− pt

h‖L∞‖∇Gh
1‖σ2

1

.(5.7)

Proof. It is enough to establish a bound of ‖Πhu−ut
h‖L∞ . To this end, let x1 ∈ Ω

be a point where the maximum is attained

‖Πhu− ut
h‖L∞ = max

1≤i≤2
|((Πhu)i − ut,i

h )(x1)|.

In view of (5.4) and (5.6), we have

‖Πhu− ut
h‖L∞ ≤ 2

∣

∣(Πhu− ut
h, δ1)

∣

∣

= 2
∣

∣

∣
au(Gh

1 ,Πhu− ut
h) + ap(Πhu− ut

h, ζ
h
1 )

∣

∣

∣
.
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By (2.20) together with (5.5) and (5.6), the above expressions can be expanded as

(Πhu− ut
h, δ1)

= au(Gh
1 ,Πhu− ut

h) + ap(Πhu− ut
h, ζ

h
1 )

= au(Gh
1 −G1,Πhu− u) + ap(Πhu− u, ζh

1 − ζ1) + ap(p−Qhp,G1 −Gh
1 )

+ λ−1(p−Qhp, ζ
h
1 − ζ1) + au(G1,Πhu− u) + ap(Πhu− u, ζ1)

+ t(p− pt
h, div(adj ∇(u− ut

h)Gh
1 )) + t(det ∇(u− ut

h), ζh
1 )

=: I1 + · · · + I8.

Now we estimate I1 to I8. An application of Hölder’s inequality yields a bound of
I1 to I4

|I1| + · · · + |I4| ≤ C(‖∇(u−Πhu)‖L∞ + ‖p−Qhp‖L∞)

× (‖∇(G1 −Gh
1 )‖L1 + ‖ζ1 − ζh

1 ‖L1).(5.8)

Recalling (5.5) we have

|I5 + I6| = |au(G1,Πhu− u) + ap(Πhu− u, ζ1)|
= |(δ1,Πhu− u)| ≤ ‖δ1‖L1‖Πhu− u‖L∞ = ‖Πhu− u‖L∞ .(5.9)

I7 and I8 are dealt with Hölder’s inequality as

|I7| ≤ t‖p− pt
h‖L∞‖∇(u− ut

h)‖L∞‖∇Gh
1‖L1 ,

and

|I8| ≤ Ct‖∇(u− uh)‖2
L∞‖ζh

1 ‖L1 .

From (3.10) and Hölder’s inequality we obtain

‖∇(G1 −Gh
1 )‖L1 ≤ C|lnh|1/2‖∇(G1 −Gh

1 )‖σ2

1

,

as well as similar inequalities for ∇Gh
1 , ζ1 − ζh

1 , and ∇ζh
1 . Summing up all the

above estimates we complete the proof of (5.7). �

Similarly, we define another two families of regularized Green’s functions and
their discrete versions.

Lemma 5.2. Let (G2, ζ2) ∈ X × M and the corresponding regularized Green’s

function (Gh
2 , ζ

h
2 ) ∈Xh ×Mh satisfy

A(G2, ζ2;v, q) = (Dδ2,v), ∀(v, q) ∈ X ×M,(5.10)

A(Gh
2 , ζ

h
2 ;v, q) = (Dδ2,v), ∀(v, q) ∈ Xh ×Mh,(5.11)

respectively. Here Dδ2 stands for any direction derivatives of either δ2 = (δ2, 0) or
δ2 = (0, δ2). Then we have

‖∇(u− ut
h)‖L∞ ≤ 2‖∇(u−Πhu)‖L∞

+ C|lnh|1/2
(

‖∇(u−Πhu)‖L∞ + ‖p−Qhp‖L∞

)

×
(

‖∇(G2 −Gh
2 )‖σ2

2

+ ‖ζ2 − ζh
2 ‖σ2

2

)

+ Ct|lnh|1/2‖∇(u− ut
h)‖2

L∞‖ζh
2 ‖σ2

2

+ Ct|lnh|1/2‖∇(u− ut
h)‖L∞‖p− pt

h‖L∞‖∇Gh
2‖σ2

2

.
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Proof. The proof of this lemma is almost the same with Lemma 5.1, the only
difference is that we choose x2 to maximize |∇(Πhu− ut

h)|. By using (5.4) again
we obtain

‖∇(Πhu− ut
h)‖L∞ ≤ 2

∣

∣(∇(Πhu− ut
h), δ2)

∣

∣ = 2
∣

∣(Πhu− ut
h,Dδ2)

∣

∣

= 2
∣

∣

∣
au(Gh

2 ,Πhu− ut
h) + ap(Πhu− ut

h, ζ
h
2 )

∣

∣

∣
.

