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strain gradient elastic model. Optimal error estimates uniformly with respect to the
small material parameter have been proved. Numerical results confirm the theoretical
prediction.

AMS subject classifications: 65N30, 65N15, 74K20

Key words: Nonconforming finite elements, strain gradient elasticity, uniform error estimate.

1 Introduction

Strain gradient models play an important role in the characterization of the heterogeneity
and the size effect of materials down to micro scale. Though it may date back to Cosserat
brothers’ classical work [12], numerical simulation of this model is rather recent [14, 24,
27, 30] because strain gradient models are usually quite complicate. In particular, they
contain a couple of materials parameters and standard finite element approximations
usually do not work for such model. Aifantis et al. [2,26] proposed a linear strain gradient
elastic model that has only one material parameter. This simplified model successfully
eliminated the strain singularity of the brittle crack tip field [13].

From a mathematical point of view, Aifantis’ model is a singularly perturbed elliptic
system of fourth order due to the appearance of the strain gradient. A natural choice
for such type problems is C1 finite elements such as Argyris triangle [3], while the large
number of local degrees of freedom and the high degree of polynomials used in the shape
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functions are the main impediments for practical simulation. In [21], the authors pro-
posed two nonconforming elements with 21 degrees of freedom and even simpler non-
conforming elements have been recently constructed in [22]. The simplest one among
them is the tensor product of the Morley’s triangle [23] with a modification of the elastic
strain energy. All elements converge uniformly with respect to the small material param-
eter.

In contrast to the triangle elements in [21, 22], we consider the rectangular elements
in the present work. The rectangular elements are equally powerful when they are com-
bined with the isoparametric concept, which has been developed for Hermite elements
in [25]. The famous Bogner-Fox-Schmit element (BFS) [6] has been exploited in [24,30] to
approximate the strain gradient elastic model in two and three dimensions. The authors
in [14] found that BFS outperforms several other elements in solving a nonlinear strain
gradient elastic model. One drawback of BFS element is the large number of local de-
grees of freedom, the other is that the second order derivative appears in the definition
of the degrees of freedom, which unfortunately brings in extra difficulty in dealing with
boundary condition, because only the normal traction appears in the boundary condition
of the strain gradient elastic model. To avoid such difficulty, we propose a family of rect-
angular element that is H2 nonconforming while H1 conforming. This means the finite
element function is continuous, while the derivative is discontinuous across the element
boundaries. Based on the discrete H2 inequality proved recently in [22], the tensor prod-
uct of this element may be used to approximate the strain gradient elastic model. We
prove that this element converges with optimal rate for both the smooth solution and the
solution with a strong boundary layer. The latter is very common in the strain gradient
elastic model.

The proposed element consists of the serendipity family of finite element [11] aug-
mented with a special bubble space. This bubble space is a natural extension of the one
appeared in [19]. Using the orthogonal properties of the Jacobi polynomials [28], we de-
rive the explicit basis function associated with the bubble space, while the explicit repre-
sentation of the corresponding bubble space in [19] is still unknown. Such basis functions
of the bubble space could be exploited to construct the basis functions of the proposed
element. It is worth pointing out that such family of rectangular element naturally yields
a hierarchical nonconforming plate bending element, which obviously makes the non-
conforming elements more competitive compared with the conforming element [9,20,31]
and the discontinuous Galerkin method; cf. [8]. It is worthwhile to mention that other
orthogonal polynomials such as Legendre polynomials have been exploited to construct
nonconforming element for plate bending element [17].

The structure of the paper is as follows. In Section 2, we introduce Aifantis’ strain
gradient model and the variational formulation. The finite element space is introduced in
Section 3. Besides the structure of the element is clarified and the optimal approximation
properties are proved for both smooth and nonsmooth functions. Error estimates are also
proved in this part. The numerical results are reported in the last section. The explicit
basis functions for the lowest order element and next to the lowest order element are
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included in the appendix.
Throughout this paper, the constant C may differ from line to line, while it is inde-

pendent of the mesh size h and the material parameter ι.

2 Strain gradient elasticity model

The space L2(Ω) of the square-integrable functions defined on a bounded polygon Ω is
equipped with the inner product (·,·) and the norm ‖·‖L2(Ω). Let Hm(Ω) be the standard
Sobolev space [1] with the norm ‖ ·‖Hm(Ω) and the semi-norm |·|Hm(Ω). We may drop Ω
in ‖ ·‖Hm(Ω) when no confusion may occur. Define

H1
0(Ω):=

{
v∈H1(Ω)

∣∣∣v=0 on ∂Ω
}

,

H2
0(Ω):=

{
v∈H2(Ω)

∣∣∣v=0, ∂nv=0 on ∂Ω
}

,

where ∂nv is the normal derivative of v. Equally, ∂tv denotes the tangential derivative of
v.

For any vector-valued function v, its gradient is a matrix-valued function with com-
ponents (∇v)ij = ∂vi/∂xj. The symmetric part of a gradient field is defined by ε(v) =
(∇v+[∇v]T)/2. The divergence operator is defined as ∇·v = ∂v1/∂x1+∂v2/∂x2. The
Sobolev spaces [Hm(Ω)]2, [Hm

0 (Ω)]2 and [L2(Ω)]2 of a vector field can be defined in a
similar manner as their scalars counterpart. This rule equally applies to their inner prod-
ucts and their norms.

The strain gradient elastic model in [2, 26] is described by the following boundary
value problem: For u the displacement that solves{

(ι2∆− I)(µ∆u+(λ+µ)∇∇·u)= f in Ω,
u=∂nu=0 on ∂Ω,

(2.1)

where λ and µ are the Lamé constants and ι is the microscopic parameter such that
0< ι≤1. Here we assume that 0<λ<∞ and we do not consider the nearly incompress-
ible materials, i.e., λ→∞, because the model may change dramatically for those mate-
rials [15]. Problem (2.1) may be rewritten into a variational problem: Find u∈ [H2

0(Ω)]2

such that
a(u,v)=( f ,v) for all v∈ [H2

0(Ω)]2, (2.2)

where

a(u,v):=(Cε(u),ε(v))+ ι2(D∇ε(u),∇ε(v)),

and the fourth-order tensor C and the sixth-order tensor D are defined as

Cijkl =λδijδkl+2µδikδjl and Dijklmn =λδilδjkδmn+2µδilδjmδkn,
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respectively. Here δij is the Kronecker delta function. The strain gradient∇ε(v) is a third
order tensor that is defined by (∇ε(v))ijk =∂εjk/∂xi.

