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Abstract We propose two finite elements to approximate a boundary value problem1

arising from strain gradient elasticity, which is a high order perturbation of the lin-2

earized elastic system. Our elements are H2-nonconforming while H1-conforming.3

We show both elements converge in the energy norm uniformly with respect to the4

perturbation parameter.5
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1 Introduction7

Strain gradient theory, which introduces the high order strain and microscopic parame-8

ter into the strain energy density, is one of the most successful approach to characterize9

the strong size effect of the heterogeneous materials [20]. The origin of this theory10

can be traced back to Cosserat brothers’ celebrated work [13]. Further development11
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H. Li et al.

is related to Mindlin’s work on microstructure in linear elasticity [23,24]. However,12

Mindlin’s theory is less attractive in practice because it contains too many parameters.13

Based on Mindlin’s work, Aifantis et al. [3,28] proposed a linear strain gradient elas-14

tic model with only one microscopic parameter. This simplified strain gradient theory15

successfully eliminated the strain singularity of the brittle crack tip field [14].16

The strain gradient elastic model of Aifantis’ is a perturbed elliptic system of fourth17

order from the view point of mathematics. To discretize this model by a finite element18

method, a natural choice is C1 finite elements such as Argyris triangle [5] and Bell’s19

triangle [7] because this model contains the gradient of strain. We refer to [2,27,32,33]20

for works in this direction. Alternative approach such as mixed finite element has been21

employed to solve this model [4]. A drawback of both the conforming finite element22

method and mixed finite element method is that the number of the degrees of freedom23

is extremely large and high order polynomial has to be used in the basis function, which24

is more pronounced for three dimensional problems; See e.g., the finite element for25

three-dimensional strain gradient model proposed in [27] contains 192 degrees of26

freedom for the local finite element space.27

A common approach to avoid such difficult is to use the nonconforming finite28

element. For scalar version of such problem, there are a lot of work since the orig-29

inal contribution [26], and we refer to [10,16,30] and the references therein for30

recent progress. The situation is different for the strain gradient elastic model. The31

well-posedness of the corresponding boundary value problem hinges on a Korn-like32

inequality, which will be dubbed as H2-Korn’s inequality. Therefore, a discrete H2-33

Korn’s inequality has to be satisfied for any reasonable nonconforming finite element34

approximation. We prove a H2-Korn’s inequality for piecewise vector fields as Bren-35

ner’s seminal H1 Korn’s inequality [9]. Motivated by this discrete Korn’s inequality,36

we propose two nonconforming H2-finite elements, which are H1-conforming. Both37

elements satisfy the discrete H2-Korn’s inequality. We prove that both elements con-38

verge in energy norm uniformly with respect to the small perturbation parameter.39

Numerical results also confirm the theoretic results.40

It is worth mentioning that Soh and Chen [29] constructed several noncomforming41

finite elements for this strain gradient elastic model. Some of them exhibited excellent42

numerical performance. Their motivation is the so-called C0−1 patch test, which is43

obviously different from ours. It is unclear whether their elements are robust with44

respect to the small perturbation parameter, which may be an interesting topic for45

further study. As to various numerical methods based on reformulations of the strain46

gradient elastic model, we refer to [6,31] and the references therein.47

The remaining part of the paper is organized as follows. In the next part, we intro-48

duce the linear strain gradient elasticity and prove the well-posedness of its Dirichlet49

boundary value problem by establishing a H2-Korn inequality. A discrete H2-Korn50

inequality is proved in Sect. 3, and two finite elements are constructed and analyzed51

in this part. The numerical results can be found in Sect. 4.52

Throughout this paper, the generic constant C may differ at different occurrences,53

while it is independent of the microscopic parameter ι and the mesh size h.54
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2 The Korn’s inequality of strain gradient elasticity55

The space L2(Ω) of the square–integrable functions defined on a bounded polygon56

Ω is equipped with the inner product (·, ·) and the norm ‖ · ‖L2(Ω). Let Hm(Ω) be the57

standard Sobolev space [1] and58

‖v‖Hm (Ω) =
m

∑

k=0

|v|2
H k (Ω)

and |v|2
H k(Ω)

=
∫

Ω

∑

|α|=k

|∇αv|2 dx,59

where α = (α1, α2) is a multi-index whose components αi are nonnegative integers,60

|α| = α1 + α2 and ∇α = ∂ |α|/∂x
α1
1 ∂x

α2
2 . We may drop Ω in the Sobolev norm61

‖ · ‖Hm (Ω) when there is no confusion may occur. The space Hm
0 (Ω) is the closure in62

Hm(Ω) of C∞
0 (Ω). In particular,63

H1
0 (Ω): = { v ∈ H1(Ω) | v = 0 on ∂Ω },64

H2
0 (Ω): = { v ∈ H1(Ω) | v = ∂nv = 0 on ∂Ω },65

66

where ∂nv is the normal derivative of v. Equally, ∂tv denotes the tangential derivative67

of v. The summation convention is used for repeated indices. A comma followed by a68

subscript, say i , denotes partial differentiation with respect to the spatial variables xi ,69

i.e., v,i = ∂v/∂xi .70

For any vector-valued function v, its gradient is a matrix-valued function with71

components (∇v)i j = ∂vi/∂x j . The symmetric part of a gradient field is also a72

matrix-valued function defined by73

ǫ(v) =
1

2
(∇v + [∇v]T ).74

The anti-symmetric part of a gradient field is defined as ∇av = ∇v − ǫ(v). The75

divergence operator applying to a vector field is defined as the trace of ∇v, i.e., ∇ ·v =76