The rest of the proof proceeds like the proof of Lemma 5.1. �

As in the preceding lemmas, we get

Lemma 5.3. Let (G3, ζ3) ∈ X × M and the corresponding regularized Green’s

function (Gh
3 , ζ

h
3 ) ∈Xh ×Mh satisfy

A(G3, ζ3;v, q) = (δ3, q), ∀(v, q) ∈X ×M,(5.12)

A(Gh
3 , ζ

h
3 ;v, q) = (δ3, q), ∀(v, q) ∈Xh ×Mh,(5.13)

respectively. Then we have

‖p− pt
h‖L∞ ≤ 2‖p−Qhp‖L∞ + C| lnh|1/2

(

‖∇(u−Πhu)‖L∞ + ‖p−Qhp‖L∞

)

×
(

‖∇(G3 −Gh
3 )‖σ2

3

+ ‖ζ3 − ζh
3 ‖σ2

3

)

+ Ct| lnh|1/2‖∇(u− ut
h)‖2

L∞‖ζh
3 ‖σ2

3

+ Ct|ln h|1/2‖∇(u− ut
h)‖L∞‖p− pt

h‖L∞‖∇Gh
3‖σ2

3

.

When applying the three lemmas above, we need bounds of Gi, G
h
i , ζi, ζ

h
i , and

their ‖ · ‖σ2

i
norms. The bounds are related to L∞ estimates of linear problems.

Therefore, the proofs are postponed to the appendix.

Lemma 5.4. There exists a constant C which may depend on ‖u‖
C2(Ω) and ‖p‖C1(Ω)

such that

‖D2G1‖σ2

i
+ ‖∇ζ1‖σ2

i
≤

{

C|lnh|1/2, i = 1,

Ch−1, i = 2, 3,
(5.14)

‖∇Gi‖σ2

i
+ ‖ζi‖σ2

i
≤ C|lnh|1/2, i = 1, 2, 3.(5.15)

Theorem 5.5. Let Gi and Gh
i be defined as before. If h is small enough,

(5.16) ‖∇(Gi −Gh
i )‖σ2

1

+ ‖ζi − ζh
i ‖σ2

1

≤
{

Ch|lnh|1/2, for i = 1,

C, for i = 2, 3.

6. Proof of the Main Result

In this section, we present the proof of Theorem 2.5. As a preparation, we first
prove Lemma 2.10 and Lemma 2.11.

Proof of Lemma 2.10. Expressions with the discrete Green’s functions will be
estimated by applying the triangle inequality to ∇Gh

i = ∇Gi +(∇Gh
i −∇Gi) and

ζh
i = ζi + (ζh

i − ζi). Inserting (5.16) into Lemma 5.2 and Lemma 5.3, respectively,
and recalling (5.15) we obtain the a priori estimates

‖∇(u− ut
h)‖L∞ + ‖p− pt

h‖L∞ ≤ Ch|lnh|1/2 + Ct|lnh| ‖∇(u− ut
h)‖L∞

×
(

‖∇(u− ut
h)‖L∞ + ‖p− pt

h‖L∞

)

.(6.1)
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Similarly, inserting (5.16) into Lemma 5.1, we have

‖u− ut
h‖L∞ ≤ Ch2|lnh|

+ Ct|lnh| ‖∇(u− ut
h)‖L∞

(

‖∇(u− ut
h)‖L∞ + ‖p− pt

h‖L∞

)

.(6.2)

Without loss of generality we may assume that C ≥ 1 and h ≤ e−1. Setting

A := ‖∇(u− ut
h)‖L∞ + ‖p− pt

h‖L∞ , B := ‖u− ut
h‖L∞

the two inequalities above may be rewritten

A ≤ Ch|lnh|1/2 + C|ln h|A2,

B ≤ Ch2|lnh| + C|ln h|A2.

Referring to the norm ‖ · ‖h that has been defined in (2.17) we assume that

(6.3) ‖u− ut
h, p− pt

h‖h = h|lnh|3/2A+B ≤ γ :=
1

2C
h|lnh|1/2.

From the inequality for A and the restriction (6.3) we conclude that

A ≤ Ch|ln h|1/2 + C|ln h|Ah−1|lnh|−3/2γ

≤ Ch|ln h|1/2 +
1

2
A ≤ 2Ch|lnh|1/2.(6.4)

Combining the inequality for B with (6.4) we obtain

(6.5) B ≤ Ch2|lnh| + C|lnh| 4C2h2|lnh| ≤ 5C3h2|lnh|2.
Finally we assume that

(6.6) h ≤ h1, where h1| lnh1|3/2 ≤ 1

28C4
.

Hence,

h|lnh|3/2A+B ≤ 2Ch2|lnh|2 + 5C3h2|lnh|2 ≤ 7C3h2|lnh|2

≤ 1

4C
h|lnh|1/2 ≤ 1

2
γ.

After setting K1 := max(2C, 7C3) = 7C3, the proof of the first assertion is complete.
Note that for t = 0,

‖u− u0
h, p− p0

h‖h ≤ 2Ch2|lnh|2 < K1h
2|lnh|2.

Thus the second assertion follows. �

Proof of Lemma 2.11. Let (ū, p̄) ∈ UK1h2|lnh|2 . We want to show that the problem

(6.7) DH
(

t, (ū, p̄)
)(

(wh, rh), (φ, s)
)

= 0, ∀(φ, s) ∈Xh ×Mh

has only the trivial solution (wh, rh) = 0 whenever h is sufficiently small. Note
that for any (φ, s) ∈Xh ×Mh,

DH
(

t, (ū, p̄)
)(

(wh, rh), (φ, s)
)

= A(wh, rh;φ, s) + tM(wh, rh;φ, s),

where M(wh, rh;φ, s) is defined as

M(wh, rh;φ, s) :=
(

p̄− p, div(adj ∇whφ)
)

+
(

rh, div(adj ∇(u− ū)φ)
)

+
(

s, div(adj ∇(u− ū)wh)
)

.



