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Abstract

We present an overview of the recent development on numerical methods for elliptic problems with multiscale coeffi-
cients. We carry out a thorough study of two representative techniques: the heterogeneous multiscale method (HMM) and
the multiscale finite element method (MsFEM). For problems with scale separation (but without specific assumptions on
the particular form of the coefficients), analytical and numerical results show that HMM gives comparable accuracy as
MsFEM, with much less cost. For problems without scale separation, our numerical results suggest that HMM performs
at least as well as MsFEM, in terms of accuracy and cost, even though in this case both methods may fail to converge.
Since the cost of MsFEM is comparable to that of solving the full fine scale problem, one might expect that it does not
need scale separation and still retains some accuracy. We show that this is not the case. Specifically, we give an example
showing that if there exists an intermediate scale comparable to H, the size of the macroscale mesh, then MsFEM commits
a finite error even with overlapping.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years the numerical computation of multiscale problems have emerged as an area of great prom-
ise. Among the most discussed examples is the elliptic problem with multiscale coefficients:
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�div aeðxÞrueðxÞð Þ ¼ f ðxÞ in D;

ueðxÞ ¼ gðxÞ on oD;

�
ð1:1Þ
where e � 1 is a parameter that represents the ratio of the smallest and largest scales in the problem. This
problem has attracted a great deal of attention because of its simplicity, its relevance to several important
practical problems such as flow in porous media and mechanical properties of composite materials, and the
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extensive analytical work that has been done on it. Several different but related numerical techniques have
been proposed, including wavelet homogenization techniques [17], multigrid numerical homogenization tech-
niques [27,28,38,39], solving analytical or effective homogenized equations [10,16,15,41], finite element meth-
ods with multiscale test and trial functions [4,6], the multiscale finite element method (MsFEM) [31,32,24],
finite element method based on the Residual-Free Bubble method (or the variational multiscale method, Dis-
continuous enrichment method) [12,33,29,43,26], and the heterogeneous multiscale method (HMM) [19–22].
The purpose of the present paper is to give an overview of these methodologies as well as a thorough study
of two representative techniques: MsFEM and HMM.

Before we discuss the more recent techniques, let us say a few words about some classical multiscale tech-
niques that have been very successful for elliptic problems, e.g., the multi-grid method [11,2] and the fast
multipole method [30]. Multi-grid method achieves optimal efficiency by relaxing the errors at different
scales on different grids. It gives an accurate approximation to the detailed solutions of the fine scale prob-
lem (1.1). In contrast, with the exception of MsFEM, the more recent activities center around designing
multiscale methods with sublinear complexity [21], i.e., the computational cost scales sublinearly with the
cost of solving the fine scale problem as e ! 0. It is important to realize that our perspective has to be mod-
ified somewhat for this purpose. First, we have to ask for less about the details of the solutions, since in
many cases this would require us to solve the full fine scale problem and this already defeats our purpose.
Secondly, we have to explore special features of the problem, such as self-similarity, periodicity and scale
separation. This means that the method cannot be fully general but rather relies on special assumptions
on the coefficients. Indeed if ae does not have any special features, (1.1) is just as hard as a general elliptic
problem:
�divðaðxÞruðxÞÞ ¼ f ðxÞ in D;

uðxÞ ¼ gðxÞ on oD;

�

and we cannot hope for a method with sublinear cost. On the other hand, it is undesirable for the numerical
methods to have a too small range of applicability. Therefore a balance has to be reached between specificity
and generality. One common feature found in many practical problems is separation of scales. Indeed it has
been the designing principle of many modern multiscale methods such as HMM to be able to take full advan-
tage of the possible scale separation in the problem, while in the absence of scale separation, the method is
similar to the fine scale solvers. We must emphasize that scale separation does not mean the coefficient ae takes
the form ae(x) = a(x/e) with a(Æ) a periodic function and e a small parameter. Though this is indeed an impor-
tant case. There are some other cases of scale separation, for example, the coefficient ae is a locally stationary
random fields.

One exception is MsFEM. For problems of the type (1.1), MsFEM incurs a cost that is comparable to that
of a fine scale solver, even for problems with scale separation. For this reason, one might expect that MsFEM
might still retain some accuracy even for problems without scale separation, as in the case of fine scale solvers.
We will show that this is not the case. Specifically, we will give explicit examples showing that MsFEM con-
verges to the wrong solution if there is an intermediate scale which is comparable to the size of the macroscale
mesh.

There are many important problems without separation of scales. In the absence of a better understanding
at the present time the options for such problems seem to be either the full fine scale solvers or resorting to ad
hoc procedures such as turbulence models. Other special features have to be identified in order to construct
sublinear algorithms that do not resort to uncontrolled approximations.

This paper is organized as follows. In the following section, we will give an overview of the different mul-
tiscale methods. Sections 3 and 4 are devoted to a thorough study of HMM and MsFEM. We pick these two
methods since they represent two somewhat opposite philosophies. Section 3 is devoted to problems with scale
separation. This is the case when both methods have been thoroughly analyzed. Here, we compare the cost
and accuracy of HMM and MsFEM for several classes of problems. We will show that MsFEM incurs an
Oð1Þ error if the specific details of the fine scale properties are not explicitly used. In Section 4, we consider
problems without scale separation. In this case both methods may fail to converge but we show that in terms
of numbers, the quality of the HMM result is at least comparable to that of MsFEM. Finally, we draw some
conclusions in Section 5.
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2. An overview of multiscale methods

To present the methods, we consider the typical multiscale problem
�divðaeðxÞrueðxÞÞ ¼ f ðxÞ in D;

ueðxÞ ¼ 0 on oD;

�
ð2:1Þ
where aeðxÞ ¼ ðaeijðxÞÞ is assumed to be a symmetric matrix satisfying
kjnj2 6
X2
i;j¼1

aeijninj 6 Kjnj2 8n 2 R2;
with 0<k 6 K.
We will use standard notations for Sobolev spaces Wk,p(D) [1] for k > 0 and p > 1, which are denoted by

Hk(D), while p = 2.