The variational problem (2.2) is well-posed if the bilinear form a is coercive over
[H2

0(Ω)]2, which depends on the following inequality:

‖ε(v)‖2
L2+‖∇ε(v)‖2

L2≥
1
2
‖∇v‖2

H1 for all v∈ [H2
0(Ω)]2. (2.3)

This inequality was proved in [21, Theorem 1] by exploiting the community property of
strain operator ε and the partial differential operator ∂. The regularity of the solution u is
given in the next lemma; see [22, Lemma 2.4] for a proof.

Lemma 2.1. There exists C that may depend on Ω but independent of ι such that

|u|H2+ ι|u|H3≤Cι−1/2‖ f ‖L2 , (2.4a)

‖u−u0‖H1≤Cι1/2‖ f ‖L2 , (2.4b)

where u0∈ [H1
0(Ω)]2 satisfies

(Cε(u0),ε(v))=( f ,v) for all v∈ [H1
0(Ω)]2. (2.5)

Moreover, we have the estimate

|u|H2 |u|H3≤Cι−2‖ f ‖2
L2 . (2.6)

3 Rectangular element of any order

In this part, we introduce a rectangular element of any order. Let Th be the triangulation
of Ω with rectangles T:= (xT−hx,T/2,xT+hx,T/2)×(yT−hy,T/2,hy+hy,T/2), where the
mesh size h =maxT∈Th hT with hT =max(hx,T,hy,T). We assume that the mesh is shape
regular in the sense that there exists a chunkiness parameter γ such that hx,T/hy,T≤γ. It
is clear that T is mapped into the unit square K= I2 with I=[−1,1] the unit interval. We
shall work on K instead of T in what follows. Denote the set of all the edges in Th as Eh.
The space of piecewise [Hm(Ω,Th)]

2 vector fields is defined by

[Hm(Ω,Th)]
2:=

{
v∈L2(Ω)

∣∣∣v|T∈ [Hm(T)]2 for all T∈Th

}
,

which is equipped with the norm

‖v‖Hk
h
:=‖v‖L2+

m

∑
k=1
‖∇k

hv‖L2 ,

where

‖∇k
hv‖2

L2 = ∑
T∈Th

‖∇kv‖2
L2(T)

with (∇k
hv)|T =(∇kv)|T.
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3.1 A new family of finite element

Our construction is motivated by the element proposed in [19]. The serendipity finite
element space Sr(I2) [4] is defined by

Sr(I2)=Pr(I2)+span{xry,xyr},

where Pr(I2) is the standard Lagrange finite element of degree r. The serendipity finite
element space may be viewed as a reduction of the space Qr(I2), which is the tensor
product Lagrange finite element space of degree r≥2. The degrees of freedom of Sr(I2)
are defined by

v 7→


v(a) four vertices of I2,∫

e
vq q∈Pr−2(e) four edges e,∫

I2
vq q∈Pr−4(I2).

(3.1)

We define the bubble function associated with K as

bK =
1
16

(1−x2)(1−y2).

Let e1=[−1,1]×{−1}, e2={1}×[−1,1], e3=[−1,1]×{1} and e4={−1}×[−1,1]. We define
λ1=(1+y)/2, λ2=(1−x)/2, λ3=(1−y)/2 and λ4=(1+x)/2. It is clear that λi|ei =0 for
i=1,··· ,4. We also define the edge bubbles by bei =bK/λi.

The local finite element space

PK =Sr(I2)+bK ∑
e

beΛe(I2),

where

Λe(I2):=
{

v∈Pr−2(I2)
∣∣∣∫

I2
bKbevqdx=0 for all q∈Pr−3(I2)

}
. (3.2)

Now the set for the degrees of freedom ΣK consists of the degrees of freedom for Sr(I2);
cf. (3.1) and the moments

v 7→
∫

e

∂v
∂n

q, q∈Pr−2(e).

The number of the degrees of freedom is

#ΣK =4+4(r−1)+
(

r−2
2

)
+4(r−1)=

(
r+2

2

)
+2+4(r−1),

where the binomial (r
2):= r(r−1)/2.

We are ready to prove the unisolvence of the above finite element.
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Lemma 3.1. The set (K,PK,ΣK) is unisolvent.

Proof. We only need to show that if all the degrees of freedom vanish, v vanishes. Note
that the first set of degrees of freedom is zero means that v=bK ∑e beqe with qe∈Λe(I2). It
is clear that for any edge E⊂ I2, we have

∂v
∂n

∣∣∣
E
=

∂bK

∂n

∣∣∣∣∣
E

(
∑

e
beqe

)∣∣∣∣∣
E

+bK|E

(
∂

∂n ∑
e

beqe

)∣∣∣∣∣
E

=−1
2
(b2

EqE)
∣∣∣

E
.

Note that ∫
E

∂v
∂n

q=0 for all q∈Pr−2(E).

Taking q=qE in the above identity, we obtain∫
E

b2
Eq2

E =0,

which immediately implies that qE|E=0. Therefore, we write qE=λE pE with pE∈Pr−3(I2).
By the definition of qE, we have, for any q∈Pr−3(I2),

0=
∫

I2
bKbEqEq=

∫
I2

bKbEλE pEq=
∫

I2
b2

K pEq.

Taking q= pE ∈Pr−3(I2) in the above identity, we obtain pE≡ 0 in I2. So does qE and v.
This proves the unisolvency.

Example 3.1. The enriched bubble space for the lowest order case r=2 is

bKspan{be1 ,be2 ,be3 ,be4}.

The basis functions associated with the degrees of freedom
∫

ei
∂v/∂n are

−30bKbe1 , −30bKbe2 , 30bKbe3 , 30bKbe4 .

Remark 3.1. A drawback of this approach is that the degree of the enriched bubble space
is slightly high. The authors in [10] proposed the following choices for the bubble spaces:{

bKspan{x,x2,y,y2}, r=2,
bKspan{x,x2y,x3y,x4,y,y2x,y3x,y4}, r=3.