tr∇v = ∂vi/∂xi . The Sobolev spaces [Hm(Ω)]2, [Hm
0 (Ω)]2 and [L2(Ω)]2 of a vector77

field can be defined in a similar manner as their scalar counterparts, this rule equally78

applies to their inner products and their norms. For the m-th order tensors A and B,79

we define the inner product as A:B =
∑

i1,...,im
Ai1 Bi1 . . . Aim Bim .80

2.1 Strain gradient elastic model and H2
−Korn inequality81

The strain gradient elastic model in [3,14,28] is described by the following boundary82

value problem: For u the displacement vector that solves83

{

(ι2△ − I ) (µ△u + (λ + µ)∇∇ · u) = f, in Ω,

u = ∂nu = 0, on ∂Ω.
(1)84

Here λ and µ are the Lamé constants, and ι is the microscopic parameter such that85

0 < ι ≤ 1. In particular, we are interested in the regime when ι is close to zero.86
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The above boundary value problem may be rewritten into the following variational87

problem: Find u ∈ [H2
0 (Ω)]2 such that88

a(u, v) = ( f, v) for all v ∈ [H2
0 (Ω)]2, (2)89

where90

a(u, v) = (Cǫ(u), ǫ(v)) + (D∇ǫ(u),∇ǫ(v)),91

and the fourth-order tensors C and the sixth-order tensor D are defined by92

Ci jkl = λδi jδkl + 2µδikδ jl and Di jklmn = ι2
(

λδilδ jkδmn + 2µδilδ jmδln

)

,93

respectively. Here δi j is the Kronecker delta function. The third-order tensor ∇ǫ(v) is94

defined as (∇ǫ(v))i jk = ǫ jk,i . We only consider the clamped boundary condition in95

this paper, the discussion on other boundary conditions can be found in [3,14,28].96

The variational problem (2) is well-posed if and only if the bilinear form a(·, ·) is97

coercive over [H2
0 (Ω)]2.98

Theorem 1 For any v ∈ [H2
0 (Ω)]2, there holds99

C(Ω)

(

‖v‖2
H1 + ι2|v|2

H2

)

≤ a(v, v) ≤ 2(λ + µ)

(

‖v‖2
H1 + ι2|v|2

H2

)

, (3)100

where C(Ω) denpends only on µ and the constant C p in the following Poincaré101

inequality,102

‖v‖L2 ≤ C p‖∇v‖L2 .103

The proof of this theorem essentially depends on the first Korn’s inequality [18,19].104

For any v ∈ [H1
0 (Ω)]2, there holds105

2‖ǫ(v)‖2
L2 ≥ ‖∇v‖2

L2 . (4)106

The proof of this inequality follows from the following identity107

|ǫ(v)|2 − |∇av|2 = |∇ · v|2 + ∇ · [(v · ∇)v − v(∇ · v)]108

with the usual notation109

v · ∇ =
2

∑

i=1

vi

∂

∂xi

.110

Indeed, by the fact v = 0 on ∂Ω , the above identity and divergence theorem imply111

∫

Ω

|∇av|2 dx =
∫

Ω

|ǫ(v)|2 dx −
∫

Ω

|∇ · v|2 dx ≤
∫

Ω

|ǫ(v)|2 dx,112
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which implies the first Korn’s inequality (4) by using the algebraic identity113

|∇v|2 = |ǫ(v)|2 + |∇av|2.114

Proof of Theorem 1 By definition, we write115

a(v, v) = 2µ‖ǫ(v)‖2
L2 + λ‖∇ · v‖2

L2 + ι2
(

2µ‖∇ǫ(v)‖2
L2 + λ‖∇∇ · v‖2

L2

)

.116

The upper bound in (3) immediately follows by noting117

‖ǫ(v)‖2
L2 ≤ ‖∇v‖2

L2 , and ‖∇ · v‖2
L2 ≤ 2‖∇v‖2

L2 .118

For any v ∈ [H2
0 (Ω)]2, we have ∂iv ∈ [H1

0 (Ω)]2 for i = 1, 2, we apply the first119

Korn’s inequality (4) to the vector field ∂iv and obtain120

2‖ǫ(∂iv)‖2
L2 ≥ ‖∇∂iv‖2

L2 .121

Using the fact that the strain operator ǫ and the partial gradient operator ∂i commute,122

we rewrite the above inequality as123

2‖∇ǫ(v)‖2
L2 = 2

2
∑

i=1

‖∂iǫ(v)‖2
L2 = 2

2
∑

i=1

‖ǫ(∂iv)‖2
L2124

≥
2

∑

i=1

‖∇∂iv‖2
L2 = ‖∇2v‖2

L2 .125

Therefore,126

a(v, v) ≥ µ

(

|v|2
H1 + ι2|v|2

H2

)

,127

which together with the Poincaré inequality leads to the lower bound in (3). ⊓⊔128

Proceeding along the same line in [26, §5], we may prove the following regularity129

results for the solution of Problem (2).130

Lemma 1 There exists C that may depend on Ω but independent of ι such that131

|u|H2 + ι|u|H3 ≤ Cι−1/2‖ f ‖L2 , (5)132

and133

‖u − u0‖H1 ≤ Cι1/2‖ f ‖L2 , (6)134

where u0 ∈ [H1
0 (Ω)]2 satisfies135

(Cǫ(u0), ǫ(v)) = ( f, v) for all v ∈ [H1
0 (Ω)]2. (7)136
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3 The nonconforming finite elements137

