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ERROR ESTIMATE OF MULTISCALE FINITE ELEMENT METHOD
FOR PERIODIC MEDIA REVISITED *

PINGBING MING AND SIQI SONGT

Abstract. We derive the optimal energy error estimate for multiscale finite element method with
oversampling technique applying to elliptic systems with rapidly oscillating periodic coefficients that
are bounded measurable, which may admit rough microstructures. As a by-product of the energy
error estimate, we derive the rate of convergence in L%/ (4=1) _norm with d the dimensionality.
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1. Introduction. The multiscale finite element method (MsFEM) introduced by
Hou an Wu [19] aims for solving the boundary value problems with rapidly oscillating
coefficients without resolving the fine scale information. The main idea is to exploit
the multiscale basis functions that capture the fine scale information of the underlying
partial differential equations. MSFEM has been successfully applied to many prob-
lems such as two phase flows, nonlinear homogenization problems, convection-diffusion
problems, elliptic interface problems with high-contrast coefficients and Poisson prob-
lem with rough and oscillating boundary, we refer to book [15] for a survey of MsFEM
before 2009. More recent efforts for MsFEM focus on extending the method to deal
with more general media; cf., [11, 7, 6]. We also refer to [31, 32, 2, 5] for a summary
of recent progress for related methods.

In [20] and [16], the authors proved MSFEM converges for the scalar elliptic
boundary value problem in two dimension with periodic oscillating coefficients in the
energy norm, and the convergence rate is \/€ + h + €/h, where h is the mesh size of
the triangulation, and ¢ is the period of the oscillation. The technical assumptions
are

1. The coefficient matrix of the elliptical problem is symmetric, and each entry

is a C! function;

2. The homogenized solution ug € W (Q) N H2();

3. The corrector x defined in (3.2) belong to W1,
The first assumption excludes the rough microstructures, which frequently appears
in the realistic materials [36]; The second assumption is standard except that ug €
Whee(Q), which may not be true even for Poisson equation posed on a ball [12]. The
last assumption on the corrector is not realistic at all, though it may be true for certain
special microstructures such as laminates [10] and for problems with piecewise Holder
continuous coefficients [25, 24]; We refer to [14] for an elaboration on this assumption.

Nevertheless, there are some subsequent endeavor on proving the error estimates
for MSFEM under weaker assumptions; see, e.g., [8, 33, 9, 37], just name a few, most
of them concern the second assumption, while it is still unknown whether the above
assumptions may be removed or to what degree they may be weakened. Moreover,
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2 PINGBING MING, AND SIQI SONG

though MSFEM has been successfully applied to elliptic systems [15, 11], while it does
not seem easy to extend the proof to elliptic systems because the maximum principle
has been exploited, which may be invalid for elliptic systems [22].

The present work gives an affirmative answer to the above questions. Assuming
that ug € W2? with the dimensionality d = 2,3, we prove the optimal energy error
estimate of MSFEM with/without oversampling for elliptic systems with bounded,
measurable and symmetric periodical coefficients; cf. Theorem 4.1 and Theorem 4.10.
The symmetry assumption may be dropped for MsFEM without oversampling, or for
MsFEM with oversampling applying to the elliptic scalar problem. This means that
MsFEM achieves optimal convergence rate for problems with rough microstructures.

As an application of the energy error estimate, we derive improved error estimate
of MsFEM in L% (¢=1) —norm by resorting to the Aubin-Nitsche dual argument [3, 30],
naturally, this gives the L?—error estimates for two-dimensional problem and the
elliptic scalar problem in three dimension. Such estimate would be useful for analyzing
MSsFEM applying to the eigenvalue problems in composites [21].

There are two ingredients in our proof. The one is a local version of the multiplier
estimates for periodic homogenization of elliptic systems [38, 35]; see Lemma 4.5,
which helps us to remove the boundedness assumption on the gradient of the corrector.
Another one is a local estimate of the gradient of the first order approximation of the
solution; see Lemma 4.8, which bypasses the maximum principle in the proof, hence
we may derive the error estimate for elliptic systems.

The remaining part of the paper is as follows. We formulate MsFEM with over-
sampling in § 2. In § 3, we recall some quantitative estimates of the periodic homog-
enization for elliptic systems. The energy error estimate will be given in § 4, from
which we prove the error estimates in L% %! norm. As a direct consequence of these
estimates, we prove the error estimates for MSFEM without oversampling. In the last
section, we summarize our results and discuss certain extensions.

Throughout this paper, C' is a generic constant that may be different at different
occurrence, while it is independent of the mesh size h and the small parameter ¢.

2. Multiscale Finite Element Method with Oversampling. We firstly fix
some notations. Let  be a bounded Lipschitz domain in R? (we focus on d = 2,3).
The standard Sobolev space W*P(Q) will be used [1], which is equipped with the norm
[ lyr.n (- We use the convention HF(Q) = WF2(Q). We denote by WHP(Q; R™)
the vector-valued function with each component belonging to W*?(Q), and define

|D|: = mesD for any measurable set D.
We consider the second order elliptic system in divergence form

Le=—div(A(z/e)V)
with the coefficient A given by

A(y):a?jﬁ(y) i,j=1,---,danda,8=1,--- ,m.

a 0 aB (T 8uﬂ .
(‘Cs(u)) = M(alj (€>8$J> a=1,---,m.