Unfortunately, it does not seem easy to extend such Ansatz for arbitrary high order.
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Next we clarify the structure of the bubble space. To this end, we need the following
facts about the Jacobi polynomials [28]. For any α,β>−1 and nonnegative integers n,m,
there holds ∫ 1

−1
(1−x)α(1+x)βP(α,β)

n (x)P(α,β)
m (x)dx=h(α,β)

n δnm, (3.3)

where

h(α,β)
n =

∫ 1

−1
(1−x)α(1+x)β

[
P(α,β)

n (x)
]2dx.

By [28, Eq. (4.3.3)], we may write

h(α,β)
n =

2α+β+1

2n+α+β+1
Γ(n+α+1)Γ(n+β+1)
Γ(n+α+β+1)Γ(n+1)

, (3.4)

where Γ is the Gamma function.
One of the explicit form for P(α,β)

n is

(1−x)α(1+x)βP(α,β)
n (x)=

(−1)n

2nn!
dn

dxn

(
(1−x)n+α(1+x)n+β

)
. (3.5)

In particular,

P(α,β)
0 (x)=1, P(α,β)

1 (x)=
1
2
(α+β+2)x+

1
2
(α−β).

Lemma 3.2. The bubble spaces take the following form:
Λe1(I2)=span{P(2,2)

n (x)P(2,1)
m (y)},

Λe2(I2)=span{P(1,2)
n (x)P(2,2)

m (y)},
Λe3(I2)=span{P(2,2)

n (x)P(1,2)
m (y)},

Λe4(I2)=span{P(2,1)
n (x)P(2,2)

m (y)},

(3.6)

where n,m are nonegative integers and n+m= r−2.

Proof. We only prove the first identity in (3.6). Others may be proceeded similarly.
Any p∈Pr−2(I2) may be expanded into

p(x,y)= ∑
0≤n+m≤r−2

anmP(2,2)
n (x)P(2,1)

m (y) (3.7)

for certain parameters anm. Using the above representation (3.7), we may write the con-
straint in the definition of bubble space (3.2) Λe1 as∫

I2
(1−x2)2(1−y2)(1−y)∑

n,m
anmP(2,2)

n (x)P(2,1)
m (y)q(x,y)dxdy=0
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for all q∈Pr−3(I2). We substitute q=P(2,2)
i (x)P(2,1)

j (y) with 0≤ i+ j≤ r−3 into the above
equation. Using the orthogonal relation (3.3) for the Jacobi polynomials, we may obtain

aij =0 for all 0≤ i+ j≤ r−3.

This immediately implies (3.6).

Motivated by Lemma 3.2, we change the definition of the degrees of freedom associ-
ated with the bubble space to

∫
ei

∂v
∂n

P(2,2)
m (x)dx, i=1,3 and m=0,··· ,r−2,∫

ei

∂v
∂n

P(2,2)
m (y)dy, i=2,4 and m=0,··· ,r−2.

This may yield a compact form of the basis functions for the bubble space.

Lemma 3.3. The basis functions for the bubble spaces are: for n,m nonnegative integers with
n+m= r−2,

a(1)nmbKbe1 P(2,2)
n (x)P(2,1)

m (y), a(1)nm =− 32

h(2,2)
n P(2,1)

m (−1)
, (3.8a)

a(2)nmbKbe2 P(1,2)
n (x)P(2,2)

m (y), a(2)nm =− 32

h(2,2)
m P(1,2)

n (1)
, (3.8b)

a(3)nmbKbe3 P(2,2)
n (x)P(1,2)

m (y), a(3)nm =
32

h(2,2)
n P(1,2)

m (1)
, (3.8c)

a(4)nmbKbe4 P(2,1)
n (x)P(2,2)

m (y), a(4)nm =
32

h(2,2)
m P(2,1)

n (−1)
. (3.8d)

Here

a(1)nm =
(−1)m+1

m+1
(n+3)(n+4)(2n+5)

(n+1)(n+2)
,

a(2)nm =(−1)na(1)mn, a(3)nm =(−1)m+1a(1)nm, a(4)nm =−a(1)mn.

Proof. We only prove (3.8a). Others may be proceeded similarly.
Firstly, a direct calculation gives(

∂

∂n

(
bKbe1 P(2,2)

n (x)P(2,1)
m (y)

))∣∣∣∣
e1

=−1
2
[b2

e1
]
∣∣∣
e1

P(2,2)
n (x)P(2,1)

m (−1).
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For i=0,··· ,r−2, we obtain∫
e1

P(2,2)
i (x)

∂

∂n
(bKbe1 P2,2

n (x)P(2,1)
m (y))dx

=− 1
32

P(2,1)
m (−1)

∫ 1

−1
(1−x)2(1+x)2P(2,2)

n (x)P(2,2)
i (x)dx

=− 1
32

P(2,1)
m (−1)h(2,2)

i δin.

This gives (3.8a).
Next, using [28, Eq. (4.1.1)], we obtain

P(1,2)
n (1)=

(
n+1

n

)
=n+1.

Using [28, Eq. (4.1.3)], we obtain

P(2,1)
n (−1)=(−1)n

(
n+1

n

)
=(−1)n(n+1),

and using (3.4), we obtain

h(2,2)
n =

32(n+1)(n+2)
(n+3)(n+4)(2n+5)

.

Substituting the above three formulae into (3.8a), we obtain the expression of a(1)nm.

Remark 3.2. The bubble space may be extended to three dimension, which reads as
bK ∑ f b f Λ f (I3) with

Λ f (I3):=
{

v∈Pr−2(I3)
∣∣∣∫

I3
bKb f vq=0 for all q∈Pr−3(I3)

}
.

The associated degrees of freedom are∫
f

∂v
∂n

q, q∈Pr−2( f ).

Here the summation runs for all faces f . The bubble function

bK =
1
64

(1−x2)(1−y2)(1−z2),

and the face bubble b f =bK/λ f with λ f | f ≡0.
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Given (K,PK,ΣK), we may define the finite element triple (T,W(T),ΣT). The corre-
sponding finite element space is defined by

X0
h :=

{
v∈H1

0(Ω)
∣∣∣v|T∈W(T)

}
,

and we may define the approximation space for the strain gradient elastic model as V0
h =

[X0
h]

2. The approximation problem reads as: Find uh∈V0
h such that

ah(uh,v)=( f ,v) for all v∈V0
h , (3.9)

where the bilinear form ah is defined for any v,w∈V0
h as

ah(v,w):=(Cε(v),ε(w))+ ι2(D∇hε(v),∇hε(w))

with

(D∇hε(v),∇hε(w)):= ∑
T∈Th

∫
T

D∇ε(v)∇ε(w)dx.

