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Abstract

We study a force-based hybrid method that couples atomistic model with Cauchy-
Born elasticity model. We show the proposed scheme converges to the solution
of the atomistic model with second order accuracy, as the ratio between lattice
parameter and the characteristic length scale of the deformation tends to zero.
Convergence is established for the three dimensional system without defects,
with general finite range atomistic potential and simple lattices structure. The
proof is based on consistency and stability analysis. General tools for stabil-
ity analysis are developed in the framework of pseudo-difference operators in
arbitrary dimension. c© 2000 Wiley Periodicals, Inc.

1 Introduction

Multiscale methods for mechanical deformation of materials have been inten-
sively investigated in recent years. The main spirit of these methods is to use
atomistic models for regions containing defects, and continuum models in regions
where the material is smoothly deformed. We refer to the recent review [28] for
various methods and the book [20] for general discussion of multiscale modeling.

There are two different ways of coupling atomistic and continuum models. One
is based on energy, and the other is based on force. The energy-based method de-
fines an energy that is a mixture of atomistic energy and continuum elastic energy.
The energy functional is then minimized to obtain the solution. The force-based
method works instead at the level of force balance equations. The forces derived
from atomistic and continuum models are coupled together. The force balance
equations are solved to obtain the deformed state of the system.

From a numerical analysis point of view, one of the key issues for these multi-
scale methods is the consistency and stability of the coupled schemes. Taking one
of the most successful multiscale methods, the quasicontinuum (QC) method [26,
40] for example, one of the main issues is the so called ghost force problem [37],
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which are the artificial non-zero forces that the atoms experience at their equilib-
rium states. In the language of numerical analysis, it means that the scheme lacks
consistency at the interface between atomistic and continuum regions [16]. In [29],
it was shown that the ghost forces may lead to a finite size error of the gradient of
the solution.

The stability analysis for the coupling schemes is mostly limited to one di-
mensional systems, in which a direct calculation is possible thanks to the simple
one dimensional lattice structure and the pairwise interaction potential. This is no
longer the case in two and three dimensions, and the extension is by on means easy.
New tools for stability analysis are required to understand more general multiscale
hybrid methods. This is the emphasis of the current work. We also remark that
recently Ortner and Shapeev obtained a convergence result for an energy-based
method for the two-dimensional model with pairwise interaction but allows for a
point defect [32, 36].

In this work, based on existing ideas in the literature, we formulate a force-
based hybrid scheme for general finite range potentials in three dimension. This
hybrid method is a representative of a general class of multiscale methods. Under
certain natural assumptions, we prove the solution of the proposed method con-
verges to the solution of the atomistic model with second order accuracy as the ra-
tio between lattice parameter and the characteristic length scale of the mechanical
deformation goes to zero. To the best of our knowledge, this is the first conver-
gence result for multiscale methods coupling atomistic and continuum models in
three dimension.

The convergence result is based on the analysis of consistency and linear sta-
bility, following the Strang’s trick [39]. To achieve this, we study the linearized
operator in the framework of pseudo-difference operators. We obtain the stability
estimate combining regularity estimate of pseudo-difference operators, consistency
of the linearized operator, and stability of the continuous problem. These tools may
help in understanding more general multiscale methods.

Before we formulate the method and state the main theorem in Section 1.3, we
introduce some preliminaries and notations.

1.1 Lattice function and norms
We will only consider Bravais lattices in this work (see [3] for a definition).

They take the form

L = {x ∈ Rd | x = ∑
j

n ja j, n ∈ Zd},

where {a j}d
j=1 ⊂ Rd are the basis vectors of L, and d is the dimension. The unit

cell of L, denoted as Γ, is defined by

Γ = {x ∈ Rd | x = ∑
j

c ja j, 0 ≤ c j < 1, j = 1, · · · ,d}.
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Let {b j}d
j=1 ⊂ Rd , be the reciprocal basis vectors, which satisfy a j · bk = 2πδ jk,

where δ jk is the standard Kronecker delta. The reciprocal lattice L∗ takes the form

L∗ = {x ∈ Rd | x = ∑
j

n jb j, n ∈ Zd}.

The unit cell of L∗ is denoted as Γ∗ that is defined by

Γ∗ = {x ∈ Rd | x = ∑
j

c jb j, −1/2 ≤ c j < 1/2, j = 1, · · · ,d}.

For ε = 1/n, n ∈ Z+, we will consider lattice system εL inside domain Ω =
Γ ⊂ Rd , denoted as Ωε = Ω∩ εL. Note that the lattice constant is ε , so that the
number of points in Ωε is 1/εd . We will restrict to periodic boundary conditions
in this work, general boundary conditions will be left to future publications. For a
lattice function u defined on εL, we say it is Ωε -periodic if

u(x) = u(x′), ∀x,x′ ∈ εL, x− x′ = a j for some j ∈ {1, · · · ,d}.

In particular, an Ωε -periodic function is determined by its restriction on Ωε . Func-
tions defined on Ωε can be easily extended to Ωε -periodic functions defined on
εL.

We also define the reciprocal lattice associated with Ωε . Let L∗
ε = L∗∩ (Γ∗/ε).

Define Kε a subset of Zd , which is given by

Kε = {µ ∈ Zd | ∑
j

εµ jb j ∈ Γ∗},

hence L∗
ε is given by

L∗
ε = {x ∈ Rd | x = ∑

j
µ jb j, µ ∈ Kε}.

For µ ∈ Zd , the translation operator T µ
ε is defined as

(T µ
ε u)(x) = u(x+ εµ ja j) for x ∈ Rd .

We define the forward and backward discrete gradient operators as

D+
ε,s = ε−1(T µ

ε − I) and D−
ε,s = ε−1(I −T−µ

ε ),

where s = ∑i µiai and I denotes the identity operator. It is easy to see D+
ε,−s =

−D−
ε,s.
We say α is a multi-index if α ∈Zd and α ≥ 0. Define |α|= α1 + · · ·+αd . For

a multi-index α , the difference operator Dα
ε is given by

Dα
ε =

d

∏
j=1

(D+
ε,a j

)α j .

When no confusion occurs, we will omit the subscript ε in the notations T µ
ε , D+

ε,s,
D−

ε,s and Dα
ε for simplicity.
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We will use various norms for functions defined on Ωε . For a nonnegative
integer k, we define the difference norm

‖u‖2
ε,k = ∑

0≤|α|≤k
εd ∑

x∈Ωε

|(Dα
ε u)(x)|2.

It is clear that ‖·‖ε,k is a discrete analog of Sobolev norm Hk(Ω). We denote the
corresponding spaces of lattice functions as Hk

ε (Ω) and L2
ε(Ω) when k = 0. We

also need the uniform norms on Ωε , which is given by

‖u‖L∞
ε = max

x∈Ωε
|u(x)|,

‖u‖W k,∞
ε

= ∑
0≤|α|≤k

max
x∈Ωε

|(Dα
ε u)(x)|.

In the above definitions, we have identified lattice function u with its Ωε -periodic
function defined on εL, and hence the differences are well defined. These norms
may be extended to vector-valued functions as usual.

