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Cauchy—Born Rule and the Stability of
Crystalline Solids: Static Problems

WEemaN E!, PingBING MING?

Abstract

We study the connection between atomistic and continuunefsdar the elas-
tic deformation of crystalline solids at zero temperatie. prove, under certain
sharp stability conditions, that the correct nonlineasgt#ty model is given by
the classical Cauchy—Born rule in the sense that elastidafiormed states of the
atomistic model are closely approximated by solutions ef ¢bntinuum model
with stored energy functionals obtained from the CauchynBale. The analy-
sis is carried out for both simple and complex lattices, andHis purpose, we
develop the necessary tools for performing asymptoticyaisabn such lattices.
Our results are sharp and they also suggest criteria forribet@f instabilities of
crystalline solids.

1. Introduction

This series of papers[11,17,28,29]and [30] is devoted talhematical study
of the connection between atomistic and continuum modetsystalline solids at
zero temperature. In the present paper, we study the sihgiteation when clas-
sical potentials are used in the atomistic models, and wier tare no defects in
the crystal. In this case the bridge between the atomisticantinuum models is
served by the classical Cauchy—Born rule [6,13,4]. Our robjective is to estab-
lish the validity of the Cauchy—Born rule, for static profiein the present paper
and for dynamic problems in the next paper [11]. In doing se algo establish a
sharp criterion for the stability of crystalline solids wrdtress and this allows us
to study instabilities and defect formation in crystals][29

The characteristics of crystalline solids can be summérzsfollows:
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1. Atoms in solids stick together due to the cohesive for€Gemsequently the
atoms in a crystal are arranged on a lattice. The origin oftiesive force and
the choice of the lattice are determined by the electronicgire of the atoms.
However, once the lattice is selected, its geometry hasfaymd influence on
the mechanical properties of the solid.

2. If the applied force is not too large, the solid deformsttally to respond
to the applied force. In this regime, the mechanical progedf the solid are
characterized mainly by its elastic parameters such addkgemoduli.

3. Above a certain threshold, defects, such as dislocatfons in the crystal.
The structure of the defects are influenced largely by thengéxy of the lat-
tice. However, as we will see in subsequent papers [28] adf {Bis is not
always the case, and more refined considerations about tinee redi the bond-
ing between atoms are sometimes necessary. In this redimenéchanical
properties of the solid are characterized by various bargech as the Peierls
stress for dislocation motion.

This paper is concerned with the second point. In particularare interested
in how the atomistic and continuum models are related to e#tedr in the elastic
regime. Naturally there has been a long history of work ositibypic, going back at
least to Cauchy who derived expressions for the linearielastduli from atom-
istic pair potentials and the well-known Cauchy relatioP8][ Modern treatment
began with the treatise ofddn and Hianc [6]. The basic result is the Cauchy—
Born rule (see Section 2 for details) which establishesaio#l between atomistic
and continuum models for elastically deformed crystalshéhmathematics litera-
ture, Braioes, Dar. Maso and Girroni studied atomistic models using the concept
of I'-convergence [7], and proved that certain discrete funat®owith pairwise
interaction converge to a continuum model. One interesaspect of their work
is that their results allow for fractures to occur in the mialgsee also the work
of Truskivovsky [24]). Buanc, Le Bris and Lions assumed that the microscopic
displacement of the atoms follows a smooth macroscopidatisment field, and
derived, in the continuum limit, both bulk and surface egezgpressions from
atomistic models [5]. Their leading order bulk energy tesrgiven by the Cauchy—
Born rule. Riesecke and Tuew [14] examined a special lattice and spring model.
By extending the work on convexity of continuous functicntal discrete models,
they succeeded quite remarkably in proving that in certanameter regimes, the
Cauchy—Born rule does give the energy of the global minimizéhe thermody-
namic limit. They also identified parameter regimes for \khitis statement fails
and they interpreted this as being the failure of the CauBbyr-rule.

This paper is devoted to a proof that shows that the Cauchyrte is always
valid for elastically deformed crystals, as long as thetrighit cell is used in for-
mulating the Cauchy—Born rule. This statement is intuljivgiite obvious. Indeed
much of the work in this paper is devoted to the existence aadacterization of
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elastically deformed states for the atomistic model, aiglithwhere the stability
conditions, which are the key conditions for our theorenospe in. However, to
formulate the right theorem, it is crucial to understand #lastically deformed
states are in general only local minimizers of the energyghabal minimizers.
This observation is not new (see for example [24,10]) andbeaeeen from the
following simple example.

