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Abstract. We study three quasicontinuum approximations of a lattice model for crack propaga-

tion. The influence of the approximation on the bifurcation patterns is investigated. The estimate of

the modeling error is applicable to near and beyond bifurcation points, which enables us to evaluate

the approximation over a finite range of loading and multiple mechanical equilibria.
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1. Introduction. In recent years multiscale models have undoubtedly become

one of the most important computational tools for problems in materials science. Such

multiscale models allow atomistic details of local defects, while taking advantage of

the efficiency of continuum models to handle the calculations in the majority of the

computational domain. One remarkable success in multiscale modeling of materials

science is the quasi-continuum (QC) method [42], which couples a molecular mechanics

model with a continuum finite element model. The QC method has motivated a lot

of recent works on multiscale models of crystalline solids [21, 1, 44, 40, 22].

Meanwhile, there has been considerable interest from the applied mathematics

community to analyze the stability and accuracy of QC type methods [26, 16, 15, 30,

31, 10, 11, 14, 39, 5, 33, 32, 9, 27, 25]. Various important issues, such as the ghost

forces and stability, have been extensively investigated. One major weakness of all

the existing results, however, is that they are only applicable to a system near one

local minimum with a fixed load. This significantly limits the practical values of these

analysis. First, for any given loading condition, there are typically a large number of

local mechanical equilibria, even for a relatively simple system [20]. Second, often of

interest in practice is the transition of the system as the loading condition changes.

Examples include phase transformation [17], crack propagation and kinking [6, 8] and

dislocation nucleation [36], etc. Throughout these processes, the system is driven

from a stable equilibrium to a critical point, where the system loses its stability, and
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then settles to another equilibrium.

Fortunately, the theory of bifurcation [41, 4, 19, 2, 7, 28] provides a rigorous

tool to understand the transition processes. The theory considers models, either

static or dynamic, with certain embedded parameters, which for mechanics problems,

naturally correspond to the external loading conditions. Bifurcation arises when the

system loses its stability, and it is a ubiquitous phenomenon in mechanics [29]. A

reduction procedure is available [4] to probe the transition process. Of particular

interest in this context is the bifurcation diagram, consisting of bifurcation curves for

a wide range of parameters. The curves contain local equilibria, including both stable

and unstable ones. As a result, the analysis is well beyond local, stable equilibrium.

This is the primary motivation for the current work.

The molecular mechanics model becomes highly indefinite at the bifurcation point,

and the standard analysis is not applicable due to the loss of coercivity. In fact, most

existing results relied on even more strict stability conditions. We refer to [16, 31,

11, 14] for related discussion. There are some methods that have sharp stability

conditions [13, 27]. It is also worthwhile to mention that there are some interesting

works that quantify the error of the atomistic/continuum coupling methods up to the

bifurcation, as well as estimating the error of the critical loads. We refer to [12, 34]

and the references therein. Nevertheless, these analyses do not predict the modeling

error beyond the bifurcation point.

The aim of this paper has been to evaluate the modeling error associated with

multiscale coupling methods. In order to be able to precisely quantify the error, we

considered a one-dimensional fracture model, which is sophisticated enough to model

some aspects of fracture mechanics, and in the meantime, simple enough so that direct

mathematical calculations are amenable. We have chosen to analyze three multiscale

methods, including the original quasi-continuum method, the quasi-nonlocal method

and a force-based method. They represent three major types of methods: energy-

based methods with ghost forces, energy-based methods without ghost forces, and

force-based methods without an associated energy, respectively. A novel aspect of

our analysis is that it is applicable to a wide range of loading conditions, during

which the system may go through bifurcations and experience stability transition.

In particular, the one-dimensional model exhibits a saddle-node bifurcation with two

intrinsic parameters, which in turn determine the bifurcation curve. It has been found

that the original QC method, with the notorious problem of ghost forces, exhibits large

error in predicting the bifurcation curve. The quasi-nonlocal QC method and force-

based method, on the other hand, are quite accurate in this aspect. This suggests that

ghost forces are responsible for the large error. In addition, the quasi-nonlocal QC

method yields better approximations to the bifurcation parameters. We also proposed

arc length parametrization to obtain quantitative estimate for the approximation of

the bifurcation curves.

The first lattice model for fracture has been constructed in [43, 18] to understand
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the atomic aspect of crack initiation, which led to the important concept of lattice

trapping. We have modified the original model so that the QC methods can be

directly applied. The modification is necessary because for the spring constant chosen

in the original model, the corresponding continuum limit is a forth order elliptic PDE,

rather than a second order one. Despite the modification, the qualitative behavior

of the system does not change. In fact, the bifurcation pattern remains the same,

and it is still governed by two parameters. The lattice model considered here is a

simplified molecular mechanics model, as a test problem to study multiscale methods.

In particular, three methods, including the original QC method, the quasi-nonlocal

QC method [40], and a force-based method [21], are considered in this paper. For each

method, we derive an effective equation that describes the bifurcation diagram. This

is in the same spirit as the centre manifold [4], a tool that significantly reduces the

dimension of the problem. The one-dimensional lattice model, despite its simplicity,

gives rise to bifurcation patterns that resemble those of high dimensional fracture

models [23, 24]. Therefore, it already captures the essential mechanism behind crack

initiation.

This provides a new approach to measure the modeling error: Instead of com-

paring the atomic displacement, which may not have an error bound near bifurcation

points, we compare the bifurcation curves. Intuitively, when the bifurcation curves

are accurately produced, the transition mechanism is well captured. To quantitatively

estimate the error in predicting the bifurcation curves, we formulate the bifurcation

equations as solutions of some ordinary differential equations. Then, the difference

between the bifurcation curves for the full atomistic model and the coupled models

can be estimated using stability theory of ordinary differential equations. Since this

is a new issue that has not been addressed in previous works, we have chosen the

simple lattice model of fracture to illustrate the ideas. For this particular example,

we are able to find explicitly the parameters in the bifurcation diagram, and make

direct comparisons. The extension to more general problems will be investigated in

future works.