2.1. General methodologies

2.1.1. Generalized finite element method

Generalized finite element method [7,6] is a finite element method on a macroscopic mesh with modified
basis functions that are obtained by solving (1.1) with f = 0 and nodal boundary conditions. This method
is a perfect strategy for one dimensional problems. It was extended to high dimensions in [31]. Other methods
for modifying the basis functions are found in [12,33].

2.1.2. Wavelet homogenization

The main idea is to numerically derive effective operators at the macroscale by successively eliminating the
small scales. The most natural framework for carrying this out is to represent the numerical solutions in wave-
let basis [17]. Even though after eliminating the smaller scales, the effective operator becomes dense, Engquist
and Runborg [25] have shown that they can be very well approximated by sparse operators.

2.1.3. Model refinement

One of the most important issues in solving problems of the type (1.1) is to recover the details of $ue since
they contain information of great practical interest, such as the stress distribution in a composite material or
velocity field in a porous medium. Oden and Vemaganti [41] proposed the idea of local model refinement for
this purpose. After the homogenized equation is solved, the original fine scale problem is solved locally around
places where derivative information is required, with the homogenized solution as the Dirichlet boundary con-
dition. Denote by X the domain in which the microscale information of ue is needed. Consider the following
auxiliary problem:
�divðaeðxÞrueðxÞÞ ¼ f ðxÞ; x 2 Xg;

ueðxÞ ¼ UH ðxÞ; x 2 oXg;

�
ð2:2Þ
where Xg satisfies X � Xg � D and dist(oX,oXg) = g. We then have
1

jXj

Z
X
jrðue � ueÞj2 dx

� �1=2

6
C
g

kU 0 � UHkL1ðXgÞ þ kue � U 0kL1ðXgÞ

� �
. ð2:3Þ
Here UH and U0 are, respectively, the numerical and analytical solutions to the homogenized problem.

2.1.4. Heterogeneous multiscale method

There are two main components in the heterogeneous multiscale method: An overall macroscopic
scheme for the macro-scale variables on a macroscale grid and estimating the missing macroscopic data
from the microscopic model. For (1.1), the macroscopic solver can be chosen simply as the standard piece-
wise linear finite element method over a macroscopic triangulation TH of mesh size H. The data that need
to be estimated is the stiffness matrix. This is equivalent to evaluating the effective quadratic form A(V,V)
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for V 2 XH, where XH is the macroscopic finite element space. If we had an explicit expression for A(V,V),
such as
AðV ; V Þ ¼
Z
D

X2
i;j¼1

AijðxÞ
oV
oxi

oV
oxj

dx; ð2:4Þ
we can then evaluate the integral by numerical quadrature. In the absence of an explicit representation such as
(2.4), we need to estimate the value of the integrand in (2.4) at quadrature points. This is done as follows.

Let xK be the barycenter of the element K 2 TH , and left Id = xK + dI, where I = [0,1]2 (see the let one in
Fig. 2). d is chosen such that ae restricted to Id gives an accurate enough representation of the local variations
of ae. For V2XH, let RðV Þ be the solution of
divðaeðxÞrRðV ÞÞ ¼ 0; x 2 Id; ð2:5Þ

with RðV Þ ¼ V on the boundary.

We then approximate the integrand of (2.4) at xK by
X2
i;j¼1

AijðxKÞ
oV
oxi

oV
oxj

� 1

jIdj

Z
Id

X2
i;j¼1

aeijðxÞ
o

oxi
RðV Þ o

oxj
RðV Þdx. ð2:6Þ
The approximating bilinear form AH is defined as
AH ðV ;W Þ :¼
X
K2TH

jKj
jIdj

Z
Id

X2
i;j¼1

aeijðxÞ
o

oxi
RðV Þ o

oxj
RðW Þdx;
for any V, W 2 XH. The HMM solution UH 2 XH is defined by
AH ðUH ; V Þ ¼ ðf ; V Þ for all V 2 XH . ð2:7Þ

HMM can be naturally extended to higher order by using higher order finite elements as the macroscopic

solver (see [22] and also Fig. 1 for a schematic showcase for the quadratic element as a macroscale solver). In
this case, a cell problem has to be solved at each quadrature point, and the higher-order numerical quadrature
scheme has to be employed to approximate the bilinear form. HMM can also be extended to the case when the
isoparametric finite elements are exploited as the macroscopic solver.

So far the formulation of HMM is completely general. The main point, however, is that HMM offers sub-
stantially savings of cost (compared to solve the full fine scale problems) for problems with scale separation.
This is done by appropriately choosing d. If the problem happens to be locally periodic, we may choose Id to
be the local period. However, it is important to emphasize that it is not necessary for the coefficient ae(x) to
have the form a(x,x/e) in order to have such savings, so long as there is scale separation. Without scale sep-
aration or any other special features of the problem, we simply employ a fine scale solver instead of HMM.
K

Fig. 1. Illustration of HMM for solving (1.1). The dots are the quadrature points. The little squares are the microcell Id.
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In many cases, we would like to have accurate information on $ue. From UH, one can construct an
approximation ue to ue. A general strategy for constructing ue is to use the method of local corrections,
as done by Oden and Vemaganti [41] (see also (2.2) and (2.3)), we refer to [22, Theorem 1.4] for the analysis
of this strategy. For the special case of periodic homogenization problems, with d = e, one may simply define
on each element K,
ue ¼ UH þ ðRðUH Þ � UH Þp;
where (f)p means the periodic extension of f outside Id.
Even though the method is quite general, the analysis of HMM has so far only been carried out for the case

when ae(x) = a(x,x/e). We firstly discuss the case when a(x,y) is periodic in y, say with period I = [0,1]2.