18 DIETRICH BRAESS AND P.-B. MING

By Theorem A.3 we have sufficiently small h

sup
(φ,s)∈Xh×Mh

DH
(

t, (ū, p̄)
)(

(wh, rh), (φ, s)
)

‖φ‖1 + ‖s‖0

≥ C(‖wh‖1 + ‖rh‖0) − Ct(‖∇(u− ū)‖L∞ + ‖p− p̄‖L∞)(‖wh‖1 + ‖rh‖0)

≥ C(‖wh‖1 + ‖rh‖0).(6.8)

This together with (6.7) leads to (wh, rh) = 0, and the proof is complete. �

Now we are ready to prove the main theorem.
Proof of Theorem 2.5. We will show that for sufficiently small h the set Ξh(K1)

is nonvoid, open and closed with respect to the interval [0, 1]. Hence, it coincides
with [0, 1].

Obviously, 0 ∈ Ξh(K1) by virtue of the last assertion of Lemma 2.10.
We claim that Ξh(K1) is open in [0, 1]. If τ ∈ Ξh(K1), we have H

(

τ, (uτ
h, p

τ
h)

)

= 0

and DH
(

τ, (uτ
h, p

τ
h)

)

is regular by Lemma 2.11. By the implicit function theorem
[14, Theorem A] there exists a neighborhood O1(τ) ⊂ [0, 1] such that for all t ∈
O1(τ),

(1) The nonlinear equation H
(

t, (u, p)
)

= 0 has a solution
(

ut
h, p

t
h

)

.
(2) (ut

h, p
t
h) is continuous in t with respect to the norm ‖ · ‖h.

Since (uτ
h, p

τ
h) ∈ UK1h2|ln h|2 , by (2) there exists a neighborhood O2(τ) of τ such

that for all t ∈ O2(τ), we have

(6.9) (ut
h, p

t
h) ∈ U2K1h2|ln h|2 .

An application of Lemma 2.10 yields

(ut
h, p

t
h) ∈ UK1h2|lnh|2 .

Thus t ∈ Ξh(K1) for all t ∈ O1(τ) ∩ O2(τ), and Ξh(K1) is open.
The set Ξh(K1) also is closed. Indeed, let tk ∈ Ξh(K1) be parameters tending

to τ ∈ [0, 1] and let (utk

h , p
tk

h ) be the corresponding solutions of Problem 2.9. By

virtue of the compactness of UK1h2|ln h|2 ∩
(

Xh ×Mh

)

, a subsequence converges to

some (uτ
h, p

τ
h) ∈ UK1h2|ln h|2 ∩

(

Xh ×Mh

)

. Since H
(

tk, (u
tk

h , p
tk

h )
)

= 0, it follows

from the continuity that H
(

τ, (uτ
h, p

τ
h)

)

= 0. Applying Lemma 2.10 once more, we
see that the solutions (uτ

h, p
τ
h) satisfy the strict inequality in (2.21). This proves

τ ∈ Ξh(K1), and Ξh(K1) is closed.
Consequently, we have Ξh(K1) = [0, 1] which proves Theorem 2.5. �

Remark 6.1. Until now we have disregarded the orientation preserving condition.
This is justified by the fact that the finite element solution uh is orientation pre-
serving, i.e.,

det(Id + ∇uh) > 0 in Ω

for sufficiently small h, provided that the solution of the continuous problem u has
this property.

Indeed, since u ∈ C
1(Ω), the determinant is continuous and bounded from below.

It follows that

det(Id + ∇uh) = det(Id + ∇u) + Cof(Id + ∇u) : ∇(uh − u) + det ∇(uh − u)

≥ det(Id + ∇u) − Ch|lnh|1/2 − Ch2|lnh| ≥ 1

2
det(Id + ∇u) > 0

if h is small, and the deformation is orientation preserving. �
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Appendix A. Discretization Error of Green’s Functions

The aim of this appendix is the proof of Theorem 5.5, i.e., we are concerned
with the estimates of Gi −Gh

i and ζi − ζh
i in the weighted norms. The Green’s

functions are defined by linear problems and, in essence, we have to perform those
steps which make the crucial part of L∞ error estimates for the linear variational
problem 2.3.

As already mentioned, Problem 2.3 has some special features. It is a saddle-
point problem with a penalty term. Fortunately that term belongs to a bounded
operator; cf. [5]. Moreover there is only a G̊arding inequality for au(., .) and no
coercivity. Based on the observation in [34] we will restrict ourselves to small h.

The formulation of Gh
i and ζh

i can be embedded into the Problem 2.3. Since the
following considerations are independent of i, the subscript i is dropped whenever
possible.

The stability of Problem 2.3 is now established via the discrete LBB condition,
a G̊arding inequality, and a compactness argument. To this end another norm will
be used. For any (v, q) ∈Xh ×Mh, we define

‖v, q‖2 := ‖v‖2
1 + ‖q‖2

0.

Lemma A.1. There exists a constant C > 0 such that for sufficiently small h,

(A.1) sup
v∈Xh

ap(v, q)

‖v‖1
≥ C‖q‖0, ∀q ∈ Mh.