Define the discrete Fourier transform for lattice function f as

(1.1) f̂ (ξ ) = εd(2π)−d/2 ∑
x∈Ωε

e−ıξ ·x f (x) ξ ∈ L∗
ε ,

and its inversion is

(1.2) f (x) = (2π)d/2 ∑
ξ∈L∗

ε

eıx·ξ f̂ (ξ ) x ∈ Ωε .

We will use a symbol introduced by Nirenberg in [31], which plays the same
role for the difference operators as Λ2(ξ ) = 1+Λ2

0(ξ ) = 1+ |ξ |2 for the differential
operators. For ε > 0, ξ ∈ L∗

ε , let

Λ j,ε(ξ ) =
1
ε
|eıεξ j −1|, j = 1, · · · ,d,

and

Λ2
ε(ξ ) = 1+Λ2

0,ε(ξ ) = 1+
d

∑
j=1

Λ2
j,ε(ξ ) = 1+

d

∑
j=1

4
ε2 sin2

(εξ j

2

)
.

It is not hard to check for any ξ ∈ L∗
ε , it holds

(1.3) cΛ2(ξ ) ≤ Λ2
ε(ξ ) ≤ Λ2(ξ ),

where the positive constant c depends on {b j}.
The L2

ε norm of lattice function can be rewritten as

(1.4) ‖ f‖2
ε,0 = (2π)d ∑

ξ∈L∗
ε

| f̂ (ξ )|2.

Moreover, notice that for ξ ∈ L∗
ε , we have

D̂+
ε,a j f (ξ ) =

1
ε
(eıεξ ·a j −1) f̂ (ξ ).
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Therefore, the discrete Sobolev norms have equivalent representations using dis-
crete Fourier transform:

c‖ f‖2
ε,k ≤ ∑

ξ∈L∗
ε

Λ2k
ε (ξ )| f̂ (ξ )|2 ≤C‖ f‖2

ε,k

with the positive constants c and C depending on k and {a j}.
For k > d/2, we have the following discrete Sobolev imbedding inequality [24,

Proposition 6]:
‖ f‖L∞

ε ≤C‖ f‖ε,k,

where C depends on k and Ω.

1.2 Atomistic model and Cauchy-Born rule
In this work, we will restrict to the classical empirical potentials. For atoms

located at {y1, · · · ,yN}, the interaction potential energy is given by V (y1, · · · ,yN),
where V often takes the form:

V (y1, · · · ,yN) = ∑
i, j

V2(yi/ε,y j/ε)+ ∑
i, j,k

V3(yi/ε ,y j/ε,yk/ε)+ · · · ,

where we have omitted interactions of more than three atoms.
Different potentials are chosen for different materials. In this paper, we will

work with general atomistic models, and we will make the following assumptions
on the potential function V as in [19]:

(1) V is translation invariant.
(2) V is invariant with respect to rigid body motion.
(3) V is smooth in a neighborhood of the equilibrium state.
(4) V has finite range and consequently we will consider only interactions that

involve a finite number of atoms.

The first two assumptions are general [8], while the latter two are specific technical
assumptions.

For simplicity of notation and clarity of presentation, our presentation will be
limited to potentials that contain only two-body and three-body potentials. Ac-
tually, we will only make explicit the three-body term in the expressions for the
potential, as it includes the two-body term as a special case. It is straightforward
to extend our results to potentials with interactions of more atoms that satisfy the
above conditions, following the discussion on the three-body term. By [25], the
potential function V is a function of atom distances and angles by invariance with
respect to rigid body motion. Therefore, we may write

V3(yi,y j,yk) = V3
(
|yi − y j|2, |yi − yk|2,

〈
yi − y j,yi − yk

〉)
,

where
〈
·, ·

〉
denotes the inner product over Rd . We write the two-body and three-

body potentials in this way to make the formula in our calculations easier to read.
We assume that the atoms located at Ωε are in equilibrium, with x ∈ Ωε the

equilibrium position. Positions of the atoms under deformation will be viewed as
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a function defined over Ωε , denote as y(x) = x + u(x). Hence, u : Ωε → Rd is the
displacement of the atoms. We extend u as an Ωε -periodic function defined on εL.
Define the space of atom positions y as

Xε = {y : εL → Rd | y = x+u, u Ωε -periodic, ∑
x∈Ωε

u(x) = 0}.

Any y ∈ Xε satisfies

y(x)− y(x′) = x− x′, ∀x,x′ ∈ εL, x− x′ = a j for some j ∈ {1, · · · ,d}.

The atomistic problem is formulated as follows. Given fε : Ωε → Rd , find
y ∈ Xε such that

(1.5) y = argmin
z∈Xε

Iat(z),

where
Iat(z) =

1
3!

εd ∑
x∈Ωε

∑
(s1,s2)∈S

V(s1,s2)[z]− εd ∑
x∈Ωε

fε(x)z(x),

and
V(s1,s2)[z] = V

(
|D+

s1
z(x)|2, |D+

s2
z(x)|2,

〈
D+

s1
z(x),D+

s2
z(x)

〉)
.

Here S is the set of all possible (s1,s2) within the range of the potential. By our
assumptions, S is a finite set. We only make explicit the three-body terms in the
potential as addressed before. In Iat, εd is a normalization factor, so that Iat is
actually the energy of the system per atom.

The Euler-Lagrange equation for the atomistic problem is

(1.6) Fat[y](x) = fε(x) x ∈ Ωε ,

where

Fat[y](x) = ∑
(s1,s2)∈S

(
D−

s1

(
2∂1V(s1,s2)[y](x)D

+
s1

y(x)+∂3V(s1,s2)[y](x)D
+
s2

y(x)
)

+D−
s2

(
2∂2V(s1,s2)[y](x)D

+
s2

y(x)+∂3V(s1,s2)[y](x)D
+
s1

y(x)
))

,

where for i = 1,2,3, we denote

∂iV(s1,s2)[y](x) = ∂iV
(
|D+

s1
y(x)|2, |D+

s2
y(x)|2,

〈
D+

s1
y(x),D+

s2
y(x)

〉)
the partial derivative with respect to the i-th argument of V .

To guarantee the uniqueness of the solution of (1.6), we assume that fε takes
the following special form: for x ∈ Ωε ,

fε(x) ≡ ε−d
∫

x+εΓ
f (z)dz,

where f (x) is a function defined on Ω with zero mean. This makes sure that fε(x)
satisfies

∑
x∈Ωε

fε(x) = ε−d
∫

Ω
f (x)dx = 0.
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To introduce the Cauchy-Born elasticity problem [8, 21, 22], we fix more no-
tations. For any positive integer k, we denote by W k,p(Ω;Rd) the Sobolev space
of mappings y: Ω → Rd such that ‖y‖W k,p is finite. In particular, we denote by
W k,p

# (Ω;Rd) the Sobolev space of periodic functions whose distributional deriva-
tives of order less than k are in the space Lp(Ω). For any p > d and m ≥ 0, we
define X as

X = {y : Ω → Rd | y = x+ v, v ∈W m+2,p(Ω;Rd)∩ W 1,p
# (Ω;Rd),

∫
Ω

v = 0}.