Theorem 2.1 [22, Theorems 1.1 and 1.2]. Let ue,U0 and UH be the solution of (1.1), the homogenized equation
and (2.7), respectively. If a(x,y) is periodic in y with period I, then there exists a constant C such that
kU 0 � UHkH1ðDÞ 6 CðH þ m0ðe; dÞÞ. ð2:8Þ
kU 0 � UHkL2ðDÞ 6 CðH 2 þ m0ðe; dÞÞ. ð2:9Þ
kU 0 � UHkL1ðDÞ 6 CðH 2 þ m0ðe; dÞÞj lnH j ð2:10Þ
Let ue be the reconstructed microstructure as above, we have
X
K2TH

krðue � ueÞk2L2ðKÞ

 !1=2

6 C
ffiffi
e

p
þ H þ m0ðe; dÞ

� �
; ð2:11Þ
In general,
m0ðe; dÞ 6 C
e
d
þ d

� �
.

But if d ¼ Ne and N is an integer, then
m0ðe; dÞ 6 Cd.
In view of (2.9) and (2.10) and the classic estimates for ue [5,9,49]:
kue � U 0kL2ðDÞ 6 Ce; kue � U 0kL1ðDÞ 6 Ce;
an application of the triangle inequality gives
kue � UHkL2ðDÞ 6 Cðeþ H 2 þ m0ðe; dÞÞ. ð2:12Þ
kue � UHkL1ðDÞ 6 Cðeþ H 2 þ m0ðe; dÞÞj lnH j. ð2:13Þ
Many practical problems are better modelled by an ae which is a locally stationary random field. We refer to
[22] for the precise setting. In this case, we have:

Theorem 2.2 [22, Theorem 1.2]. For the case when a(x, y) is stationary random field, under the conditions of

[22, Theorem 1.1], we have
EkU 0 � UHkH1ðDÞ 6 CðH þ m0ðe; dÞÞ;
where
m0ðe; dÞ 6
CðjÞ e

d

� �j
d ¼ 3;

remains open d ¼ 2;

C e
d

� �1=2
d ¼ 1;

8><
>:
with
j ¼ 6� 12c
25� 8c

0 < c <
1

2
.
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The conditions in [22, Theorem 1.2] are mainly strong mixing, uniform ellipticity and some regularity on
a(x,y).
2.1.5. MsFEM

We discuss the over-sampling MsFEM[31,24] which reduces the effect of the boundary layers occurring at
the inter-element boundaries. MsFEM is an extension of an old idea of Babuska [7], which incorporates the
fine scale information into the basis functions by solving the original fine scale differential equations on each
element with proper boundary conditions.

For any K 2 TH with nodes fxKi g
3
i¼1, let HK denote the size of K, P1(K) the set of linear polynomials defined

in K, and fuK
i g

3
i¼1 the basis of P1(K) satisfying uK

i ðxKj Þ ¼ dij; i; j ¼ 1; 2; 3. For any K 2 TH , we denote by
S = S(K) (see Fig. 2) a macro-element which contains K and satisfies the following conditions: HS 6 C1HK

and dist(oK,oS) P d0HK for some positive constants C1, d0 independent of H.
Let MS(S) be the multiscale finite element space spanned by wS

i ; i ¼ 1; 2; 3, with wS
i 2 H 1ðSÞ being the solu-

tion of the problem
Fig. 2
compu
�div aeðxÞrwS
i

� �
¼ 0 in S; wS

i joS ¼ uS
i . ð2:14Þ
Here fuS
i g

3
i¼1 is the nodal basis of P1(S) such that uS

i ðxSj Þ ¼ dij, i,j = 1,2,3. The over-sampling multiscale finite
element base functions over K are defined by
�w
K
i ¼ cKijw

S
j jK in K
with the constants cKij is chosen that
uK
i ¼ cKiju

S
j jK in K.
The existence of the constants cKij is guaranteed because fuS
j g

3
j¼1 also forms the basis of P1(K).

Let MðKÞ ¼ spanf�wK
i g

3
i¼1 and PK : MðKÞ ! P 1ðKÞ the projection
PKw ¼ ciuK
i if w ¼ ci�w

K
i 2 MðKÞ.
Let V H be the finite element space
V H ¼ fwH j wH jK 2 MðKÞ; 8K 2 THg;
and define PH : V H ! PK2TH P 1ðKÞ through the relation PHwH jK ¼ PKwH for any K 2 TH , wH 2 V H . The
over-sampling multiscale finite element space is then defined as
V H ¼ fwH 2 V H j PHwH 2 XH � H 1
0ðDÞg.
The over-sampling MsFEM is: Find UH 2 VH such that
X
K2TH

Z
K
aeðxÞrUHrV dx ¼ ðf ; V Þ for all V 2 V H . ð2:15Þ
x
K

Iδ

K

K

S(K)

r

. Computational cell used for solving fine scale problem in HMM and MsFEM. The element K is depicted in solid line. The
tational cell Id for HMM and S(K) for MsFEM are depicted in dashed line.
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The analysis of MsFEM has only been carried out for the case when ae(x) = a(x/e) and a(y) is periodic in y,
in this case, we have

Theorem 2.3. [32,24] Let ue and UH be the solutions of (2.1) and (2.15), respectively. If a(y) is periodic with

period I, then there exists a constant C which is independent of e, d and H such that
X
K2TH

krðue � UH Þk2L2ðKÞ

 !1=2

6 C
ffiffi
e

p
þ H þ e

H

� �
; ð2:16Þ
and
kue � UHkL2ðDÞ 6 C H 2 þ e
H

� �
. ð2:17Þ
The above error bounds may be extended to the locally periodic coefficients, i.e., ae(x) = a(x,x/e) with
a( Æ ,y) is periodic in y by combining the techniques in [13] and [32,24,48]. However, the accuracy in L2 norm
may deteriorate if the algorithm is not adopted to the new feature of the coefficients.

