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Abstract. We derive the optimal energy error estimate for multiscale finite element method with4
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1. Introduction. The multiscale finite element method (MsFEM) introduced by10

Hou an Wu [19] aims for solving the boundary value problems with rapidly oscillating11

coefficients without resolving the fine scale information. The main idea is to exploit12

the multiscale basis functions that capture the fine scale information of the underlying13

partial differential equations. MsFEM has been successfully applied to many prob-14

lems such as two phase flows, nonlinear homogenization problems, convection-diffusion15

problems, elliptic interface problems with high-contrast coefficients and Poisson prob-16

lem with rough and oscillating boundary, we refer to book [15] for a survey of MsFEM17

before 2009. More recent efforts for MsFEM focus on extending the method to deal18

with more general media; cf., [11, 7, 6]. We also refer to [31, 32, 2, 5] for a summary19

of recent progress for related methods.20

In [20] and [16], the authors proved MsFEM converges for the scalar elliptic21

boundary value problem in two dimension with periodic oscillating coefficients in the22

energy norm, and the convergence rate is
√
ε + h + ε/h, where h is the mesh size of23

the triangulation, and ε is the period of the oscillation. The technical assumptions24

are25

1. The coefficient matrix of the elliptical problem is symmetric, and each entry26

is a C1 function;27

2. The homogenized solution u0 ∈W 1,∞(Ω) ∩H2(Ω);28

3. The corrector χ defined in (3.2) belong to W 1,∞.29

The first assumption excludes the rough microstructures, which frequently appears30

in the realistic materials [36]; The second assumption is standard except that u0 ∈31

W 1,∞(Ω), which may not be true even for Poisson equation posed on a ball [12]. The32

last assumption on the corrector is not realistic at all, though it may be true for certain33

special microstructures such as laminates [10] and for problems with piecewise Hölder34

continuous coefficients [25, 24]; We refer to [14] for an elaboration on this assumption.35

Nevertheless, there are some subsequent endeavor on proving the error estimates36

for MsFEM under weaker assumptions; see, e.g., [8, 33, 9, 37], just name a few, most37

of them concern the second assumption, while it is still unknown whether the above38

assumptions may be removed or to what degree they may be weakened. Moreover,39
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2 PINGBING MING, AND SIQI SONG

though MsFEM has been successfully applied to elliptic systems [15, 11], while it does40

not seem easy to extend the proof to elliptic systems because the maximum principle41

has been exploited, which may be invalid for elliptic systems [22].42

The present work gives an affirmative answer to the above questions. Assuming43

that u0 ∈ W 2,d with the dimensionality d = 2, 3, we prove the optimal energy error44

estimate of MsFEM with/without oversampling for elliptic systems with bounded,45

measurable and symmetric periodical coefficients; cf. Theorem 4.1 and Theorem 4.10.46

The symmetry assumption may be dropped for MsFEM without oversampling, or for47

MsFEM with oversampling applying to the elliptic scalar problem. This means that48

MsFEM achieves optimal convergence rate for problems with rough microstructures.49

As an application of the energy error estimate, we derive improved error estimate50

of MsFEM in Ld/(d−1)−norm by resorting to the Aubin-Nitsche dual argument [3, 30],51

naturally, this gives the L2−error estimates for two-dimensional problem and the52

elliptic scalar problem in three dimension. Such estimate would be useful for analyzing53

MsFEM applying to the eigenvalue problems in composites [21].54

There are two ingredients in our proof. The one is a local version of the multiplier55

estimates for periodic homogenization of elliptic systems [38, 35]; see Lemma 4.5,56

which helps us to remove the boundedness assumption on the gradient of the corrector.57

Another one is a local estimate of the gradient of the first order approximation of the58

solution; see Lemma 4.8, which bypasses the maximum principle in the proof, hence59

we may derive the error estimate for elliptic systems.60

The remaining part of the paper is as follows. We formulate MsFEM with over-61

sampling in § 2. In § 3, we recall some quantitative estimates of the periodic homog-62

enization for elliptic systems. The energy error estimate will be given in § 4, from63

which we prove the error estimates in Ld/d−1 norm. As a direct consequence of these64

estimates, we prove the error estimates for MsFEM without oversampling. In the last65

section, we summarize our results and discuss certain extensions.66

Throughout this paper, C is a generic constant that may be different at different67

occurrence, while it is independent of the mesh size h and the small parameter ε.68

2. Multiscale Finite Element Method with Oversampling. We firstly fix69

some notations. Let Ω be a bounded Lipschitz domain in Rd (we focus on d = 2, 3).70

The standard Sobolev space W k,p(Ω) will be used [1], which is equipped with the norm71

‖ · ‖Wk,p(Ω). We use the convention Hk(Ω) = W k,2(Ω). We denote by W k,p(Ω;Rm)72

the vector-valued function with each component belonging to W k,p(Ω), and define73

|D| : = mesD for any measurable set D.74

We consider the second order elliptic system in divergence form75

Lε = −div (A(x/ε)∇ )76

with the coefficient A given by77

A(y) = aαβij (y) i, j = 1, · · · , d and α, β = 1, · · · ,m.78

For u = (u1, · · · , um),79

(Lε(u) )
α

: = − ∂

∂xi

(
aαβij

( x
ε

) ∂uβ
∂xj

)
α = 1, · · · ,m.80

We always assume that A is bounded measurable and satisfies the Legendre-Hadamard81

condition as82

(2.1) λ |ξ|2 |η|2 ≤ aαβij (y)ξiξjηαηβ ≤ Λ |ξ|2 |η|2 for a.e. y ∈ Rd,83
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ERROR ESTIMATES OF MSFEM 3

where ξ = (ξ1, · · · , ξd) and η = (η1, · · · , ηm). The transpose of A is understood as84

At(y) = aβαji (y). We assume that A is 1−periodic; i.e., for all z ∈ Zd,85

A(y + z) = A(y) for a.e. y ∈ Rd.86

Considering the following homogeneous boundary value problem: Given f ∈87

H−1(Ω;Rm), we find uε ∈ H1
0 (Ω;Rm) satisfying88

(2.2) Lε(uε) = f in Ω and uε = 0 on ∂Ω89

in the sense of distribution. The corresponding variational problem reads as: Find90

uε ∈ H1
0 (Ω;Rm) such that91

(2.3) aΩ(uε, v) = 〈f, v〉Ω for all v ∈ H1
0 (Ω;Rm),92

where for any measurable subset Ω̃ of Ω,93

aΩ̃(u, v): =

∫
Ω̃

∇v ·A(x/ε)∇udx and 〈f, v〉Ω̃ =

∫
Ω̃

f(x) · v(x) dx.94

We shall drop the subscript when the subset is the whole domain Ω.95

Ω is triangulated by Th that consists of simplices τ with hτ its diameter and h =96

maxτ∈Th hτ . We assume that Th is shape-regular in the sense of Ciarlet-Raviart [13]:97

there exists a chunkiness parameter σ0 such that hτ/ρτ ≤ σ0, where ρτ is the diameter98

of the largest ball inscribed into τ . We also assume that Th satisfies the inverse99

assumption: there exists σ1 > 0 such that h/hτ ≤ σ1.100

For each element τ , we firstly choose an oversampling domain S = S(τ) ⊃ τ ,101

which is also a simplex. Let λi be the ith barycentric coordinate of the simplex S102

and eβ = (0, · · · , 1 · · · , 0) with 1 in the βth position. Denote Q ∈ R(d+1)×m with103