As in [19], the Cauchy-Born elasticity problem can be formulated as follows:
find y ∈ X such that

(1.7) y = argmin
z∈X

I(z),

where the total energy functional I is given by

I(z) =
∫

Ω
(WCB(∇v(x))− f (x)z(x)) dx,

where v(x) = z(x)− x and the Cauchy-Born stored energy density WCB is given by

WCB(A) =
1
3! ∑

(s1,s2)∈S
W(s1,s2)(A),

where for A ∈ Rd×d ,

W(s1,s2)(A) = V
(
|s1 + s1A|2, |s2 + s2A|2,

〈
s1 + s1A,s2 + s2A

〉)
.

The range S is the same as that in the atomistic potential function. We have used
the deformed position y instead of the more standard displacement field u as the
unknown variables in (1.7) in order to be parallel with the atomistic problem.

The Euler-Lagrange equation for the Cauchy-Born elasticity model is

(1.8) FCB[y](x) = f (x),

where

FCB[y](x) = −∇·(DAWCB(∇v(x))) and v(x) = y(x)− x.

Here DAWCB(A) denotes differentiation of WCB(A) with respect to A.
Since we are primarily interested in the coupling between the atomistic and

continuum models, we will take the finite element mesh Tε as a triangulation of
Ωε with each atom site as an element vertex. The triangulation is translational
invariant. The approximation space X̃ε is defined as

X̃ε =
{

y ∈W 1,p
# (Ω;Rd) | y|T ∈ P1(T ), ∀T ∈ Tε

}
,

where P1(T ) is the space of linear functions on the element T .
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1.3 Force-based hybrid method
We are ready to formulate the force-based hybrid method. We take ρ : Ω →

[0,1] as a smooth cutoff function. The atomistic region corresponds to the zero
level set of ρ: Ωa = {x | ρ(x) = 0}, and the continuum region corresponds to the
region that ρ equals to 1: Ωc = {x | ρ(x) = 1}. The region in between is a buffer
between the atomistic and the continuum regions.

The force-based hybrid method is given as follows. For y(x) ∈ Xε , we define
the force on x ∈ Ωε as

(1.9) Fhy[y](x) ≡ (1−ρ(x))Fat[y](x)+ρ(x)Fε [y](x) x ∈ Ωε ,

where Fε is the force from finite element approximation of the Cauchy-Born elas-
ticity problem (1.7). Due to the choice of ρ , in the atomistic region Ωa, the force
acting on the atom is just that of atomistic model, while in the continuum region
Ωc, the force is calculated from finite element approximation of the Cauchy-Born
elasticity.

For given loading fε , we solve y ∈ Xε such that

(1.10) (ΠεFhy[y])(x) = fε(x) x ∈ Ωε ,

where for Ωε−periodic function g, Πε projects g to the function with zero mean:

(1.11) (Πεg)(x) = g(x)− ε3 ∑
x′∈Ωε

g(x′).

As noted in [11], the projection Πε is necessary here, as the force Fhy[y] might not
be zero mean, which is however required by the periodic boundary condition.

The proposed scheme works in dimension d ≤ 3 for general finite range in-
teraction potentials. The main result of this work is the following second order
convergence rate for the force-based hybrid method.

Theorem 1.1 (Convergence). Under Assumption A, there exist positive constants
δ and M, so that for any p > d and f ∈ W 17,p(Ω)∩W 1,p

# (Ω) with ‖ f‖W 17,p ≤ δ ,
we have

(1.12) ‖yhy − yat‖ε,2 ≤ Mε2.

Remark 1.2. While we do not attempt in this work to optimize the regularity as-
sumption on f , we note that it is easy to relax the assumption to f ∈W 5,p(Ω) with
p > d following the remarks in the proof.

Remark 1.3. The sharp stability Assumption A for the atomistic model will be
given in Section 3. This assumption is quite natural and physical. We refer to
Section 3 and also [19] for more discussions on the stability conditions and its link
to physics literature.

The proof of Theorem 1.1, which will be viewed as a convergence result for
nonlinear finite difference schemes, follows the spirit of Strang’s work [39]. In
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short, consistency and linear stability imply convergence. The heart of the matter
lies in the analysis of consistency and stability, which will be the focus of the proof.

The rest of the paper is organized as follows. In the next subsection, we re-
view some related works. Section 2 discusses the consistency of the scheme. The
linear stability is proved in Section 4. The stability estimate is based on the reg-
ularity estimate of finite difference schemes in Section 3, which is established in
the framework of pseudo-difference operators [9, 27, 42]. With the preparation of
consistency and linear stability analysis, the proof is concluded in Section 5.

1.4 Related works
Recently there are a lot of papers discussing various atomistic/continuum cou-

pling strategies as summarized in the reviews [10,15,28,34], we will only mention
the work that are closely related to ours and refer the readers to these reviews and
the references therein.

The hybrid method resembles several methods in the literature. The most
closely related method is the quasicontinuum method [26, 40], which is among
the most popular methods for modeling the mechanical deformation of crystalline
solids. The QC method contains the following ingredients: decomposition of the
whole domain into atomistic and continuum regions, with the defects covered by
the atomistic region; degree of freedom reduction by adaptive selection of rep-
resentative atoms, with fewer atoms selected in regions with smooth deformation;
and the application of the Cauchy-Born elasticity in the continuum region to reduce
the complexity involved in computing the total energy of the system.

Both the proposed method and QC method couple the atomistic model with the
Cauchy-Born elasticity model. In some sense, the proposed method can be viewed
as a smoothened modification of the force-based QC method. Indeed, the original
force-based QC method amounts to take ρ as a characteristic function so that there
is no buffer region. The force-based QC is free of ghost force, and it was proven
in [12, 30] that, for one-dimensional problem, the force-based method converges.
However, its convergence behavior remains open for high dimensional problem.
As will be proved later in the paper, the proposed method is stable and also con-
verges in three dimension. The framework developed here also provides tools to
understand the original force-based QC, which will be investigated in future works.

The Arlequin method [5, 7] and the bridging domain method [6] also adopt a
smooth transition between atomistic and continuum regions. These methods are
energy-based, so that the coupling is done at the energy level, while the current
method is force-based. Moreover, these two methods enforce consistency between
the atomistic and the continuum regions by imposing certain constraints, while
there is no such constraints in our method. These methods suffer from ghost force
problems as shown in [28], while the proposed method is consistent at the interface.

The proposed method also shares certain common traits with the concurrent
AtC coupling method (AtC) in [4]. The AtC method also uses a smooth transition
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between atomistic and continuum regions and is force-based. However, the pro-
posed method differs from AtC in the following aspects: (1) our method employs
Cauchy-Born elasticity while AtC uses linear elasticity; and (2) our method is free
of ghost force while AtC is plagued by ghost force as demonstrated in [28].

Most of the analysis of these multiscale methods limits to QC. In [19], the
Cauchy-Born rule for crystalline solids is verified under sharp stability conditions.
In the language of QC, the authors in [19] actually proved the convergence of
the local QC in the sense that the whole computational domain is treated as local
region. Explicit convergence rate for the local QC can be found in [17, 18].

For the QC method that couples the atomistic and the continuum models (non-
local QC method in short), the error estimate can be found in [13, 29] and the
references therein. Most of the previous attentions are however restricted to one-
dimensional problem, except some recent efforts devoted to the two-dimensional
problem with pairwise interactions [32, 36] and consistency of 2D energy-based
method [33].