In this part, we introduce two nonconforming finite elements to approximate the vari-138

ational problem (2). Let Th be a triangulation of Ω with maximum mesh size h. We139

assume all elements in Th is shape-regular in the sense of Ciarlet and Raviart [11].140

Denote the set of all the edges in Th as S(Ω, Th). The space of piecewise [Hm(Ω, Th)]2
141

vector fields is defined by142

[Hm(Ω, Th)]2: = { v ∈ [L2(Ω)]2 | v|T ∈ [Hm(T )]2, ∀T ∈ Th },143

which is equipped with the broken norm144

‖v‖H k
h
: = ‖v‖L2 +

m
∑

k=1

‖∇k
hv‖L2 ,145

where146

‖∇k
hv‖2

L2 =
∑

T ∈Th

‖∇kv‖2
L2(T )

147

with (∇k
hv)|T = (∇kv)|T . Moreover, ǫh(v) = (∇hv + [∇hv]T )/2.148

Brenner [9] established a discrete Korn inequality for any piecewise H1 vector149

fields with weak linear continuity across the common surface between two adjacent150

elements, i.e., for any v ∈ [H1(Ω, Th)]d with d = 2, 3 satisfying151

∫

e

[[v]] · p dτ = 0, p ∈ [P1(e)]d , e ∈ S(Ω, Th).152

There exists a constant C depends on Ω and Th but independent of h such that153

‖v‖H1
h

≤ C
(

‖v‖L2 + ‖ǫh(v)‖L2

)

. (8)154

Here [P1(e)]d is the linear vector field over e and [[v]] denotes the jump of v across e155

with e an edge for d = 2 and a face for d = 3. This inequality is fundamental to the156

well-posedness of the discrete problems arising from nonconforming finite element157

and discontinuous Galerkin method approximation of the linearized elasticity model158

and Reissner–Mindlin plate model; See [15,25] and [17].159

Mardal and Winther [21] improved the above inequality by replacing [P1(e)]d by160

its subspace [P1,−(e)]d given by161

[P1,−(e)]d : = { v ∈ [P1(e)]d | v · t ∈ RM(e) },162

where t is the tangential vector of edge e, and RM(e) is the infinitesimal rigid motion163

on e. In fact, they have proved164
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Two robust nonconforming H2-elements for linear strain…

|v|2
H1

h

≤ C

⎛

⎝‖ǫh(v)‖2
L2 + ‖v‖2

L2 +
∑

e∈S(Ω,Th)

h−1
e ‖[[Πev]]‖2

L2(e)

⎞

⎠ , (9)165

where Πe : [L2(e)]d �→ [P1,−(e)]d is the L2 projection.166

Our result is an H2 analog of the discrete Korn’s inequality (9).167

Theorem 2 For any v ∈ [H2(Ω, Th)]2, there exits C that depends on Ω and Th but168

independent of h such that169

‖v‖2
H2

h

≤ C

(

‖∇hǫh(v)‖2
L2 + ‖ǫh(v)‖2

L2 + ‖v‖2
L2 +

∑

e∈S(Ω,Th)

h−1
e ‖[[Πev]]‖2

L2(e)

+
2

∑

i=1

∑

e∈S(Ω,Th)

h−1
e ‖[[Πe(∂iv)]]‖2

L2(e)

)

.

(10)170

The proof follows essentially the same line that leads to Theorem 1.171

Proof For any v ∈ [H2(Ω, Th)]2, it is clear that ∂iv ∈ [H1(Ω, Th)]2 for i = 1, 2.172

Applying the discrete Korn’s inequality (9) to each ∂iv, we obtain173

|v|2
H2

h

= |∂1v|2
H1

h

+ |∂2v|2
H1

h

174

≤ C

2
∑

i=1

⎛

⎝‖ǫh(∂iv)‖2
L2 + ‖∂iv‖2

L2 +
∑

e∈S(Ω,Th)

h−1
e ‖[[Πe(∂iv)]]‖2

L2(e)

⎞

⎠

175

= C

⎛

⎝‖∇hǫh(v)‖2
L2 + ‖∇hv‖2

L2 +
2

∑

i=1

∑

e∈S(Ω,Th)

h−1
e ‖[[Πe(∂iv)]]‖2

L2(e)

⎞

⎠ .176

177

Invoking (9) once again, we get (10). ⊓⊔178

Motivated by the discrete Korn’s inequality (10), we construct two new finite ele-179

ments that are H1—conforming but H2—nonconforming elements. For such elements,180

the continuity of the tangential derivatives are automatically satisfied, and we only need181

to deal with the weak continuity of the normal derivative. The finite element space is182

defined as183

Vh : = { v ∈ [H1
0 (Ω)]2 | v|T ∈ W (T ) for all T ∈ Th }.184

We shall specify two local finite element spaces W (T ) in the next two parts.185

Given Vh , we find uh ∈ Vh such that186

ah(uh, v) = ( f, v) for all v ∈ Vh, (11)187

where the bilinear form ah is defined for any v,w ∈ Vh as188

ah(v,w): = (Cǫ(v), ǫ(w)) + (D∇hǫ(v),∇hǫ(w)),189
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where the second term is defined in a piecewise manner as190

(D∇hǫ(v),∇hǫ(w)): =
∑

T ∈Th

∫

T

D∇ǫ(v)∇ǫ(w) dx .191

3.1 The first nonconforming element192

Define193

W (T ): = [P2(T )]2 ⊕ bP∗
2 (T ), (12)194

where P2(T ) is the quadratic Lagrange element, and b = λ1λ2λ3 is the cubic bubble195

function, and P∗
2 (T ) ⊂ [P2(T )]2 is defined as196

P∗
2 (T ): = { v ∈ [P2(T )]2 | v · n|e ∈ P1(e) for all e ∈ ∂T }.197

Next lemma gives the degrees of freedom of this element, which is graphically198

shown in Fig. 1, and we prove that the degrees of freedom is W (T )−unisolvent.199