The energy norm is defined as |||v|||ι,h = ‖∇v‖L2+ ι‖∇2
hv‖L2 . This is indeed a norm be-

cause |||v|||ι,h is equivalent to ‖v‖H1+‖∇2
hv‖L2 for any fixed ι by virtue of Poincaré in-

equality for v∈ [H1
0(Ω)]2.

3.2 Approximation properties of the finite elements

Using the degrees of freedom given in the last section, we define a local interpolation
operator ΠT : H2(T) 7−→W(T) as: For all vertices a and all edges e,

ΠTv(a)=v(a),∫
e
ΠTv(x)p(x)dσ(x)=

∫
e
v(x)p(x)dσ(x) for all p∈Pr−2(e),∫

T
ΠTv(x)q(x)dx=

∫
T

v(x)q(x)dx for all q∈Pr−4(T),∫
e

∂ΠTv
∂n

(x)p(x)dx=
∫

e

∂v
∂n

(x)p(x)dx for all q∈Pr−2(e).

To prove the interpolation error estimate, we firstly show that ΠT is Sr(T) invariant.

Lemma 3.4.
ΠTv=v for all v∈Sr(T). (3.10)

The above lemma and the proof below is adapted from [21, Lemma 3]. We give the
details of the proof for the convenience of the readers.
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Proof. Denote M = dimSr(T) and N = dimb(T), i.e., M = 4r+(r−2)(r−1)/2 and N =
4r−4. Let {ωi}M

i=1 be the basis functions for Sr(T) associated with degrees of freedom

{φ(n)
i }M

i=1 and let {ψi}N
i=1 be the basis functions for the bubble space b(T) associated with

the degrees of freedom {φ(m)
i }N

i=1. For i=1,··· ,M, define

ϕi =ωi−
N

∑
j=1

φ
(m)
j (ωi)ψj.

We claim that
W(T)=span{ϕ1,··· ,ϕM,ψ1,··· ,ψN}. (3.11)

Note that φ
(n)
i (ψj)≡0 for any i=1,··· ,M and j=1,··· ,N, because ψj vanishes on ∂T. Thus

we obtain that {ψi}N
i=1 are the basis functions for W(T) associated with the degrees of

freedom {φ(m)
j }N

j=1. For any ϕi, there holds

φ
(n)
j (ϕi)=φ

(n)
j (ωi)−

N

∑
k=1

φ
(m)
k (ωi)φ

(n)
j (ψk)=φ

(n)
j (ωi)=δij,

φ
(m)
j (ϕi)=φ

(m)
j (ωi)−

N

∑
k=1

φ
(m)
k (ωi)φ

(m)
j (ψk)=φ

(m)
j (ωi)−

N

∑
k=1

φ
(m)
k (ωi)δkj =0.

This verifies (3.11).
Next we prove the interpolation operator is locally Sr−invariant. In fact, for any

v∈Sr(T), we have the representation

v=
M

∑
i=1

φ
(n)
i (v)ωi.

By definition,

ΠTv=
M

∑
i=1

φ
(n)
i (v)ϕi+

N

∑
j=1

φ
(m)
j (v)ψj

=
M

∑
i=1

φ
(n)
i (v)ωi−

N

∑
j=1

M

∑
i=1

φ
(n)
i (v)φ(m)

j (ωi)ψj+
N

∑
j=1

φ
(m)
j (v)ψj

=v+
N

∑
j=1

(
φ
(m)
j (v)−

M

∑
i=1

φ
(n)
i (v)φ(m)

j (ωi)

)
ψj

=v,

where we have used the fact that

φ
(m)
j (v)=

M

∑
i=1

φ
(n)
i (v)φ(m)

j (ωi)

in the last step.
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The claim (3.11) gives a constructive way for deriving the basis functions of the pro-
posed element. To this end, one may use the basis functions derived in [16] for the
serendipity family of finite element and the basis functions given in Lemma 3.3 for the
bubble space. We shall construct the basis functions for the element with r = 2,3 in the
Appendix.

We shall use the following versions of the trace inequalities.

Lemma 3.5. For any Lipschitz domain D, there exists C depending on D such that

‖v‖L2(∂D)≤C‖v‖1/2
L2(D)
‖v‖1/2

H1(D)
. (3.12)

For any element T∈Th, there exists C independent of hT, but depends on γ such that

‖v‖L2(∂T)≤C
(

h−1/2
T ‖v‖L2(T)+‖v‖1/2

L2(T)‖∇v‖1/2
L2(T)

)
. (3.13)

The multiplicative type trace inequality (3.12) may be found in [18], while (3.13) is a
direct consequence of (3.12).

The main result of this section is the following interpolate estimate.

Lemma 3.6. There exists C that depends on the chunkiness parameter γ such that

2

∑
j=0

hj
T‖∇

j(u−ΠTu)‖L2(T)≤Chm
T |u|Hm(T), m=2,··· ,r+1, (3.14a)

‖∇(v−ΠTv)‖L2(T)≤Ch1/2
T ‖∇v‖1/2

L2(T)

(
‖∂2

xv‖L2(T)+‖∂2
yv‖L2(T)

)1/2
. (3.14b)

More convenient but less sharp form of (3.14b) is

‖∇(v−ΠTv)‖L2(T)≤Ch1/2
T ‖∇v‖1/2

L2(T)‖∇
2v‖1/2

L2(T). (3.15)

Proof. The first interpolation error estimate (3.14a) is a direct consequence of the
Sr(T)−invariance of the interpolation operator proved in Lemma 3.4.

The second interpolation estimate (3.14b) is much more involved, which is crucial for
deriving the uniform error estimate. The proof here essentially follows that in [22, Lemma
4.1] with a minor modification.