If ae(x) = a(x/e) with a(y) is periodic, then (2.12) and (2.13) can be improved to
kue � UHkL2ðDÞ 6 C H 2 þ e
d

� �
;

kue � UHkL1ðDÞ 6 C H 2 þ e
d

� �
j lnH j.
In view of the above two estimates (2.11) and Theorem 2.3, we may conclude that the accuracy of HMM and
MsFEM is comparable in this special case since we always assume that d is commensurable withH. Moreover,
once we know the exact period of ae, we only need to solve the cell problem over Ie, in this case, the consistency
error term e/d vanishes, HMM get better results.

2.2. Special techniques for the periodic homogenization problem

Next, we discuss methods that are more specific. Such methods rely on a specific form of the coefficient
ae(x) = a(x,x/e), where the function a(x,y) is periodic in y with some period, say I.

2.2.1. Solving homogenized equations

Since there exists a very well-developed homogenization theory, one may use these theory for numerical
purposes. This is done for example in [10,4,16,15] . The leading order term in ue is obtained by solving the
homogenized equation:
�divðAðxÞrUðxÞÞ ¼ f ðxÞ in D;

UðxÞ ¼ gðxÞ on oD.

�
ð2:18Þ
To obtain finite e correction and to recover the microstructural behavior of ue, one needs to solve further
the corrector problem: find u1(x,x/e) such that
�div aeðxÞru1 x; xe
� �� �

¼ div aeðxÞrU 0ðxÞð Þ in D;

u1ðx; yÞ is periodic in y.

�

A subtle issue in this approach is the presence of boundary layers [8]:
kueðxÞ � U 0ðxÞ þ u1 x;
x

e

� �� �
kH1ðDÞ 6 C

ffiffi
e

p
.

2.2.2. Two-scale finite element methods

The main idea is to use multiscale test and trial functions of the form u(x,x/e) to probe simultaneously the
macro and microscale behavior of the solution ue. The two-scale finite element space XH is the traces of the
two-scale spaces SpðTH ;S

l
perðThÞÞ,
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XH ¼ ReSpðTH ;S
l
perðThÞÞ with ðReV ÞðxÞ ¼ V ðx; yÞjy¼x

e
.

Here the macroscopic finite element space Sp consists of piecewise polynomials of degree p over TH ; and the
finite element space over the cell eI, saySl

per, which consists of periodic piecewise polynomials of degree l over
the microscopic mesh Th. This idea has been used in the analytical work of Allaire [3], E [18] and Nguetseng
[40], among others. The work of Schwab et al. [36,44,45] develop this into a numerical tool. The following
result on the accuracy of this method is proved in [37]. Denote by ueH the two-scale finite element solution.
If H is an integer multiple of e, then
kue � ueHkH1ðDÞ 6 C1ðkÞHminðp;kÞUnðp; kÞkf kHkðDÞ þ C2ðsÞhminðl;sÞUnðl; sÞkf kHlþsðDÞ. ð2:19Þ
Here Un(p,k) 6 Cp�(k�n + 1) and Un(l,s) 6 Cl�(s�n + 1).

3. Problems with scale separation

3.1. Computational cost

To compare the cost we make the assumption that the total cost is proportional to the total degrees of the
freedom used in the algorithm. This is reasonable since we typically use multi-grid method as the fine scale
solver. Given parameters e, H and d, assuming that M points per wavelength (which is OðeÞ) are used, then
the total cost for the full fine scale solver is
COSTðfine scale solverÞ ¼ Mde�d .
Assuming that the size of the overlap in MsFEM is r, then the total cost for MsFEM is
COSTðMsFEMÞ ¼ ð1þ 3rÞdMde�d .
The ratio between the two is
COSTðfine scale solverÞ
COSTðMsFEMÞ ¼ 1

ð1þ 3r=HÞd
< 1;
i.e., MsFEM is in general more expensive than the full fine scale solver.
The cost for HMM is:
COSTðHMMÞ ¼ MdH�d d
e

� �d

.

Hence the ratio between the cost of HMM and the cost of MsFEM is
COSTðHMMÞ
COSTðMsFEMÞ ¼

d
H

� �d
1

ð1þ 3r=HÞd
.

The ratio between the cost of HMM and the cost of the direct fine scale solver is
COSTðHMMÞ
COST ðfine scale solverÞ ¼

d
H

� �d

.

As long as we can take d < H, HMM incurs a smaller cost than the full fine scale solver. As long as we can
take d < H + 3r, HMM incurs a smaller cost than MsFEM.

The parameters d and H are determined by the tolerance factor, denoted by TOL. For MsFEM, the accu-
racy cannot be better than

ffiffi
e

p
(see the error estimates in Theorem 2.3), so to make a meaningful comparison,

we have to take
TOL > O
ffiffi
e

p� �
.

HMM may incur an additional cost in order to recover locally the fine scale information. This is problem-
dependent.
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The above discussion is for general problems with scale separation. For the special case of periodic homog-
enization problems, we can take d = e for HMM, and modify MsFEM so that the solutions to the corrector
problem can be used in constructing the basis function. In this case, the cost of both methods are comparable.

Some problems require solving (1.1) repeatedly with different right-hand side. In this case the macroscale
stiffness matrix can be computed for once and used repeatedly. Both HMM and MsFEM can take advantage
of this fact.

Compared with the full fine scale solutions, both HMM and MsFEM have the advantage that they are eas-
ily parallelized. It has been suggested that MsFEM saves in memory compared with direct fine scale solvers.
This is only true if the microscale information is not required, or if it is recovered through a post-processing
step as discussed for HMM. Otherwise the complete set of basis functions in MsFEM have to be stored in
order to retrieve such information, leaving us with no savings in memory.