To the best of the authors’ knowledge, there is no convergence analysis for the
nonlocal QC method or other coupling schemes for high-dimensional problems
with general potential (usually, many-body potential function). The main diffi-
culties lie in the analysis of the consistency and stability. For one-dimensional
problem, the lattice structure is very simple and the pairwise potential function can
be handled by a direct calculation. However, such an approach cannot be easily
extended to high-dimensional problem with general potential function because the
lattice structure and the potential function for high-dimensional problem are much
more involved. One of the main contributions of the current paper is the develop-
ment of general tools for the analysis of consistency and stability.

Finally, we remark that in this work the analysis of the proposed method, espe-
cially the stability analysis, is based on analysis of finite difference schemes. The
readers might wonder why the analysis is not done in the framework of finite el-
ement method, as after all, we are dealing with static problems, the systems to be
solved are “elliptic”; and moreover, the continuum region is discretized by finite el-
ement method. The reason actually lies in the atomistic part, since the equilibrium
equations derived from energy of discrete lattice systems are intrinsically of finite
difference type. To the best of our knowledge, there has not been yet a successful
way to put the atomistic equations into the framework of finite element analysis.
Therefore, we also view the finite element approximation in the continuum region
as a finite difference approximation for consistency. The proof hence relies on the
analysis of finite difference schemes. This may give a reminiscence of the early
history about finite element analysis. At that time the finite element method was
also analyzed in the framework of finite difference schemes [38]. Since the theory
of adaptive mesh is well-established for finite element method, it is an interest-
ing question whether one can adopt the finite element framework to analyze these
multiscale coupling methods.
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2 Consistency

We study the consistency of the force-based hybrid method in this section. The
key is the following lemma, which is a refined version of [19, Lemma 5.1].

Lemma 2.1 (Consistency of Cauchy-Born rule). For any y = x+u(x), we have

(2.1) ‖Fat[y]−FCB[y]‖L∞
ε ≤Cε2‖u‖W 18,∞ ,

where the constant C depends on V and ‖u‖L∞ , but is independent of ε .

Remark 2.2. The consistency estimate (2.1) is crucial for Proposition 3.4. A bound
involves less order of derivatives of u is possible. In fact, it is not hard to show

(2.2) ‖Fat[y]−FCB[y]‖L∞
ε ≤Cε2,

where C depends on V and ‖u‖W 6,∞ . The price is however the dependence of C on
‖u‖W 6,∞ is nonlinear.

Proof. For any x ∈ Ωε , and for i = 1,2, Taylor expansion at x gives

D+
si

y(x) = ∇1
si
[y](x)+ ε∇2

si
[y](x)+ ε2R2,si [y](x),

where we have introduced the shorthand for the Taylor series and its remainder:

∇ j
si
[y](x) =

1
j!

(si ·∇) jy(x), j = 1,2,

Rk,si [y](x) =
∫ 1

0
(k +1)(1− t)k∇k+1

si
[y](x+ εtsi)dt, k ∈ N,

provided that the terms on the right hand side are well defined. We may write

(2.3) D+
si

= ∇1
si

+ ε∇2
si

+ ε2R2,si , D−
si

= ∇1
si
− ε∇2

si
− ε2R2,−si .

For i = 1,2,3 and t ∈ [0,1], let

Fi(t) = ∂iV(s1,s2)

(
|tD+

s1
y(x)+(1− t)(s1 ·∇)y(x)|2,

|tD+
s2

y(x)+(1− t)(s2 ·∇)y(x)|2,〈
tD+

s1
y(x)+(1− t)(s1 ·∇)y(x),

tD+
s2

y(x)+(1− t)(s2 ·∇)y(x)
〉)

.

Using Taylor expansion, we get

(2.4) Fi(1) = Fi(0)+F ′
i (0)+R1[Fi](0).

Here for Fi : [0,1] → R, we have used a similar shorthand for the remainder

Rk[Fi](0) =
∫ 1

0

(1− t)k

k!
∇k+1Fi(t)dt.
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By definition we have

Fi(1) = ∂iV(s1,s2)
(
|D+

s1
y(x)|2, |D+

s2
y(x)|2,

〈
D+

s1
y(x),D+

s2
y(x)

〉)
= ∂iV(s1,s2)[y](x),

Fi(0) = ∂iV(s1,s2)
(
|(s1 ·∇)y(x)|2, |(s2 ·∇)y(x)|2,

〈
(s1 ·∇)y(x),(s2 ·∇)y(x)

〉)
= ∂iW(s1,s2)(∇u(x)).

Therefore, we can rewrite (2.4) as

(2.5)

∂iV(s1,s2)[y](x) = ∂iW(s1,s2)
(
∇u(x)

)
+ εa j∂i jW(s1,s2)

(
∇u(x)

)
+

(
ε2b j∂i jW(s1,s2)

(
∇u(x)

)
+R1[Fi](0)

)
≡ Qi,(s1,s2)[∇u](x).

Here, for j = 1,2,

a j = 2
〈
(s j ·∇)y,∇2

s j
[y]

〉
, b j = 2

〈
(s j ·∇)y,R2,s j [y]

〉
a3 =

〈
(s1 ·∇)y,∇2

s2
[y]

〉
+

〈
(s2 ·∇)y,∇2

s1
[y]

〉
,

b3 =
〈
(s1 ·∇)y,R2,s2 [y]

〉
+

〈
(s2 ·∇)y,R2,s1 [y]

〉
.

Substituting (2.3) and (2.5) into Fat[y](x), we obtain

Fat[y](x) =

∑
(s1,s2)∈S

(∇1
s1
− ε∇2

s1
− ε2R2,−s1)

{
2Q1,(s1,s2)[∇u](∇1

s1
+ ε∇2

s1
+ ε2R2,s1)[y]

+Q3,(s1,s2)[∇u](∇1
s2

+ ε∇2
s2

+ ε2R2,s2)[y]
}

+(∇1
s2
− ε∇2

s2
− ε2R2,−s2)

{
2Q2,(s1,s2)[∇u](∇1

s2
+ ε∇2

s2
+ ε2R2,s2)[y]

+Q3,(s1,s2)[∇u](∇1
s1

+ ε∇2
s1

+ ε2R2,s1)[y]
}
.

Collecting the terms of the same order, we get

(2.6) Fat[y](x) = L0[u](x)+ εL1[u](x)+ ε2L2[u](x)+O(ε3).

Since each atom site in the lattice L is a center of inversion symmetry, i.e., if s ∈L,
then −s ∈ L, and thus L1 = 0. Therefore, we have

Fat[y](x) = L0[u](x)+ ε2L2[u](x)+O(ε4).
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The explicit form of L0 can be written as

L0[u](x) = − ∑
(s1,s2)∈S

{
2

2

∑
j=1

(s j ·∇)
[
(s j +(s j ·∇)u)∂ jW(s1,s2)(∇u(x))

]
+(s1 ·∇)

[
(s2 +(s2 ·∇)u)∂3W(s1,s2)(∇u(x))

]
+(s2 ·∇)

[
(s1 +(s1 ·∇)u)∂3W(s1,s2)(∇u(x))

]}
.