Using a standard scaling argument, we obtain

‖∇(v−ΠTv)‖L2(T)≤C‖∇̂(v̂−Π̂K v̂)‖L2(K)

≤C
(
‖∇̂v̂‖L2(K)+‖ v̂‖L∞(K)+‖∇̂v̂‖L2(∂K)

)
.

The left-hand side is invariant if we replace v by v−c for any constant c. Therefore, we
may rewrite the above inequality into

‖∇̂(v̂−Π̂K v̂)‖L2(K)≤C
(
‖∇̂v̂‖L2(K)+‖ v̂−c‖L∞(K)+‖∇̂v̂‖L2(∂K)

)
.
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By Sobolev imbedding theorem W1,p(K)↪→L∞(K) [1] for any p>2, we obtain that for any
2< p<4, there holds

‖ v̂−c‖L∞(K)≤C
(
‖ v̂−c‖Lp(K)+‖∇̂v̂‖Lp(K)

)
≤C‖∇̂v̂‖Lp(K),

where we have used the Poincaré inequality over K in the last step.
Next, by interpolation inequality and the Sobolev imbedding inequality H1(K) ↪→

Lq(K) with q=2p/(4−p), there holds

‖∇̂v̂‖Lp(K)≤‖∇̂v̂‖1/2
L2(K)‖∇̂v̂‖1/2

Lq(K)≤C‖∇̂v̂‖1/2
L2(K)‖∇̂v̂‖1/2

H1(K).

Combining the above three inequalities and using the multiplicative trace inequal-
ity (3.12) to bound ‖∇̂v̂‖L2(∂K), we obtain

‖∇̂(v̂−Π̂K v̂)‖L2(K)≤C‖∇̂v̂‖1/2
L2(K)‖∇̂v̂‖1/2

H1(K).

Note Π̂ is affine-invariant for the bilinear element space Q1(K), then we have

‖∇̂(v̂−Π̂K v̂)‖L2(K)≤C inf
q∈Q1(K)

‖∇̂(v̂−q)‖1/2
L2(K)‖∇̂(v̂−q)‖1/2

H1(K).

We take q as the Galerkin projection of v̂ in the sense that q∈Q1(K) satisfying∫
K
∇̂(v̂−q)∇̂ŵ=0 for all ŵ∈Q1(K).

By error estimate for the Galerkin projection [7], we have

‖∇̂(v̂−q)‖L2(K)≤‖∇̂v̂‖L2(K),

‖∇̂(v̂−q)‖H1(K)≤C
(
‖ ∂̂2

x̂ v̂‖L2(K)+‖ ∂̂2
ŷ v̂‖L2(K)

)
.

Combining the above three estimates, we obtain

‖∇̂(v̂−Π̂K v̂)‖L2(K)≤C‖∇̂v̂‖1/2
L2(K)

(
‖ ∂̂2

x̂ v̂‖L2(K)+‖ ∂̂2
ŷ v̂‖L2(K)

)1/2
.

A standard scaling argument yields (3.14b).

A direct consequence of Lemma 3.6 is the following approximation results with re-
spect to the energy norm.

Lemma 3.7. There exists C that depends on the chunkiness parameter γ such that

inf
v∈V0

h

|||u−v|||ι,h≤Chr−1(h|u|Hr+1+ ι|u|Hr+2), (3.16a)

inf
v∈V0

h

|||u−v|||ι,h≤Ch1/2‖ f ‖L2 . (3.16b)
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Proof. Let v=Πhu= (Πhu1,Πhu2) with (Πh)T =ΠT. The interpolation estimate (3.16a)
follows from (3.14a).

Using (3.15), we obtain

‖∇(u−Πhu)‖L2≤‖∇(I−Πh)(u−u0)‖L2+‖∇(u0−Πhu0)‖L2

≤Ch1/2‖∇(u−u0)‖1/2
L2 ‖∇2(u−u0)‖1/2

L2 +Ch‖∇2u0‖L2 .

Substituting (2.4b) and (3.16b) into the above inequality, we obtain

‖∇(u−Πhu)‖L2≤Ch1/2‖ f ‖L2 . (3.17)

Using (3.14a) with j=m=2, we have

‖∇2(u−Πhu)‖L2≤C‖∇2u‖L2 .

Using (3.14a) with j=2 and m=3, we have

‖∇2(u−Πhu)‖L2≤Ch‖∇3u‖L2 .

Interpolating between the above two inequalities, we obtain

‖∇2(u−Πhu)‖L2≤Ch1/2‖∇2u‖1/2
L2 ‖∇3u‖1/2

L2 .

Using the regularity estimate (2.6), we obtain

ι‖∇2(u−Πhu)‖L2≤Ch1/2‖ f ‖L2 ,

which together with (3.17) implies (3.16b).

The following coercivity inequality with respect to the energy norm is crucial for well-
posedness and the error estimate of the proposed method. The proof is adapted from [22,
Theorem 2.1].

Lemma 3.8. There holds

ah(v,v)≥ (2−
√

2)µ|||v|||2ι,h for all v∈V0
h . (3.18)

Proof. For any v∈V0
h ,

ah(v,v)≥2µ
(
‖ε(v)‖2

L2+ ι2‖∇hε(v)‖2
L2

)
.

For any v∈V0
h ⊂ [H1

0(Ω)]2, we have the first Korn’s inequality

2‖ε(v)‖2
L2≥‖∇v‖2

L2 .
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A direct calculation gives

|∇ε(v)|2=
∣∣∣∣ ∂2v1

∂x2
1

∣∣∣∣2+∣∣∣∣ ∂2v1

∂x1∂x2

∣∣∣∣2+∣∣∣∣ ∂2v2

∂x1∂x2

∣∣∣∣2+∣∣∣∣ ∂2v2

∂x2
2

∣∣∣∣2
+

1
2

∣∣∣∣ ∂2v1

∂x1∂x2
+

∂2v2

∂x2
1

∣∣∣∣2+ 1
2

∣∣∣∣ ∂2v2

∂x1∂x2
+

∂2v1

∂x2
2

∣∣∣∣2 . (3.19)

By

a2+
1
2
(a+b)2≥

(
1− 1√

2

)
(a2+b2), a,b∈R.