Lemma 2 The dimension of W (T ) is 21. Any w ∈ W (T ) is uniquely determined by200

the following degrees of freedom:201

1. The values of w at the corners and edge midpoints;202

2. The moments
∫

e
∂n(w · t) dτ and

∫

e
∂n(w ·n)τ k dτ for k = 0, 1 and for all e ∈ ∂T .203

Proof Since [P2(T )]2 ∩ bP∗
2 (T ) = {0} and dim P∗

2 (T ) ≥ 9, we conclude204

dim W (T ) ≥ 21. It suffices to show that a function w ∈ W (T ) vanishes if all205

the degrees of freedom are zeros. Note that w|e ∈ [P2(e)]2, with three roots on edge206

e, then we must have w|∂T = 0. Therefore, we may write w = bp with p ∈ P∗
2 (T ).207

Let e be a fixed edge of T , and denote b = λeλ+λ− with λe the barycentric coordinate208

functions such that λe ≡ 0 on e, while λ+ and λ− the remaining two barycentric209

Fig. 1 The degrees of freedom
are point evaluations at the
vertex and midpoint of each
edge, are the moments of the
normal derivative of the normal
component against P1 over each
edge, are the moments of the
normal derivative of the
tangential component along each
edge

123

Journal: 211 Article No.: 0890 TYPESET DISK LE CP Disp.:2017/4/29 Pages: 21 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

Two robust nonconforming H2-elements for linear strain…

coordinate functions. Furthermore, (∇w)|e = (pλ+λ−)|e∇λe. Note that λ+λ−∂nλe210

is strictly negative in the interior of e. Therefore, the condition211

0 =
∫

e

∂n(w · n)τ k dτ =
∫

e

λ+λ−
∂λe

∂n
p · nτ k dτ212

implies that for any e ∈ ∂T and k = 0, 1,213

∫

e

p · nτ k dτ = 0. (13)214

Proceeding along the same line, we obtain, for any e ∈ ∂T ,215

∫

e

p · t dτ = 0. (14)216

Furthermore, using the fact that p · n ∈ P1(e) and (13), we conclude that p · n ≡ 0217

over ∂T .218

Assume that219

p =

⎛

⎝

∑

|α|=2

aαλ
α1
1 λ

α2
2 λ

α3
3 ,

∑

|α|=2

bαλ
α1
1 λ

α2
2 λ

α3
3

⎞

⎠

T

,220

where α = (α1, α2, α3) whose components αi are nonnegative integers and |α| =221

α1 + α2 + α3.222

Using (p · ni )|ei
≡ 0, we obtain, for j = 1, 2, 3,223

(aα, bα) · n j = 0 with α j = 0. (15)224

This means that, for each α with one component equals to 2, the vector (aα, bα) is225

orthogonal to the normal directions of two different edges, which immediately implies226

that such vector (aα, bα) must be zero.227

Next, using the fact that
∫

ei
(p · t) dτ ≡ 0, we obtain, for j = 1, 2, 3,228

(aα, bα) · t j = 0, with α j = 0, αk = 1 for k �= j.229

Invoking (15) once again, we conclude that, for each α with only one zero component,230

(aα, bα) is orthogonal to both the normal direction and the tangential direction of the231

edge indexed with the zero component of α, which must vanish identically. Therefore,232

all aα and bα are zeros, and hence p ≡ 0, equivalently, w ≡ 0. This completes the233

proof. ⊓⊔234

Using the degrees of freedom given in Lemma 2, we may define a local interpolation235

operator ΠT : H2(T ) �→ W (T ). The next lemma shows that this operator locally236

preserves quadratics.237
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Lemma 3

ΠT v = v, v ∈ [P2(T )]2. (16)238

Proof Let
(

T, W (T ),Σ(T )
)

be the finite element triple with Σ(T ) the degrees of239

freedom. By construction, Σ(T ) takes the form as240

Σ(T ) = {d(l)
1 , . . . , d

(l)
12 , d

(m)
1 , . . . , d

(m)
9 },241

where {d(l)
i }12

i=1 are the nodal type degrees of freedom, and {d(m)
i }9

i=1 are the moment242

type degrees of freedom. The basis functions for [P2(T )]2 and bP∗
2 (T ) are denoted243

by {φi }12
i=1 and {ψi }9

i=1, respectively.244

Define a new set of basis functions245

ϕi = φi −
9

∑

j=1

d
(m)
j (φi )ψ j , i = 1, . . . , 12.246

We claim247

W (T ) = span{ϕ1, · · · , ϕ12, ψ1, · · · , ψ9}. (17)248

Note that d
(l)
i (ψ j ) ≡ 0 because ψ j = 0 on ∂T . We obtain {ψ j }9

j=1 are the basis249

functions of W (T ) associated with the degrees of freedom {d(m)
j }9

j=1. For any ϕi ,250

there holds251

d
(l)
j (ϕi ) = d

(l)
j (φi ) −

9
∑

k=1

d
(m)
k (φi )d

(l)
j (ψk) = d

(l)
j (φi ) = δi j ,252

and253

d
(m)
j (ϕi ) = d

(m)
j (φi ) −

9
∑

k=1

d
(m)
k (φi )d

(m)
j (ψk)254

= d
(m)
j (φi ) −

9
∑

k=1

d
(m)
k (φi )δ jk = 0.255

256

This verifies the claim (17).257

Next, we prove the interpolation operator is locally P2 invariant. For any v ∈258