We always assume that A is bounded measurable and satisfies the Legendre-Hadamard
condition as

(2.1) AP Il < aff (y)&i&mans < AL P for ae. y € RY,
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ERROR ESTIMATES OF MSFEM 3

where £ = (&1, ,&q) and n = (1, -+ ,Mm). The transpose of A is understood as
Al(y) = a?io‘(y). We assume that A is 1—periodic; i.e., for all z € Z¢,

Ay + 2) = A(y) for a.e. y € RY.

Considering the following homogeneous boundary value problem: Given f €
H=Y(Q;R™), we find u® € H}(;R™) satisfying

(2.2) L(u)=f in Q and u*=0 on 0N

in the sense of distribution. The corresponding variational problem reads as: Find
u® € Hg(Q;R™) such that

(2.3) ag(u®,v) = (f,v), forallve Hy(Q;R™),

where for any measurable subset Q of Q,
ag(u,v): = [ Vv-A(x/e)Vudx and  (f,v)g = /Nf(x) ~v(z) da.
Q Q

We shall drop the subscript when the subset is the whole domain 2.

Q is triangulated by 7, that consists of simplices 7 with h, its diameter and h =
max,e7, hr. We assume that 7}, is shape-regular in the sense of Ciarlet-Raviart [13]:
there exists a chunkiness parameter g such that h,/p,; < g, where p, is the diameter
of the largest ball inscribed into 7. We also assume that 7, satisfies the inverse
assumption: there exists o1 > 0 such that h/h, < oy.

For each element 7, we firstly choose an oversampling domain S = S(r) D 7,
which is also a simplex. Let \; be the ith barycentric coordinate of the simplex S
and ¢? = (0,---,1---,0) with 1 in the Sth position. Denote Q@ € R@+D*™ yith
QF =xePfori=1,---,d+1and B=1,--- ,m, we find ¢ — QF € HL(S;R™) such
that

(2.4) as(¥l ©) =0 forall ¢e Hi(S;R™).
Next, the basis function (;5? associated with the node x; of 7 is defined as
(2.5) ¢ =cj  i=1--,d+1 andB=1,-- m,

B

where the coefficients ¢;; are determined by ckag (x;) = 5ije'6 for any node x; of 7.

The matrix ¢® = (cf]) is invertible because {@Z)f 14! are linear independent over S.

For ¢; = (¢}, 02, , ™), the multiscale finite element space is defined by

Vi, := Span{¢; for all nodes x; of T }.
Note that V, € H*(£2;R™) because the functions in V}, may not be continuous across
the element boundary. The bilinear form ay, is defined for any v, w € V}, in a piecewise

manner as ap(v,w) = > - a;(v,w). The approximation problem reads as: Find
up € V,? such that

(2.6) ap(up,v) = (f,v) for all v e V2,

This manuscript is for review purposes only.
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4 PINGBING MING, AND SIQI SONG

where V0: = {v € V},| the degrees of freedom of the nodes on 9 are zero}. It follows
from [16, Appendix B] that

1/2
(2.7) vl = ( > WI%%)

TETH

is a norm over V,?.

Remark 2.1. The authors in [18] introduced a new MsFEM that allows for the
oversampling domain of more general shape, e.g. an element star, which facilitates
the implementation of MSFEM, while it is equivalent to the original version [16] if the
oversampling domain is a simplex.

3. Quantitative Estimates for Periodic Homogenization of Elliptic Sys-
tem. By the theory of H-convergence [29], the solution u® of (2.2) converges weakly
to the homogenized solution ug in H'(Q;R™) as ¢ — 0, and ug satisfies

(3.1) Lo(ug) =f in £, upg =0 on 09,

where Ly = div(A\V) with the homogenized coefficients A= 6%[3 given by

ax7?
a%f = off oy d
az] ][Y (a’lj (y) + azk ayk Y,

where the unit cell Y: = [0,1)4, and the corrector x(y) = (Xf(y)> = (X?Q) for

j=1,--.,dand o, = 1,--- ,;m satisfies the following cell problem: Find X? €
HL..(Y;R™) such that [, x7 dy =0 and

(32) ay (X}, ¥) = —ay (P, y)  forall ¢ e H}, (V;R™),

where Pjﬂ = y,e”, and for all ¢,v € Hrl,er(Y;Rm),

o I8 o
(00 = [ G-

The existence and uniqueness of the solution of (3.2) follows from the ellipticity
of A and the Lax-Milgram theorem. Moreover,

H VX? < OPA/)H

) <A/A and HX}B

L2(Y H H(Y)

where C), is the constant arising from Poincaré’s inequality:

161y < Coll Vo llagyy forall 0€ Hla(v) and [ vay=o.
By Meyers’ regularity result [27, 28], there exists p > 2 such that

<C

— b

= 91,0,

where the index p and the constant C' depending only on A and A. This inequality
implies that x is Hélder continuous when d = 2 by the Sobolev embedding theorem [1].