3.2. Numerical examples for two-scale problem

We will start with an example of the simplest two-scale problem, the periodic homogenization problem.
Table
HMM

NX

8
16
32
64
�div a x; xe
� �

rueðxÞ
� �

¼ f in D;

ueðxÞ ¼ 0 on oD;

�
ð3:1Þ
where f = 10, and the coefficients a(x,x/e) is defined as
a x;
x

e

� �
¼ 1:5þ sinð2px=eÞ

1:5þ sinð2py=eÞ þ
1:5þ sinð2py=eÞ
1:5þ cosð2px=eÞ þ sinð4x2y2Þ þ 1 ð3:2Þ
with x = (x,y).
The domain D is a unit square (0,1)2. We first triangulate D into NX · NX small squares and then divide

each square into two sub-triangles along its diagonal with positive slope. As a starting point, we test the accu-
racy of HMM, in particular, we consider the influence of microcell size over the accuracy. The results for the
relative errors
P
K2TH

kue � uek2H1ðKÞ

 !1=2

kuekH1

;
kue � UHkL2

kuekL2
and

kue � UHkL1
kuekL1
are shown in Table 1, and plotted in Fig. 3. The exact solutions ue are obtained by applying the Richardson
extrapolation to the solutions by solving the problem with linear finite element on 1024 · 1024 and
2048 · 2048 meshes.

3.2.1. Accuracy of HMM for two-scale problem

We first fix the microcell size as d = 1/32, which is not an integer multiple of e = 1/79.
Notice that the error in H1 norm is consistent with the previous theoretic result, e.g. (2.11). However, in L2

and L1 norms, the error increase at the finest mesh H = 1/64, instead of decrease as predicted by the error
bounds (2.12) and (2.13). This scenario is not yet fully understood. But it should be due to the fact that in
this case, the microcell is larger than the element, and some spurious information is sampled and polluted
1
for Problem 3.1 with coefficient (3.2), e = 1/79 and microcell size d = 1/32 is fixed

HMM

H1 error L2 error L1 error

0.41e + 0 0.17e � 1 0.19e � 1
0.27e + 0 0.12e � 1 0.13e � 1
0.73e � 1 0.64e � 2 0.71e � 2
0.34e � 1 0.87e � 2 0.19e � 1



10
–2

10
–1 10

010
–2

10
–1

10
0

H

re
la

tiv
e 

H
1

 e
rr

or

δ=1/32

ε =1/79

HMM

10
–2

10
–1

10
0

10
–3

10
–2

10
–1

H
re

la
tiv

e 
L 2

 e
rr

or

δ =1/32

ε =1/79

HMM

10
–2 10

–1
10

010
–3

10
–2

10
–1

H

re
la

tiv
e 

m
ax

im
um

 e
rr

or

δ=1/32
ε=1/79

HMM

Fig. 3. Relative error in H1, L2 and L1 norms of HMM for Problem 3.1 with coefficients (3.2), where e = 1/79.
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the HMM solution. This is hidden in the term OðdÞ, which obviously has more chance to dominant the error in
L2 and L1 norms than that in H1 norm.

Next we fix the mesh size as H = 1/32, and change the microcell size d.
The results in Tables 1, 2 and Figs. 3 and 4 fit quite well with the theoretic results. Note that the error

increase while the microcell is larger than the element.

3.2.2. Comparison of HMM and MsFEM for two-scale problem
In the following examples, we compare the convergence behavior for HMM and MsFEM. Firstly, we con-

sider the case when d is not an integer multiply of e in HMM. We include the results for d = H. The size of the
overlap for MsFEM is taken as r = e (see Fig. 2). The results can be found in Table 3 and Fig. 5.

Secondly, we turn to a special case when Id = Ie for HMM. The size of overlap for MsFEM is still r = e.
In this case, MsFEM can be modified to explicitly take into account the periodic structure of the original



Table 2
HMM for Problem 3.1 with coefficient (3.2), e = 1/79 and H = 1/32 is fixed

1/d HMM

H1 error L2 error L1 error

16 0.60e � 1 0.85e � 2 0.13e � 1
32 0.73e � 1 0.64e � 2 0.71e � 2
64 0.19e + 0 0.69e � 2 0.75e � 1
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Fig. 4. Relative error in H1, L2 and L1 norms of HMM for Problem 3.1 with coefficients (3.2), where e = 1/79 and H = 1/32 is fixed.
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problem [23] by using the solutions of the cell problem as the basis function. But we will not consider this
modification here, since it is too specifical and this case is not the main focus. The numerics are included in
Table 4 and plotted in Fig. 6. In this case, both HMM and MsFEM give quite good results in H1, L2 and
L1 norms. This is consistent with the error estimates in Theorems 2.1–2.3.



Table 3
HMM and MsFEM for Problem 3.1 with coefficient (3.2), where e = 1/60

NX MsFEM HMM

H1 error L2 error L1 error H1 error L2 error L1 error

8 0.24e + 0 0.64e � 1 0.84e � 1 0.30e + 0 0.22e � 1 0.23e � 1
16 0.12e + 0 0.24e � 1 0.36e � 1 0.12e + 0 0.78e � 2 0.90e � 2
32 0.67e � 1 0.11e � 1 0.19e � 2 0.63e � 1 0.47e � 2 0.60e � 2
64 0.40e � 1 0.83e � 2 0.15e � 2 0.36e � 1 0.39e � 2 0.52e � 2
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Next, we consider the case when the coefficient is random. Some care is required in this case. First of all, to
have a well-defined exact solution to the fine scale problem, we will take the fine scale problem to be a finite
difference analog of (1.1) on a 1024 · 1024 grid. The coefficients at the grid points are independent and have



Table 4
HMM and MsFEM for Problem (3.1) with coefficient (3.2), where e = 1/64. Ie is used as the microcell of HMM

NX MsFEM HMM

H1 error L2 error L1 error H1 error L2 error L1 error

8 0.24e + 00 0.28e � 01 0.32e � 01 0.25e + 00 0.21e � 01 0.22e � 01
16 0.13e + 00 0.13e � 01 0.15e � 01 0.13e + 00 0.79e � 02 0.85e � 02
32 0.69e � 01 0.85e � 02 0.97e � 02 0.64e � 01 0.51e � 02 0.56e � 02
64 0.42e � 01 0.68e � 02 0.78e � 02 0.35e � 01 0.42e � 02 0.46e � 02
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log-normal distribution with expectation E ¼ 0 and variance r2 = 1. Therefore, we have e = 1/1024 [14]. For
the HMM solution we choose d to be H, and r = H for MsFEM solution.