We conclude that∣∣∣∣ ∂2v1

∂x1∂x2

∣∣∣∣2+ 1
2

∣∣∣∣ ∂2v1

∂x1∂x2
+

∂2v2

∂x2
1

∣∣∣∣2≥(1− 1√
2

)(∣∣∣∣ ∂2v1

∂x1∂x2

∣∣∣∣2+∣∣∣∣ ∂2v2

∂x2
1

∣∣∣∣2
)

,

∣∣∣∣ ∂2v2

∂x1∂x2

∣∣∣∣2+ 1
2

∣∣∣∣ ∂2v2

∂x1∂x2
+

∂2v1

∂x2
2

∣∣∣∣2≥(1− 1√
2

)(∣∣∣∣ ∂2v2

∂x1∂x2

∣∣∣∣2+∣∣∣∣ ∂2v1

∂x2
2

∣∣∣∣2
)

.

Combining the above inequalities, we obtain

|∇ε(v)|2≥ (1−1/
√

2)|∇2v|2, (3.20)

which immediately implies

‖∇hε(v)‖2
L2≥ (1−1/

√
2)‖∇2

hv‖2
L2 .

Combining the above inequalities, we obtain (3.18).

We are ready to prove the error estimate of the proposed elements.

Theorem 3.1. There exists C such that

|||u−uh|||ι,h≤Chr−1(h|u|Hr+1+ ι|u|Hr+2), r≥2, (3.21a)

|||u−uh|||ι,h≤Ch1/2‖ f ‖L2 . (3.21b)

Proof. By the theorem of Berger, Scott and Strang [5], we have, there exists C depends on
λ and µ such that

|||u−uh|||ι,h≤C

 inf
v∈V0

h

|||u−v|||ι,h+ sup
w∈V0

h

Eh(u,w)

|||w|||ι,h

, (3.22)

where Eh(u,w)= ah(u,w)−〈 f ,w〉.
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By [21, Theorem 4], we rewrite the consistency functional Eh as

Eh(u,w)= ∑
e∈Eh

∫
e
ninjτijk[[∂nwk]]dt,

where τijk = ι2σjk,i with stress σ=Cε(u). For any w∈V0
h , we have, for any e∈Eh,∫

e
[[∂nwk]]dt=0.

We may rewrite Eh as

Eh(u,w)= ∑
e∈Eh

∫
e
ninj

(
τijk−ΠTτijk

)
[[∂nwk]]dt.

Using (3.16a) and the trace inequality (3.13), we obtain

|Eh(u,w)|≤Chr−1ι2|u|Hr+2‖∇2
hw‖L2≤Chr−1ι|u|Hr+2 |||w|||ι,h.

Substituting the above inequality, the interpolation estimates (3.16a) into the right-hand
side of (3.22), we obtain the desired error estimate (3.21a).

Next, by the trace inequality (3.13) and using the regularity estimate (2.6), we obtain

|Eh(u,w)|≤Ch1/2ι2‖∇2u‖1/2
L2 ‖∇2u‖1/2

H1 ‖∇2
hw‖L2≤Ch1/2‖ f ‖L2 |||w|||ι,h.

Substituting the above inequality, the interpolation estimates (3.16b) into the right-hand
side of (3.22), we obtain the desired error estimate (3.21b).

4 Numerical examples

In this part, we test the performance of the proposed elements with r = 2,3 to resolve
solutions with/without boundary layer. We also test the extended rectangular Morley
element in [29] for comparison, which is continuous and contains 12 local degrees of
freedom. We report the relative errors |||u−uh|||ι,h/|||u|||ι,h and the rates of convergence
on the uniform rectangular mesh with different mesh aspect ratio. In all the tests, we let
Ω=[0,1]2 and λ=µ=1.

4.1 First example

Let u=(u1,u2) with

u1=
1
4
(cos2πx−1)(cos4πy−1), u2=

1
4
(cos4πx−1)(cos2πy−1).

It is clear that u is smooth and there is no boundary layer. The force f is computed
by (2.1). We report the relative errors |||u−uh|||ι,h/|||u|||ι,h and rates of convergence in
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Table 1: Results of the 1st example with h=hx =hy.

ι\h 1/4 1/8 1/16 1/32 1/64
Element with r=2

1e+0 7.39e-01 3.01e-01 1.52e-01 7.61e-02 3.81e-02
rate 1.30 0.99 0.99 1.00
1e-2 3.28e-01 7.16e-02 2.28e-02 9.56e-03 4.53e-03
rate 2.19 1.65 1.26 1.08
1e-4 3.05e-01 6.01e-02 1.39e-02 3.40e-03 8.44e-04
rate 2.35 2.11 2.04 2.01
1e-6 3.06e-01 6.01e-02 1.39e-02 3.39e-03 8.49e-04
rate 2.35 2.11 2.04 2.01

Element with r=3
1e+0 1.10e-01 1.09e-01 2.56e-02 5.62e-03 1.28e-03
rate 0.02 2.09 2.19 2.13
1e-2 3.15e-02 2.31e-02 3.67e-03 6.97e-04 1.52e-04
rate 0.45 2.65 2.40 2.20
1e-4 2.87e-02 1.85e-02 1.91e-03 2.01e-04 2.25e-05
rate 0.63 3.27 3.25 3.16
1e-6 2.87e-02 1.85e-02 1.91e-03 2.00e-04 2.24e-05
rate 0.63 3.27 3.25 3.16

Extended Rectangular Morley Element [29]
1e+0 6.36e-01 2.66e-01 1.34e-01 6.74e-02 3.38e-02
rate 1.26 0.98 1.00 1.00
1e-2 2.51e-01 5.85e-02 2.01e-02 8.47e-03 4.02e-03
rate 2.10 1.54 1.25 1.08
1e-4 2.34e-01 4.75e-02 1.22e-02 3.08e-3 7.72e-04
rate 2.30 1.96 1.99 1.99
1e-6 2.34e-01 4.75e-02 1.22e-02 3.08e-03 7.71-04
rate 2.30 1.96 1.99 2.00

Table 1 for uniform mesh with hx = hy and the same quantities are shown in Table 2 for
mesh with hx =2hy.

In view of the above results, for r= 2,3, we observe (r−1)-order convergence when
ι=1 and r-order convergence when ι approaches zero for the proposed element, which is
consistent with Theorem 3.1. Compared with the extended rectangular Morley element,
our element with r=2 already can ensure same order convergence with the same number
of degrees of freedom.