This manuscript is for review purposes only.
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ERROR ESTIMATES OF MSFEM )

By the De Giorgi-Nash theorem, y is also Holder continuous when d = 3 and m = 1.
Hence, for m = 1,d = 2,3 and m > 2,d = 2, there exists C' depending only on A\ and
A such that

(3.4) (K4 <c.

Le=(Y)

In case of d = 3 and m > 2, we only have

(3.5) H X

<C for certain ¢ > 6,
La(Y)
which is a direct consequence of (3.3) and the Sobolev embedding theorem [1].
Another frequently used estimate for the corrector matrix is: For any measurable
set D, and for 1 < p < oo, there exists C' depends on d and p such that

(3.6) 1x(@/) | ooy < C DI 11X o) -
Given the corrector x, the first order approximation of u® is defined by
(3.7) Wi (@): = uo(w) + ex(w/e) Vg (a).

We summarize the convergence rate of uj in the following theorem.

THEOREM 3.1. Assume that A is 1—periodic and satisfies (2.1). Let Q be a
bounded Lipschitz domain in R, Let u and ug be the weak solutions of (2.2) and
(3.1), respectively.

L. If ug € W24(Q;R™), then

(3.8) | u® —uj ||H1(Q) < CVel[ Vuo Hled(Q) )

where C' depends on A, A and €.
2. If the corrector x is bounded and ug € H?(Q;R™), then

(3.9) 4 = ui 20y < CVE Vuo ll oy »

where C depends X\, A, || X || and Q.

The estimates (3.8) and (3.9) are taken from [35, Theorem 3.2.7].
We also need the following estimate in certain L” —norm.

THEOREM 3.2. Under the same assumption of Theorem 3.1, and assume that
A= At for m > 2. Suppose that ug € W24(Q;R™) for g = 2d/(d+1). Then

(3.10) [u® = ol Loy < Cell Vuo [y

where p=2d/(d — 1) and C depends only on A\, A and Q.
This theorem was proved in [34]; See also [35, Theorem 3.4.3] with

Il = o Lo (@) < Celluollwaaq) »

which together with the Ponicaré’s inequality leads to (3.10). Moreover, using a
scaling argument, we rewrite (3.10) as

(3.11)  |[u = w0l < Cc ( (diam ©)71 [ Veto |l ey + | 7200 |y ) -

where C' is independent of the diameter of 2.

This manuscript is for review purposes only.
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6 PINGBING MING, AND SIQI SONG

4. Error Estimates for the Periodic Media. Before stating the main result,
we make an assumption on the size of the oversampling domain S [8].

Assumption A: There exist constants y; and 5 independent of h such that
diam S < v1h, and dist(d7,0S5) > yah.

Moreover, we always assume that h > €.
4.1. H! error estimate. The main result of this work is

THEOREM 4.1. Assume that A is 1—periodic and satisfies the Legendre-Hadamard
condition (2.1). Form > 2, we assume A = At. Let Q be a bounded Lipschitz domain
in RY, and let u® and uy, be the solutions of Problems (2.3) and (2.6), respectively.

Form=1,d=2,3 orm >2,d=2, if ug € H*(;;R™), then

(A1) = unllno < C(VE+e/hth) (1900 i) + 11 i ) -

where C' depends on A\, A, Q and the mesh parameters oo, 01,71, V2-
Form >2 and d = 3, if up € W23(Q; R™), then

(42) N = unllpo < C(VE+e/hth) (1900 g + 1/ lx )

where C' depends on X\, \,Q and the mesh parameters og, 01,71, 72-

The implication of the above theorem is as follows.

1. The convergence rate of MSFEM proved above is the same with that in [16] for
the scalar elliptic problem in two dimension, while we remove the superfluous
technical assumptions on the coefficient a®, the homogenized solution uy and
the correctors .

2. The convergence rate of MSFEM is new for elliptic systems as well as problems
in three dimension.

3. We clarify the dependence of the right-hand side of the energy error es-
timates on ug and f in the natural Sobolev norms, which together with
the Aubin-Nitsche dual argument yields the convergence rate of MSFEM in
L#/(d=1) _norm. In particular, we obtain the L2 error estimate for problem
in d = 2 and scalar elliptic problem in d = 3, c¢f. Theorem 4.9.

4. It would be interesting to know whether Assumption A can be removed or to
what degree it can be weakened. One may start with making clear how the
constants C' in (4.1) and (4.2) depend on 7; and 7. Insightful discussion on
this point may be found in [18].

The proof of Theorem 4.1 is based on the second lemma of Strang [4] because
MsFEM with oversampling is a nonconforming method.

_ €
(4.3) |ue —up|, <C| inf [[u®—v]|, + sup [f,w) = an(u?, w)| ,
veVy wevyp [wll,

where C depends on A, A,~; and 7. Therefore, the error estimate boils down to
bounding the approximation error and the consistency error. To this end, we firstly
define a MSFEM interpolant on each element 7 € T, as

d+1

(4.4) u(z)|r: = Z uo ()i (),

This manuscript is for review purposes only.
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ERROR ESTIMATES OF MSFEM 7

which may be written as 7° = EdH Zﬂ ul (z)e Zkz/)k( ). Tt is well-defined over S,
and

L(w)=0 in S and w=uy on IS,

where @) = ZdH Zgﬂ ul (z)e inQf (x). Tt is clear that the homogenization limit of
U is wp. By definition, ug|, = mug with mug the linear Lagrange interpolant of ug over
7. The first order approximation of u is defined as

uir=ug+e(x-V)uy and uj|; =mug+e(x - V)mue.