Proof. The proof of this discrete LBB inequality is just a combination of the LBB
inequality (2.14) and the interpolant Πh (4.2). The latter serves as a Fortin-like
operator [17], [7, p.136]. For a matrix A, adjhA is defined by

(adjhA)ij := (Qh adjA)ij = Qh(adjA)ij ,

and CofhA is defined in the same manner.
Given q ∈Mh, by the LBB inequality (2.14), there exists v ∈X such that

(A.2) ap(v, q) = ‖q‖2
0 and ‖v‖1 ≤ Cb‖q‖0.

By definition of ap we have

ap(Πhv, q) = ap(v, q) + (q, div(adjh(Id + ∇u)(Πhv − v)))(A.3)

+ (q, div((adj− adjh)(Id + ∇u)(Πhv − v))).
Here, we understand

(q, div(adjh(Id + ∇u)Πhv)) =
∑

K∈T2h

(q, div(adjh(Id + ∇u)Πhv))K .

This is justified by the fact that adjh(Id + ∇u) is a piecewise constant matrix,
and due to (4.1)3 no terms with inner boundaries arise when Green’s formula is
applied. From (4.3) we conclude that the second term on the right-hand side of
(A.3) vanishes and using the Piola identity (2.6)

ap(Πhv, q) = ap(q,v) +
(

q, (Cof −Cofh)(Id + ∇u) : ∇(Πhv − v)
)

≥ ‖q‖2
0 − C1h‖q‖0‖∇(v −Πhv)‖0 .

From (4.7) and (A.2) it follows that

‖∇(v −Πhv)‖0 ≤ ‖∇v‖0 + ‖∇Πhv‖0 ≤ C‖∇v‖0 ≤ C‖q‖0.
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A combination of the above two inequalities gives (A.1) for sufficiently small h. �

Lemma A.2. There exist constants C1 and C2 such that for sufficiently small h,

(A.4) sup
(w,r)∈Xh×Mh

A(w, r;v, q)

‖w, r‖ ≥ C1‖v, q‖ − C2‖v‖0, ∀(v, q) ∈Xh ×Mh.

Proof. In view of the discrete LBB inequality (A.1), there exists Cb > 0 such that

ap(v1, q) = ‖q‖2
0 and ‖v1‖1 ≤ Cb‖q‖1.

Set Cs := 1+‖p‖C0(Ω), and let Cp be the constant in the Poincaré’s inequality, i.e.,

‖v‖1 ≤ Cp‖∇v‖0. From Theorem 2.4 it follows that for any α > 0

A(v + αv1,−q;v, q) = A(v,−q;v, q) + αA(v1, 0;v, q)

= au(v,v) + λ−1‖q‖2
0 + αau(v1,v) + αap(v1, q)

≥ 1/2‖∇v‖2
0 − 1/2‖p‖2

C1(Ω)
‖v‖2

0 + λ−1‖q‖2
0

+ α/2‖q‖2
0 − αC2

bC
2
s /2‖∇v‖2

0

≥ 1− αCbC
2
s

2Cp
‖v‖2

1 +
α

2
‖q‖2

0 + λ−1‖q‖2
0 −

1

2
‖p‖2

C1(Ω)
‖v‖2

0.

Next we choose α := Cp/(1 + CpC
2
bC

2
s ). Since 1

2 (1 − αCbC
2
s )Cp = α/2, it follows

that

A(v + αv1,−q;v, q) ≥ α/2‖v, q‖2 − 1/2‖p‖2
C1(Ω)

‖v‖2
0

≥ (α/2‖v, q‖ − 1/2‖p‖2
C1(Ω)

‖v‖0)‖v, q‖.
By construction,

‖v + αv1,−q‖ ≤ max(
√

2, 1 +
√

2αCb)‖v, q‖ =: C3‖v, q‖.
A combination of the last two inequalities yields (A.4) with C1 := α/2C3 and
C2 := ‖p‖2

C1(Ω)
/2C3. �

Theorem A.3. If h is sufficiently small, then there exists a constant C such that

(A.5) sup
(w,r)∈Xh×Mh

A(w, r;v, q)

‖w, r‖ ≥ C‖v, q‖ ∀(v, q) ∈Xh ×Mh.

Proof. We use a contradiction argument. Suppose that (A.5) does not hold. Then
there exists a sequence {vn, qn} ∈ Xhn

×Mhn
such that hn < 1/n, ‖vn, qn‖ = 1,

and

(A.6) |A(w, r;vn, qn)| ≤ 1

n
‖w, r‖, for all (w, r) ∈Xhn

×Mhn
.

So there exists a subsequence of {vn, qn}∞n=1, that will be denoted by {vn, qn} again,
and (v, q) ∈X ×M such that

vn ⇀ v weakly inH1
0(Ω), vn → v strongly inL2(Ω),

qn ⇀ q weakly inL2(Ω).

From the discrete G̊arding inequality (A.4) and the assumption (A.6), we obtain
for large n the inequality C1‖vn, qn‖ − C2‖vn‖0 ≤ 1

2C1‖vn, qn‖ which implies

‖vn‖0 ≥ C1/2C2 > 0.
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Hence, ‖v‖0 ≥ C1/2C2 and (v, q) 6= 0. By Assumption R, there exists (w, r) ∈
X ×M with ‖w, r‖ = 1 such that

(A.7) A(w, r;v, q) ≥ C4 > 0.