We see that L0[u](x) = FCB[y] with y = x+u(x).
To prove (2.1), it remains to estimate terms of O(ε2), which is a combination

of the form: for α,β = 1,2,

(sα ·∇)k
(

∂iW(s1,s2)(∇u)(sβ ·∇)lu
)

, l + k = 4, l,k ∈ N,

(sα ·∇)k
(

a j∂i jW(s1,s2)(∇u)(sβ ·∇)lu
)

, l + k = 3, l,k ∈ N,

(sα ·∇)
(

b j∂i jW(s1,s2)(∇u)(sβ ·∇)u+R1[Fi](0)(sβ ·∇)u
)
.

We only estimate the first term, and the other two terms can be bounded similarly.
Due to the chain rule and to Leibniz’s rule, (sα ·∇)k

(
∂iW(s1,s2)(∇u)(sβ ·∇)lu

)
is a

linear combination of terms T of the form

T = ∇|γ| (∂iW(s1,s2)(∇u)
)
(sβ ·∇)4−|γ| u

3

∏
j=1

(sα ·∇)γ j Pj,

where γ is a multi-index with |γ| ≤ 3, and

P1 = |s1 +(s1 ·∇)u|2, P2 = |s2 +(s2 ·∇)u|2, P3 =
〈
s1 +(s1 ·∇)u,s2 +(s2 ·∇)u

〉
.

Using the chain rule once again, we get, for k, j = 1,2,3 and α = 1,2,

‖(sα ·∇)kPj‖L∞ ≤C(sα)
(

(1+‖∇u‖L∞)‖∇k+1u‖L∞ +‖∇ku‖L∞‖∇2u‖L∞

)
.

Using Gagliardo-Nirenberg inequality [31],

‖∇ ju‖L∞ ≤C‖∇mu‖ j/m
L∞ ‖u‖1− j/m

L∞ , 0 < j < m,

we have, for k, j = 1,2,3 and α = 1,2,

‖(sα ·∇)kPj‖L∞ ≤C(sα)
(
‖u‖L∞‖∇k+2u‖L∞ +‖∇k+1u‖L∞

)
.
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Using the above inequality, we conclude

‖T‖L∞ ≤C max
2≤|γ|≤4

‖∂γW(s1,s2)(∇u)‖L∞‖∇4−|γ|u‖L∞

×

{
(1+‖u‖3

L∞)
3

∏
i=1

‖∇γi+2u‖L∞ +
3

∏
i=1

‖∇γi+1u‖L∞

+
2

∑
m=1

(1+‖u‖m
L∞)

3

∑
i, j,k=1

‖∇γi+2u‖L∞‖∇γ j+mu‖L∞‖∇γk+1u‖L∞

}
.

Invoking Gagliardo-Nirenberg inequality again, we obtain

‖T‖L∞ ≤C
6

∑
i=3

‖u‖i
L∞‖u‖W 10,∞ .

Proceeding along the same line, we can obtain the similar bounds for the other
terms, while ‖u‖W 18,∞ arises from the estimate of

R2,sα

(
R1[Fi](0)(∇u)R2,sβ [y]

)
, α,β = 1,2.

Summing up all terms of O(ε2), we get (2.1).
�

Corollary 2.3 (Consistency of finite element discretization). For any y = x+u(x)
with u smooth, we have

‖Fε [y]−FCB[y]‖L∞
ε ≤Cε2‖u‖W 18,∞ ,

where the constant C depends on V and ‖u‖L∞ , but is independent of ε .

Proof. The corollary follows from Lemma 2.1 and the following observation: We
can view the energy functional of the finite element discretization as a particular
form of the atomistic energy.

Let us consider the case d = 2, and the same argument applies to d = 3 with
certain complication of notations.

Let yε ∈ X̃ε be the approximation of y so that yε(x) = y(x) for any x ∈ Ωε . Let
uε = yε − x. Obviously, we have uε(x) = u(x) for any x ∈ Ωε .

Now, for each T ∈ Tε , ∇uε |T is a linear function of yε on the vertices of T .
Denote the three vertices of T as x0,x1,x2, and s1 = (x1 − x0)/ε , s2 = (x2 − x0)/ε ,
then ∇uε |T is the solution of the linear system{

s1 + s1A = D+
ε,s1

yε(x0),

s2 + s2A = D+
ε,s2

yε(x0).

Therefore, let us denote

∇uε |T = A(s1,s2)(yε(x0)/ε,yε(x1)/ε ,yε(x2)/ε)
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as the solution of the above system. Due to linearity, the map A(s1,s2) is independent
of ε . Hence, for x ∈ T , we can write

(2.7)
WCB(∇uε(x)) = WCB

(
A(s1,s2)(yε(x0)/ε ,yε(x1)/ε,yε(x2)/ε)

)
= WFE,(s1,s2)(yε(x0)/ε,yε(x1)/ε ,yε(x2)/ε),

where WFE,(s1,s2) ≡WCB ◦A(s1,s2). Denote SFE as the set of all pairs (s1,s2) such that
{x0,x0 +εs1,x0 +εs2} forms the vertices of an element T ∈ Tε containing x0 (it is
easy to see that SFE is independent of ε). Using (2.7), we have∫

Ω
WCB(∇uε(x))dx = ∑

T∈Tε

|T |WCB(∇uε |T )

=
1
3! ∑

x∈Ωε

∑
(s1,s2)∈SFE

εd |T(s1,s2)|WFE,(s1,s2)

(
yε(x)

ε
,
yε(x+ εs1)

ε
,
yε(x+ εs2)

ε

)
=

1
3!

εd ∑
x∈Ωε

∑
(s1,s2)∈SFE

VFE,(s1,s2)

(
yε(x)

ε
,
yε(x+ εs1)

ε
,
yε(x+ εs2)

ε

)
,

where VFE,(s1,s2) = |T(s1,s2)|WFE,(s1,s2) and T(s1,s2) is the triangle formed by vectors
s1 and s2. This indicates that we can view the energy functional in the finite ele-
ment discretization as a particular atomistic potential model, given by three-body
interactions VFE,(s1,s2), by identifying the value of y on nodes as the deformed atom
positions.

It is clear that the Cauchy-Born energy density corresponding to the atomic
potential constructed above is just WCB. Indeed, for a homogenously deformed
system with deformation gradient A, by definition, the energy of the system is just
WCB(A)|Ω|, and hence the Cauchy-Born energy density is given again by WCB(A).

With this viewpoint of the finite element discretization as an atomic potential,
the conclusion follows from Lemma 2.1. �

Corollary 2.4 (Local truncation error). For any y = x+u(x), we have

‖Fε [y]−Fat [y]‖L∞
ε ≤Cε2‖u‖W 18,∞ ,(2.8)

‖Fhy[y]−Fat[y]‖L∞
ε ≤Cε2‖u‖W 18,∞ ,(2.9)

and

(2.10) ‖Fhy[y]−FCB[y]‖L∞
ε ≤Cε2‖u‖W 18,∞ ,

where the constant C depends on V and ‖u‖L∞ , but is independent of ε .