The approximation error of the MsFEM interpolant is given by

LEMMA 4.2. Under the same assumptions in Theorem /.1, form =1,d = 2,3 or
m > 2,d = 2, there holds

(4.5)

[t ~tll, < O ((VE+ ) Vet sy + = | Vet lzagey )

where C' depends on A\, A, Q and the mesh parameters oo, 01,71, V2-
Furthermore, for m > 2 and d = 3, there holds

(46) =l < C ((VE+m) [ Vuo lynsay + 5 | Vo ey )

where C' depends on A\, A, Q) and the mesh parameters og, 01,71, 72-

Remark 4.3. The interpolation estimate (4.6) is new, while (4.5) with m = 1 and
d = 2 was proved in [16] by assuming that Vy is bounded. The proof therein does
not apply to elliptic systems because the maximum principle used in the proof may
fail for elliptic systems [26]. We shall use the local multiplier estimates in Lemma 4.5
to remove the boundedness assumption on Vy.

The next lemma concerns the estimate of the consistency error.

LEMMA 4.4. Under the same assumptions in Theorem 4.1, form =1,d = 2,3 or
m > 2,d = 2, there holds

W s ) e w)
wevy Twll,

<C(e+e/h) (V00 oy + 11/ ey ) -

where C' depends on A\, A, Q and the mesh parameters oo, 01,71, V2-
For m > 2 and d = 3, there holds

(4.8) sup [{f,w) — ap(u®,w)]
wevy | w ”h

< C(e+¢/h) (IVuo lyragay + 1 £z )

where C' depends on A\, A, Q and the mesh parameters oo, 01,71, V2-

Proof of Theorem 4.1 Substituting Lemma 4.2 and Lemma 4.4 into (4.3), we get
Theorem 4.1.

4.1.1. Technical Results. The main ingredients in proving Lemma 4.2 and
Lemma 4.4 are the following local multiplier estimate, which controls the L?—norm
of (Vx) for certain 1, and a local estimate of Vu§; cf. Lemma 4.8.

This manuscript is for review purposes only.
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8 PINGBING MING, AND SIQI SONG

LEMMA 4.5. Let x be defined in (3.2) and suppose that D is a convex polyhedron.
For any ¢ € WH4(D;R™), there exists C independent of the size of D such that

(49) el Vx(@/e) o) < CIDIM* Y (110 llagpy + 1 VY o) ) -

If || x|l is bounded, then for any i € H'(D;R™), there exists C independent
of the size of D such that

(410) = Vx(/e)6 gy < CO+ IxUm) (19 2y +2 1 V8 2o ) -

The proof depends on the following multiplier estimates proved in [35, Lemma
3.2.8]: For any ¢ € Wh4(Q;R™),

(4.11) e IVXE/) sy < C (19 laqy + 21V oy )

and for any 1 € H*(Q;R™),

(412) el Vx(e/2) paey < CO+ X e) (1182 + €1 T oy )

where C' depends on A\, A and ). These multiplier estimates are crucial to prove the
error bounds (3.8) and (3.9). These estimates have been refined in Lemma 4.5 by
tracing the dependence of the constant on the size of the domain.

Proof. Denote L = diam D, and we apply the scaling 2’ = x/L to D so that the
rescaled element D has diameter 1. Note that

xfe =1/ with ¢ =¢/L.

Hence eVx(z/e) = &' Vyx(2'/€') and Y(x) = (Lz') = 12(3:’) Applying (4.11) to D,

A

we obtain that there exists C' depends only on D such that

1/2
€/

el Vx(@/e)¥ ll2(py < <|D|/‘ﬁ’)

Varx(@ /)9 |

L2(D)

<C|D|1/2<H$( Ld(5)>

—1/d
< DM (19 agpy + 1 Ve llgaco) ) -

_+€
L4(D)

Vo |

This yields (4.9).
Replacing (4.11) by (4.12) and proceeding along the same line that leads to (4.9),
we obtain (4.10). O

Another ingredient of the error estimate is the quantitative estimates for the
MsFEM functions in V}, which have been used in all the previous study. For any
w € Vp,, we may write, on each element 7 € Tp,

d+1 d+1d+1
W)l = 3 widi(w) = 37wy (@)
i=1 i=1 k=1

for certain coefficients w; € R™. It is well-defined over S, and

L(w)=0 in S and w=wg on 0I5,

This manuscript is for review purposes only.
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ERROR ESTIMATES OF MSFEM 9

where wg = Ef;l Zi} wlﬁ ckaf (z). Tt is clear that the homogenization limit of w
is wp, and there exists C' depending on A, A,~; and ~s, but independent of ¢ and h,
such that

(4.13) || VU}O HLQ(T) S C || Vw ||L2(T) fOI 3.11 T E 771.