Qβi = λie
β for i = 1, · · · , d+ 1 and β = 1, · · · ,m, we find ψβi −Q

β
i ∈ H1

0 (S;Rm) such104

that105

(2.4) aS(ψβi , ϕ) = 0 for all ϕ ∈ H1
0 (S;Rm).106

Next, the basis function φβi associated with the node xi of τ is defined as107

(2.5) φβi = cβijψ
β
j i = 1, · · · , d+ 1 and β = 1, · · · ,m,108

where the coefficients cβij are determined by cβikQ
β
k(xj) = δije

β for any node xj of τ .109

The matrix cβ = (cβij) is invertible because {ψβi }
d+1
i=1 are linear independent over S.110

For φi = (φ1
i , φ

2
i , · · · , φmi ), the multiscale finite element space is defined by111

Vh := Span{φi for all nodes xi of Th}.112

Note that Vh ( H1(Ω;Rm) because the functions in Vh may not be continuous across113

the element boundary. The bilinear form ah is defined for any v, w ∈ Vh in a piecewise114

manner as ah(v, w) :=
∑
τ∈Th aτ (v, w). The approximation problem reads as: Find115

uh ∈ V 0
h such that116

(2.6) ah(uh, v) = 〈f, v〉 for all v ∈ V 0
h ,117
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4 PINGBING MING, AND SIQI SONG

where V 0
h : = {v ∈ Vh| the degrees of freedom of the nodes on ∂Ω are zero}. It follows118

from [16, Appendix B] that119

(2.7) ‖ v ‖h :=

( ∑
τ∈Th

‖∇v‖2L2(τ)

)1/2

120

is a norm over V 0
h .121

Remark 2.1. The authors in [18] introduced a new MsFEM that allows for the122

oversampling domain of more general shape, e.g. an element star, which facilitates123

the implementation of MsFEM, while it is equivalent to the original version [16] if the124

oversampling domain is a simplex.125

3. Quantitative Estimates for Periodic Homogenization of Elliptic Sys-126

tem. By the theory of H-convergence [29], the solution uε of (2.2) converges weakly127

to the homogenized solution u0 in H1(Ω;Rm) as ε→ 0, and u0 satisfies128

(3.1) L0(u0) = f in Ω, u0 = 0 on ∂Ω,129

where L0 = div(Â∇) with the homogenized coefficients Â = âαβij given by130

âαβij =

∫
−
Y

(
aαβij (y) + aαγik

∂χγβj
∂yk

)
dy,131

where the unit cell Y : = [0, 1)d, and the corrector χ(y) =
(
χβj (y)

)
=
(
χαβj

)
for132

j = 1, · · · , d and α, β = 1, · · · ,m satisfies the following cell problem: Find χβj ∈133

H1
per(Y ;Rm) such that

∫
Y
χβj dy = 0 and134

(3.2) aY (χβj , ψ) = −aY (P βj , ψ) for all ψ ∈ H1
per(Y ;Rm),135

where P βj = yje
β , and for all φ, ψ ∈ H1

per(Y ;Rm),136

aY (φ, ψ): =

∫
Y

aαβij (y)
∂φβ

∂yj

∂ψα

∂yi
dy.137

The existence and uniqueness of the solution of (3.2) follows from the ellipticity138

of A and the Lax-Milgram theorem. Moreover,139 ∥∥∥∇χβj ∥∥∥
L2(Y )

≤ Λ/λ and
∥∥∥χβj ∥∥∥

H1(Y )
≤ CpΛ/λ,140

where Cp is the constant arising from Poincaré’s inequality:141

‖ψ ‖H1(Y ) ≤ Cp ‖∇ψ ‖L2(Y ) for all ψ ∈ H1
per(Y ) and

∫
Y

ψ dy = 0.142

By Meyers’ regularity result [27, 28], there exists p > 2 such that143

(3.3)
∥∥∥∇χβj ∥∥∥

Lp(Y )
≤ C,144

where the index p and the constant C depending only on λ and Λ. This inequality145

implies that χ is Hölder continuous when d = 2 by the Sobolev embedding theorem [1].146
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By the De Giorgi-Nash theorem, χ is also Hölder continuous when d = 3 and m = 1.147

Hence, for m = 1, d = 2, 3 and m ≥ 2, d = 2, there exists C depending only on λ and148

Λ such that149

(3.4)
∥∥∥χβj ∥∥∥

L∞(Y )
≤ C.150

In case of d = 3 and m ≥ 2, we only have151

(3.5)
∥∥∥χβj ∥∥∥

Lq(Y )
≤ C for certain q ≥ 6,152

which is a direct consequence of (3.3) and the Sobolev embedding theorem [1].153

Another frequently used estimate for the corrector matrix is: For any measurable154

set D, and for 1 ≤ p ≤ ∞, there exists C depends on d and p such that155

(3.6) ‖χ(x/ε) ‖Lp(D) ≤ C |D|
1/p ‖χ ‖Lp(Y ) .156

Given the corrector χ, the first order approximation of uε is defined by157

(3.7) uε1(x): = u0(x) + εχ(x/ε)∇u0(x).158

We summarize the convergence rate of uε1 in the following theorem.159

Theorem 3.1. Assume that A is 1−periodic and satisfies (2.1). Let Ω be a160

bounded Lipschitz domain in Rd. Let uε and u0 be the weak solutions of (2.2) and161

(3.1), respectively.162

1. If u0 ∈W 2,d(Ω;Rm), then163

(3.8) ‖uε − uε1 ‖H1(Ω) ≤ C
√
ε ‖∇u0 ‖W 1,d(Ω) ,164

where C depends on λ,Λ and Ω.165

2. If the corrector χ is bounded and u0 ∈ H2(Ω;Rm), then166

(3.9) ‖uε − uε1 ‖H1(Ω) ≤ C
√
ε ‖∇u0 ‖H1(Ω) ,167

where C depends λ,Λ, ‖χ ‖L∞ and Ω.168

The estimates (3.8) and (3.9) are taken from [35, Theorem 3.2.7].169

We also need the following estimate in certain Lp−norm.170

Theorem 3.2. Under the same assumption of Theorem 3.1, and assume that171

A = At for m ≥ 2. Suppose that u0 ∈W 2,q(Ω;Rm) for q = 2d/(d+ 1). Then172

(3.10) ‖uε − u0 ‖Lp(Ω) ≤ Cε ‖∇u0 ‖W 1,q(Ω) ,173

where p = 2d/(d− 1) and C depends only on λ,Λ and Ω.174

This theorem was proved in [34]; See also [35, Theorem 3.4.3] with175

‖uε − u0 ‖Lp(Ω) ≤ Cε ‖u0 ‖W 2,q(Ω) ,176

which together with the Ponicaré’s inequality leads to (3.10). Moreover, using a177

scaling argument, we rewrite (3.10) as178

(3.11) ‖uε − u0 ‖Lp(Ω) ≤ Cε
(

(diam Ω)−1 ‖∇u0 ‖Lq(Ω) +
∥∥∇2u0

∥∥
Lq(Ω)