Proof. The inequality (2.8) is a combination of Lemma 2.1, Corollary 2.3, and the
triangle inequality. As ρ(x) ∈ [0,1], we have

‖Fhy[y]−Fat[y]‖L∞
ε = ‖Fhy[y]−ΠεFat[y]‖L∞

ε

≤ 2‖ρ(x)(Fε [y](x)−Fat[y](x))‖L∞
ε

≤ 2‖Fε [y]−Fat[y]‖L∞
ε ,
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where the first equality follows from that Fat[y] is zero mean. This gives (2.9).
Finally, the inequality (2.10) follows from Lemma 2.1 and (2.9). �

3 Regularity estimate

To analyze the stability of the proposed method, we use the framework of
pseudo-difference operators [27, 42]. In this section, we will establish the regu-
larity estimate Theorem 3.9 for the force-based hybrid method. This will be one of
the key ingredients used to prove the stability estimate in the next section.

Let us denote Hhy[u] the linearization of Fhy at state u:

Hhy[u] =
δFhy

δy

∣∣∣∣
y=x+u

,

which is a linear operator, and for any lattice function w,

Hhy[u]w = lim
t→0

∂Fhy

∂ t
[x+u+ tw].

It is convenient to write Hhy in the form of a pseudo-difference operator as

Hhy[u] = ∑
µ∈A

hhy[u](x,µ)T µ ,

where, for each x and µ , the coefficient hhy[u](x,µ) is a d by d (probably asym-
metric) matrix, which is given by

(3.1) (hhy[u])αβ (x,µ) =
∂ (Fhy[y])α(x)

∂ (T µy)β (x)

∣∣∣∣
y=x+u

, α,β = 1, · · · ,d,

where A is the range of the pseudo-difference operator stencil (note that 0 ∈ A ),
which is finite by the assumptions on the potential function. By the definition of
Fhy, we have

(3.2) hhy[u](x,µ) =
(
1−ρ(x)

)
hat[u](x,µ)+ρ(x)hε [u](x,µ),

where hat[u] and hε [u] are given by similar equations as (3.1) with Fhy replaced by
Fat and Fε , respectively.

Define h̃hy[u](x,ξ ) as the symbol of the pseudo-difference operator Hhy[u]:

h̃hy[u](x,ξ ) = ∑
µ∈A

hhy[u](x,µ)exp(ıε ∑
j

µ ja j ·ξ ) for ξ ∈ L∗
ε ,

and similar expressions are valid for h̃ε [u] and h̃at[u]. By definition, we have, for
any x ∈ Ωε ,

(Hhy[u]ekeıx·ξ ) j(x) = (h̃hy[u]) jk(x,ξ )eıx·ξ , j,k = 1, · · · ,d.

Similar expressions are valid for h̃ε [u] and h̃at[u]. Here {ek}d
k=1 is the canonical

basis of Rd . It is clear that (3.2) implies

(3.3) h̃hy[u](x,ξ ) = (1−ρ(x))h̃at[u](x,ξ )+ρ(x)h̃ε [u](x,ξ ).
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When the linearization is performed around the equilibrium state u = 0, we get
a simplified expression as

Hhy = Hhy[0], hhy = hhy[0], h̃hy = h̃hy[0],

and similarly for those defined for the atomistic model and the finite element dis-
cretization. We observe that by the translation invariance of the total energy Iat at
the state u = 0, the coefficients are independent of position x, i.e.,

hat(x,µ) = hat(µ), hε(x,µ) = hε(µ).

Similarly, h̃at(x,µ) = hat(µ) and h̃ε(x,µ) = h̃ε(µ).
We also denote HCB as the linearized operator of FCB at the equilibrium state

u = 0, and define h̃CB = h̃CB(x,ξ ) as its symbol. Due to the periodic boundary con-
dition imposed on Ω, ξ here only takes value in L∗. Again, due to the translation
invariance of the total energy, h̃CB is independent of x.

Let us start the analysis with the operator Hhy. We observe that the matrix h̃hy
is Hermitian. We omit the elementary proof of the following lemma.

Lemma 3.1. The matrices h̃at(ξ ), h̃ε(ξ ) and h̃hy(x,ξ ) are Hermitian for any ε > 0,
x ∈ Ωε and ξ ∈ L∗

ε .

We make the following stability assumption about the atomistic potential.

Assumption A. The matrix h̃at(ξ ) is positive definite and there exists a positive
constant aat such that for any ε > 0 and any ξ ∈ L∗

ε ,

det h̃at(ξ ) ≥ aatΛ2d
0,ε(ξ ).

Assumption A will be assumed in the sequel without further indication.

Remark 3.2. This assumption is quite natural and physical. In fact, for Bravais
lattice, Assumption A is just the phonon stability conditions identified in [19], here
we rephrase it by the notion of symbol of difference operator. From a mathematical
point of view, Assumption A can be seen as the uniform ellipticity of the difference
operator.

As a consequence of Assumption A, for sufficiently small ε , the finite element
approximation is also linearly stable.

Lemma 3.3. There exist constants a,ε0 > 0 that for any ε ∈ (0,ε0), h̃ε(ξ ) is posi-
tive definite and for any ξ ∈ L∗

ε ,

det h̃ε(ξ ) ≥ aΛ2d
0,ε(ξ ).

Lemma 3.3 is a direct consequence of the following proposition.

Proposition 3.4. There exists ε0 > 0 and s > 0 such that for any ε ≤ ε0 and ξ ∈L∗
ε ,

we have
|h̃ε(ξ )− h̃at(ξ )| ≤Cε2(|ξ |+1)s.
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Proof. By definition, for 1 ≤ j,k ≤ d,

(h̃ε) jk(ξ ) = Hε(ek fξ ) j(0) and (h̃at) jk(ξ ) = Hat(ek fξ ) j(0),

where fξ (x) = eıx·ξ for x ∈ Ω and we have used the translational symmetry. Hence,
taking difference, we obtain

|h̃ε(ξ )− h̃at(ξ )| ≤C sup
1≤k≤d

‖Hε(ek fξ )−Hat(ek fξ )‖L∞
ε .

By the definitions of the linearized operators Hε and Hat, we have

Hε(ek fξ )−Hat(ek fξ ) = lim
t→0+

1
t

(
Fε [x+ t(ek fξ )]−Fat[x+ t(ek fξ )]

)
.

Hence,

‖Hε(ek fξ )−Hat(ek fξ )‖L∞
ε = lim

t→0+

1
t
‖Fε [x+ t(ek fξ )]−Fat[x+ t(ek fξ )]‖L∞

ε

≤Cε2‖ek fξ‖W 18,∞

≤Cε2‖ek fξ‖Hs ≤Cε2(1+ |ξ |)s,

where s is chosen so that the Sobolev inequality

‖ f‖W 18,∞(Ω) ≤C‖ f‖Hs(Ω)

holds for any f ∈ Hs(Ω) (s depends on the dimension). Here we have used Corol-
lary 2.4 and the fact that ‖tek fξ‖L∞ is uniformly bounded for ξ as t → 0+. This
concludes the proof. �

As a consequence of the stability assumption, the continuous Cauchy-Born
elasticity problem is also elliptic. We omit the proof, which is analogous to that of
Lemma 3.3.

Corollary 3.5. The matrix h̃CB(ξ ) is positive definite and there exists a positive
constant aCB such that for any ξ ∈ L∗,

det h̃CB(ξ ) ≥ aCBΛ2d
0 (ξ ).

As a result of Assumption A and Lemma 3.3, we establish a lower bound for
the symbol h̃hy, which is crucial for the regularity and stability estimates.