The rest of the paper has been organized as follows. In § 2, we introduce the

lattice model and find the explicit solution of this model. The bifurcation behavior is

also discussed. In § 3, we obtain the bifurcation diagrams of three QC approximations.

In § 4, we quantify the difference among the bifurcation curves.

2. The Lattice Fracture Model.

2.1. The lattice model. We consider a one-dimensional chain model for crack

propagation, which has been used to study the lattice trapping effect [43, 18]. The

system consists of two chains of atoms above and below the crack face. Described

as ’atoms on the rail’ [43], the atoms are only allowed to move vertically. The

displacement of the atoms are denoted by uj , j ≥ 0. This is illustrated in Fig. 2.1.

Each atom of the chain interacts with the two nearest atoms on the left and the

two nearest atoms on the right. In addition, it interacts with the atom below (or
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Fig. 2.1. A schematic of the lattice model. The springs indicate linear interactions between

two atoms. The solid line represents a nonlinear bond at the crack-tip.

above) via a nonlinear force, which is denoted by F (u) and satisfies the following

conditions:

1. κ3 = −F ′(0) > 0;

2. F (u) = 0, if u > ucut;

3. F ∈ C1[0,+∞). In particular, we have F ′(ucut) = 0.

Here ucut is a cut-off distance, and bonds are considered to be broken beyond this

threshold. The first condition states that the nonlinear force, when linearized around

the equilibrium position, has spring constant κ3. The second property is introduced to

allow the bond to break when severely stretched. The last condition is a smoothness

assumption often made in the analysis. The following simple example of F (u) satisfies

all those conditions,

F (u) = − κ3

u2
cut

u(u− ucut)
2χ[0,ucut](u), (2.1)

where χ[0,ucut] is a characteristic function.

To mimic a mode-I loading, a force with magnitude P is applied to the zeroth atom

as well as the atom below. This serves as a traction condition at the left boundary.

We assume that the vertical bonds are already broken for j < n with n the crack-tip

position. This creates an existing crack and allows us to study crack propagation. We

further simplify the model by replacing the nonlinear bonds ahead of the crack-tip by

linear springs with spring constant κ3.

The total potential energy for the upper chain reads as

E = −Pu0 +
∑
j≥0

(κ1

2

(
uj+1 − uj

)2
+
κ2

2

(
uj+2 − uj

)2)
+ nγ0 + γ(un) + κ3

∑
j>n

u2
j ,

where κ1 and κ2 are respectively the force constants for the nearest and next nearest

neighbor interactions. We now explain the various terms in the energy. By assuming
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that the displacement of the upper chain to be exactly the opposite of the displacement

of the lower chain, it suffices to only count the energy of the upper atoms. As a

result, the energy for each vertical bond ahead of the crack-tip is given by: 1
2 κ3

[
uj −

(−uj)
]2

= 2κ3u
2
j . In the total energy, we took half of this energy. The surface energy

density is defined by

γ(u): = −
∫ u

0

F (v)dv,

and we denote γ0: = γ(ucut).

We assume the force constants satisfy

κ1 > 0, κ̄: = κ1 + 4κ2 > 0, κ3 = γ′′(0) > 0. (2.2)

We denote the cracked region as A, and define

LAuj : = κ1(uj+1 − 2uj + uj−1) + κ2(uj+2 − 2uj + uj−2).

Similarly, we denote the un-cracked region be B and define LBuj : = LAuj − 2κ3uj .

The force balance equations are given by

κ1(u1 − u0) + κ2(u2 − u0) + P = 0, (2.3)

κ1(u2 − 2u1 + u0) + κ2(u3 − u1) = 0, (2.4)

LAuj = 0, j = 2, . . . , n− 1, (2.5)

LAun + F (un) = 0, (2.6)

LBuj = 0, j ≥ n+ 1. (2.7)

2.2. The solution near the crack tip. In this section, we study the solution at

the crack tip by eliminating other degrees of freedom. We start with the atoms along

the crack face, where we have a difference equation with the following characteristic

equation

pA(z) = 0, pA(z): = κ2z
4 + κ1z

3 − 2(κ1 + κ2)z2 + κ1z + κ2.

We factor pA(z) as pA(z) = (z − 1)2(z − z0)(z − z−1
0 ), where

z0 = −1− κ1

2κ2
(1−

√
κ/κ1 ).

By (2.2), one can verify that z0 < 1, and z0 and 1/z0 solve

κ2z
2 + (κ1 + 2κ2)z + κ2 = 0. (2.8)

Next we turn to the region ahead of the crack tip, where the characteristic equa-

tion is

pB(z) = 0 with pB(z): = κ2z
4 + κ1z

3 − 2(κ1 + κ2 + κ3)z2 + κ1z + κ2.

5



In this case, the general solutions can be written as

uBj = B1z
j
1 +B2z

j
2, (2.9)

where z1 and z2 are two roots of the characteristic equation that are less or equal to

one. They are selected to ensure that the solution remains bounded as j → +∞. We

focus on the case when all the roots are real. This occurs when κ2 + 8κ2κ3 > 0. This

is not motivated by any physical intuition, but it will simplify the calculations.

Once we have z1 and z2, the polynomial pB(z) can be factored into

pB(z) = κ2(z − z1)(z − z−1
1 )(z − z2)(z − z−1

2 ).

By comparing the coefficients, we find

κ1z1z2 = −κ2(1 + z1z2)(z1 + z2). (2.10)

This equation will be used later to simplify our calculation.

At the interface, we have the matching conditions:

uAi = uBi i = n, n− 1.

For brevity, we drop the superscripts A and B whenever there is no confusion. By

setting j to n− 1, n, n+ 1 and n+ 2 in equation (2.9), we find

un+1 = αun−1 + βun,

and

un+2 = αun + βun+1 = αβun−1 + (α+ β2)un,

where α = −z1z2, β = z1 + z2. For other atoms in this region, the displacement can

be obtained recursively as

uj+1 = αuj−1 + βuj , for any j ≥ n+ 1.