This inequality was proved in [16, Appendix B]. The first order approximation of w
is defined by w$: = wp + &(x - V)wp.

LEMMA 4.6. Suppose that Assumption A is true and A = At for m > 2. For
w € Vy, there exists C' such that

(4.14) w—wo [l 25y < Cell Vwo [l 125y
and
€
(4.15) [ V(w—wi) |12y < Co—= | Vwo || 12 gy -
() h )

Proof. Applying Theorem 3.2 to w, using (3.11) and the fact that wy is linear
over S, we obtain

1/2—1
lw = wo [ 25y < ISI727P 1w — wo || s

<Ce |S|1/2_1/p ((diamS)% | Vwo ||Lq(5) + H V2w0 ||L‘1(S))
€

o CdiamS

< Ce || Vo ||L2(S) )

|S|1/2*1/P+1/q Vo

where we have used 1/¢ — 1/p = 1/d in the last step. This gives (4.14).
Note that
as(w —wi,v) =0 for all v e H}(S;R™).

By the Caccioppoli inequality [17, Corollary 1.37] and Assumption A, there exists
C that depends on A\, A, and 7, such that

C
(4.16) IV(w = wi) llpery < 3~ lJw = willpags) -

Using the fact that Vwy is a piecewise constant matrix and (3.6) with p = 2, we
obtain

s — wo Il sy = = | X(@/2) Vo [l ags) = = (/) o) [ V2ol
< Ce IS X Nl g2y IVwol = Cell X Nl 23y 1| Vit ll o (s »
which together with (4.14) and the triangle inequality gives
fw—=will2) < llw—woll2(g) + [[w] —wollpzsy < Cell Vwo | p2(g) -

Substituting the above inequality into (4.16), we obtain (4.15). O

Another useful tool is the following inequality for a tubular domain defined below.
Let 7 € Ty, for any 6 > 0, we define

oo ={xer | dist(z,071) <J}.

This manuscript is for review purposes only.
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10 PINGBING MING, AND SIQI SONG

LEMMA 4.7. Let 1 < p < oo, for any v € WYP(7), there exists C depending on
p,d and og such that

(4.17) 10 | o (rgy < CO/A)YP (10 lyprinry
This inequality has appeared in many occurrences, and we give a proof for the

readers’ convenience.

Proof. For any 0 < s < ¢, we let 78 = 7\7,. It is clear that 7¢ is also a simplex.
For any face f of 7§, we define a vector

_ U]l
m(x) - d|7’scl(xiaf)’

where ay is the vertex opposite to f. A direct calculation gives that m(z) - ny =1
for any « € f, while m(x) - ny vanishes on the remaining faces of 7¢, where n, is the
outward normal of the face g so that = € g. Using the divergence theorem, we obtain

/\v )P do(z) /|v )-npdo(z / div (Jo(x)[" m(x)) dx
= /T ((m(z) - V) [o(@)[" + [o(@)[" divm(z) ) dz.

A direct calculation gives

d
mox )| <o divia) = 2 < 5

A combination of the above two inequalities leads to

/|v P do(z) <00< / (e |de+p/ (@)~ [Vo(a )|dx>
< @ <d/7|v(:z:)|p dx+phT/T|v(x)\p_1 Vo(z)| dx).

Summing up all faces f € 075, we obtain

/ @ dote) < e (d J1o@l o phe [P (vete) dw) .

Integration with respect to s from 0 to §, we obtain

/|v P do(z) < W( /\1} )P de + phe /|v )P Vo(a )|dx>

Using Holder’s inequality, we obtain
1-1 1
101y < (8/0e )P ((41)00)? (7 [0y + 0he) P 0 1 V015 )

This gives (4.17) for p > 1.
The proof for p = 1 is the same, we omit the details. ]

To bound the consistency error, we need a local estimate of Vuj, which helps us
to remove the extra smoothness assumption on Y.

This manuscript is for review purposes only.
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LEMMA 4.8. There exists C' independent of €, and h. such that
(418) IV sy < C (24 V/3/R ) 127V Vo g,y
If x is bounded, then

(419) IV gy < C (e + VE7hr ) (14 Ixllmiry ) | V00 llgsry -

Proof. Since 7 is a simplex, we may decompose 75 into d + 1 disjoint convex

domains {7{}¥*!. Over each 7%, using the local multiplier estimate (4.9), we obtain

i11/2—1/d
e[| Vx(2/e)Vuo |l oy < C ] (

| Vo HLd(rg') +e ” V2u0 HLd(Tg) ) :

Summing up the above estimate for ¢ = 1,...,d + 1 and using the scaled trace in-
equality (4.17) with p = d, we obtain
1/2—1/d
e 1V x(/€) Vo |y < Clrsl' > (1 Va0 | (e + € | V200 | oy )
< Ol 73/ he) | Vg Ny
+ Ce [r 27 | VPug [
< Cle+V6/he) 7127 Vg llyragry -

Invoking the scaled trace inequality (4.17) with p = 2 and using Holder’s inequal-
ity, we obtain

| Vo llz2(ry) < OVE/hr | Vo s () < OV 1727 [ Vg llygragry -
Using Holder’s inequality with 1/¢ =1/2 — 1/d and (3.6) with p = ¢, we obtain

€ || X(I/E)V2u0 HL2 ) S € || X(x/S)VQUO HL2(T) S € || X(l’/5) ||L‘1(7‘) || vzuo ||Ld(‘l’)

1/2—1/d

(7s

< Ce|r| X N 2oy H Vug HLd(T) :

A combination of the above three inequalities leads to (4.18).