)
,179

where C is independent of the diameter of Ω.180
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6 PINGBING MING, AND SIQI SONG

4. Error Estimates for the Periodic Media. Before stating the main result,181

we make an assumption on the size of the oversampling domain S [8].182

Assumption A: There exist constants γ1 and γ2 independent of h such that183

diam S ≤ γ1hτ and dist(∂τ, ∂S) ≥ γ2hτ .184

Moreover, we always assume that h > ε.185

4.1. H1 error estimate. The main result of this work is186

Theorem 4.1. Assume that A is 1−periodic and satisfies the Legendre-Hadamard187

condition (2.1). For m ≥ 2, we assume A = At. Let Ω be a bounded Lipschitz domain188

in Rd, and let uε and uh be the solutions of Problems (2.3) and (2.6), respectively.189

For m = 1, d = 2, 3 or m ≥ 2, d = 2, if u0 ∈ H2(Ω;Rm), then190

(4.1) ‖uε − uh ‖h,Ω ≤ C
(√

ε+ ε/h+ h
) (
‖∇u0 ‖H1(Ω) + ‖ f ‖L2(Ω)

)
,191

where C depends on λ,Λ,Ω and the mesh parameters σ0, σ1, γ1, γ2.192

For m ≥ 2 and d = 3, if u0 ∈W 2,3(Ω;Rm), then193

(4.2) ‖uε − uh ‖h,Ω ≤ C
(√

ε+ ε/h+ h
) (
‖∇u0 ‖W 1,3(Ω) + ‖ f ‖L2(Ω)

)
,194

where C depends on λ,Λ,Ω and the mesh parameters σ0, σ1, γ1, γ2.195

The implication of the above theorem is as follows.196

1. The convergence rate of MsFEM proved above is the same with that in [16] for197

the scalar elliptic problem in two dimension, while we remove the superfluous198

technical assumptions on the coefficient aε, the homogenized solution u0 and199

the correctors χ.200

2. The convergence rate of MsFEM is new for elliptic systems as well as problems201

in three dimension.202

3. We clarify the dependence of the right-hand side of the energy error es-203

timates on u0 and f in the natural Sobolev norms, which together with204

the Aubin-Nitsche dual argument yields the convergence rate of MsFEM in205

Ld/(d−1)−norm. In particular, we obtain the L2 error estimate for problem206

in d = 2 and scalar elliptic problem in d = 3, cf. Theorem 4.9.207

4. It would be interesting to know whether Assumption A can be removed or to208

what degree it can be weakened. One may start with making clear how the209

constants C in (4.1) and (4.2) depend on γ1 and γ2. Insightful discussion on210

this point may be found in [18].211

The proof of Theorem 4.1 is based on the second lemma of Strang [4] because212

MsFEM with oversampling is a nonconforming method.213

(4.3) ‖uε − uh ‖h ≤ C

(
inf
v∈V 0

h

‖uε − v ‖h + sup
w∈V 0

h

|〈f, w〉 − ah(uε, w)|
‖w ‖h

)
,214

where C depends on λ,Λ, γ1 and γ2. Therefore, the error estimate boils down to215

bounding the approximation error and the consistency error. To this end, we firstly216

define a MsFEM interpolant on each element τ ∈ Th as217

(4.4) ũ(x)|τ : =

d+1∑
i=1

u0(xi)φi(x),218
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which may be written as ũβ =
∑d+1
i=1

∑d+1
k=1 u

β
0 (xi)c

β
ikψ

β
k (x). It is well-defined over S,219

and220

Lε(ũ) = 0 in S and ũ = ũ0 on ∂S,221

where ũβ0 =
∑d+1
i=1

∑d+1
k=1 u

β
0 (xi)c

β
ikQ

β
k(x). It is clear that the homogenization limit of222

ũ is ũ0. By definition, ũ0|τ = πu0 with πu0 the linear Lagrange interpolant of u0 over223

τ . The first order approximation of ũ is defined as224

ũε1: = ũ0 + ε(χ · ∇)ũ0 and ũε1|τ = πu0 + ε(χ · ∇)πu0.225

The approximation error of the MsFEM interpolant is given by226

Lemma 4.2. Under the same assumptions in Theorem 4.1, for m = 1, d = 2, 3 or227

m ≥ 2, d = 2, there holds228

(4.5) ‖uε − ũ ‖h ≤ C
(

(
√
ε+ h) ‖∇u0 ‖H1(Ω) +

ε

h
‖∇u0 ‖L2(Ω)

)
,229

where C depends on λ,Λ,Ω and the mesh parameters σ0, σ1, γ1, γ2.230

Furthermore, for m ≥ 2 and d = 3, there holds231

(4.6) ‖uε − ũ ‖h ≤ C
(

(
√
ε+ h) ‖∇u0 ‖W 1,3(Ω) +

ε

h
‖∇u0 ‖L2(Ω)

)
,232

where C depends on λ,Λ,Ω and the mesh parameters σ0, σ1, γ1, γ2.233

Remark 4.3. The interpolation estimate (4.6) is new, while (4.5) with m = 1 and234

d = 2 was proved in [16] by assuming that ∇χ is bounded. The proof therein does235

not apply to elliptic systems because the maximum principle used in the proof may236

fail for elliptic systems [26]. We shall use the local multiplier estimates in Lemma 4.5237

to remove the boundedness assumption on ∇χ.238

The next lemma concerns the estimate of the consistency error.239

Lemma 4.4. Under the same assumptions in Theorem 4.1, for m = 1, d = 2, 3 or240

m ≥ 2, d = 2, there holds241

(4.7) sup
w∈V 0

h

|〈f, w〉 − ah(uε, w)|
‖w ‖h

≤ C ( ε+ ε/h )
(
‖∇u0 ‖H1(Ω) + ‖ f ‖L2(Ω)

)
.242

where C depends on λ,Λ,Ω and the mesh parameters σ0, σ1, γ1, γ2.243

For m ≥ 2 and d = 3, there holds244

(4.8) sup
w∈V 0

h

|〈f, w〉 − ah(uε, w)|
‖w ‖h

≤ C ( ε+ ε/h )
(
‖∇u0 ‖W 1,3(Ω) + ‖ f ‖L2(Ω)