In terms of the strain, these conditions can be expressed as

un+1 − un = −α(un − un−1) + (α+ β − 1)un,

un+2 − un = −αβ(un − un−1) + (αβ + β2 + α− 1)un.
(2.11)

By (2.10), we find

κ1α+ κ2(α− 1)β = 0, 2(κ1 + κ2)α+ κ2(α2 + β2 + 1) = 2κ3α. (2.12)

With these preparation, we are ready to find solutions in the crack region. For

j ≤ n+ 1, we express the solution as

uj = a+ bj + c cosh[jδ] + d sinh[jδ] (2.13)
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with

cosh δ = −1− κ1/(2κ2). (2.14)

In particular, we choose δ = − log z0.

We proceed to derive an equation for un by eliminating all other variables in

LAun. It follows from (2.11) that

LAun = κ2(un+2 − un) + κ1(un+1 − un)

− (κ1 + κ2)(un − un−1)− κ2(un−1 − un−2)

= [κ1(α+ β − 1) + κ2(αβ + β2 + α− 1)
]
un

−
[
κ1(1 + α) + κ2(1 + αβ)

]
(un − un−1)− κ2(un−1 − un−2)

= (α+ β − 1)
(
κ1 + κ2(1 + β)

)
un

−
((
κ1 + κ2(1 + β)

)
(un − un−1) + κ2(un−1 − un−2)

)
, (2.15)

where we have used the identity

κ1(1 + α) + κ2(1 + αβ) = κ1 + κ2(1 + β),

which follows from (2.12). To calculate the second term in (2.15), we use the following

relations that can be easily verified, and the proof can be found in the Appendix.

For any k ∈ Z, there holds

(κ1 + 2κ2)(cosh[kδ]− cosh[(k − 1)δ]) + κ2(cosh[(k − 1)δ]− cosh[(k − 2)δ])

= −κ2(cosh[(k + 1)δ]− cosh[kδ]), (2.16)

and

(κ1 + 2κ2)(sinh[kδ]− sinh[(k − 1)δ]) + κ2(sinh[(k − 1)δ]− sinh[(k − 2)δ])

= −κ2(sinh[(k + 1)δ]− sinh[kδ]). (2.17)

For any k ∈ Z and ρ ∈ R, we define

Fk,ρ(δ): = cosh[(k + 1)δ]− (1− ρ) cosh[kδ]− ρ cosh[(k − 1)δ],

Gk,ρ(δ): = sinh[(k + 1)δ]− (1− ρ) sinh[kδ]− ρ sinh[(k − 1)δ].

Using (2.16) and (2.17) with k = n and ρ = 1− β, we obtain(
κ1 + κ2(β + 1)

)
(un − un−1) + κ2(un−1 − un−2)

=
(
κ+ κ2(β − 2)

)
b− κ2

(
Fn,1−β(δ)c+ Gn,1−β(δ)d

)
.

Substituting the above identity into (2.15), we obtain

LAun = (α+ β − 1)
(
κ1 + κ2(1 + β)

)
un

−
(
κ+ κ2(β − 2)

)
b+ κ2

(
Fn,1−β(δ)c+ Gn,1−β(δ)d

)
.

(2.18)
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It remains to find the parameters b, c and d. First we substitute the expressions

for un+1 − un and un − un−1 into (2.11) and obtain

Fn,α(δ)c+ Gn,α(δ)d = −(1 + α)b+ (α+ β − 1)un. (2.19)

Next we shall use the equations for j = 1, 2 to determine two parameters in uj .

A simple trick is to introduce one more atom to the left, with displacement, u1̄, and

extends the equation to j = 1,

κ1(u2 − 2u1 + u0) + κ2(u3 − 2u1 + u1̄) = 0,

which together with (2.4) leads to u1 = u1̄. This immediately implies

b = −d sinh δ.

Substituting the expression of uj into (2.3), we obtain

(cosh δ − 1) (κ1 + 2κ2(cosh δ + 1)) c+ 2κ2 sinh δ(cosh δ − 1)d+ P = 0.

Using (2.14), we obtain

d = − P

2κ2 sinh δ(cosh δ − 1)
=

P/κ

sinh δ
,

which in turn implies b = −P/κ. Finally, we solve (2.19) 1 with the above expressions

for b and d and obtain

c =
α+ β − 1

Fn,α(δ)
un −

P/κ̄

Fn,α(δ)

(
Gn,α(δ)

sinh δ
− (1 + α)

)
.

Substituting the expressions of b, c and d into (2.18), we obtain an equation for un:

F (un) + κun + ηP = 0 (2.20)

with

κ = (α+ β − 1)

(
κ1 + κ2(1 + β) + κ2

Fn,1−β(δ)

Fn,α(δ)

)
,

and

η =
κ2

κ

(
Gn,1−βFn,α −Fn,1−βGn,α

sinh δFn,α
+ (1 + α)

Fn,1−β
Fn,α

)
+
κ1 + κ2(1 + β)

κ
.

The equation (2.20) is called the effective equation because all other degrees of

freedom have been removed. Of particular interest is the limits of κ and η when n is

large. To this ends, we write(
Fn,α(δ),Gn,α(δ)

)
=
(
Aα(δ), Bα(δ)

)
Kn

1This relation is possible because we have assumed that only the roots with magnitude less than

one in the expression of uj .
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with Aα(δ) = (1 − α)(cosh δ − 1) and Bα(δ) = (1 + α) sinh δ, and the 2 by 2 matrix

Kn is defined by

Kn: =

(
cosh[nδ] sinh[nδ]

sinh[nδ] cosh[nδ]

)
.

A direct calculation gives κ→ κ0 as n→∞ with

κ0 = (α+ β − 1)

(
κ1 + κ2(1 + β) + κ2

A1−β(δ) +B1−β(δ)

Aα(δ) +Bα(δ)

)
.

This is the limit when the length of the crack reaches a macroscopic size. In particular,

we have an expansion of κ as

κ = κ0 −
(α+ β − 1)κ sinh δ

(Aα(δ) +Bα(δ))2
z2n

0 +O(z4n
0 ).