Lemma 3.6. For any ε > 0, x ∈ Ωε and any ξ ∈ L∗
ε , we have

det h̃hy(x,ξ ) ≥ min(a,aat)Λ2d
0,ε(ξ ).

Proof. For any x, ρ(x) ∈ [0,1], we have

det h̃hy(x,ξ ) = det
(
(1−ρ(x))h̃at(ξ )+ρ(x)h̃ε(ξ )

)
≥

(
det h̃at(ξ )

)1−ρ(x)(det h̃ε(ξ )
)ρ(x)

≥ a1−ρ(x)
at aρ(x)Λ2d

0,ε(ξ )

≥ min(a,aat)Λ2d
0,ε(ξ ),
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where the first inequality follows from the log-concavity of the function A 7→ det(A)
for positive definite matrix A [23]. �

With these preparations, we are ready to establish the regularity estimate of
the quasi-continuum approximation. The regularity of the discrete elliptic systems
is understood by a fundamental result of finite difference approximation by Bube
and Strikwerda [9]. They extended the regularity estimate of Thomée and Wester-
gren [41] from a single elliptic equation to the elliptic system.

Following [9], we introduce the regular discrete elliptic system. The concept is
parallel to the regular continuous elliptic system [1].

Definition 3.7 (Regular discrete elliptic system). For i, j = 1, · · · ,d, let Li j be a
difference operator with symbol li j(x,ξ ). The system of difference equations

(3.4)
d

∑
j=1

Li jv j(x) = fi(x), i = 1, · · · ,d,

is a regular discrete elliptic system, if there are set of integers {σi}d
i=1 and {τ j}d

j=1
such that each Li j is a difference operator of order at most σi + τ j, and if there are
positive constants C,ξ0 and ε0 such that

|det li j(x,ξ )| ≥CΛ2p
ε (ξ )

for 0 < ε ≤ ε0, ξ ∈ L∗
ε , and max1≤i≤d |ξi| ≥ ξ0, where 2p = ∑i(σi + τi). We will

call that the system (3.4) is a regular elliptic of order (σ ,τ).

By Lemma 3.6, we immediately have

Proposition 3.8. Under Assumption A, the finite difference system

(3.5) Hhyv = f

is a regular discrete elliptic system of order (0,2).

For the regular discrete elliptic system (3.5), we have the following regularity
estimate.

Theorem 3.9. Under Assumption A, for any v ∈ H2
ε (Ω), we have

(3.6) ‖v‖ε,2 ≤C(‖Hhyv‖ε,0 +‖v‖ε,0).

The constant C is independent of v and ε .

Remark 3.10. Theorem 3.9 is analogous to the interior regularity estimate for el-
liptic partial differential equations in [2]. The statement of the theorem is just
rewriting Theorem 2.1 in [9] by the current notation. We note that in [9], Bube
and Strikwerda proved the interior regularity estimates, which clearly implies the
a priori estimate for the periodic case.
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4 Stability

The main theorem we will prove in this section is the following stability esti-
mate.

Theorem 4.1 (Stability). Under Assumption A, for any v ∈ H2
ε (Ω) such that

∑
x∈Ωε

v(x) = 0,

we have

(4.1) ‖v‖ε,2 ≤C‖Hhyv‖ε,0.

Let us make some remarks about the stability result. In general, we do not
know whether a stability estimate like (4.1) is valid for the force-based quasicon-
tinuum method in high dimension (see [11,14] for works in one dimension). From
a pseudo-difference operator point of view, the continuity in x variable of the sym-
bol of the linearized operator is crucial for the validity of the strong stability. This
is also the main motivation to use a smooth transition function ρ(x) in the current
scheme. The strong stability property of the scheme will facilitate the numerical
solution based on iterative methods.

We also note that the strong stability is also crucial for the extension of the
current scheme to the time-dependent case. It plays the role of Gårding inequality.
We will leave this to future publications.

To obtain the stability estimate from the regularity estimate of Theorem 3.9, we
need to eliminate ‖v‖ε,0 on the right hand side of (3.6). In one dimension problem,
this can be achieved by the discrete maximum principle for the finite difference
equation. This is however no longer the case for higher dimension, as then we are
dealing with an elliptic system. The argument we will use is similar in spirit to
the argument used in [1, 35] for passing from regularity estimate to uniqueness re-
sults for elliptic systems. The difficulty however is that a compactness argument as
in [35] can not apply to the finite difference system, as we need a uniform estimate
for different ε . Therefore, instead of using the compactness, the proof is based on
the uniqueness of the continuous elliptic system, the consistency of the finite differ-
ence schemes to the continuous system, and the regularity estimate Theorem 3.9.

To connect the finite difference system with PDE, we need to extend grid func-
tions on Ωε to continuous functions defined in Ω. For this purpose, let us define an
interpolation operator Qε as follows.1 For any lattice function u on Ωε , we define
Qεu ∈ L2(Ω) by

(4.2) (Qεu)(x) = (2π)d/2 ∑
ξ∈L∗

ε

eıx·ξ û(ξ ) x ∈ Ω.

Comparing with (1.2), we know that Qεu agrees with u on Ωε . We have the fol-
lowing properties of Qε .

1 The usual linear interpolation is not sufficient for our purpose as we need high regularity of the
interpolant.
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Lemma 4.2. For k ≥ 0, there exists constants ck,Ck > 0, such that for any u,

ck‖u‖ε,k ≤ ‖Qεu‖Hk(Ω) ≤Ck‖u‖ε,k.

Proof. The conclusion follows immediately from (4.2) and (1.3). �

For simplicity of notation, we will denote

uε = Qεuε

for lattice function uε on Ωε .
To prove Theorem 4.1, we need a consistency result in the following form,

which follows easily from Lemma 2.1.

Proposition 4.3. For {vε}ε>0 that vε ∈ Hs
ε(Ω) and ‖vε‖ε,s is uniformly bounded

for some large enough s, we have

(4.3) lim
ε→0+

‖H ∗
CBHCBvε −H ∗

hyHhyvε ‖L2(Ω) = 0.

We are now ready to prove Theorem 4.1. The proof is a reductio ad absurdum.

Proof of Theorem 4.1. Suppose (4.1) does not hold, then there is a sequence of
functions {vk} and λk,εk > 0 such that

‖vk‖εk,0 = 1, for all k;

H ∗
hyHhyvk = λkvk, for all k;

λk → 0, as k → ∞.

Using Theorem 3.9 and the fact that ‖vk‖εk,0 = 1, we have the estimate for any
s ∈ N
(4.4) ‖vk‖εk,s ≤Cs

uniformly in k.
By the construction of {vk}, we have

(H ∗
CBHCB −λk)vk = (H ∗

hyHhy −λk)vk +(H ∗
CBHCBvk −H ∗

hyHhyvk)

= H ∗
CBHCBvk −H ∗

hyHhyvk.

By the regularity of vk from (4.4), we use (4.3) to obtain

‖H ∗
CBHCBvk −H ∗

hyHhyvk‖L2(Ω) → 0 as k → ∞.

Therefore, as λk → 0, we obtain

‖H ∗
CBHCBvk‖L2(Ω) → 0 as k → ∞.