)
,245

where C depends on λ,Λ,Ω and the mesh parameters σ0, σ1, γ1, γ2.246

Proof of Theorem 4.1 Substituting Lemma 4.2 and Lemma 4.4 into (4.3), we get247

Theorem 4.1.248

4.1.1. Technical Results. The main ingredients in proving Lemma 4.2 and249

Lemma 4.4 are the following local multiplier estimate, which controls the L2−norm250

of (∇χ)ψ for certain ψ, and a local estimate of ∇uε1; cf. Lemma 4.8.251
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Lemma 4.5. Let χ be defined in (3.2) and suppose that D is a convex polyhedron.252

For any ψ ∈W 1,d(D;Rm), there exists C independent of the size of D such that253

(4.9) ε ‖∇χ(x/ε)ψ ‖L2(D) ≤ C |D|
1/2−1/d

(
‖ψ ‖Ld(D) + ε ‖∇ψ ‖Ld(D)

)
.254

If ‖χ ‖L∞ is bounded, then for any ψ ∈ H1(D;Rm), there exists C independent255

of the size of D such that256

(4.10) ε ‖∇χ(x/ε)ψ ‖L2(D) ≤ C(1 + ‖χ ‖L∞)
(
‖ψ ‖L2(D) + ε ‖∇ψ ‖L2(D)

)
.257

The proof depends on the following multiplier estimates proved in [35, Lemma258

3.2.8]: For any ψ ∈W 1,d(Ω;Rm),259

(4.11) ε ‖∇χ(x/ε)ψ ‖L2(Ω) ≤ C
(
‖ψ ‖Ld(Ω) + ε ‖∇ψ ‖Ld(Ω)

)
,260

and for any ψ ∈ H1(Ω;Rm),261

(4.12) ε ‖∇χ(x/ε)ψ ‖L2(Ω) ≤ C(1 + ‖χ ‖L∞)
(
‖ψ ‖L2(Ω) + ε ‖∇ψ ‖L2(Ω)

)
,262

where C depends on λ,Λ and Ω. These multiplier estimates are crucial to prove the263

error bounds (3.8) and (3.9). These estimates have been refined in Lemma 4.5 by264

tracing the dependence of the constant on the size of the domain.265

Proof. Denote L = diam D, and we apply the scaling x′ = x/L to D so that the266

rescaled element D̂ has diameter 1. Note that267

x/ε = x′/ε′ with ε′ = ε/L.268

Hence ε∇χ(x/ε) = ε′ ∇x′χ(x′/ε′) and ψ(x) = ψ(Lx′) = ψ̂(x′). Applying (4.11) to D̂,269

we obtain that there exists C depends only on D̂ such that270

ε ‖∇χ(x/ε)ψ ‖L2(D) ≤
(
|D| /

∣∣∣D̂∣∣∣ )1/2

ε′
∥∥∥∇x′χ(x′/ε′)ψ̂

∥∥∥
L2(D̂)

271

≤ C |D|1/2
(∥∥∥ ψ̂ ∥∥∥

Ld(D̂)
+ ε′

∥∥∥∇x′ ψ̂
∥∥∥
Ld(D̂)

)
272

≤ C |D|1/2−1/d
(
‖ψ ‖Ld(D) + ε ‖∇ψ ‖Ld(D)

)
.273

274

This yields (4.9).275

Replacing (4.11) by (4.12) and proceeding along the same line that leads to (4.9),276

we obtain (4.10).277

Another ingredient of the error estimate is the quantitative estimates for the278

MsFEM functions in Vh, which have been used in all the previous study. For any279

w ∈ Vh, we may write, on each element τ ∈ Th,280

wβ(x)|τ : =

d+1∑
i=1

wiφi(x) =

d+1∑
i=1

d+1∑
k=1

wβi c
β
ikψ

β
k (x)281

for certain coefficients wi ∈ Rm. It is well-defined over S, and282

Lε(w) = 0 in S and w = w0 on ∂S,283
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where wβ0 =
∑d+1
i=1

∑d+1
k=1 w

β
i c
β
ikQ

β
k(x). It is clear that the homogenization limit of w284

is w0, and there exists C depending on λ,Λ, γ1 and γ2, but independent of ε and hτ ,285

such that286

(4.13) ‖∇w0 ‖L2(τ) ≤ C ‖∇w ‖L2(τ) for all τ ∈ Th.287

This inequality was proved in [16, Appendix B]. The first order approximation of w288

is defined by wε1: = w0 + ε(χ · ∇)w0.289

Lemma 4.6. Suppose that Assumption A is true and A = At for m ≥ 2. For290

w ∈ Vh, there exists C such that291

(4.14) ‖w − w0 ‖L2(S) ≤ Cε ‖∇w0 ‖L2(S) ,292

and293

(4.15) ‖∇(w − wε1) ‖L2(τ) ≤ C
ε

hτ
‖∇w0 ‖L2(S) .294

Proof. Applying Theorem 3.2 to w, using (3.11) and the fact that w0 is linear295

over S, we obtain296

‖w − w0 ‖L2(S) ≤ |S|
1/2−1/p ‖w − w0 ‖Lp(S)297

≤ Cε |S|1/2−1/p
(

(diamS)−1 ‖∇w0 ‖Lq(S) +
∥∥∇2w0

∥∥
Lq(S)

)
298

= C
ε

diamS
|S|1/2−1/p+1/q |∇w0|299

≤ Cε ‖∇w0 ‖L2(S) ,300
301

where we have used 1/q − 1/p = 1/d in the last step. This gives (4.14).302

Note that303

aS(w − wε1, v) = 0 for all v ∈ H1
0 (S;Rm).304

By the Caccioppoli inequality [17, Corollary 1.37] and Assumption A, there exists305

C that depends on λ,Λ, γ1 and γ2 such that306

(4.16) ‖∇(w − wε1) ‖L2(τ) ≤
C

hτ
‖w − wε1 ‖L2(S) .307

Using the fact that ∇w0 is a piecewise constant matrix and (3.6) with p = 2, we308

obtain309

‖wε1 − w0 ‖L2(S) = ε ‖χ(x/ε)∇w0 ‖L2(S) = ε ‖χ(x/ε) ‖L2(S) |∇w0|310

≤ Cε |S|1/2 ‖χ ‖L2(Y ) |∇w0| = Cε ‖χ ‖L2(Y ) ‖∇w0 ‖L2(S) ,311
312

which together with (4.14) and the triangle inequality gives313

‖w − wε1 ‖L2(S) ≤ ‖w − w0 ‖L2(S) + ‖wε1 − w0 ‖L2(S) ≤ Cε ‖∇w0 ‖L2(S) .314

Substituting the above inequality into (4.16), we obtain (4.15).315

Another useful tool is the following inequality for a tubular domain defined below.316