The weak convergence of vn and qn together with (A.7) implies that for sufficiently
large n, there holds

(A.8) A(w, r;vn, qn) ≥ C4/2.

The density of the finite element spaces guarantees that there exists some (wn, rn) ∈
Xhn

×Mhn
such that ‖w −wn, r − rn‖ ≤ C4/4‖L‖, where ‖L‖ denotes the usual

operator norm of L. These estimates imply that for sufficiently large n, there holds

A(wn, rn;vn, qn) = A(w, r;vn, qn) −A(w −wn, r − rn;vn, qn)

≥ C4/2 − ‖w −wn, r − rn‖ ‖L‖
≥ C4/4.(A.9)

This obviously contradicts (A.6), and the proof is complete. �

Now we turn to the Green’s functions. By construction, ‖δi‖0 ≤ Ch−1, ‖∇δi‖0 ≤
Ch−2, and as a simple corollary of Theorem 3.1, we have

Lemma A.4. There exists a constant C which may depend on ‖u‖
C2(Ω) and

‖p‖C1(Ω) such that

‖D2Gi‖0 + ‖∇ζi‖0 ≤
{

Ch−1, for i = 1,

Ch−2, for i = 2, 3.
(A.10)

Having Theorem A.3, we obtain the following error bounds by a standard scaling
argument (see [7, Lemma III.3.7]) and the duality technique of Aubin–Nitsche.

Lemma A.5. If h is sufficiently small, then we have

‖∇(G−Gh)‖0 + ‖ζ − ζh‖0 ≤ Ch(‖D2G‖0 + ‖∇ζ‖0),(A.11)

‖G−Gh‖0 + ‖ζ − ζh‖−1 ≤ Ch2(‖D2G‖0 + ‖∇ζ‖0),(A.12)

where C may depend on ‖u‖
C2(Ω) and ‖p‖C1(Ω).

Before estimating ‖∇(G − Gh)‖σ2 and ‖ζ − ζh‖σ2 we cite an approximation
result which will be frequently used in the subsequent analysis.

Lemma A.6. Let K be as in (3.6), and let ψ := (G−Gh)σ2. If h is sufficiently
small, then there exist constants CK > 0 and C > 0 such that

‖∇(ψ −Πhψ)‖σ−2 ≤ CKh
2(‖D2G‖0 + ‖∇ζ‖0)

+ CKh(‖D2G‖σ2 + ‖∇ζ‖σ2) + C/K‖∇(G−Gh)‖σ2 .(A.13)

This assertion follows from [16, Lemma 4.1] due to Theorem 4.1.

The following lemma is crucial for the estimate of ‖∇(G−Gh)‖σ2 . It is similar
to [16, Lemma 4.2], the proof is, however, quite different.

Lemma A.7. Let ξ := (Qhζ − ζh)σ2 and ψ := (G −Gh)σ2, then for any ε > 0,
there exists a constant C(ε) which is independent of h such that

|ap(ψ, ζ − ζh) − λ−1
(

Qhζ − ζh, ξ
)

|
≤ ε‖∇(G−Gh)‖2

σ2 + C(ε)h4
(

‖D2G‖0 + ‖∇ζ‖0

)2
+ C(ε)h2‖∇ζ‖2

σ2 .(A.14)
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Proof. Integration by parts yields

ap(ψ, ζ − ζh) = (ζ − ζh,Cof(Id + ∇u) : (G−Gh) ⊗ ∇σ2)

+ ap(G−Gh, (ζ − ζh)σ2)

= (ζ − ζh,Cof(Id + ∇u) : (G−Gh) ⊗ ∇σ2)

+ ap(G−Gh, (ζ −Qhζ)σ
2) + ap(G−Gh, ξ).

The last term on the right-hand side is rewritten by using the weak equations of G
and Gh

ap(G−Gh, ξ) = ap(G−Gh, ξ −Qhξ) + ap(G−Gh,Qhξ)

= ap(G−Gh, ξ −Qhξ) + λ−1(Qhξ, ζ − ζh)

= ap(G−Gh, ξ −Qhξ) + λ−1(Qhξ,Qhζ − ζh).

The last two equations yield

ap(ψ, ζ − ζh) − λ−1
(

Qhζ − ζh, ξ
)

= ap(G−Gh, (ζ −Qhζ)σ
2) + ap(G−Gh, ξ −Qhξ)(A.15)

+ (ζ − ζh,Cof(Id + ∇u) : (G−Gh) ⊗ ∇σ2).

The first two terms on the right-hand side of (A.15) are bounded by

(A.16) C‖∇(G−Gh)‖σ2(‖ζ −Qhζ‖σ2 + ‖ξ −Qhξ‖σ−2).

The superapproximation property (4.15) together with (A.11) yields

‖ξ −Qhξ‖σ−2 ≤ Ch‖Qhζ − ζh‖0 ≤ Ch2(‖D2G‖0 + ‖∇ζ‖0).