4.2 Second example

In this part, we test the proposed elements with degree r=2 and r=3 to resolve a solution
with strong boundary layer effect. We also list the results for the extended high order
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Table 2: Results of the 1st example with h=hx =2hy.

ι\h 1/4 1/8 1/16 1/32 1/64
Element with r=2

1e+0 6.80e-01 2.69e-01 1.35e-01 6.75e-02 3.37e-02
rate 1.34 1.00 1.00 1.00
1e-2 3.89e-01 6.79e-02 2.04e-02 8.47e-03 4.01e-03
rate 2.52 1.73 1.27 1.08
1e-4 3.37e-01 5.56e-02 1.22e-02 2.92e-03 7.24e-04
rate 2.60 2.19 2.06 2.01
1e-6 3.37e-01 5.56e-02 1.22e-02 2.92e-03 7.23e-04
rate 2.60 2.19 2.06 2.01

Element with r=3
1e+0 1.51e-01 7.39e-02 1.64e-02 3.79e-03 9.07e-04
rate 1.03 2.17 2.11 2.06
1e-2 4.37e-02 1.30e-02 2.31e-03 4.71e-04 1.08e-04
rate 1.75 2.49 2.29 2.13
1e-4 3.89e-02 8.87e-03 1.04e-03 1.25e-04 1.53e-05
rate 2.13 3.09 3.06 3.02
1e-6 3.89e-02 8.87e-03 1.04e-03 1.25e-04 1.53e-05
rate 2.13 3.09 3.07 3.03

Extended Rectangular Morley Element [29]
1e+0 6.12e-01 2.53e-01 1.28e-01 6.43e-02 3.22e-02
rate 1.27 0.98 1.00 1.00
1e-2 2.85e-01 5.80e-02 1.91e-02 8.04e-03 3.83e-03
rate 2.29 1.60 1.25 1.07
1e-4 2.57e-01 4.51e-02 1.10e-02 2.77e-03 6.93e-04
rate 2.51 2.03 2.00 2.00
1e-6 2.57e-01 4.51e-02 1.10e-02 2.77e-03 6.92e-04
rate 2.51 2.03 2.00 2.00

rectangular Morley element for comparison. The solution u=(u1,u2) is given by

u1=

(
exp(sinπx)−1−πι

1+exp(−1/ι)−exp[(x−1)/ι]−exp(−x/ι)

1−exp(−1/ι)

)
×
(

exp(sinπy)−1−πι
1+exp(−1/ι)−exp[(x−1)/ι]−exp(−x/ι)

1−exp(−1/ι)

)
,

u2=

(
sinπx−πι

1+exp(−1/ι)−exp[(x−1)/ι]−exp(−x/ι)

1−exp(−1/ι)

)
×
(

sinπx−πι
1+exp(−1/ι)−exp[(x−1)/ι]−exp(−x/ι)

1−exp(−1/ι)

)
.

We plot ∂u1/∂x with ι=1e−6 in the left sub-figure of Fig. 1, which shows that ∇u has a
layer. The cross section with y=1/2 of ∂u1/∂x is drawn in the right sub-figure.

The force f is also computed by (2.1). For the solution with boundary layer effect,
the results of relative errors |||u−uh|||ι,h/|||u|||ι,h and the rates of convergence on mesh
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Figure 1: Plot of ∂u1/∂x with ι= 1e−6 in Ω, Left: plot over Ω= [0,1]2; Right: plot over the cross section
[0,1]×{1/2}.

with hx = hy are shown in Table 3 and on mesh with hx = 2hy are shown in Table 4. It
follows from these tables that the rate of convergence for the proposed element with
r=2,3 changes from r−1 to 1/2 as ι→0. The same scenario is observed for the extended
rectangular Morley element.

Appendix

A Element with r=2

We list the basis functions for the elements with r = 2,3, which are constructed by the
method described in Section 3. Denote by {(xi,yi)}4

i=1 the coordinates for the vertices of
K from lower left to the upper left in a counterclockwise way.

In this part, we describe the element with r=2. The element (K,PK,ΣK) is defined as
follows.

1. PK :=S2(K)+span
{

bKbei |, i=1,··· ,4
}

. Here

S2(K)=span{1,x,y,x2,xy,y2,x2y,xy2}.

2. For all v∈PK, the set of degrees of freedom

ΣK :=
{

v(ai),
∫

ei

vds,
∫

ei

∂v
∂n

ds
∣∣∣ i=1,··· ,4

}
.

Let {ψi}12
i=1 be the basis functions of PK: The first four basis functions associated with

four vertices are

ψi =
1
8
(1+xix)(1+yiy)(3xix+3yiy−4)− 3

2
(ψ9+ψ10−ψ11−ψ12), i=1,··· ,4.
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Table 3: Results of the 2nd example with h=hx =hy.

ι\h 1/4 1/8 1/16 1/32 1/64
Element with r=2

1e+0 2.99e-01 1.41e-01 7.03e-02 3.52e-02 1.76e-02
rate 1.08 1.01 1.00 1.00
1e-2 2.06e-01 1.30e-01 8.33e-02 5.19e-02 2.91e-02
rate 0.67 0.64 0.68 0.83
1e-4 2.40e-01 1.64e-01 1.15e-01 8.13e-02 5.73e-02
rate 0.55 0.51 0.50 0.51
1e-6 2.40e-01 1.64e-01 1.15e-01 8.13e-02 5.74e-02
rate 0.55 0.51 0.50 0.50

Element with r=3
1e+0 1.91e-01 5.34e-02 1.15e-02 2.47e-03 5.58e-04
rate 1.84 2.21 2.22 2.14
1e-2 1.29e-01 7.49e-02 3.81e-02 1.57e-02 5.00e-03
rate 0.78 0.98 1.28 1.65
1e-4 1.77e-01 1.24e-01 8.70e-02 6.13e-02 4.31e-02
rate 0.52 0.51 0.50 0.51
1e-6 1.77e-01 1.24e-01 8.69e-02 6.13e-02 4.33e-02
rate 0.52 0.51 0.50 0.50

Extended Rectangular Morley Element [29]
1e+0 2.48e-01 1.23e-01 6.14e-02 3.07e-02 1.54e-02
rate 1.01 1.00 1.00 1.00
1e-2 1.83e-01 1.14e-01 7.10e-02 4.39e-02 2.48e-02
rate 0.68 0.69 0.69 0.82
1e-4 2.20e-01 1.54e-01 1.08e-01 7.63e-02 5.38e-02
rate 0.52 0.51 0.50 0.51
1e-6 2.20e-01 1.54e-01 1.08e-01 7.63e-02 5.39e-02
rate 0.52 0.51 0.50 0.50

Four basis functions associated with {
∫

ei−4
v}8

i=5 are

ψi =
3
8
(1−x2)(1+yi−4y)+

1
2

yi−4(ψ9+ψ11)+
3
2
(ψ10−ψ12), i=5,7,

ψi =
3
8
(1−y2)(1+xi−4x)+

3
2
(ψ9−ψ11)−

1
2

xi−4(ψ10+ψ12), i=6,8.