Let τ ∈ Th, for any δ > 0, we define317

τδ: = {x ∈ τ | dist(x, ∂τ) ≤ δ }.318

319
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Lemma 4.7. Let 1 ≤ p < ∞, for any v ∈ W 1,p(τ), there exists C depending on320

p, d and σ0 such that321

(4.17) ‖ v ‖Lp(τδ)
≤ C(δ/hτ )1/p ‖ v ‖W 1,p(τ) .322

This inequality has appeared in many occurrences, and we give a proof for the323

readers’ convenience.324

Proof. For any 0 < s < δ, we let τ cs = τ\τs. It is clear that τ cs is also a simplex.325

For any face f of τ cs , we define a vector326

m(x) =
|f |
d |τ cs |

(x− af ),327

where af is the vertex opposite to f . A direct calculation gives that m(x) · nf = 1328

for any x ∈ f , while m(x) · ng vanishes on the remaining faces of τ cs , where ng is the329

outward normal of the face g so that x ∈ g. Using the divergence theorem, we obtain330 ∫
f

|v(x)|p dσ(x) =

∫
f

|v(x)|pm(x) · nfdσ(x) =

∫
τcs

div (|v(x)|pm(x)) dx331

=

∫
τcs

( (m(x) · ∇ ) |v(x)|p + |v(x)|p divm(x) ) dx.332

333

A direct calculation gives334

max
x∈τcs

|m(x)| ≤ σ0 divm(x) =
|f |
|τ cs |
≤ dσ0

hτ
.335

A combination of the above two inequalities leads to336 ∫
f

|v(x)|p dσ(x) ≤ σ0

(
d

hτ

∫
τcs

|v(x)|p dx+ p

∫
τcs

|v(x)|p−1 |∇v(x)| dx

)
337

≤ σ0

hτ

(
d

∫
τ

|v(x)|p dx+ phτ

∫
τ

|v(x)|p−1 |∇v(x)| dx

)
.338

339

Summing up all faces f ∈ ∂τ cs , we obtain340 ∫
∂τcs

|v(x)|p dσ(x) ≤ (d+ 1)σ0

hτ

(
d

∫
τ

|v(x)|p dx+ phτ

∫
τ

|v(x)|p−1 |∇v(x)| dx

)
.341

Integration with respect to s from 0 to δ, we obtain342 ∫
τδ

|v(x)|p dσ(x) ≤ (d+ 1)σ0δ

hτ

(
d

∫
τ

|v(x)|p dx+ phτ

∫
τ

|v(x)|p−1 |∇v(x)| dx

)
.343

Using Hölder’s inequality, we obtain344

‖ v ‖Lp(τδ)
≤ ( δ/hτ )

1/p
((d+1)σ0)1/p

(
d1/p ‖ v ‖Lp(τ) + (phτ )1/p ‖ v ‖1−1/p

Lp(τ) ‖∇v ‖
1/p
Lp(τ)

)
.345

This gives (4.17) for p > 1.346

The proof for p = 1 is the same, we omit the details.347

To bound the consistency error, we need a local estimate of ∇uε1, which helps us348

to remove the extra smoothness assumption on χ.349
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Lemma 4.8. There exists C independent of ε, δ and hτ such that350

(4.18) ‖∇uε1 ‖L2(τδ)
≤ C

(
ε+

√
δ/hτ

)
|τ |1/2−1/d ‖∇u0 ‖W 1,d(τ) .351

If χ is bounded, then352

(4.19) ‖∇uε1 ‖L2(τδ)
≤ C

(
ε+

√
δ/hτ

)(
1 + ‖χ ‖L∞(Y )

)
‖∇u0 ‖H1(τ) .353

Proof. Since τ is a simplex, we may decompose τδ into d + 1 disjoint convex354

domains {τ iδ}
d+1
i=1 . Over each τ iδ, using the local multiplier estimate (4.9), we obtain355

ε ‖∇χ(x/ε)∇u0 ‖L2(τ iδ)
≤ C

∣∣τ iδ∣∣1/2−1/d
(
‖∇u0 ‖Ld(τ iδ)

+ ε
∥∥∇2u0

∥∥
Ld(τ iδ)

)
.356

Summing up the above estimate for i = 1, . . . , d + 1 and using the scaled trace in-357

equality (4.17) with p = d, we obtain358

ε ‖∇χ(x/ε)∇u0 ‖L2(τδ)
≤ C |τδ|1/2−1/d

(
‖∇u0 ‖Ld(τδ)

+ ε
∥∥∇2u0

∥∥
Ld(τδ)

)
359

≤ C |τδ|1/2−1/d
(δ/hτ )1/d ‖∇u0 ‖W 1,d(τ)360

+ Cε |τ |1/2−1/d ∥∥∇2u0

∥∥
Ld(τ)

361

≤ C(ε+
√
δ/hτ ) |τ |1/2−1/d ‖∇u0 ‖W 1,d(τ) .362

363

Invoking the scaled trace inequality (4.17) with p = 2 and using Hölder’s inequal-364

ity, we obtain365

‖∇u0 ‖L2(τδ)
≤ C

√
δ/hτ ‖∇u0 ‖H1(τ) ≤ C

√
δ/hτ |τ |1/2−1/d ‖∇u0 ‖W 1,d(τ) .366

Using Hölder’s inequality with 1/q = 1/2− 1/d and (3.6) with p = q, we obtain367

ε
∥∥χ(x/ε)∇2u0

∥∥
L2(τδ)

≤ ε
∥∥χ(x/ε)∇2u0

∥∥
L2(τ)

≤ ε ‖χ(x/ε) ‖Lq(τ)

∥∥∇2u0

∥∥
Ld(τ)

368

≤ Cε |τ |1/2−1/d ‖χ ‖Lq(Y )

∥∥∇2u0

∥∥
Ld(τ)

.369
370

A combination of the above three inequalities leads to (4.18).371

If χ is bounded, then we sum up the local multiplier estimate (4.10) over τ iδ for372

i = 1, . . . , d+ 1 and obtain373

ε ‖∇χ(x/ε)∇u0 ‖L2(τδ)
≤ C(1 + ‖χ ‖L∞(Y ))

(
‖∇u0 ‖L2(τδ)

+ ε
∥∥∇2u0

∥∥
L2(τδ)

)
.374

Invoking the scaled trace inequality (4.17) again, we obtain375

‖∇uε1 ‖L2(τδ)
≤ ‖∇u0 ‖L2(τδ)

+ ε ‖∇χ(x/ε)∇u0 ‖L2(τδ)
+ ε

∥∥χ∇2u0

∥∥
L2(τδ)

376

≤ C(1 + ‖χ ‖L∞(Y ))
(
‖∇u0 ‖L2(τδ)

+ ε
∥∥∇2u0

∥∥
L2(τ)

)
377

≤ C
(
ε+

√
δ/hτ

)
(1 + ‖χ ‖L∞(Y ))

∥∥∇2u0

∥∥
L2(τ)

.378
379

This gives (4.19) and finishes the proof.380
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4.1.2. Proof of Lemma 4.2 and Lemma 4.4.381

Proof for Lemma 4.2 Using the triangle inequality, we have382

(4.20)
‖uε − ũ ‖h ≤ ‖u

ε − uε1 ‖h + ‖ ũ− ũε1 ‖h + ‖uε1 − ũε1 ‖h
= ‖∇(uε − uε1) ‖L2(Ω) + ‖ ũ− ũε1 ‖h + ‖uε1 − ũε1 ‖h .