If x is bounded, then we sum up the local multiplier estimate (4.10) over Tg for
i=1,...,d+ 1 and obtain

e I Vx(2/2) Vol gy < COH XN e ry) (I V0l ey + € || P00 [l sy, ) -
Invoking the scaled trace inequality (4.17) again, we obtain
V45 2y < 1 Va0 ll2(ryy + 11 VX(2/€) Vo [l 2y + € [ XV00 || 2y
< CU+ X gogry) (100l 2y + 2| V200 |2,y )

< C (4 /a/hr ) (U Xl pey) 9200 [ oy

This gives (4.19) and finishes the proof. |
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12 PINGBING MING, AND SIQI SONG

4.1.2. Proof of Lemma 4.2 and Lemma 4.4.
Proof for Lemma 4.2 Using the triangle inequality, we have
(4.20) [u® —ull, <[lu”—uill, +le—uill, +lui—uil,
— V(" — ) gy + N = 5 ], + 5 — 5 ],
Applying Lemma 4.6 to u, using (4.15) and Assumption A, we obtain
~ ~e 9 ~ € 1/2 ~
19 =) 2 < O 1 Vo llags) = O 1812980
1/2
_~ € 1/2 _ & IS
7Ch7T|S| |V7TU()| 7CE ‘T|1/2 HV’ITUO ||L2(7')
€
< CE | Vrug HL2(T) :
Summing up all 7 € Tj, using the shape-regular and inverse assumption of Ty,

we obtain

~ ~ e g
|a—as |, < cr | Vruo [ p2(q) < cy (|| V(ug = muo) || 12y + | Vo ||L2(Q))

5
(421) <C (5 H VQUO HLz(Q) + E H Vug ||L2(Q)) .
On each element 7,u§ — u§ = ug — wug + ex(z/2)V(ug — mug) and
V(u§ —u5) = V(ug — mug) + eVx(x/e)V(ug — muo) + ex(x/e)Vuq.

Form=1,d=2,3 0or m >2,d=2, x is bounded by (3.4), using the local multiplier
inequality (4.10), we obtain

e VX /2) V(o — 710) 12 sy < € (11 Vo = m10) sy +2 [ V200 | s, )
< Cle+ 1) | 920 [ 1oy -
It follows from the above two equations that
[ V(ui = a7) | 12y < V(w0 = 7o) | 2y + €| VX(@/2)V(uo — muo) [ 2y
+el| x(a/e)V?uo ||L2(T)
<C (14 Ixllgmiyy ) e+ o) [ V200 | oy -
Summing up all 7 € T, and using (3.4) again, we get
(422) Hui —17,? Hh < C(E+h){|v2u0”L2(Q)

Substituting the above inequality, (3.9) and (4.21) into (4.20), we obtain (4.5).
For m > 2 and d = 3, by (3.5), we have x € L(Y). Using the local multiplier
estimate (4.9) and the standard interpolation estimate for mug, we obtain

e | Vx(/e)V (a0 = 7o) l ey < C171® (19 k0 = 700) 1 oy + 1| V200 | )

< Cle+he) 71| V2uo || oy
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ERROR ESTIMATES OF MSFEM 13
Using Holder’s inequality, the inequality (3.6) with p = 6, D = 7 and (3.5), we obtain
e l1x(@/)V0 [ 1a(r, < 2 lX(/) Loy | P00 |y < O 11 [ V200 | oy -
Proceeding along the same line that leads to (4.22), we obtain

IV (u§ =) [l 2y < Cle+he) 1710 V2uo || s -
Summing up all 7 € 7;, and using Hélder’s inequality, we get

s =@l < Cle+ 1) [ V2o || o g -
Substituting the above inequality, (3.8) and (4.21) into (4.20), we obtain (4.6).

Proof for Lemma 4./ For w € V)2, over each oversampling domain S, let wy be its
homogenized part over S. By wg € H}(Q;R™), there holds

ap(u®, wo) = (f,wo) .
Therefore, we write the consistency error functional as

(fyw) —ap(u®,w) = {f,w — wy) — ap(u®,w — wp)

= <f,w - ’LU0> - ah(ueaw - wi) - a’h(usﬂ wi - wo).
Using Lemma 4.6, (4.14), (4.13) and Assumption A, we obtain
[w—=wo g2y < llw—wollp2(s) < Cell Vo || 25
< Ce||Vuwo [l g2y < Ce[ V| pa(ry
which immediately implies
(4.23) [(fyw —wo)| < Ce || fll 20 lwlly -