The last four basis functions are

ψ9=−30bKbe1 , ψ10=−30bKbe2 , ψ11=30bKbe3 , ψ12=30bKbe4 .

B Element with r=3

The element (K,PK,ΣK) is defined as follows
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Table 4: Results of the 2nd example with h=hx =2hy.

ι\h 1/4 1/8 1/16 1/32 1/64
Element with r=2

1e+0 3.08e-01 1.53e-01 7.64e-02 3.82e-02 1.91e-02
rate 1.01 1.00 1.00 1.00
1e-2 2.04e-01 1.32e-01 8.91e-02 5.47e-02 2.99e-02
rate 0.62 0.57 0.70 0.87
1e-4 2.29e-01 1.54e-01 1.08e-01 7.62e-02 5.33e-02
rate 0.57 0.51 0.51 0.52
1e-6 2.29e-01 1.54e-01 1.08e-01 7.62e-02 5.38e-02
rate 0.57 0.51 0.50 0.50

Element with r=3
1e+0 1.28e-01 2.94e-02 6.28e-03 1.41e-03 3.33e-04
rate 2.21 2.22 2.16 2.08
1e-2 1.18e-01 7.07e-02 3.66e-02 1.50e-02 4.75e-03
rate 0.74 0.95 1.29 1.66
1e-4 1.63e-01 1.14e-01 8.01e-02 5.65e-02 3.93e-02
rate 0.51 0.51 0.50 0.52
1e-6 1.63e-01 1.14e-01 8.01e-02 5.65e-02 3.99e-02
rate 0.51 0.51 0.50 0.50

Extended Rectangular Morley Element [29]
1e+0 2.71e-01 1.37e-01 6.87e-02 3.44e-02 1.72e-02
rate 0.99 0.99 1.00 1.00
1e-2 1.63e-01 1.04e-01 7.08e-02 4.62e-02 2.62e-02
rate 0.65 0.55 0.62 0.82
1e-4 1.977e-01 1.37e-01 9.62e-02 6.79e-02 4.74e-02
rate 0.53 0.51 0.50 0.52
1e-6 1.98e-01 1.37e-01 9.62e-02 6.79e-02 4.80e-02
rate 0.53 0.51 0.50 0.50

1. PK :=S3(K)+bK ∑4
i=1 bei Λei . Here Λei are shown in (3.6) and

S3(K)=span{1,x,y,x2,xy,y2,x3,x2y,xy2,y3,x3y,xy3}.

2. For all v∈PK, the set of degrees of freedom

ΣK :=
{

v(ai),
∫

ei

vds,
∫

ei

∂v
∂n

ds
∣∣∣i=1,··· ,4

}
∪
{∫

ei

P(2,2)
1 (x)vds,

∫
ei

P(2,2)
1 (x)

∂v
∂n

ds
∣∣∣i=1,3

}
∪
{∫

ei

P(2,2)
1 (y)vds,

∫
ei

P(2,2)
1 (y)

∂v
∂n

ds
∣∣∣i=2,4

}
.
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Let {ψi}20
i=1 be the basis functions of PK: The first four basis functions associated with four

vertices are

ψi =
1
8
(1+xix)(1+yiy)(5x2+5y2−2xix−2yiy−4)

−xi(ψi mod 4+13+4ψ(i+2) mod 4+13)+yi(4ψi+12+ψ(i+1) mod 4+13)

+4(ψi+16−ψ(i+2) mod 4+17)−(ψi mod 4+17−ψ(i+1) mod 4+17), i=1,··· ,4.

Four basis functions associated with {
∫

ei−4
v}8

i=5 are: for i=5,7,

ψi =
3
8
(1−x2)(1+yi−4y)+

1
2

yi−4(ψ13+ψ15)+
3
2
(ψ14−ψ16)+

3
2

yi−4(ψ18−ψ20),

and for i=6,8,

ψi =
3
8
(1−y2)(1+xi−4x)+

3
2
(ψ13−ψ15)−

1
2

xi−4(ψ14+ψ16)+
3
2

xi−4(ψ17−ψ19).

Four basis functions associated with {
∫

ei−8
P(2,2)

1 v}12
i=9 are

ψi =
5
8

x(1−x2)(1+yi−8y)+
5
2
(ψ14+ψ16)+

1
2

yi−8(ψ17+ψ19)

+
5
2

yi−8(ψ18+ψ20), i=9,11,

ψi =
5
8

y(1−y2)(1+xi−8x)− 5
2
(ψ13+ψ15)−

5
2

xi−8(ψ17+ψ19)

− 1
2

xi−8(ψ18+ψ20), i=10,12.

Four basis functions associated with {
∫

e−12i ∂v/∂n}16
i=13 are

ψ13=15bKbe1 P(2,1)
1 (y), ψ14=−15bKbe2 P(1,2)

1 (x),

ψ15=15bKbe2 P(1,2)
1 (y), ψ16=−15bKbe1 P(2,1)

1 (x).

Four basis functions associated with {
∫

ei−16
P(2,2)

1 ∂v/∂n}20
i=17 are

ψ17=−
70
3

bKbe1 P(2,2)
1 (x), ψ18=−

70
3

bKbe2 P(2,2)
1 (y),

ψ19=
70
3

bKbe3 P(2,2)
1 (x), ψ20=

70
3

bKbe4 P(2,2)
1 (y).
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