To calculate the limit of η, we write

Gn,1−βFn,α −Fn,1−βGn,α = det

(
Fn,α Fn,1−β
Gn,α Gn,1−β

)
= detKn det

(
Aα A1−β

Bα B1−β

)
= −2(α+ β − 1)(cosh δ − 1) sinh δ. (2.21)

Substituting the above identity into the expression of η, we obtain

η = 1 +
κ2

κ

(β − 2)Fn,α + (1 + α)Fn,1−β
Fn,α

− 2κ2

κ

(α+ β − 1)(cosh δ − 1)

Fn,α
.

A direct calculation gives

(β − 2)Fn,α + (1 + α)Fn,1−β = ((β − 2)Aα + (1 + α)A1−β) cosh[nδ]

= 2(α+ β − 1)(cosh δ − 1) cosh[nδ]. (2.22)

Using the above identity, we rewrite η as

η = 1 +
2κ2

κ

(α+ β − 1)(cosh δ − 1)(cosh[nδ]− 1)

Fn,α

= 1− (α+ β − 1)(cosh[nδ]− 1)

Fn,α
. (2.23)

Letting n go to infinity, we obtain η → η0 with

η0 = 1− α+ β − 1

Aα(δ) +Bα(δ)
.

We also have the following expansion for η:

η = η0 +
2(α+ β − 1)

Aα(δ) +Bα(δ)
zn0 +O(z2n

0 ).

Notice that we have κ0 < 0, since

α+ β − 1 = −(1− z1)(1− z2) < 0, (2.24)

and similarly, we have η0 > 1.
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2.3. Bifurcation behavior. To understand the roles of the parameters κ and

η, we rewrite the reduced equation (2.20) as

κu+ ηP = −F (u). (2.25)

We shall regard κ as an intrinsic material parameter, and P as an external load that

can be varied. Various cases can be directly observed from Fig. 2.2 by comparing

the linear function on the left-hand side and −F (u) on the right-hand side. For

two particular values of P , the linear function becomes tangent to −F (u). They

correspond to two bifurcation points of saddle-node type. In spite of the simplicity

of the one-dimensional lattice model, the bifurcation seems to be quite generic. In

fact, the same type of bifurcations have been observed in two and three-dimensional

lattice models [23], where a sequence of saddle-node bifurcations were observed.

−F(u)

κ u + η P

Fig. 2.2. The solutions of equation (2.20), shown as the intersections of the function −F (u)

and the linear function κu+ηP . Dotted lines: Only one solution exists; The dashed line: There are

three solutions; Solid lines: Two of the three solutions reduce to a repeated root.

In what follows, we will turn to the QC approximation models, and investigate

how the bifurcation diagram is influenced by the QC approximation.

3. Crack-tip Solutions and Bifurcation Curves for the Multiscale Mod-

els. We analyze three QC methods applied to the above lattice model. The calcula-

tion will be carried out as explicitly as possible, with the goal of not overestimating

the error. Due to the discrete nature of the model, the calculation is quite lengthy.

We will only show the full details for the first model, and keep the procedure brief for

the other two models.

3.1. The quasicontinuum method without force correction. The original

QC method [42] relies on an energy summation rule. In the cracked region, the total

energy can be written as a sum of the site energy, i.e., E =
∑
j Vj with

Vj =
κ1

4

(
(uj+1 − uj)2 + (uj−1 − uj)2

)
+
κ2

4

(
(uj+2 − uj)2 + (uj−2 − uj)2

)
.
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Moreover, for the atoms at and behind the crack-tip, an energy functional for the

vertical bonds should be included in the total energy.

un−1

Interface Region

un un+1

0
u

um
m+1u

um−1

Atomistic RegionP

Continuum Region

Fig. 3.1. A schematic illustration of the QC method applied to the lattice model. The local

region (continuum) includes the atoms j < m, and the nonlocal region (atomistic) is defined to

contain atoms j > m. Due to the second nearest neighbor interaction, the interface region involves

three atoms.

The QC method introduces a local region, where the displacement field is repre-

sented on a finite element mesh, and within each element, the energy is approximated

by Cauchy-Born (CB) rule [3]. To separate out the issue of interpolation and quadra-

ture error, we assume that the mesh node coincides with the atom position. In this

case, the approximating energy takes the form of EQC =
∑
iEi, where the summation

is over all the atom sites. We assume that the local region includes atoms j < m− 1,

as indicated in Fig. 3.1, and the approximating energy is given by

Ej =
κ

2

[
(uj+1 − uj)2 + (uj − uj−1)2

]
for j < m− 1

as a result of the CB approximation. In addition, we have

Ej = Vj for m < j < n.

At the interface, the energy functions are given by

Em−1 =
κ1

4

(
(um − um−1)2 + (um−1 − um−2)2

)
+ κ2

(
(um − um−1)2 + (um−1 − um−2)2

)
,

Em =
κ1

4

(
(um − um−1)2 + (um+1 − um)2

)
+
κ2

4

(
(um+2 − um)2 + 4(um − um−1)2

)
.
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We have the following system of equilibrium equations:

κ(u1 − u0) + P = 0,

κ(uj+1 − 2uj + uj−1) = 0, 2 ≤ j ≤ m− 2,

LAuj = 0, m− 1 ≤ j ≤ n− 1,

LAun + F (un) = 0,

LBuj = 0, j ≥ n+ 1.

(3.1)

Around the interface, we have the following coupling equations:
κum−2 − (2κ1 + 17κ2/2)um−1 + κum +

κ2

2
um+1 = 0,

κum−1 − (2κ1 + 5κ2)um + κ1um+1 + κ2um+2 = 0,

κ2

2
um−1 + κ1um − (2κ1 + 3κ2/2)um+1 + κ1um+2 + κ2um+3 = 0.

(3.2)

In practice, the atomistic region should be defined around the crack-tip in a

multiscale coupling method. Because the calculations in this paper are already quite

involved, we only introduced the continuum region to the left of the crack-tip.