383

Applying Lemma 4.6 to ũ, using (4.15) and Assumption A, we obtain384

‖∇(ũ− ũε1) ‖L2(τ) ≤ C
ε

hτ
‖∇ũ0 ‖L2(S) = C

ε

hτ
|S|1/2 |∇ũ0|385

= C
ε

hτ
|S|1/2 |∇πu0| = C

ε

hτ

|S|1/2

|τ |1/2
‖∇πu0 ‖L2(τ)386

≤ C ε

hτ
‖∇πu0 ‖L2(τ) .387

388

Summing up all τ ∈ Th, using the shape-regular and inverse assumption of Th,389

we obtain390

‖ ũ− ũε1 ‖h ≤ C
ε

h
‖∇πu0 ‖L2(Ω) ≤ C

ε

h

(
‖∇(u0 − πu0) ‖L2(Ω) + ‖∇u0 ‖L2(Ω)

)
391

≤ C
(
ε
∥∥∇2u0

∥∥
L2(Ω)

+
ε

h
‖∇u0 ‖L2(Ω)

)
.(4.21)392

393

On each element τ, uε1 − ũε1 = u0 − πu0 + εχ(x/ε)∇(u0 − πu0) and394

∇(uε1 − ũε1) = ∇(u0 − πu0) + ε∇χ(x/ε)∇(u0 − πu0) + εχ(x/ε)∇2u0.395

For m = 1, d = 2, 3 or m ≥ 2, d = 2, χ is bounded by (3.4), using the local multiplier396

inequality (4.10), we obtain397

ε ‖∇χ(x/ε)∇(u0 − πu0) ‖L2(τ) ≤ C
(
‖∇(u0 − πu0) ‖L2(τ) + ε

∥∥∇2u0

∥∥
L2(τ)

)
398

≤ C(ε+ hτ )
∥∥∇2u0

∥∥
L2(τ)

.399
400

It follows from the above two equations that401

‖∇(uε1 − ũε1) ‖L2(τ) ≤ ‖∇(u0 − πu0) ‖L2(τ) + ε ‖∇χ(x/ε)∇(u0 − πu0) ‖L2(τ)402

+ ε
∥∥χ(x/ε)∇2u0

∥∥
L2(τ)

403

≤ C
(

1 + ‖χ ‖L∞(Y )

)
(ε+ hτ )

∥∥∇2u0

∥∥
L2(τ)

.404
405

Summing up all τ ∈ Th, and using (3.4) again, we get406

(4.22) ‖uε1 − ũε1 ‖h ≤ C(ε+ h)
∥∥∇2u0

∥∥
L2(Ω)

.407

Substituting the above inequality, (3.9) and (4.21) into (4.20), we obtain (4.5).408

For m ≥ 2 and d = 3, by (3.5), we have χ ∈ L6(Y ). Using the local multiplier409

estimate (4.9) and the standard interpolation estimate for πu0, we obtain410

ε ‖∇χ(x/ε)∇(u0 − πu0) ‖L2(τ) ≤ C |τ |
1/6
(
‖∇(u0 − πu0) ‖L3(τ) + ε

∥∥∇2u0

∥∥
L3(τ)

)
411

≤ C(ε+ hτ ) |τ |1/6
∥∥∇2u0

∥∥
L3(τ)

.412
413
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Using Hölder’s inequality, the inequality (3.6) with p = 6, D = τ and (3.5), we obtain414

ε
∥∥χ(x/ε)∇2u0

∥∥
L2(τ)

≤ ε ‖χ(x/ε) ‖L6(τ)

∥∥∇2u0

∥∥
L3(τ)

≤ Cε |τ |1/6
∥∥∇2u0

∥∥
L3(τ)

.415

Proceeding along the same line that leads to (4.22), we obtain416

‖∇(uε1 − ũε1) ‖L2(τ) ≤ C(ε+ hτ ) |τ |1/6
∥∥∇2u0

∥∥
L3(τ)

.417

Summing up all τ ∈ Th and using Hölder’s inequality, we get418

‖uε1 − ũε1 ‖h ≤ C(ε+ h)
∥∥∇2u0

∥∥
L3(Ω)

.419

Substituting the above inequality, (3.8) and (4.21) into (4.20), we obtain (4.6).420

Proof for Lemma 4.4 For w ∈ V 0
h , over each oversampling domain S, let w0 be its421

homogenized part over S. By w0 ∈ H1
0 (Ω;Rm), there holds422

ah(uε, w0) = 〈f, w0〉 .423

Therefore, we write the consistency error functional as424

〈f, w〉 − ah(uε, w) = 〈f, w − w0〉 − ah(uε, w − w0)425

= 〈f, w − w0〉 − ah(uε, w − wε1)− ah(uε, wε1 − w0).426427

Using Lemma 4.6, (4.14), (4.13) and Assumption A, we obtain428

‖w − w0 ‖L2(τ) ≤ ‖w − w0 ‖L2(S) ≤ Cε ‖∇w0 ‖L2(S)429

≤ Cε ‖∇w0 ‖L2(τ) ≤ Cε ‖∇w ‖L2(τ) ,430
431

which immediately implies432

(4.23) |〈f, w − w0〉| ≤ Cε ‖ f ‖L2(Ω) ‖w ‖h .433

Using (4.15), (4.13) again, and the inverse assumption of Th, we obtain434

|ah(uε, w − wε1)| ≤ Λ
∑
τ∈Th

‖∇uε ‖L2(τ) ‖∇(w − wε1) ‖L2(τ)435

≤ C
∑
τ∈Th

ε

hτ
‖∇uε ‖L2(τ) ‖∇w0 ‖L2(τ)436

≤ C ε
h

∑
τ∈Th

‖∇uε ‖L2(τ) ‖∇w ‖L2(τ)437

≤ C ε
h
‖∇uε ‖L2(Ω) ‖w ‖h .438

439

Combining the above two estimates, we obtain440

(4.24) |〈f, w − w0〉 − ah(uε, w − wε1)| ≤ C ( ε+ ε/h ) ‖ f ‖L2(Ω) ‖w ‖h ,441

where we have used the a-priori estimate ‖∇uε ‖L2(Ω) ≤ C ‖ f ‖L2(Ω).442

It remains to bound ah(uε, wε1 − w0). On each element τ , we introduce a cut-off443