[P2(T )]2, we have the representation259

v =
12
∑

i=1

d
(l)
i (v)φi .260
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Two robust nonconforming H2-elements for linear strain…

By definition,261

ΠT v =
12
∑

i=1

d
(l)
i (v)ϕi +

9
∑

j=1

d
(m)
j (v)ψ j262

=
12
∑

i=1

d
(l)
i (v)φi −

9
∑

j=1

12
∑

i=1

d
(l)
i (v)d

(m)
j (φi )ψ j +

9
∑

j=1

d
(m)
j (v)ψ j263

=
12
∑

i=1

d
(l)
i (v)φi −

9
∑

j=1

(

12
∑

i=1

d
(l)
i (v)d

(m)
j (φi ) − d

(m)
j (v)

)

ψ j264

=
12
∑

i=1

d
(l)
i (v)φi = v,265

266

where we have used the identity267

d
(m)
j (v) = d

(m)
j

(

12
∑

i=1

d
(l)
i (v)φi

)

=
12
∑

i=1

d
(l)
i (v)d

(m)
j (φi ).268

This completes the proof. ⊓⊔269

The above proof actually provides a constructive way to derive the basis function270

of this element.271

3.2 The second nonconforming element272

The second element is almost the same with the first one except that P∗
2 is replaced273

by274

P∗
3 (T ) = { w ∈ [P3(T )]2 | ∇ · w ∈ P0(T ), w · n|e ∈ P1(e) for all e ∈ ∂T }.275

Hence,276

W (T ) = [P2(T )]2 ⊕ bP∗
3 (T ). (18)277

Here P∗
3 (T ) has appeared in [22] to solve Darcy-Stokes flow.278

The following lemma gives the degrees of freedom of this element, and we prove279

it is W (T )−unisolvent.280

Lemma 4 The dimension of W (T ) is 21. Any w ∈ W (T ) is uniquely determined by281

the following degrees of freedom:282

1. The values of w at the corners and edge midpoints;283

2. The moments
∫

e
∂n(w · t) dτ and

∫

e
∂n(w ·n)τ k dτ for k = 0, 1 and for all e ∈ ∂T .284

The proof of this result is slightly different from the direct proof of Lemma 2.285
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Proof Proceeding along the same line that leads to (13) and (14), we obtain that for286

all e ∈ ∂T ,287

∫

e

p · nτ k dτ = 0, k = 0, 1, and

∫

e

p · t dτ = 0. (19)288

Using the fact that (p · n)|∂T ∈ P1 and the first identity of (19), we conclude that289

(p · n)|∂T ≡ 0, which immediately implies290

∫

T

∇ · p dx =
∫

∂T

p · n dτ = 0.291

Since ∇ · p ∈ P0(T ), this implies that p is divergence free. Then there exists a292

polynomial φ ∈ P4(T ) such that p = curlφ. Furthermore, since293

∂tφ|∂T = p · n|∂T = 0,294

which implies that φ is constant along the edge of T . Without loss of generality, we295

assume that φ|∂T ≡ 0. Hence, φ is of the form φ = b ϕ with ϕ ∈ P1(T ). By the296

second identity of (19), we obtain297

∫

e

∂nφ dτ =
∫

e

p · t dτ = 0.298

Note that ∂nφ|e = λ+λ−∂nλe ϕ|e and the fact that λ+λ−∂nλe is strictly negative in299

the interior of the edge e, we conclude that ϕ has a root at each edge, which together300

with the fact that ϕ ∈ P1(T ) yields ϕ ≡ 0, or equivalently w = 0. This completes the301

proof. ⊓⊔302

Proceeding along the same line that leads to (16), we conclude that this noncon-303

forming element also locally preserves quadratics.304

Remark 1 Both elements are endowed with the same degrees of freedom. The structure305

of the local finite element spaces for both element are similar. In fact, the bubble306

functions can be removed by standard static condensation procedure. Therefore, the307

resulting method has only 12 degrees of freedom on each element.308

For any function v ∈ Vh , we obtain a simplified version of the discrete Korn’s309

inequality (10) without all the jump terms, which may be regarded as a H2− analog310

of the discrete Korn’s inequality (8).311

Lemma 5 There exists C depends on Ω and Th , but independent of h such that312

‖v‖H2
h

≤ C
(

‖∇hǫ(v)‖L2 + ‖ǫ(v)‖L2

)

. (20)313

Proof For any function v ∈ Vh , we claim that the jump terms in the right-hand side314

of (10) vanish. Indeed, [[Πev]] = 0 for any e ∈ S(Ω, Th) because v ∈ [H1
0 (Ω)]2. It315

remains to verify that for all e ∈ S(Ω, Th) and i = 1, 2,316
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Two robust nonconforming H2-elements for linear strain…