To proceed, we notice that in the local region,

uj = C0 + C1j, j = 0, 1, · · · ,m− 1

for certain constants C0 and C1. If we impose the traction boundary condition, then

the solution takes a simpler form as

uj = C0 +
P

κ
(m− j − 1). (3.3)

Adding up all the equations in (3.2), we obtain

(κ1 + κ2)(um+2 − um+1) + κ2(um+3 − um) = −κ(um−2 − um−1) = −P,

where we have used (3.3) in the last step.

We substitute (3.3) into the first two equations of (3.2) and obtain

(κ1 + 9κ2/2)(um − um−1)− κ2

2
(um+1 − um) = −P,

−κ(um − um−1) + κ1(um+1 − um) + κ2(um+2 − um) = 0.

Denote γ = κ/[κ+κ2/2]. We eliminate um−um−1 from the above two equations and

obtain the following linear system.
[
κ1 +

γ

2
κ2

]
(um+1 − um) + κ2(um+2 − um) = −γP,

(κ1 + κ2)(um+2 − um+1) + κ2(um+3 − um+1) = −P.
(3.4)

To proceed, we express the solution in the atomistic region before the crack-tip

in the same form as in the previous section, for j = m− 3, · · · , n+ 1,

uj = a+ bj + c cosh[jδ] + d sinh[jδ]. (3.5)
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We substitute the above ansatz into (3.4) and obtain

(c, d)Km = (P, b)Q, (3.6)

where Q = {qij}2i,j=1 is a 2 by 2 matrix given by

Q: =
1

4κ2


4− 3γ

cosh δ − 1

3γ

sinh δ
(2− γ)κ

cosh δ − 1

(γ + 2)κ− 4κ2

sinh δ

 .

The details are postponed to Appendix A.

Using the fact that K−1
m Kn = Kn−m, we get

Fn,α(δ)c+ Gn,α(δ)d = (c, d)Kn(Aα, Bα)T = (P, b)QK−1
m Kn(Aα, Bα)T

= (P, b)QKn−m(Aα, Bα)T = (P, b)Q (Fn−m,α,Gn−m,α)
T
.

Using (2.19), we represent b in terms of un and P as

b =
α+ β − 1

q21Fn−m,α + q22Gn−m,α + 1 + α
un −

q11Fn−m,α + q12Gn−m,α
q21Fn−m,α + q22Gn−m,α + 1 + α

P.

A direct calculation gives

Fn,1−β(δ)c+ Gn,1−β(δ)d = (q21Fn−m,1−β + q22Gn−m,1−β) b

+ (q11Fn−m,1−β + q12Gn−m,1−β)P.

Now we find the effective equation for un:

F (u) + κqcu+ ηqcP = 0

with

κqc = (α+ β − 1)

(
κ1 + κ2(1 + β) + κ2

q21Fn−m,1−β + q22Gn−m,1−β
q21Fn−m,α + q22Gn−m,α + 1 + α

)
− (α+ β − 1)

κ+ (β − 2)κ2

q21Fn−m,α + q22Gn−m,α + 1 + α
,

and

ηqc = κ2 (q11Fn−m,1−β + q12Gn−m,1−β)

− κ2
(q11Fn−m,α + q12Gn−m,α) (q21Fn−m,1−β + q22Gn−m,1−β)

q21Fn−m,α + q22Gn−m,α + 1 + α

+
(q11Fn−m,α + q12Gn−m,α)

(
κ+ (β − 2)κ2

)
q21Fn−m,α + q22Gn−m,α + 1 + α

.

Let n−m→∞, we obtain κqc → κ0 with the expansion

κqc = κ0 +
2(α+ β − 1)(α+ β − 1−Aα −Bα)κ

(q21 + q22)(Aα(δ) +Bα(δ))2
zn−m0 +O(z

2(n−m)
0 ).
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Proceeding along the same line that leads to (2.21), we obtain

(q11Fn−m,1−β + q12Gn−m,1−β) (q21Fn−m,α + q22Gn−m,α)

− (q11Fn−m,α + q12Gn−m,α) (q21Fn−m,1−β + q22Gn−m,1−β)

= det

[(
Fn−m,1−β Gn−m,1−β
Fn−m,α Gn−m,α

)
Q
]

= det

[(
A1−β B1−β

Aα Bα

)
Kn−mQ

]
= −(α+ β − 1) (2(1− γ)κ− (4− 3γ)κ2) /(2κ2

2).

Using the above identity, we write ηqc as

ηqc =
q11Fn−m,α + q12Gn−m,α

q21Fn−m,α + q22Gn−m,α + 1 + α

(
κ+ (β − 2)κ2

)
+

q11Fn−m,1−β + q12Gn−m,1−β
q21Fn−m,α + q22Gn−m,α + 1 + α

(1 + α)κ2

− (α+ β − 1) (2(1− γ)κ− (4− 3γ)κ2)

2 (q21Fn−m,α + q22Gn−m,α + 1 + α)κ2
.

By (2.22) and (2.14), we get

((β − 2)Fn−m,α + (1 + α)Fn−m,1−β)κ2 = 2(α+ β − 1)κ2(cosh δ − 1) cosh[(n−m)δ]

= (α+ β − 1)κ cosh[(n−m)δ].

Similarly,

((β − 2)Gn−m,α + (1 + α)Gn−m,1−β)κ2 = (α+ β − 1)κ sinh[(n−m)δ].

Using the above two equations, we rewrite ηqc as

ηqc =
q11Fn−m,α + q12Gn−m,α

q21Fn−m,α + q22Gn−m,α + 1 + α
κ

− (α+ β − 1)
q11 cosh[(n−m)δ] + q12 sinh[(n−m)δ]

q21Fn−m,α + q22Gn−m,α + 1 + α
κ

− (α+ β − 1)[(1− γ)κ/κ2 − (2− 3γ/2)]

q21Fn−m,α + q22Gn−m,α + 1 + α
.

Let n−m→∞, we obtain ηqc → ηqc
0 with

ηqc
0 =

(
1− α+ β − 1

Aα(δ) +Bα(δ)

)
q11 + q12

q21 + q22
κ =

q11 + q12

q21 + q22
κ η0.

A direct calculation gives

η0 − ηqc
0 =

4 + 3γ(coth[δ/2]− 1)

2− γ + (γ + 2− 4κ2/κ) coth[δ/2]
η0.