The leading order behavior in this case is determined by the solution of the homogenized equation, which
is deterministic. The microscale information comes in at the next order, which is only reflected if one looks
at the error in H1 norm. The results in Fig. 7, which are errors measured in L2 and L1 norms respectively,
suggest that both HMM and MsFEM captures the leading order behavior of the solution with reasonable
accuracy. MsFEM has better accuracy on very coarse macro-grid. HMM is more accurate upon refining the
macroscale mesh. More importantly HMM displays a consistent rate of convergence as the coarse grid is
refined.

Next we discuss the issue of extracting the microscale information. This is important for many practical
problems such as the stress distribution in a composite material and velocity field in a porous medium. From
homogenization theory we know that the microscale information depends sensitively on the full details of the
coefficients. Since in HMM the fine scale problem is only solved locally, one cannot hope to recover accurately
the details of the fine scale oscillations for each realization of the random field ae. Even though MsFEM does
make use of the complete information on ae and does incur a cost that is at least comparable to that of solving
the fine scale problem, the accuracy of MsFEM in H1 norm (more precisely the piecewise H1 norm in order to
avoid the trouble caused by the discontinuity at the edges between elements), is not much better than 10%. In
fact, to recover the fine scale oscillations accurately, one needs to solve the full fine scale problem. Therefore,
one should ask instead how the microscale information can be recovered locally, giving the leading order
behavior. This is done using the local correction procedure discussed earlier. The results for both HMM
and MsFEM are summarized in Tables 5, 6 and Fig. 8. Here, we take K an arbitrarily chosen element and
g = 1/8.

In view of these results, we see consistently that HMM is more accurate than MsFEM on finer mac-
roscale mesh, but less accurate than MsFEM on coarser macroscale mesh. This is likely due to the fact
that if the macroscale mesh is very coarse, HMM does not sample ae adequately since it only sample a
small cell.

3.3. MsFEM does not converge if the fine scale information is not explicitly used

In what follows, we will show by an explicit example that MsFEM does not converge if the small scale
information is not explicitly taken into account. Our strategy is similar to finite difference homogenization

[35,42].
Let ae(x) = ke(x)I, where ke(x) takes the values a and b as in Fig. 9, e is the size of the cell, and I is the 2 · 2

identity matrix. We may write the coefficient matrix in the form ae(x) = a(x1/e,x2/e)I with
aðy1; y2Þ ¼
b; 0 6 y1 6 1; 0 6 y2 6 y1;

a; 0 6 y1 6 1; y1 6 y2 6 1.

�
ð3:3Þ
Without using explicitly the information about the size of the microscale, one may take H = e. We will
show in this case that the �resonance error� remains finite even with oversampling as H ! 0. We will take
the size of the overlap to be d = rH with r fixed.

Lemma 3.1. Except for the elements near the boundary, the stiffness matrix A = (Aij,k‘) in MsFEM with overlap
has the structure:
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Aij;i;j ¼ b; Aij;i�1;j ¼ c; Aij;i;j�1 ¼ c;

Aij;iþ1;j ¼ c; Aij;i;jþ1 ¼ c;

Aij;i�1;jþ1 ¼ d; Aij;iþ1;j�1 ¼ d;
where b, c and d depend on r but are independent of H. Moreover,
bþ 4cþ 2d ¼ 0. ð3:4Þ
Proof. This follows from the simple observation that after some reflection and translation if necessary, every
element can be mapped by a simple scaling (x,y)! (x/H,y/H) to the standard element shown in Fig. 10. We
postpone the proof of (3.4) to Appendix A. h
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Table 5
MsFEM for Problem 3.1 with random coefficients, H1 error (1) means the results are obtained with correction, and H1 error (2) means the
results are obtained without correction

NX MsFEM

H1 error(1) H1 error(2) L2 error L1 error

8 0.28e � 1 0.22e + 0 0.16e � 1 0.17e � 1
16 0.11e � 1 0.12e + 0 0.99e � 2 0.15e � 1
32 0.86e � 2 0.81e � 1 0.97e � 2 0.19e � 1
64 0.88e � 2 0.99e � 1 0.11e � 1 0.20e � 1

Table 6
HMM for Problem 3.1 with random coefficients, H1 error (1) means the results are obtained with correction, and H1 error (2) means the
results are obtained without correction

NX HMM

H1 error(1) H1 error(2) L2 error L1 error

8 0.34e � 1 0.27 0.39e � 1 0.37e � 1
16 0.19e � 1 0.23 0.24e � 1 0.24e � 1
32 0.48e � 2 0.21 0.71e � 2 0.95e � 2
64 0.41e � 2 0.26 0.63e � 2 0.95e � 2
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Lemma 3.2. As H ! 0, the solution of MsFEM converges to the solution of
�eðrÞMU 0ðxÞ � 2f ðrÞoxyU 0ðxÞ ¼ f ðxÞ; ð3:5Þ

where e(r) = �c�d and f(r) = d.
Proof. This follows directly from Lemma 3.1 by Taylor expansion. h
Lemma 3.3. In the special case when r = 0 (no overlapping), then
b ¼ 2ðaþ bÞ; c ¼ � aþ b
2

; d ¼ 0.
Proof. This is straightforward. h
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Fig. 9. Left, pattern for e = H. Right: element stiffness matrix.
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Fig. 10. Pattern for e = H with overlap r.
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As e = H ! 0, the original problem, however, is a homogenization problem [7,46], whose homogenized
coefficient has the following property.
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Lemma 3.4. The homogenized coefficient matrix A has the following structure
A ¼
e� f �

f � e�

� �
;

where e* and f* satisfy the following relation
ðe�Þ2 � ðf �Þ2 ¼ ab. ð3:6Þ

To prove the above lemma, we first give a description for the properties of the homogenized coefficient

matrix for the elliptic problem (1.1), which is denoted by A and is given by
Aij ¼
Z 1