[[Πe(∂iv)]] = 0. (21)317

We write ∂iv = αi∂nv + βi∂tv, where αi and βi are constants. Hence, it remains to318

show319

[[Πe(∂nv)]] = 0, [[Πe(∂tv)]] = 0, ∀e ∈ S(Ω, Th).320

Since Vh is H1− conforming, it is clear that [[Πe(∂tv)]] = 0.321

For any e ∈ S(Ω, Th), it is clear that RM(e) = P0(e). For any w ∈ [P1,−(e)]2,322

there holds323

w = wnn + wt t, wn ∈ P1(e), wt ∈ P0(e).324

Hence, [[Πe(∂nv)]] = 0, if and only if325

∫

e

[[∂n(v · n)]]τ k dτ = 0, k = 0, 1, and

∫

e

[[∂n(v · t)]] dτ = 0.326

This is true for any v ∈ W (T ) and we prove the claim (21).327

For any v ∈ Vh , it follows from (10) that328

‖v‖H2
h

≤ C
(

‖∇hǫ(v)‖L2 + ‖ǫ(v)‖L2 + ‖v‖L2

)

.329

The inequality (20) follows by using the Poincaré’s inequality and the first Korn’s330

inequality (4):331

‖v‖2
L2 ≤ C2

p‖∇v‖2
L2 ≤ 2C2

p‖ǫ(v)‖2
L2 .332

⊓⊔333

We are ready to prove the coercivity of the bilinear form ah over Vh .334

Theorem 3 For any ι < 1/
√

2, there exists C that depends on the domain Ω and the335

shape regularity of the triangulation Th such that336

ah(v, v) ≥ C(ι2‖v‖2
H2

h

+ ‖v‖2
H1), ∀v ∈ Vh . (22)337

Proof For any v ∈ Vh , using (20), we obtain, there exists C that is independent of h338

such that339

ah(v, v) ≥ 2µ

(

ι2‖∇hǫ(v)‖2
L2 + ‖ǫ(v)‖2

L2

)

340

≥ 2µι2
(

‖∇hǫ(v)‖2
L2 + ‖ǫ(v)‖2

L2

)

+ µ‖ǫ(v)‖2
L2341

≥ C
(

ι2‖v‖2
H2

h

+ ‖v‖2
H1

)

,342

343
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H. Li et al.

which implies (22), where we have used344

‖v‖2
H1 = ‖v‖2

L2 + ‖∇v‖2
L2 ≤ (C2

p + 1)‖∇v‖2
L2 ≤ 2(C2

p + 1)‖ǫ(v)‖2
L2 ,345

in the last step. ⊓⊔346

The following interpolate estimate is a direct consequence of the quadratics invari-347

ance of the local finite element spaces W (T ); The proof is standard, and we refer348

to [12] for the details.349

Lemma 6 There exists C independent of h such that for all v ∈ [H k(T )]2,350

‖v − ΠT v‖H j (T ) ≤ Chk− j |v|H k(T ), j = 0, 1, 2, k = 2, 3. (23)351

A global interpolation operator Ih : H k(Ω) �→ Vh is defined by (Ih)|T = ΠT .352

3.3 Convergence analysis353

We are ready to prove the main result of this paper.354

Theorem 4 Assume that the weak solution of u of the problem (2) belongs to355

[H2
0 (Ω)]2 ∩[H3(Ω)]2. Let uh be the solution of (11). Then there exists C independent356

of ι and h such that357

|||u − uh |||ι,h ≤

{

C(h2 + ιh)|u|H3 ,

Ch(|u|H2 + ι|u|H3),
(24)358

where |||v|||2ι,h : = ah(v, v) for any v ∈ Vh .359

Proof By the the theorem of Berger, Scott, and Strang [8], we have360

|||u − uh |||ι,h ≤ inf
v∈Vh

|||u − v|||ι,h + sup
w∈Vh

Eh(u, w)

|||w|||ι,h
, (25)361

where Eh(u, w) = ah(u, w) − ( f, w).362

By the interpolate estimate (23), we obtain363

inf
v∈Vh

|||u − v|||ι,h ≤ |||u − Ihu|||ι,h ≤

{

C(h2 + ιh)|u|H3 ,

Ch(|u|H2 + ι|u|H3).
(26)364

Next, we focus on the estimate of the consistency error. We write κi jk =365

(∇ǫ(u))i jk = ∂xi
ǫ jk(u). The stress and couple stress are defined by σ = Cǫ(u)366

and τ = D∇ǫ(u), respectively. Or367

σi j = Ci jklǫkl(u) and τi jk = Di jklmnκlmn(u).368
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Two robust nonconforming H2-elements for linear strain…

By the symmetry of the tensors C and D, there holds369

σi j = σ j i and τi jk = τik j .370

By the chain rule and the symmetry of C and D, we obtain, on each element T and371

for any w ∈ Vh ,372

Cǫ(u) : ǫ(w) + D∇ǫ(u) : ∇ǫ(w) = σ jkǫ jk(w) + τi jkκi jk(w)373

= σ jkwk, j + τi jkwk,i j374

=
(

(σ jk − τi jk,i )wk

)

, j
− (σ jk, j − τi jk,i j )wk375

+ (τi jkwk, j ),i .376
377

Using the above representation and integration by parts, we obtain378

∫

T

Cǫ(u) : ǫ(w) + D∇ǫ(u) : ∇ǫ(w) dx

=
∫

T

(τi jk,i j − σ jk, j )wk dx

+
∫

∂T

n j (σ jk − τi jk,i )wk dτ +
∫

∂T

niτi jkwk, j dτ.