It is clear that ηqc
0 does not coincide with η0 as n−m→∞.

As an example of comparison, we plot the bifurcation diagram for both models

in Fig. 3.2. We chose κ1 = 4, κ2 = 0.4, κ3 = 20, and ucut = 0.5. Clearly, the dia-

gram consists of two saddle-node bifurcation points. Although QC predicts a similar

bifurcation behavior, the difference between the bifurcation curves is significant.
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Fig. 3.2. The bifurcation diagrams for the full atomistic model and QC without force correc-

tions. The middle branch contains unstable equilibrium while the other two branches are stable.

3.2. The quasi-nonlocal quasicontinuum method. The quasi-nonlocal qua-

sicontinuum method (QQC) [40] approximates the energy as follows. For j < m− 1,

the site energy is

Ej =
κ

2

(
(uj+1 − uj)2 + (uj − uj−1)2

)
,

and for j > m, we set Ej = Vj , and at the interface, i.e., for j = m− 1,m,

Ej =
κ2

4
(uj+2 − uj)2 +

κ1

4

(
(uj+1 − uj)2 + (uj − uj−1)2

)
+ κ2(uj − uj−1)2.

The resulting force balance equations are the same with those of the original

QC (3.1) except the interfacial equations:{
κ(um−2 − um−1) + (κ1 + 2κ2)(um − um−1) + κ2(um+1 − um−1) = 0,

(κ1 + 2κ2)(um−1 − um) + κ1(um+1 − um) + κ2(um+2 − um) = 0.
(3.7)

Using a similar procedure that leads to (3.4), we eliminate um−1 − um−2 from (3.7)

and obtain{
(κ1 + 2κ2)(um − um−1) + κ2(um+1 − um−1) = −P,

−(κ1 + 2κ2)(um − um−1) + κ1(um+1 − um) + κ2(um+2 − um) = 0.
(3.8)

Substituting the general expression of uj into the above two equations, we obtain

cosh[(m− 1)δ] c+ sinh[(m− 1)δ] d =
P

κ
+ b = 0. (3.9)

We leave the details for deriving the above equation to the Appendix. An immediately

consequence of the above equation is b = −P/κ, which together with (2.19) yields

Fn,α(δ)c+ Gn,α(δ)d = (α+ β − 1)un + (1 + α)P/κ̄.
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This equation, together with (3.9), gives
c = − sinh[(m− 1)δ]

Gn−m+1,α(δ)

(
(α+ β − 1)un + (1 + α)P/κ̄

)
,

d =
cosh[(m− 1)δ]

Gn−m+1,α(δ)

(
(α+ β − 1)un + (1 + α)P/κ̄

)
.

Substituting the expressions of c and d into (2.19), we obtain

F (un) + κqqcun + ηqqcP = 0

with

κqqc = (α+ β − 1)

(
κ1 + κ2(1 + β) + κ2

Gn−m+1,1−β(δ)

Gn−m+1,α(δ)

)
,

ηqqc = 1− (α+ β − 1)
sinh[(n−m+ 1)δ]

Gn−m+1,α(δ)
.

We expand these two parameters and get

κqqc = κ0 −
2κ(α+ β − 1) sinh δ

(Aα +Bα)2
z2n−2m+2

0 +O(z4n−4m+4
0 ),

ηqqc = η0 +
2(α+ β − 1)Aα

(Aα +Bα)2
z2n−2m+2

0 +O(z4n−4m+4
0 ).

Let n −m → ∞, we obtain κ → κ0 and η → η0. The limits κ0 and η0 are the

same with those of the atomistic model. Namely, QQC gives the correct bifurcation

diagram in the limit, which is confirmed by a comparison of the bifurcation diagram,

as illustrated in Fig. 3.3, where excellent agreement is observed. In fact the bifurcation

curve is indistinguishable from the exact one. To reach this asymptotic regime, the

crack-tip has to be sufficiently far away from the atomistic/continuum interface.

3.3. A force-based quasicontinuum method. The force-based quasicontin-

uum (FQC) method differs from the previous methods lies in the fact that there does

not exist an associated energy. One simple approach to construct a FQC method is to

keep the equations (2.5) through (2.7) in the atomistic region, while the force balance

equations computed from the Cauchy-Born rule are used in the continuum region.

The resulting equilibrium equations are the same with (3.1) except that (3.1)2 is valid

up to j = m, and (3.1)3 is valid from j = m + 1 to j = n − 1. In this case, we still

have

um = um+1 + P/κ, um = um+2 + 2P/κ. (3.10)

Substituting the expression of uj into the above equation, we obtain

(c, d)Km+1 = −(coth δ, 1)(P/κ+ b). (3.11)

Solving the above equations, we get

c =
sinh[mδ]

sinh δ
(P/κ̄+ b), d = −cosh[mδ]

sinh δ
(P/κ̄+ b).
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Fig. 3.3. The bifurcation diagrams for the QC and QQC method.

Substituting the expressions of c and d into (2.19), we obtain

b =
Gn−m,α(δ)

(1 + α) sinh δ − Gn−m,α(δ)

P

κ
+

(α+ β − 1) sinh δ

(1 + α) sinh δ − Gn−m,α(δ)
un.

Finally, we substitute the expressions of b, c and d into (2.18) and obtain

F (un) + κfqcun + ηfqcP = 0

with

κfqc = (α+ β − 1)

(
κ1 + κ2(1 + β) + κ2

Gn−m,1−β(δ)

Gn−m,α(δ)− (1 + α) sinh δ

)
+ (α+ β − 1)

(κ+ (β − 2)κ2) sinh δ

Gn−m,α(δ)− (1 + α) sinh δ
,

and

ηfqc =

(
1 +

(β − 2)κ2

κ

)(
1 +

(1 + α) sinh δ

Gn−m,α(δ)− (1 + α) sinh δ

)
+

(1 + α)κ2

κ

Gn−m,1−β(δ)

Gn−m,α(δ)− (1 + α) sinh δ
.

We expand κfqc as follows.