Using (4.15), (4.13) again, and the inverse assumption of T, we obtain

lan(us,w —w§) < A STV (g V(0 = w) ]2,

TE€ETH
€ £
<C > 7o IV ey | Vo llpary
TE€TH |

€ €
=Cy DIV e V0 2y

7€Th

€
< OV llpa g llwlly -
Combining the above two estimates, we obtain
(4.24) [(fyw—wo) —an(u®,w —wi)| < C(e+e/h) || fllp2 lwll,

where we have used the a-priori estimate || Vu© || 12y < C'|| f |12
It remains to bound ap (uf, w§ — wp). On each element 7, we introduce a cut-off
function p. € C§°(7) such that 0 < p. <1 and |Vp.| < C/e, moreover,

1 dist(z,07) > 2,
=0 dist(z, 07) < e.
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14 PINGBING MING, AND SIQI SONG

Denote w® = (w§ — wp)(1 — p.), which is the oscillatory part of w§ supported inside
the strip .. We write

ar(u®, wi —wo) =ar(u®, (Wi — wo)pe) + ar(u”, &°)
=(f, (Wi = wo)pz), + ar(u®, @°).
Using (3.6) with p = 2, we obtain
[, (5 = w)pe) | < & 1 F oo (/) gy [Vl
(4.25) < Celr 1 g Il [Vl
=Cell f ||L2(T) [B% ||L2(Y) (| Vwo ||L2(‘r)

A direct calculation gives'

(4.26) V@ [l 27,y < CVeE/hr ([ Vo [l 2y

which together with the local estimate (4.18) implies that, for m > 2 and d = 3, there
holds

|CLT(U ’LU )| < ‘a‘r(ulv )‘ + |a'r( uia AE

SC(( ) |T|1/6 || VU/O ||W1 5(7_ \/7|v Ul ||L2(T ) vao ||L2(T)

This estimate together with (4.25) implies

ot 0 = w0 £ C(( 4 12 ) I 1 Fun by + /i 1900 =) oy

+ell f ||L2(T)) [ Vwo [l 2 (-

Summing up the above estimates for all 7 € Tj, using (4.13), (3.9), the inverse as-
sumption of 7, and Holder’s inequality, we obtain

g e
jan (0§ —wo)l < C(( 245 ) I Vato sy + \/; | V(@ = u5) 2o
2l £l ) lwlly
3
<0 (et ) (1700l +1F oz ) 1wl
This inequality together with (4.24) implies (4.8).

For m = 1,d = 2,3 or m > 2,d = 2, x is bounded. Replacing (4.18) by (4.19)
and proceeding along the same line that leads to (4.8), we obtain (4.7).

4.2. L¥(@-1) error estimate. We exploit the Aubin-Nitsche trick to obtain the
error estimate of MSFEM in L% (¢=1) _pnorm with d = 2, 3.

THEOREM 4.9. Under the same assumption of Theorem 4.1, and suppose that
© € HYHQ;R™) satisfying

/ V- AV da = (F, ) for all € H}(S1R™).
Q

We may also refer to [14, Lemma 3.1] for a proof of (4.26).
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476 Form = 1,d = 2,3 or m > 2,d = 2, if the shift estimate
477 (4.27) el 20y < CUIF (| 120
478 holds true, then for m = 1,d = 2,3, there holds
179 (4.28) lw—un | p2(q) < Cle+h* +e/h) (|| Vuo [ gy + 1 ||L2(Q)) :

480  Form > 2,d = 2, there holds

w1 (429) = wn oy < Cle+h2 + /)| 200
482 Form > 2 and d = 3, if the shift estimate
183 (4.30) I llwzs@) < CIE s

484 holds true, then
185 (4.31) lw—un || a2y < Cle+h* +e/h) || fll s -

486 Except the resonance error €/h, the other two items in the above error estimates
487 are optimal. For scalar elliptic equation and elliptic systems in two dimension, we
48%  obtain the L? error estimate.

189 Proof. For any g € L?(Q;R™), we find v € H}(Q;R™) such that

490 (4.32) /va. (A(x/e))'Vo© do = /Qg ~wdx for all w € Hy(Q;R™).
491  Let vy, be the MsFEM approximation of v¢ defined by

492 (4.33) ap(w,vy) = /Qg ~wdz for all w € V0.

493 It follows from (4.32) and (4.33) that

/ g (u® —up)dz = a(u®,v%) — ap(up, vp)
Q
494 = ap(u® — up, v —vp) + ap(u® —up,vn) + ap(up, v —vp)
= ap(u® — up, v — vp)
+ [an(u®, vn) = (f, vn) + an(un, v°) = (g, un)].

495 For m = 1,d = 2,3 or m > 2,d = 2, using the energy error estimate (4.1) and the
496 regularity assumption (4.27), we obtain

107 Jan(eE = wn, 0" — v)] < Al —un [l — v

108 < Cle+h2+e2/h%) (Vo ll sy + 1 iz ) 19 ey -
500 Using (4.7) and (4.27), we bound the consistency error functional as

501 lan (u®,vn) — (f, vn) + ap(up, v°) — (g, up)|

< Ce+e/h) (Va0 gy + 11 f ey ) 19 2oy -
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A combination of the above three estimates yields (4.28).