(27)379

Using the fact wk, j = n j∂nwk + t j∂twk and380

ni t jτi jk∂twk = ∂t (ni t jτi jkwk) − ∂t (ni t jτi jk)wk,381

we obtain382

∫

∂T

niτi jkwk, j dτ =
∫

∂T

ni n jτi jk∂nwk dτ −
∫

∂T

(ni t jτi jk)wk dτ, (28)383

where we have used the fact that the contour integration of tangential derivative along384

the element boundary is zero. By (27), (28) and the continuity of w, we obtain385

Eh(u, w) =
∑

T ∈Th

∫

∂T

ni n jτi jk∂nwk dτ386

=
∑

e∈S(Ω,Th)

∫

e

ni n jτi jk[[∂nwk]] dτ,387

where τi jk = ι2σ jk,i .388

By389

∫

e

[[∂n(w · n)]] dτ = 0 and

∫

e

[[∂n(w · t)]] dτ = 0,390
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we obtain, for k = 1, 2,391

∫

e

[[∂nwk]] dτ = 0.392

Employing the standard trace inequality and scaling argument, we obtain393

|Eh(u, w)| ≤ Ch|τ |H1 |∂nw|H1
h

≤ Cι2h|u|H3 |w|H2
h
.394

Substituting the above estimate and (26) into (25), we obtain (24). ⊓⊔395

Combining the error estimate (24) and the regularity results in Lemma 1, proceeding396

along the same line of [26, Theorem 5.2], we could obtain the following ι−independent397

error estimate398

|||u − uh |||ι,h ≤ Ch1/2‖ f ‖L2 , (29)399

where C is independent of ι and h. We leave the details to the interested readers.400

4 Numerical example401

In this section we provide two numerical examples that show the accuracy of the pro-402

posed elements, and the robustness of the elements with respect to the microscaopic403

parameter ι. The first example is performed on the uniform mesh, while the second404

one is performed on the nonuniform mesh. As a first step toward understanding the405

(a) (b)

Fig. 2 Plots of the mesh. a Is the uniform triangulations with h = 1/16. b Is the nonuniform mesh with
maximum mesh size h = 1/16
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Two robust nonconforming H2-elements for linear strain…

Table 1 The convergence rate of the first element over uniform mesh with λ = µ = 1

ι\h 1/16 1/32 1/64 1/128 1/256 1/512

1e0 2.37e−1 1.38e−1 7.31e−2 3.73e−2 1.87e−2 9.38e−3

Rate 0.79 0.91 0.97 0.99 1.00

1e−1 1.81e−1 1.04e−1 5.47e−2 2.78e−2 1.40e−2 6.99e−3

Rate 0.81 0.92 0.98 0.99 1.00

1e−2 3.44e−2 1.66e−2 8.28e−3 4.15e−3 2.07e−3 1.04e−3

Rate 1.06 1.00 1.00 1.00 1.00

1e−3 1.87e−2 5.25e−3 1.54e−3 5.35e−4 2.26e−4 1.07e−4

Rate 1.83 1.77 1.53 1.25 1.08

1e−4 1.85e−2 4.96e−3 1.27e−3 3.22e−4 8.30e−5 2.29e−5

Rate 1.90 1.96 1.98 1.96 1.86

1e−5 1.85e−2 4.95e−3 1.27e−3 3.19e−4 7.98e−5 2.00e−5

Rate 1.90 1.97 1.99 2.00 2.00

Table 2 The convergence rate of the second element over uniform mesh with λ = µ = 1

ι\h 1/16 1/32 1/64 1/128 1/256 1/512

1e0 2.73e−1 1.67e−1 9.22e−2 4.76e−2 2.40e−2 1.20e−2

Rate 0.70 0.86 0.95 0.99 1.00

1e−1 2.10e−1 1.27e−1 6.91e−2 3.55e−2 1.79e−2 8.97e−3

Rate 0.73 0.88 0.96 0.99 1.00

1e−2 4.01e−2 2.04e−2 1.05e−2 5.30e−3 2.66e−3 1.33e−3

Rate 0.97 0.96 0.98 1.00 1.00

1e−3 2.13e−2 6.10e−3 1.83e−3 6.54e−4 2.84e−4 1.36e−4

Rate 1.80 1.74 1.48 1.20 1.06

1e−4 2.10e−2 5.73e−3 1.48e−3 3.75e−4 9.70e−5 2.70e−5

Rate 1.87 1.95 1.98 1.95 1.85

1e−5 2.10e−2 5.73e−3 1.47e−3 3.71e−4 9.29e−5 2.33e−5

Rate 1.87 1.96 1.99 2.00 2.00

size effect of the heterogeneous materials, we test the proposed elements for a bench-406

mark problem with smooth solution. Tests for realistic problems will appear in the407

forthcoming work.408

Let Ω = (0, 1)2 and409

u1 = (exp(cos 2πx) − e)(exp(cos 2πy) − e),410

u2 = (cos 2πx − 1)(cos 4πy − 1).411

The force f is obtained by (1).412
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Table 3 The convergence rate of the first element over nonuniform mesh with λ = µ = 1

ι\h 1/16 1/32 1/64 1/128 1/256 1/512

1e0 1.26e−1 6.80e−2 3.61e−2 1.87e−2 9.57e−3 4.84e−3

Rate 0.89 0.91 0.94 0.97 0.98

1e−1 9.43e−2 5.08e−2 2.69e−2 1.40e−2 7.14e−3 3.61e−03

Rate 0.89 0.92 0.95 0.97 0.98

1e−2 1.66e−2 7.92e−3 4.05e−3 2.08e−3 1.06e−3 5.35e−4

Rate 1.07 0.97 0.96 0.97 0.99

1e−3 8.24e−3 2.24e−3 6.79e−4 2.52e−4 1.12e−4 5.46e−5

Rate 1.88 1.73 1.43 1.16 1.04

1e−4 8.09e−3 2.09e−3 5.33e−4 1.36e−4 3.56e−5 1.01e−5

Rate 1.95 1.97 1.97 1.94 1.81

1e−5 8.09e−3 2.08e−3 5.31e−4 1.34e−4 3.38e−5 8.48e−6

Rate 1.96 1.97 1.98 1.99 1.99

Table 4 The convergence rate of the first element over nonuniform mesh with λ = 10 and µ = 1