Inserting this into (A.16) and recalling the approximation property (4.14), we obtain
a bound of (A.16) that is rewritten by using Young’s inequality,

C‖∇(G−Gh)‖σ2

(

h‖∇ζ‖σ2 + h2(‖D2G‖0 + ‖∇ζ‖0)
)

≤ ε‖∇(G−Gh)‖2
σ2 +

C

4ε

(

h2‖∇ζ‖2
σ2 + h4‖D2G‖0 + h4‖∇ζ‖0)

2
)

.(A.17)

Here ε can be any positive number. Notice that Cof(Id +∇u) : (G−Gh)⊗∇σ2 ∈
X. Using Young’s inequality once again we estimate the fourth term of (A.15),

‖ζ − ζh‖−1‖∇
(

Cof(Id + ∇u) : (G−Gh) ⊗ ∇σ2
)

‖0

≤ C‖ζ − ζh‖−1(‖G−Gh‖0 + ‖G−Gh‖σ2 + ‖∇(G−Gh)‖σ2)

≤ ε‖∇(G−Gh)‖2
σ2 +

C

4ε
h4(‖D2G‖0 + ‖∇ζ‖0)

2.

This and (A.17) yield the required estimate (A.14). �

We start the discussion of weighted norms with a direct corollary of [15, Lemma
3.3].

Lemma A.8. Let p ∈ C1(Ω), then for any ρ ∈W 1,∞(Ω) with ρ ≥ 0, we have

(A.18) au(v,vρ2) + C

∫

Ω

v2(ρ2 + |∇ρ|2) dx ≥ C

∫

Ω

|∇v|2ρ2 dx.
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Lemma A.9. If h is sufficiently small, then

‖∇(G−Gh)‖σ2 + λ−1/2‖ζ − ζh‖σ2 ≤ Ch2(‖D2G‖0 + ‖∇ζ‖0)

+ Ch(‖D2G‖σ2 + ‖∇ζ‖σ2) + C(h‖ζ − ζh‖σ2 + ‖G−Gh‖σ2).(A.19)

Proof. Setting again ψ := (G−Gh)σ2 and ξ := (Qhζ − ζh)σ2, we have

au

(

G−Gh, (G−Gh)σ2
)

+ λ−1(Qhζ − ζh, (Qhζ − ζh)σ2)

= au(G−Gh,ψ −Πhψ) − ap(Πhψ, ζ − ζh) + λ−1(Qhζ − ζh, ξ),

= au(G−Gh,ψ −Πhψ) + ap(ψ −Πhψ, ζ − ζh)

+ λ−1(Qhζ − ζh, ξ) − ap(ψ, ζ − ζh).(A.20)

By recalling (4.3) we decompose the second term on the right-hand side of the
above identity

|ap(ψ −Πhψ, ζ − ζh)| = |
(

ζ − ζh, div((adj− adjh)(Id + ∇u)(ψ −Πhψ))
)

+
(

ζ −Qhζ, div(adjh(Id + ∇u)(ψ −Πhψ))
)

|
≤ C(h‖ζ − ζh‖σ2 + ‖ζ −Qhζ‖σ2 )‖∇(ψ −Πhψ)‖σ−2 .(A.21)

From Lemma A.7 and (A.21) it follows that for any ε > 0,

au

(

G−Gh, (G−Gh)σ2
)

+ λ−1‖ξ‖2
σ2

≤ C(‖∇(G−Gh)‖σ2 + h‖ζ − ζh‖σ2 + h‖∇ζ‖σ2)‖∇(ψ −Πhψ)‖σ−2(A.22)

+ ε‖∇(G−Gh)‖2
σ2 + C(ε)h4(‖D2G‖0 + ‖∇ζ‖0)

2 + C(ε)h2‖∇ζ‖σ2 .

The weighted G̊arding inequality (A.18) yields

C‖∇(G−Gh)‖2
σ2 ≤ au(G−Gh, (G−Gh)σ2)

+ C(‖G−Gh‖2
σ2 + ‖G−Gh‖2

0).(A.23)

We substitute (A.23) into (A.22). Now Lemma A.6 as well as Lemma A.5 result in

‖∇(G−Gh)‖2
σ2 + λ−1‖ζ − ζh‖2

σ2 ≤ (
C

K
+ ε)‖∇(G−Gh)‖2

σ2

+ C(ε)h4
(

‖D2G‖0 + ‖∇ζ‖0

)2
+ (CK + C(ε))h2

(

‖D2G‖σ2 + ‖∇ζ‖σ2

)2
(A.24)

+ Ch2‖ζ − ζh‖2
σ2 + C‖G−Gh‖2

σ2 .

Let K be big enough, e.g. K := 4C, and choose ε := 1/4. Now the first term
on the right-hand side of (A.24) can be absorbed by spending a factor of 2. This
completes the proof of (A.19). �

Next, in order to estimate the last two terms on the right-hand side of (A.19),
we apply a duality argument. First, for any w,v ∈ X and r ∈M , we define

[w,v]u := au(w, σ2v) − au(σ2w,v),

[r,v]p := ap(r, σ
2v) − ap(σ

2r,v).

A direct manipulation yields the following two identities:

(A.25)

[w,v]u : = (∇w,v ⊗ ∇σ2) − (w ⊗ ∇σ2,v)

− (∇p, (∇σ2)⊥ ⊗w⊥v),

[r,v]p : = −(r,Cof(Id + ∇u) : ∇σ2 ⊗ v).
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Lemma A.10.