0

Z 1

0

akl
ovi

oxk

ovj

oxl

� �
ðxÞdx; i; j ¼ 1; 2;
where vj = xj + Nj, and Nj is periodic function that satisfies
� o

oxi
aik

oNj

oxk

� �
¼ oaij

oxi
; j ¼ 1; 2. ð3:7Þ
Since ae is diagonal, we get
Aij ¼
Z 1

0

Z 1

0

aervirvjð ÞðxÞdx. ð3:8Þ
Denote by �ae and âe the coefficients obtained by reflecting the pattern in Fig. 9 along the x1 and x2 axis,
respectively (see Fig. 11 below), �A and Â denote the corresponding effective coefficient matrix.

Lemma 3.5. If
A ¼
a b

b c

� �
;

then we have
�A ¼
a �b

�b c

� �
; Â ¼

a b

b c

� �
.

Proof. Denote by �Nj
the solutions of the cell problem (3.7) with coefficients �ae, then
�N 1ðx; yÞ ¼ N 1ðx; 1� yÞ; �N 2ðx; yÞ ¼ �N 2ðx; 1� yÞ. ð3:9Þ
In view of (3.8), we get the above expression for �A. Proceeding in the same fashion, we get the above expression
for Â. h
Fig. 11. The pattern for the coefficients �ae and âe.
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Proof for Lemma 3.4. Observe that A is symmetric since ae is symmetric, we thus assume
Fig.
A ¼
e� f �

f � ~e�

� �
.

Since �ae is symmetric with respect to the line x = y, we may conclude that
�N 1ðx; yÞ ¼ �N 2ðy; xÞ;

which implies e� ¼ ~e�. Invoking Lemma 3.5, we have A ¼ Â. Using the general duality principle in homogeni-
zation theory [47, Theorem 15.1] (see also [34]), we have
RART Â ¼ diagðab; abÞ;

where R is the rotation matrix with angle p/2 and RT is the transpose matrix, i.e.,
R ¼
0 1

�1 0

� �
.

From this we obtain (e*)2�(f*)2 = ab. h

We can check by direct computation whether (3.6) is satisfied by the solutions of MsFEM. When r = 0, we
have eð0Þ ¼ aþb

2
and f(0) = 0, hence
eð0Þ2 � f ð0Þ2 ¼ aþ b
2

� �2

6¼ ab.
In Fig. 12, we plot e*(r)2�f*(r)2 as a function of r in case of a = 10 and b = 1 hence ab = 10. We can see that
when r>0, the error e*(r)2�f*(r)2�ab is reduced but stays finite, proving that there is a finite error in the solu-
tions of MsFEM when H ! 0.

These findings are consistent with the error estimates in Theorem 2.3 suggesting that the term e/H does play
a role in the error.

To recover convergence to the correct solution within the framework of MsFEM, we need to take H � e.
However in this case as we indicated earlier, either MsFEM has to be modified to tailor to the specific periodic
structure, or efficiency has to be greatly compromised.

Remark 3.6. This example is also applicable to HMM. However, as we stated in the very first that HMM does
not work for problems without scale separation.
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4. Problems without scale separation

4.1. Problems with many scales

It has been observed that for some problems without scale separation, MsFEM does seem to give
answers with reasonable accuracy. We have experimented with a number of such examples. We found that
this is not special to MsFEM. HMM also shows the same tendency. In this case since there is no scale
separation, we choose size of the cell Id to be the same as H. Hence there is no savings compared with the
fine scale solver.

We show the result of one example with six scales. We solve (2.1) with the following coefficients.
aeðxÞ ¼ 1

6

1:1þ sinð2px=e1Þ
1:1þ sinð2py=e1Þ

þ 1:1þ sinð2py=e2Þ
1:1þ cosð2px=e2Þ

þ 1:1þ cosð2px=e3Þ
1:1þ sinð2py=e3Þ

�

þ 1:1þ sinð2py=e4Þ
1:1þ cosð2px=e4Þ

þ 1:1þ cosð2px=e5Þ
1:1þ sinð2py=e5Þ

þ sinð4x2y2Þ þ 1

�
; ð4:1Þ
where e1 = 1/5, e2 = 1/13, e3 = 1/17, e4 = 1/31 and e5 = 1/65. The right-hand side is f = 10. The coefficient at
y = 0 is plotted in Fig. 13.

The results for the relative error in H1, L2 and L1 norms are plotted in Fig. 14. As before the exact solution
is obtained by extrapolating the numerical solutions on the 1024 · 1024 and 2048 · 2048 meshes. We can see
from these results that the accuracy is substantially worse than the case with scale separation, but it is not cat-
astrophic and maybe acceptable for some practical problems.

Even though the accuracy seems to be reasonable, one has to bear in mind two facts. The first is that in this
case the cost of either HMM or MsFEM is no less than that of the fine scale solver. The second is that the
accuracy is substantially less than that of the fine scale solver. In fact the example discussed earlier in subsec-
tion 3.3 shows that in general one has to expect a finite error to remain in the limit as H ! 0. These consid-
erations remove any interest of pursuing the issue further.

Compared with the two-scale problems addressed before, the above convergence history for both methods
indicates quite pessimistic convergence rate, in particular for the results in H1 norm. The oscillation is also
significant in both methods, which might be the result of the resonance error between different scales.
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Fig. 13. The coefficient (4.1) at y = 0.
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4.2. Problems with continuous spectrum

Another often used example of problems without scale separation is the problem with random coefficients
that have an algebraically decaying energy spectrum, i.e.,
hjâðkÞj2i ’ j; kj�a
;

where ÆÆæ denotes ensemble averaging, fâðkÞg is the Fourier transform of the coefficients a(x). Problems of this
kind were used in [31] as examples without scale separation. We will demonstrate in this case that u has some
degree of regularity depending on a, hence standard finite element methods converge with certain rate. Even
though there is no scale separation in this problems, the energy content decreases as the scale decreases. Hence
there is relatively little energy at this small scale. This gives rise to the regularity of the solutions. Therefore,
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this class of problems are in fact much simpler than the one considered earlier in which the small scale and the
large scale have the comparable amount of energy.