For m > 2,d = 2, noting that A = A! and the shift estimate (4.27) is also valid
for ug, this gives (4.29).

For m > 2 and d = 3, x is unbounded. Replacing (4.27), (4.1) and (4.7) by (4.30),
(4.2) and (4.8), respectively, and proceeding along the same line that leads to (4.28),
we obtain

= un Loy < e + 12 +¢/R) (1| Vo gy + 1 £ llgscey ) -

Noting that A* = A and the shift estimate (4.30) is also valid for ug, this gives (4.31).0

4.3. Error estimates for MsFEM without oversampling. We visit the
error estimates of MsFEM without oversampling [19]. The multiscale basis function

is ¢f = {(bf}fill is constructed as (2.4) with S(7) replaced by 7.
Vi, := Span{¢; for all nodes x; of T},

and V2: = {v €V, | v=0 ondN}. The approximation problem reads as: Find
up € V,? such that

(4.34) a(up,v) = (f,v) for all v € V.

Under the same assumptions of Theorem 4.1 except that A is not necessarily
symmetric when m > 2, we prove the energy error estimate for MsFEM without
oversampling.

THEOREM 4.10. Assume A is 1—periodic and satisfies the Legendre-Hadamard
condition (2.1). Let Q be a bounded Lipschitz domain in R®. Let u and uy be the
solutions of (2.3) and (4.34), respectively.

Form=1,d=2,3 orm >2,d=2, if ug € H*(;; R™), then

(4.35) V(W =) |2y < C ((VE+ 1)1 Va0 llg1 0y + VETR N Tt |2y )

where C' depends on A\, A, Q and the mesh parameters oo and oy.
Form > 2 and d = 3, if ug € W23(Q; R™), then

(436) [V (" = un) a0y < C ((VZ+1) | Vato lyysiay + V7R Vo Loy )

where C depends on A, A, and the mesh parameters og and o1.

As a direct consequence of the above theorem, we obtain the L% (¢=1) error esti-
mate for MsFEM without oversampling. The proof follows the same line that leads
to Theorem 4.9, we omit the proof.

Corollary 4.11. Under the same assumption of Theorem 4.9 except that A is not
necessarily symmetric for m > 2. Let u® and uy, be the solutions of (2.3) and (4.34),
respectively. For m = 1,d = 2,3 or m > 2,d = 2, there holds

lu—un |12y < Cle+ 0 +e/h) || Vo || 1) -
For m > 2 and d = 3, there holds

= || o2y < Cle + 0 + /) || Vg [lyyis(q) -
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The proof of Theorem 4.10 relies on Theorem 3.1 and Lemma 4.5. We only sketch
the main steps because the details are the same with the line leading to Theorem 4.1.

Proof of Theorem /.10 Noting that MsFEM without oversampling is conforming; i.e.,
V9 C H§(S;R™), we obtain

(4.37) V(W —un) |20y < (L+A/A) inf, V(= 0) 120 -
vEVh

Define MsFEM interpolant @(x) as (4.4). Using the triangle inequality, we obtain
V(U =) [l 2y < V(" = i) [ 20) + V(@ =07) | L2 (q) + [ V(] = 7) | 12(q) -

The estimate of || V(u® — uf) [|;2(q, follows from Theorem 3.1, and the estimate of
[ V(u§ —u7) || 12(q) is the same with the corresponding term in Lemma 4.2. Note that
u§ is the first order approximation of u over 7. For m =1,d =2,3 or m > 2,d = 2,
using (3.9), we get

[ V(@ —u3) || 20y < CVelhe | Vo [ 12y

< C (Ve VU0 2y + Vel | Vo g ) -

Summing up the above estimate for all 7 € 7;, and using the inverse assumption of
Tr, we obtain

(438) V(@ =) |2y < C (VETR] Vit ll oy + VER I Vito sy ) -

For m > 2 and d = 3, using (3.8) and the fact that Vmug is a piecewise constant
matrix over 7, we get

IV (@ —a}) 20y < CVelhs 7| Vrug L2y = CVe/hr | VTug || 2y -

Proceeding along the same line that leads to (4.38), we obtain

|9 =) 20 < € (VTR Vit 2oy + VR | Vol ey ) -

A combination of all the above estimates completes the proof.

Remark 4.12. We have used Theorem 3.1 to bound || V(u — @7) [|2(, instead of
Lemma 4.6, we need not assume the symmetry of A when m > 2.

5. Conclusion. Under suitable regularity assumptions on the homogenized so-
lution, we proved the optimal energy error estimates for MsFEM with or without
oversampling applying to elliptic systems with bounded measurable periodic coeffi-
cients. The present work may be extended to elliptic system with locally periodic
coefficients, i.e., A° = A(x,xz/e) with the aid of a new local multiplier estimate. The
extension to elliptic system for the coefficients with stratified structure is also very
interesting. We believe that the machineries developed in the present work may be
useful to analyze other MSFEM such as the mixed MSFEM (8], Crouzeix-Raviart Ms-
FEM [23], or MSFEM with different oversampling techniques [16]. We shall leave
these for further pursuit.
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