κfqc = κ0 + 2(α+ β − 1)κ
Aα +Bα − (α+ β − 1) sinh δ

(Aα +Bα)2
zn−m0 +O(z2n−2m

0 ).
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We write ηfqc as

ηfqc = 1− (α+ β − 1) sinh[(n−m)δ]

Gn−m,α(δ)− (1 + α) sinh δ
+

(1 + α) sinh δ

Gn−m,α(δ)− (1 + α) sinh δ
.

Hence we have

ηfqc = η0 +
(3 + α− β) sinh δ

Aα(δ) +Bα(δ)
zn−m0 +O(z2n−2m

0 ).

It is clear that κ→ κ0 and η → η0 as n−m→∞.

3.4. A comparison test. As an example, we continue from the first numerical

test and set n = 104. We computed the coefficients for m = 99, 100, 101, and 102. In

Figure 3.4, the error in predicting the two parameters κ and η from the QC method

is shown. We observe that the error in κ is quite small, and it is further reduced as

m decreases (larger atomistic region). However, the error in η remains finite. We do

not have a direct physical interpretation of this observation.
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log|κ
qc

−κ
0
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η
qc
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0

m

Fig. 3.4. The error of the QC method without force correction. Left panel: The error in

computing κ, shown on a log scale; Right panel: The error in η.

In Figure 3.5, the error from the QQC and FQC methods are shown. We observe

that the error of both parameters for both methods converge exponentially. The QQC

method offers faster convergence, which is consistent with our analysis.

4. Analysis of the Bifurcation Curves. Now we are ready to estimate the

overall error, and we will focus on the error in un because the displacement of any

other atoms can be expressed as a linear function of un as shown in the previous

section. The error for un is the error committed by solving the effective equations

with the approximating parameters κ and η. It follows from Fig. 3.2 and Fig. 3.3 that

there might be multiple solutions of the effective equation with a given load P . In
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Fig. 3.5. The error of the QQC and FQC methods (on a log scale).

addition, there are two points when the derivative with respect to P is infinite. These

two points are exactly the bifurcation points. Therefore, it is difficult to compare un

with its approximations directly for the same loading parameter. In fact, we expect

the error of un to be quite large near the bifurcation points.

Instead of a direct comparison, we propose a different approach, which is mo-

tivated by continuation methods for solving bifurcation problems [37, 38]. More

specifically, we will compare the bifurcation curves as a whole. For this purpose,

we parameterize the bifurcation curve on the P − u plane using arc length, which is

denoted by s. Compared to the parameterization using the load parameter, the new

representation is not multi-valued. First we set the initial point of the curve to (0, 0),

which clearly satisfies the effective equation for any choice of the parameters κ and η.

Next we represent a point on the curve by (P (s), u(s)). To trace out the curve, one

compute the tangent vector

τ(s) =
(
f1(u(s);κ, η), f2(u(s);κ, η)

)
,

where

f1

(
u(s);κ, η

)
= − η√

(F ′(u(s)) + κ)2 + η2
, f2

(
u(s);κ, η

)
=

F ′(u(s)) + κ√
(F ′(u(s)) + κ)2 + η2

.

This can be easily obtained by differentiation the effective equation with respect to

the arc length. Following the curve with s as an independent variable, we obtain the
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following ODEs that describe the bifurcation curve [37]:
d

ds
u(s) = f1

(
u(s);κ, η

)
,

d

ds
P (s) = f2

(
u(s);κ, η

)
,

u(0) = 0, P (0) = 0.

As we have shown in the previous sections, a multiscale method typically gives an

effective equation for un that is of the same form as the exact equation, but with the

approximate parameters κ and η. We denote the approximated values as κ̂ and η̂, and

the corresponding bifurcation curve as
(
P̂ (s), û(s)

)
, respectively. We can describe the

bifurcation curve by the following ODEs:
d

ds
û(s) = f1

(
û(s); κ̂, η̂

)
,

d

ds
P̂ (s) = f2

(
û(s); κ̂, η̂

)
,

û(0) = 0, P̂ (0) = 0.

In this way, the problem has been reduced to a perturbation problem with varying

parameters. Standard theory for ODEs states that the solution is continuously de-

pendent on the parameters [35], provided that the functions f1 and f2 are Lipschitz

continuous. This can be explicitly stated as follows. For any s ∈ [0, S],

|u(s)− û(s)|+ |P (s)− P̂ (s)| ≤ L (|κ− κ̂|+ |η − η̂|) eLS ,

were L is the Lipschitz constant of f1 and f2. In particular, the error in un will

depend continuously on the parameters κ and η, and for the QQC and the FQC, this

error should be exponentially small. More importantly, this estimate is not restricted

to a local minimum.

One remaining issue is estimating the error in the continuum region. For the

current problem, once un is obtained from the bifurcation diagram, the rest of the

degrees of freedom are uniquely determined. This makes it possible to interpret the

error in the continuum region. In the context of bifurcation theory, the effective equa-

tion (2.20) describes a center manifold, where the transition occurs. The remaining

degrees of freedom lie in the stable manifold, and standard methods in numerical

analysis may apply. This issue for more general problems will be addressed in futures

works.

Appendix A. Derivation of Equations (3.6). We firstly introduce a shorthand

notation. For a, x ∈ R, denote

sa(x) = sinh[ax], ca(x) = cosh[ax].
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Proof of (2.16) and (2.17). The identity (2.16) is equivalent to

κ2 (ck+1(δ)− ck−2(δ)) + (κ1 + κ2) (ck(δ)− ck−1(δ)) = 0.

The left-hand side of the above equation can be written into

2sk−1/2(δ)
(
κ2s3/2(δ) + (κ1 + κ2)s1/2(δ)

)
.

Using (2.14), we obtain

κ2s3/2(δ) + (κ1 + κ2)s1/2(δ) = s1/2(δ) (κ2(2c1(δ) + 1) + κ1 + κ2) = 0.

This completes the proof for (2.16).