We consider the following problem:
� d
dx aðxÞ du

dx

� �
¼ d

dx gðxÞ in ½0; 1�;
uðxÞ ¼ 0 x ¼ 0; 1.

�
ð4:2Þ
Here
aðxÞ ¼ 1þ 1

2
sin

X1
k¼1

k�aðn1k sinðkxÞ þ n2k cosðkxÞÞ
 !

ð4:3Þ
with {n1k} and {n2k} are two independent random sequences uniformly distributed in [�1/2,1/2].
This problem by itself is specific, but our discussions are quite general. The regularity of a(x) depends on the

regularity of
gðxÞ ¼
X1
k¼1

k�aðn1k sinðkxÞ þ n2k cosðkxÞÞ. ð4:4Þ
In particular for b > 0
hkgðxÞk2Hbi 6 C
X1
k¼1

k2ðb�aÞ < 1;
if b < a� 1
2
.

The exact solution satisfies
uxðxÞ ¼
gðxÞ

1þ 1
2
sinðgðxÞÞ .
Hence we expect
hkuðxÞkH1þbi < 1 if b < a� 1=2.
Consequently, the standard linear finite element method with mesh size h should have the estimate:
hkuðxÞ � uhðxÞkH1i 6 Chb; ð4:5Þ

for b arbitrarily close to a�1/2, if 0 < a � 1/2 < 1.
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We performed numerical experiments on this problem. Plotted in Figs. 15 and 16 are the convergence his-
tory of the standard piecewise linear finite element method for one realization of (4.3) and (4.4) with a = 0.8
and 1.2, respectively. We see that (4.5) is confirmed quite well.

To make a direct comparison between the different methods for this case would require tuning too many
parameters. However this result and that of [31] do suggest that at the same cost the direct fine scale solver will
perform at least as well as MsFEM, because of the regularity of the exact solution. The same is expected for
HMM.

5. Conclusions

We have reviewed a variety of numerical techniques for solving the elliptic problem with multiscale coef-
ficients. These techniques can be divided into two categories, those that are specifically designed for periodic
homogenization problems and those that are applicable for more general problems. The former includes meth-
ods that solve the homogenized and corrector equations, finite elements methods that use multiscale test and
trial functions. The latter includes HMM and MsFEM.

An important issue is how the cost of these methods compares with techniques such as multigrid for solving
the full fine scale problem. In particular, whether some special features of the problems, such as scale separa-
tion, can be exploited to save cost. Nearly all the methods reviewed do have such savings for the special prob-
lem of periodic homogenization. For more general problems, the framework of HMM still allows us to take
full advantage of any scale separation in the problem and therefore reduces the cost. This is different from
MsFEM, which in general incurs a cost that is comparable to that of solving the full fine scale problem.

Many problems in practice do not have scale separation. Care has to be exercised when treating these prob-
lems. In the absence of any other special features of the problem, there is no hope to design numerical methods
with sublinear cost compared with the fine scale solver. Therefore the task becomes identifying classes of prob-
lems with some other special features that can be made use of in order to reduce cost.
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Appendix A. Proof of (3.4)

There are only two types of triangles in the pattern of Fig. 9, i.e., we associate /i and wi the MsFEM bases
of ith vertices in triangles K1 and K2, respectively. Define
h/i;/ji ¼
Z
K1

r/ir/j dx; hwi;wji ¼
Z
K2

rwirwj dx.
Proof of 3.4. For ease of exposition, we drop the first subscript index of A. We first derive the following

explicit expression for b,c and d (See Fig. A.1).
b ¼ 2bh/2;/2i þ 2ahw3;w3i � 2bh/1;/3i � 2ahw1;w2i

and
c ¼� b
2
h/2;/2i �

a
2
hw3;w3i;

d ¼bh/1;/3i þ ahw1;w2i.
Due to the symmetry, we only consider a typical cell. Observed that
X3
i¼1

/i ¼ 1;
X3
i¼1

wi ¼ 1;
with
/1ðx1; x2Þ ¼ /3ð�x2;�x1Þ; w1ðx1; x2Þ ¼ w2ð�x2;�x1Þ. ðA:1Þ

Obviously,
b ¼ b
X3
i¼1

h/i;/ii þ a
X3
i¼1

hwi;wii.
In view of the first observation, we get
h/1;/1i þ h/3;/3i � h/2;/2i þ 2h/2;/2i ¼ h/1;/1i þ h/3;/3i � h/1 þ /3;/1 þ /3i þ 2h/2;/2i
¼ �2h/1;/3i þ 2h/2;/2i.
Similarly
X3
i¼1

hwi;wii ¼ �2hw1;w2i þ 2hw3;w3i.
A combination of the above two leads to the expression for b.
It remains to prove the expression for c. We have Ai,j+1 = bÆ/2,/3æ + aÆw1,w3æ and Ai+1,j = bÆ/1,/2æ +

aÆw2,w3æ. Due to observation (A.1), we get
h/2;/1 � /3i ¼ �h/1 þ /3;/1 � /3i ¼ h/3;/3i � h/1;/1i ¼ 0.
Fig. A.1.
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Similarly, Æw1,w3æ = Æw2,/3æ. We thus have Ai,j+1 = Ai+1,j, then
2Ai;jþ1 ¼ Ai;jþ1 þ Aiþ1;j ¼ �bh/2;/2i � ahw3;w3i.

It follows the expression for c. The expression for d is obtained by the definition. With these expressions, it
follows (3.4). h
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