function ρε ∈ C∞0 (τ) such that 0 ≤ ρε ≤ 1 and |∇ρε| ≤ C/ε, moreover,444

ρε =

{
1 dist(x, ∂τ) ≥ 2ε,

0 dist(x, ∂τ) ≤ ε.
445
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Denote ŵε = (wε1 − w0)(1 − ρε), which is the oscillatory part of wε1 supported inside446

the strip τ2ε. We write447

aτ (uε, wε1 − w0) =aτ (uε, (wε1 − w0)ρε) + aτ (uε, ŵε)448

= 〈f, (wε1 − w0)ρε〉τ + aτ (uε, ŵε).449450

Using (3.6) with p = 2, we obtain451

(4.25)

|〈f, (wε1 − w0)ρε〉τ | ≤ ε ‖ f ‖L2(τ) ‖χ(x/ε) ‖L2(τ) |∇w0|

≤ Cε |τ |1/2 ‖ f ‖L2(τ) ‖χ ‖L2(Y ) |∇w0|

= Cε ‖ f ‖L2(τ) ‖χ ‖L2(Y ) ‖∇w0 ‖L2(τ) .

452

A direct calculation gives1453

(4.26) ‖∇ŵε ‖L2(τ2ε)
≤ C

√
ε/hτ ‖∇w0 ‖L2(τ) ,454

which together with the local estimate (4.18) implies that, for m ≥ 2 and d = 3, there455

holds456

|aτ (uε, ŵε)| ≤ |aτ (uε1, ŵ
ε)|+ |aτ (uε − uε1, ŵε)|

≤ C
((

ε+
ε

hτ

)
|τ |1/6 ‖∇u0 ‖W 1,3(τ) +

√
ε

hτ
‖∇(uε − uε1) ‖L2(τ)

)
‖∇w0 ‖L2(τ) .

457

This estimate together with (4.25) implies458

|aτ (uε, wε1 − w0)| ≤ C
((

ε+
ε

hτ

)
|τ |1/6 ‖∇u0 ‖W 1,3(τ) +

√
ε

hτ
‖∇(uε − uε1) ‖L2(τ)459

+ ε ‖ f ‖L2(τ)

)
‖∇w0 ‖L2(τ) .460

461

Summing up the above estimates for all τ ∈ Th, using (4.13), (3.9), the inverse as-462

sumption of Th and Hölder’s inequality, we obtain463

|ah(uε, wε1 − w0)| ≤ C
((

ε+
ε

h

)
‖∇u0 ‖W 1,3(Ω) +

√
ε

h
‖∇(uε − uε1) ‖L2(Ω)464

+ ε ‖ f ‖L2(Ω)

)
‖w ‖h465

≤ C
(
ε+

ε

h

)(
‖∇u0 ‖W 1,3(Ω) + ‖ f ‖L2(Ω)

)
‖w ‖h .466

467

This inequality together with (4.24) implies (4.8).468

For m = 1, d = 2, 3 or m ≥ 2, d = 2, χ is bounded. Replacing (4.18) by (4.19)469

and proceeding along the same line that leads to (4.8), we obtain (4.7).470

4.2. Ld/(d−1) error estimate. We exploit the Aubin-Nitsche trick to obtain the471

error estimate of MsFEM in Ld/(d−1)−norm with d = 2, 3.472

Theorem 4.9. Under the same assumption of Theorem 4.1, and suppose that473

ϕ ∈ H1
0 (Ω;Rm) satisfying474 ∫

Ω

∇ϕ · Â∇ψ dx = 〈F,ψ〉 for all ψ ∈ H1
0 (Ω;Rm).475

1We may also refer to [14, Lemma 3.1] for a proof of (4.26).
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For m = 1, d = 2, 3 or m ≥ 2, d = 2, if the shift estimate476

(4.27) ‖ϕ ‖H2(Ω) ≤ C ‖F ‖L2(Ω)477

holds true, then for m = 1, d = 2, 3, there holds478

(4.28) ‖u− uh ‖L2(Ω) ≤ C(ε+ h2 + ε/h)
(
‖∇u0 ‖H1(Ω) + ‖ f ‖L2(Ω)

)
.479

For m ≥ 2, d = 2, there holds480

(4.29) ‖u− uh ‖L2(Ω) ≤ C(ε+ h2 + ε/h) ‖ f ‖L2(Ω) .481

For m ≥ 2 and d = 3, if the shift estimate482

(4.30) ‖ϕ ‖W 2,3(Ω) ≤ C ‖F ‖L3(Ω)483

holds true, then484

(4.31) ‖u− uh ‖L3/2(Ω) ≤ C(ε+ h2 + ε/h) ‖ f ‖L3(Ω) .485

Except the resonance error ε/h, the other two items in the above error estimates486

are optimal. For scalar elliptic equation and elliptic systems in two dimension, we487

obtain the L2 error estimate.488

Proof. For any g ∈ L2(Ω;Rm), we find vε ∈ H1
0 (Ω;Rm) such that489

(4.32)

∫
Ω

∇w · (A(x/ε))t∇vε dx =

∫
Ω

g · w dx for all w ∈ H1
0 (Ω;Rm).490

Let vh be the MsFEM approximation of vε defined by491

(4.33) ah(w, vh) =

∫
Ω

g · w dx for all w ∈ V 0
h .492

It follows from (4.32) and (4.33) that493 ∫
Ω

g · (uε − uh) dx = a(uε, vε)− ah(uh, vh)

= ah(uε − uh, vε − vh) + ah(uε − uh, vh) + ah(uh, v
ε − vh)

= ah(uε − uh, vε − vh)

+
[
ah(uε, vh)− 〈f, vh〉+ ah(uh, v

ε)− 〈g, uh〉
]
.