‖ζ − ζh‖σ2 ≤ C(‖∇(G−Gh)‖σ2 + λ−1/2‖ζ − ζh‖σ2)

+ Ch2(‖D2G‖0 + ‖∇ζ‖0) + Ch‖∇ζ‖σ2 .(A.26)

Proof. Consider the following auxiliary problem: Find (w, r) ∈X ×M such that

(A.27) A(w, r;v, q) = (ζ − ζh, q), ∀(v, q) ∈X ×M.

Lemma 3.2 and Lemma 3.4 provide the following a priori estimates:

(A.28)

‖w‖0 + ‖r‖−1 ≤ C‖ζ − ζh‖−1,

‖∇w‖0 + ‖r‖0 ≤ C‖ζ − ζh‖0,

‖∇w‖σ2 + ‖r‖σ2 ≤ C(‖ζ − ζh‖−1 + h‖ζ − ζh‖0 + ‖ζ − ζh‖σ2).

Set q := (ζ − ζh)σ2 and v := (G−Gh)σ2 in (A.27).

‖ζ − ζh‖2
σ2 = A(w, r; (G−Gh)σ2, (ζ − ζh)σ2) = A(σ2w, σ2r;G−Gh, ζ − ζh)

+ [w,G−Gh]u + [r,G−Gh]p + [ζ − ζh,w]p.(A.29)

We decompose the first term on the right-hand side of (A.29) as

A(σ2w, σ2r;G−Gh, ζ − ζh)

= A(σ2w −Πh(σ2w), σ2r −Qh(σ2r);G−Gh, ζ − ζh).

Similar as in (A.21), the expression ap(σ
2w−Πh(σ2w), ζ− ζh) can be bounded by

C(h‖ζ − ζh‖σ2 + ‖ζ −Qhζ‖σ2)‖∇(σ2w −Πh(σ2w))‖σ−2 .

From (A.25) and (A.29) it follows that

‖ζ − ζh‖2
σ2 ≤ C(‖∇(G−Gh)‖σ2 + λ−1/2‖ζ − ζh‖σ2)

× (‖∇(σ2w −Πh(σ2w))‖σ−2 + ‖σ2r −Qh(σ2r)‖σ−2 )

+ C(h‖ζ − ζh‖σ2 + ‖ζ −Qhζ‖σ2)‖∇(σ2w −Πh(σ2w))‖σ−2

+ C‖∇(G−Gh)‖σ2‖w‖0 + C‖G−Gh‖0(‖∇w‖σ2 + ‖r‖σ2).(A.30)

A simple calculation yields

‖∇(σ2w −Πh(σ2w))‖σ−2 + ‖σ2r −Qh(σ2r)‖σ−2 ≤ C(‖w‖0 + ‖∇w‖σ2 + ‖r‖σ2).

Inserting this into the right-hand side of (A.30) and using Lemma A.5 as well as
(A.28), we obtain (A.26). �

To facilitate the subsequent analysis, we introduce another norm

|||G−Gh, ζ − ζh||| := ‖∇(G−Gh)‖σ2 + ‖ζ − ζh‖σ2 .

Lemma A.11. For arbitrary ε > 0, there exists a constant C(ε) which is indepen-
dent of h such that for sufficiently small h, there holds

(A.31) ‖G−Gh‖σ2 ≤ C(h+ ε)|||G−Gh, ζ − ζh||| + C(ε)‖G−Gh‖0.

Proof. We consider the following auxiliary problem: Find (w, r) ∈ X ×M such
that

(A.32) A(w, r;v, q) = 〈G−Gh,v〉, ∀(v, q) ∈ X ×M.
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From Theorem 3.1 we have the following regularity estimates

‖w‖2 + ‖r‖1 ≤ C‖G−Gh‖0,(A.33)

‖D2w‖σ2 + ‖∇r‖σ2 ≤ C(‖G−Gh‖0 + ‖G−Gh‖σ2).(A.34)

Inserting (G−Gh)σ2 into the right-hand side of (A.32), and proceeding along the
same lines as in Lemma A.10 we get

‖G−Gh‖2
σ2 = A(σ2w −Πh(σ2w), σ2s−Qh(σ2s);G−Gh, ζ − ζh)

+ [w,G−Gh]u + [s,G−Gh]p + [ζ − ζh,w]p.(A.35)

From (3.10) and Hölder’s inequality it follows that

‖w‖σ−2 ≤
(

∫

Ω

|w(x)|2s dx
)1/2s(

∫

Ω

σ(x)−2s/(s−1) dx
)(s−1)/2s

≤ Cs1/2θ−1/s‖w‖1,

where we have used ‖w‖L2s ≤ Cs1/2‖w‖1. Setting s = |ln θ| in the above inequality,
recalling thatK has been fixed in (A.24), and using Poincaré’s inequality, we obtain

(A.36) ‖w‖σ−2 ≤ C|ln h|1/2‖∇w‖0.