We omit the proof for (2.17) since it is the same.�

To derive (3.6), we firstly substitute (3.5) into (3.4)2 and obtain{
(κ1 + κ2) (cm+2(δ)− cm+1(δ)) + κ2 (cm+3(δ)− cm+1(δ))

}
c

+
{

(κ1 + κ2) (sm+2(δ)− sm+1(δ)) + κ2 (sm+3(δ)− sm+1(δ))
}
d

= −P − (κ1 + 3κ2)b.

Using (2.16) and (2.17)with k = m+ 2 to simplify the coefficients for c and d, respec-

tively, we obtain a simplified form of (3.4)2 as(
cm+1(δ)− cm(δ)

)
c+

(
sm+1(δ)− sm(δ)

)
d =

P

κ2
+
κ1 + 3κ2

κ2
b. (A.1)

Next we substitute (3.5) into (3.4)1 and obtain{
(κ1 + γκ2/2) (cm+1(δ)− cm(δ)) + κ2 (cm+2(δ)− cm(δ))

}
c

+
{

(κ1 + γκ2/2) (sm+1(δ)− sm(δ)) + κ2 (sm+2(δ)− sm(δ))
}
d

+ (κ1 + (γ/2 + 2)κ2) b = −γP.

(A.2)

A direct calculation yields

κ1 (cm+1(δ)− cm(δ)) + κ2 (cm+2(δ)− cm(δ)) = −2κ2s1(δ)sm(δ),

κ1 (sm+1(δ)− sm(δ)) + κ2 (sm+2(δ)− sm(δ)) = −2κ2s1(δ)cm(δ).

Using the above two equations, we may write the equation (A.2) into(γ
2

[cm+1(δ)− cm(δ)]− 2s1(δ)sm(δ)
)
c+

(γ
2

[sm+1(δ)− sm(δ)]− 2s1(δ)cm(δ)
)
d

= − γ

κ2
P − κ1 + (γ/2 + 2)κ2

κ2
b.

Using (A.1), we simplify the above equation into

sm(δ)c+ cm(δ)d =
3γ

4κ2 sinh δ
P +

(γ + 2)κ− 4κ2

4κ2 sinh δ
b.
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This gives (3.6)1, which together with (A.2) yields (3.6)2.

Appendix B. Derivation of Equation (3.9). To derive (3.9), we firstly sub-

stitute the expression of uj into (3.8) and obtain

(
(κ1 + 2κ2)(cm(δ)− cm−1(δ)) + κ2(cm+1(δ)− cm−1(δ))

)
c

+
(
(κ1 + 2κ2)(sm(δ)− sm−1(δ)) + κ2(sm+1(δ)− sm−1(δ))

)
d = −P − κb,

and {
−(κ1 + 2κ2)(cm(δ)− cm−1(δ))

+ κ1(cm+1(δ)− cm(δ)) + κ2(cm+2(δ)− cm(δ))
}
c

+
{
−(κ1 + 2κ2)(sm(δ)− sm−1(δ))

+ κ1(sm+1(δ)− sm(δ)) + κ2(sm+2(δ)− sm(δ))
}
d = 0.

Using (2.14), we obtain

(κ1 + 2κ2)(cm(δ)− cm−1(δ)) + κ2(cm+1(δ)− cm−1(δ))

= (κ1 + 2κ2 + 2(cosh δ + 1)κ2) (cosh δ − 1)cm−1(δ)

+ (κ1 + 2κ2 + 2κ2 cosh δ)s1(δ)sm−1(δ)

= −κcm−1(δ). (B.1)

Proceeding along the same line that leads to the above identity, we have

(κ1 + 2κ2)(sm(δ)− sm−1(δ)) + κ2(sm+1(δ)− sm−1(δ)) = −κsm−1(δ).

Using the above two equations, we reshape the first equation of (3.8) into (3.9)1.

Using (B.1), we write

− (κ1 + 2κ2)(cm(δ)− cm−1(δ)) + κ1(cm+1(δ)− cm(δ)) + κ2(cm+2(δ)− cm(δ))

= −
{

(κ1 + 2κ2)(cm(δ)− cm−1(δ)) + κ2(cm+1(δ)− cm−1(δ))
}

+
{

(κ1 + κ2)(cm+1(δ)− cm(δ)) + κ2(cm+2(δ)− cm−1(δ))
}

= κcm−1(δ),

where we have used (2.16) with k = m+ 1 in the last step.

Proceeding along the same line that leads to the above identity, we obtain

−(κ1+2κ2)(sm(δ)−sm−1(δ))+κ1(sm+1(δ)−sm(δ))+κ2(sm+2(δ)−sm(δ)) = κsm−1(δ).

Combining the above two equations, we obtain (3.9)2.
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Appendix C. Derivation of (3.11). To derive (3.11), we substitute the expres-

sion of uj into (3.10) and obtain

(
cm+1(δ)− cm(δ)

)
c+

(
sm+1(δ)− sm(δ)

)
d = −P/κ,(

κ1(cm+2(δ)− cm+1(δ)) + κ2(cm+3(δ)− cm+1(δ))
)
c

+
(
κ1(sm+2(δ)− sm+1(δ)) + κ2(sm+3(δ)− sm+1(δ))

)
d

= −(κ1 + 2κ2)(P/κ+ b).

Proceeding along the same line that leads to (B.1), we obtain

κ1 (cm+2(δ)− cm+1(δ)) + κ2 (cm+3(δ)− cm+1(δ)) = −2κ2s1(δ)sm+1(δ),

κ1 (sm+2(δ)− sm+1(δ)) + κ2 (sm+3(δ)− sm+1(δ)) = −2κ2s1(δ)cm+1(δ).

We write the second equation of the coupling conditions as

sm+1(δ)c+ cm+1(δ)d =
κ1 + 2κ2

2κ2 sinh δ
(P/κ̄+ b) = − coth δ(P/κ̄+ b).

This gives (3.11)1.

In addition, we can write the first equation of the coupling equations as(
cm+1(δ)c+ sm+1(δ)d

)
(1− cosh δ) +

(
sm+1(δ)c+ cm+1(δ)d

)
sinh δ = −P/κ̄− b,

which together with (3.11)1 implies (3.11)2.
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