Note also that the average of vk is zero, since v̂k(0) = 0. By the invertibility of
H ∗

CBHCB on the subspace orthogonal to constant function, ‖vk‖L2(Ω) → 0, as k →
∞. It follows from Lemma 4.2 that ‖vk‖εk,0 → 0 as k → ∞. The contradiction with
the choice of vk proves (4.1). �
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The stability still holds when the projection Πε is included in the right hand
side of (4.1).

Corollary 4.4 (Stability). Under Assumption A, for any v∈H2
ε (Ω) such that ∑x∈Ωε v(x)=

0, we have

(4.5) ‖v‖ε,2 ≤C‖ΠεHhyv‖ε,0.

This is an easy corollary of Theorem 4.1 and the following lemma.

Lemma 4.5. For v ∈ H2
ε , we have

(4.6)
∣∣∣∣ε3 ∑

x∈Ωε

(Hhyv)(x)
∣∣∣∣ ≤Cε2‖v‖ε,2.

Proof. For j = 1, · · · ,d, we have

ε3 ∑
x∈Ωε

(Hhyv) j(x) = 〈e j,Hhyv〉L2
ε (Ω)

= 〈e j,(ρHat +(1−ρ)Hε)v〉L2
ε (Ω)

= 〈Hat(e jρ)+Hε(e j(1−ρ)),v〉L2
ε (Ω),

where we have used the fact that Hat and Hε are symmetric. Note that

0 = Hate j = Hat(e jρ)+Hat(e j(1−ρ)).

Therefore,

ε3 ∑
x∈Ωε

(Hhyv) j(x) = 〈(Hε −Hat)(e j(1−ρ)),v〉L2
ε (Ω)

≤ ‖(Hε −Hat)(e j(1−ρ))‖L∞
ε ‖v‖L∞

ε

≤C(ρ)ε2‖v‖ε,2,

where the last inequality follows from the consistency of Hε and Hat, and the
Sobolev inequality. �

Using a perturbation argument, we may extend Theorem 4.1 and Corollary 4.4
to a deformed state u.

Theorem 4.6 (Stability). Under Assumption A, there exists δ > 0, such that for
any ε > 0 and u, ‖u‖W 2,∞

ε
≤ δ and any v ∈ H2

ε (Ω) with ∑x∈Ωε v(x) = 0, we have

(4.7) ‖v‖ε,2 ≤C‖ΠεHhy[u]v‖ε,0,

where the constant depends on δ , but is independent of u, v and ε .

Proof. Denote by v0 the solution of

ΠεHhy[0]v0 = f .

We immediately have

ΠεHhy[0](v− v0) =
(

ΠεHhy[0]−ΠεHhy[u]
)

v.
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Using Theorem 4.1, we have

‖v− v0‖ε,2 ≤C‖Πε
(
Hhy[0]−Hhy[u]

)
v‖ε,0 ≤C‖∇u‖W 1,∞

ε
‖v‖ε,2.

By the triangle inequality, we have

‖v‖ε,2 ≤ ‖v0‖ε,2 +‖v− v0‖ε,2

≤C‖ΠεHhy[0]v0‖ε,0 +C‖∇u‖W 1,∞
ε

‖v‖ε,2

≤C‖ΠεHhy[u]v‖ε,0 +C‖∇u‖W 1,∞
ε

‖v‖ε,2

≤C‖ΠεHhy[u]v‖ε,0 +Cδ‖v‖ε,2,

which gives (4.7) by choosing δ = 1/(2C). �

5 Convergence of the force-based hybrid method

With the consistency and stability results proved in the last three sections, we
are now ready to prove the main result Theorem 1.1. The proof follows the same
line of Strang’s convergence proof of nonlinear finite difference schemes [39].

As a direct consequence of Corollary 2.4, we have the following

Corollary 5.1 (Higher order expansion). Under the same assumptions of Theo-
rem 1.1, there exist positive constants δ and M, so that for any p > d and f ∈
W 17,p(Ω)∩W 1,p

# (Ω) with ‖ f‖W 17,p ≤ δ , denote ỹ = x +u(x) with u the solution of
the Cauchy-Born elasticity problem (1.8), we then have

‖ΠεFhy[ỹ]− fε‖L∞
ε ≤ Mε2.

Remark 5.2. Using the remark under Lemma 2.1, the regularity assumption of f
can be relaxed to W 5,p(Ω) with p > d.

Proof. By the construction of ỹ, we have

FCB[ỹ] = f .

Using the definition of fε , we have for all x ∈ Ωε ,

|(FCB[ỹ])(x)− fε(x)| ≤ ε−d |
∫

x+εΓ
[ f (x)− f (y)]dy| ≤Cε2‖ f‖W 2,∞ .

Hence, using (2.10) of Corollary 2.4 and the regularity of f , we have

‖Fhy[ỹ]− fε‖L∞
ε ≤Cε2.

The proof is concluded by noting that

‖ΠεFhy[ỹ]− fε‖L∞
ε = ‖ΠεFhy[ỹ]−Πε fε‖L∞

ε ≤ 2‖Fhy[ỹ]− fε‖L∞
ε ,

where the first equality is valid as fε is zero mean. �

We are now ready to prove the main result of the paper.
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Proof of Theorem 1.1. We take ỹ be that given by Corollary 5.1. It is easy to see∫ 1

0
ΠεHhy[ty+(1− t)ỹ](x)dt · (y− ỹ) = ΠεFhy[y]−ΠεFhy[ỹ].

Hence y is the solution of (1.10) if and only if∫ 1

0
ΠεHhy[ty+(1− t)ỹ](x)dt · (y− ỹ) = fε −ΠεFhy[ỹ].

For any κ ∈ (3/2,2), we define

B = {y ∈ Xε | ‖y− ỹ‖ε,2 ≤ εκ } .

We define a map T : B → B as follows: for any y ∈ B, let T (y) be the solution of
the linear system

(5.1)
∫ 1

0
ΠεHhy[ty+(1− t)ỹ](x)dt · (T (y)− ỹ) = fε −ΠεFhy[ỹ].

We first show that T is well defined. Since

‖ty+(1− t)ỹ− ỹ‖ε,2 ≤ t‖y− ỹ‖ε,2 ≤ εκ ,

which gives that for sufficiently small ε and d ≤ 3, there holds

‖ty+(1− t)ỹ− ỹ‖W 2,∞
ε

≤ εκ−d/2 < δ ,

where the constant δ appears in Theorem 4.6. It follows from Theorem 4.6 that the
problem (5.1) is solvable and

(5.2) ‖T (y)− ỹ‖ε,2 ≤C‖ fε −ΠεFhy[ỹ]‖ε,0 ≤Cε2,

where we have used Corollary 5.1. For sufficiently small ε , we have

‖T (y)− ỹ‖ε,2 ≤ εκ .

Therefore, T (y) ∈ B and T is well-defined, which in turn implies T (B) ⊂ B for
sufficiently small ε . Now the existence of y follows from the Brouwer fixed point
theorem. The solution y is locally unique since the Hessian at y is nondegenerate.
Let us denote the solution as yhy, we then have from (5.2) that

(5.3) ‖ỹ− yhy‖ε ,2 ≤Cε2.

Proceeding along the same line that leads to (5.2) and using Lemma 2.1, we get

(5.4) ‖ỹ− yat‖ε,2 ≤Cε2.

Finally, we conclude that yhy satisfies (1.12) by combining (5.3) and (5.4). �
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