Applying the weighted approximation property (4.5) with j = 2 and k = 1, and
recalling (A.36) we have the following approximation estimate

‖∇(σ2w −Πh(σ2w))‖σ−2 ≤ Ch‖D2(σ2w)‖σ−2

≤ Ch(|lnh|1/2‖∇w‖0 + ‖D2w‖σ2),

and invoking the weighted approximation property (4.14), we obtain

‖σ2r −Qh(σ2r)‖σ−2 ≤ Ch(‖r‖0 + ‖∇r‖σ2).

The last two inequalities provide bounds of the first four terms on the right-hand
side of (A.35)

(A.37) Ch(‖r‖0 + ‖∇r‖σ2 + |lnh|1/2‖∇w‖0 + ‖D2w‖σ2)|||G −Gh, ζ − ζh|||,
and the remaining three terms on the right-hand side of (A.35) are bounded by

(A.38) C‖G−Gh‖σ2(‖∇w‖0 + ‖r‖0) + C|||G−Gh, ζ − ζh||| ‖w‖0.

Inserting (A.37) and (A.38) into (A.35), taking into account (A.33) and (A.34), we
have

‖G−Gh‖2
σ2 ≤ C|||G −Gh, ζ − ζh|||(h|ln h|1/2‖G−Gh‖0 + h‖G−Gh‖σ2)

+ C‖G−Gh‖2
0 + C‖G−Gh‖0‖G−Gh‖σ2

+ C‖ζ − ζh‖σ2‖G−Gh‖0.

Since h| lnh|1/2| < 1, recalling the definition of |||·, ·||| we obtain

‖G−Gh‖2
σ2 ≤ C|||G−Gh, ζ − ζh|||(‖G−Gh‖0 + h‖G−Gh‖σ2)

+ C‖G−Gh‖2
0 + C‖G−Gh‖0‖G−Gh‖σ2

Young’s inequality is applied twice. In particular, the product of the first two
factors on the right-hand side is dealt with the ε-technique to obtain (A.31). �
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Now we are in a position to prove Lemma 5.4 and Theorem 5.5.
Proof of Lemma 5.4. By Theorem 3.3, we only need to estimate ‖δ1‖σ2

1

and

‖δ1‖−1 to prove (5.14) for i = 1. The construction of δ1 implies that ‖δ1‖σ2

1

= O(1).

Next, set πhv := (Ihv1, Ihv2), where Ih is the Clément interpolation operator [13].
Let B be the unit ball of H1

0(Ω). By the Sobolev imbedding inequality in 2-D, we
have

(A.39) ‖v‖Ls ≤ Cs1/2‖v‖1, ∀ v ∈ H1(Ω), 2 < s <∞.

The inverse inequality for finite element spaces [11, p. 140] together with (A.39)
yields

‖v‖L∞ ≤ Ch−2/s‖v‖Ls ≤ Ch−2/ss1/2‖v‖1.

Setting s = |lnh| in the above inequality, we get

‖v‖L∞ ≤ C|lnh|1/2‖v‖1.

We conclude that

‖δ1‖−1 = sup
v∈B

(δ1,v) ≤ sup
v∈B

(δ1,v − πhv) + sup
v∈B

(δ1,πhv)

≤ sup
v∈B

(C + ‖πhv‖L∞) ≤ C + C|lnh|1/2.

This proves (5.14). Proceeding along the same lines we get (5.14) for i = 2, 3.
To prove (5.15), we first consider the case i = 2. By Lemma 3.4, we have

‖∇G2‖σ2

2

+ ‖ζ2‖σ2

2

≤ C(θ‖Dδ2‖−1 +

2
∑

j=1

‖µjDδ2‖−1 + ‖Dδ2‖−2).

An integration by parts yields

‖µjDδ2‖−1 ≤ ‖δ2‖−1 + ‖µjδ2‖0.

A combination of the above two inequalities gives

‖∇G2‖σ2

2

+ ‖ζ2‖σ2

2

≤ C(θ‖δ2‖0 +

2
∑

j=1

‖µjδ2‖0 + ‖δ2‖−1) ≤ C|ln h|1/2.

In the same way, we get (5.15) for i = 1, 3. �

Proof of Theorem 5.5. As a first step, we insert (A.26) into (A.19), and obtain
for sufficiently small h, we have

‖∇(G−Gh)‖σ2 + λ−1/2‖ζ − ζh‖σ2 ≤ Ch2(‖D2G‖0 + ‖∇ζ‖0)

+ Ch(‖D2G‖σ2 + ‖∇ζ‖σ2) + C‖G−Gh‖σ2 .(A.40)

Secondly, inserting (A.40) into (A.26), we have for sufficiently small h,

‖ζ − ζh‖σ2 ≤ Ch2(‖D2G‖0 + ‖∇ζ‖0) + Ch(‖D2G‖σ2 + ‖∇ζ‖σ2)

+ C‖G−Gh‖σ2 .(A.41)

Inserting (A.31) into (A.40) and (A.41), we get

|||G−Gh, ζ − ζh||| ≤ C(h+ ε)|||G−Gh, ζ − ζh|||
+ C(ε)h2(‖D2G‖0 + ‖∇ζ‖0) + Ch(‖D2G‖σ2 + ‖∇ζ‖σ2).
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Finally we choose ε := 1/4C. If also Ch < 1/4, the first term on the right-hand side
can be absorbed by spending a factor of 2. Using Lemma A.4 as well as Lemma
5.4, we complete the proof of Theorem 5.5. �
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