ι\h 1/16 1/32 1/64 1/128 1/256 1/512

1e0 1.09e−1 5.87e−2 3.12e−2 1.63e−2 8.36e−3 4.24e−3

Rate 0.89 0.91 0.94 0.96 0.98

1e−1 8.22e−2 4.43e−2 2.35e−2 1.23e−2 6.30e−3 3.19e−3

Rate 0.89 0.91 0.94 0.96 0.98

1e−2 1.43e−2 6.93e−3 3.58e−3 1.85e−3 9.47e−4 4.79e−4

Rate 1.05 0.96 0.95 0.97 0.98

1e−3 6.67e−3 1.82e−3 5.66e−4 2.18e−4 9.96e−5 4.88e−5

Rate 1.87 1.69 1.38 1.13 1.03

1e−4 6.52e−3 1.67e−3 4.25e−4 1.09e−4 2.87e−5 8.40e−6

Rate 1.97 1.97 1.97 1.92 1.77

1e−5 6.52e−3 1.67e−3 4.23e−4 1.07e−4 2.69e−5 6.75e−6

Rate 1.97 1.98 1.99 1.99 1.99

First, the triangulation of the unit square for the uniform mesh is illustrated in413

Fig. 2a . In Tables 1 and 2, we report the convergence rates for both elements in the414

energy norm |||u − uh |||ι,h/|||u|||ι,h for different values of ι and h with λ = µ = 1. We415

observe that the convergence rate appears to be linear when ι is large, while it turns416

out to be quadratic when ι is close to zero, which is consistent with the theoretical417

prediction in the estimate (24).418

Next, we test both elements over a nonuniform mesh. The initial mesh is generated419

by the function “initmesh” of the partial differential equation toolbox of MATLAB.420

The initial mesh consists of 872 triangles and 469 vertices, and the maximum mesh421

size is h = 1/16; See Fig. 2b. In Tables 3, 4, 5 and 6, we report the convergence rate422

of both elements in the energy norm when λ = µ = 1 and λ = 10, µ = 1. It seems423
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Table 5 The convergence rate of the second element over nonuniform mesh with λ = µ = 1

ι\h 1/16 1/32 1/64 1/128 1/256 1/512

1e0 2.50e−1 1.44e−1 8.06e−2 4.29e−2 2.20e−2 1.11e−02

Rate 0.80 0.84 0.91 0.96 0.98

1e−1 1.88e−1 1.08e−1 6.02e−2 3.20e−2 1.64e−2 8.30e−3

Rate 0.80 0.84 0.91 0.96 0.98

1e−2 3.14e−2 1.65e−2 9.04e−3 4.77e−3 2.44e−3 1.23e−3

Rate 0.92 0.87 0.92 0.97 0.99

1e−3 1.34e−2 3.79e−3 1.24e−3 5.11e−4 2.48e−4 1.24e−4

Rate 1.82 1.62 1.27 1.04 1.00

1e−4 1.31e−2 3.43e−3 8.85e−4 2.28e−4 6.06e−5 1.82e−5

Rate 1.93 1.96 1.96 1.91 1.74

1e−5 1.31e−2 3.43e−3 8.80e−4 2.23e−4 5.61e−5 1.41e−5

Rate 1.93 1.96 1.98 1.99 1.99

Table 6 The convergence rate of the second element over nonuniform mesh with λ = 10 and µ = 1

ι\h 1/16 1/32 1/64 1/128 1/256 1/512

1e0 2.47e−1 1.35e−1 7.41e−2 3.99e−2 2.09e−2 1.07e−2

Rate 0.87 0.86 0.89 0.93 0.97

1e−1 1.87e−1 1.02e−1 5.59e−2 3.00e−2 1.58e−2 8.07e−3

Rate 0.88 0.86 0.89 0.93 0.97

1e−2 3.19e−2 1.59e−2 8.53e−3 4.55e−3 2.37e−3 1.21e−3

Rate 1.01 0.90 0.90 0.94 0.97

1e−3 1.43e−2 3.92e−3 1.25e−3 5.04e−4 2.43e−4 1.23e−4

Rate 1.87 1.65 1.31 1.05 0.99

1e−4 1.41e−2 3.63e−3 9.32e−4 2.39e−4 6.34e−5 1.88e−5

Rate 1.96 1.96 1.96 1.92 1.75

1e−5 1.41e−2 3.63e−3 9.29e−4 2.35e−4 5.92e−5 1.49e−5

Rate 1.96 1.97 1.98 1.99 1.99

the convergence rate is the same with that over the uniform mesh. The first element is424

slightly more accurate than the second one, in particular over the nonuniform mesh.425

5 Conclusion426

We prove a Korn-like inequality and its discrete analog for the strain gradient elastic427

problem, which is crucial for the well-posedness of the underlying variational problems428

as the Korn’s inequality for the linearized elasticity. Guided by the discrete Korn’s429

inequality, we constructed two nonconforming elements that converge uniformly in430

the microscopic parameter with optimal convergence rate. Numerical experiments431
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validate the theoretical results. The extension of the elements to three dimensional432

problem and to high order would be very interesting and challenging. Applications433

of these elements to realistic problem in strain gradient plasticity is another topic434

deserves further pursuit. We leave all these issues in a forthcoming work.435
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