494

For m = 1, d = 2, 3 or m ≥ 2, d = 2, using the energy error estimate (4.1) and the495

regularity assumption (4.27), we obtain496

|ah(uε − uh, vε − vh)| ≤ Λ ‖uε − uh ‖h ‖ v
ε − vh ‖h497

≤ C(ε+ h2 + ε2/h2)
(
‖∇u0 ‖H1(Ω) + ‖ f ‖L2(Ω)

)
‖ g ‖L2(Ω) .498

499

Using (4.7) and (4.27), we bound the consistency error functional as500

|ah(uε, vh)− 〈f, vh〉+ ah(uh, v
ε)− 〈g, uh〉|501

≤ C(ε+ ε/h)
(
‖∇u0 ‖H1(Ω) + ‖ f ‖L2(Ω)

)
‖ g ‖L2(Ω) .502

503
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A combination of the above three estimates yields (4.28).504

For m ≥ 2, d = 2, noting that A = At and the shift estimate (4.27) is also valid505

for u0, this gives (4.29).506

For m ≥ 2 and d = 3, χ is unbounded. Replacing (4.27), (4.1) and (4.7) by (4.30),507

(4.2) and (4.8), respectively, and proceeding along the same line that leads to (4.28),508

we obtain509

‖u− uh ‖L3/2(Ω) ≤ C(ε+ h2 + ε/h)
(
‖∇u0 ‖W 1,3(Ω) + ‖ f ‖L3(Ω)

)
.510

Noting that At = A and the shift estimate (4.30) is also valid for u0, this gives (4.31).511

4.3. Error estimates for MsFEM without oversampling. We visit the512

error estimates of MsFEM without oversampling [19]. The multiscale basis function513

is φβ = {φβi }
d+1
i=1 is constructed as (2.4) with S(τ) replaced by τ .514

Vh := Span{φi for all nodes xi of Th},515

and V 0
h : = { v ∈ Vh | v = 0 on ∂Ω }. The approximation problem reads as: Find516

uh ∈ V 0
h such that517

(4.34) a(uh, v) = 〈f, v〉 for all v ∈ V 0
h .518

Under the same assumptions of Theorem 4.1 except that A is not necessarily519

symmetric when m ≥ 2, we prove the energy error estimate for MsFEM without520

oversampling.521

Theorem 4.10. Assume A is 1−periodic and satisfies the Legendre-Hadamard522

condition (2.1). Let Ω be a bounded Lipschitz domain in Rd. Let uε and uh be the523

solutions of (2.3) and (4.34), respectively.524

For m = 1, d = 2, 3 or m ≥ 2, d = 2, if u0 ∈ H2(Ω;Rm), then525

(4.35) ‖∇(uε − uh) ‖L2(Ω) ≤ C
(

(
√
ε+ h) ‖∇u0 ‖H1(Ω) +

√
ε/h ‖∇u0 ‖L2(Ω)

)
,526

where C depends on λ,Λ,Ω and the mesh parameters σ0 and σ1.527

For m ≥ 2 and d = 3, if u0 ∈W 2,3(Ω;Rm), then528

(4.36) ‖∇(uε − uh) ‖L2(Ω) ≤ C
(

(
√
ε+ h) ‖∇u0 ‖W 1,3(Ω) +

√
ε/h ‖∇u0 ‖L2(Ω)

)
,529

where C depends on λ,Λ,Ω and the mesh parameters σ0 and σ1.530

As a direct consequence of the above theorem, we obtain the Ld/(d−1) error esti-531

mate for MsFEM without oversampling. The proof follows the same line that leads532

to Theorem 4.9, we omit the proof.533

Corollary 4.11. Under the same assumption of Theorem 4.9 except that A is not534

necessarily symmetric for m ≥ 2. Let uε and uh be the solutions of (2.3) and (4.34),535

respectively. For m = 1, d = 2, 3 or m ≥ 2, d = 2, there holds536

‖u− uh ‖L2(Ω) ≤ C(ε+ h2 + ε/h) ‖∇u0 ‖H1(Ω) .537

For m ≥ 2 and d = 3, there holds538

‖u− uh ‖L3/2(Ω) ≤ C(ε+ h2 + ε/h) ‖∇u0 ‖W 1,3(Ω) .539
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The proof of Theorem 4.10 relies on Theorem 3.1 and Lemma 4.5. We only sketch540

the main steps because the details are the same with the line leading to Theorem 4.1.541

Proof of Theorem 4.10 Noting that MsFEM without oversampling is conforming, i.e.,542

V 0
h ⊂ H1

0 (Ω;Rm), we obtain543

(4.37) ‖∇(uε − uh) ‖L2(Ω) ≤ (1 + Λ/λ) inf
v∈V 0

h

‖∇(uε − v) ‖L2(Ω) .544

Define MsFEM interpolant ũ(x) as (4.4). Using the triangle inequality, we obtain545

‖∇(uε − ũ) ‖L2(Ω) ≤ ‖∇(uε − uε1) ‖L2(Ω) + ‖∇(ũ− ũε1) ‖L2(Ω) + ‖∇(uε1 − ũε1) ‖L2(Ω) .546

The estimate of ‖∇(uε − uε1) ‖L2(Ω) follows from Theorem 3.1, and the estimate of547

‖∇(uε1 − ũε1) ‖L2(Ω) is the same with the corresponding term in Lemma 4.2. Note that548

ũε1 is the first order approximation of ũ over τ . For m = 1, d = 2, 3 or m ≥ 2, d = 2,549

using (3.9), we get550

‖∇(ũ− ũε1) ‖L2(τ) ≤ C
√
ε/hτ ‖∇πu0 ‖L2(τ)551

≤ C
(√

ε/hτ ‖∇u0 ‖L2(τ) +
√
εhτ ‖∇u0 ‖H1(τ)

)
.552

553

Summing up the above estimate for all τ ∈ Th, and using the inverse assumption of554

Th, we obtain555

(4.38) ‖∇(ũ− ũε1) ‖L2(Ω) ≤ C
(√

ε/h ‖∇u0 ‖L2(Ω) +
√
εh ‖∇u0 ‖H1(Ω)

)
.556

For m ≥ 2 and d = 3, using (3.8) and the fact that ∇πu0 is a piecewise constant557

matrix over τ , we get558

‖∇(ũ− ũε1) ‖L2(τ) ≤ C
√
ε/hτ |τ |1/6 ‖∇πu0 ‖L3(τ) = C

√
ε/hτ ‖∇πu0 ‖L2(τ) .559

Proceeding along the same line that leads to (4.38), we obtain560

‖∇(ũ− ũε1) ‖L2(Ω) ≤ C
(√

ε/h ‖∇u0 ‖L2(Ω) +
√
εh ‖∇u0 ‖H1(Ω)

)
.561

A combination of all the above estimates completes the proof.562

Remark 4.12. We have used Theorem 3.1 to bound ‖∇(ũ− ũε1) ‖L2(τ) instead of563

Lemma 4.6, we need not assume the symmetry of A when m ≥ 2.564

5. Conclusion. Under suitable regularity assumptions on the homogenized so-565

lution, we proved the optimal energy error estimates for MsFEM with or without566

oversampling applying to elliptic systems with bounded measurable periodic coeffi-567

cients. The present work may be extended to elliptic system with locally periodic568

coefficients, i.e., Aε = A(x, x/ε) with the aid of a new local multiplier estimate. The569

extension to elliptic system for the coefficients with stratified structure is also very570

interesting. We believe that the machineries developed in the present work may be571

useful to analyze other MsFEM such as the mixed MsFEM [8], Crouzeix-Raviart Ms-572

FEM [23], or MsFEM with different oversampling techniques [16]. We shall leave573

these for further pursuit.574
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