Consider a chain ol atoms on a line with positions, - - - , Xy (see Fig. 1).
Their total potential energy is given by

Ef{xy, -, Xy} = ZW(%),
i—1

where
Vo=4(r1-r7%

is the Lennard-Jones potential [16] asb the equilibrium bond length. In the ab-
sence of external loading, neglect boundafe&s and consider only the nearest
neighbor interaction, the equilibrium positions of theragoare given approxi-
mately byx; = 21/6je. We will consider the case when the following condition
of external loading is applied: the position of the left-hatom is kept fixed, the
right-most atom is displaced by an amount that we denof&ja3o have a finite
elastic strainDg should scale aBg ~ L = 2/6(N - 1)e.

There are two obvious approximate solutions to this probléma first is a
uniformly deformed elastic state; = j(2%/°c + d) whered = Do/N. The energy
of this state is approximately

E1 ~ (N - 1)Vo(2Y8 + 2V/6Dy/L),

O O undeformed state
O O elastically deformed state
O O O fractured state

Fig. 1. A schematic figure for the one-dimensional chain example

The second approximate solution is a fractured stgte: 21/6je for j < N -1
andxy = 2Y6Ne + Dg. The energy of this state is approximately:

Es ~ Vo(2Y8 + Do/e).
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Obviously for largeN, the fractured state has less energy than the elastically de
formed state. This example indicates that elastically aeéal states are sometimes
only local minimizers at zero temperature. Fractured statay have less energy.
The reason that crystals do not fracture spontaneouslyrdodéing is that the
energy barrier for fracture is too high for real systems.

The fact that we have to deal with local minimizers simplities analysis at
zero temperature, but complicates the situation at finitgperature. In the latter
case, the right approach is to prove that elastically deéorstates are metastable
states. At the present time, this is still d@faiult problem.

With these remarks, we can put previous results as well asethats ob-
tained in this paper into perspective. First of all, we ustind that the counter-
examples constructed by Friesecke and Theil are due to #tabitities of the
lattice which have caused either the onset of plastic dedtiom, phase transfor-
mation, or melting of the lattice. If the system undergoeasghtransformation,
then the Cauchy-Born rule has to be modified using the unibttie new phase.
In other cases, we do not expect elasticity models to applg.Work of Braides
et al. also analyzes global minimizers. The novelty of their waek lin that they
have realized the analytical consequence of the exampteastied above and al-
lowed fracture states in their set-up by choosing the apprate function space
over whichI'-convergence is discussed. Their results in high dimensmmsre
that the atomistic potential satisfies the super-lineawgracondition, a condi-
tion which is rarely met in real solids. The approach thalasest to ours is per-
haps that of Blanc, Le Bris and Lions. Theffdrence is that thegssumedhat
the atomic displacement follows that of a macroscopicaiwesth vector field,
whereas weprovethat this is indeed the case under certain stability cookti
This difference is best seen from a simple example. Consider the teednaes
potential with next nearest neighbor interaction on sqaacktriangular lattices.
As we show below, the stability conditions are satisfied by tittangular lattice
but violated by the square lattice. Therefore, from Theo®k we are able to
conclude that the Cauchy—Born rule is valid on the trianglatice but not on
the square lattice. In [17], we show that the square latidadeed unstable and
spontaneous phase transformation occurs. In contrasgsh#s of [5] are equally
valid for the triangular lattice and the square lattice.rfrra technical viewpoint,
we can view the passage from the atomistic models to theraaunti models as
the convergence of some nonlinear finitéfelience schemes. The work of Blagtc
al. is concerned with consistency. Our work proves convergertoe basic strat-
egy is the same as that ofi&na [22] for proving convergence of finite flerence
methods for nonlinear problems. Besides stability of thedrized problem, the
other key component is asymptotic analysis of the atomistidel. Since we have
at hand a highly unusual finite fterence scheme, we have to develop the neces-
sary tools for carrying out asymptotic and stability aniys this setting. Indeed,
much of the present paper is devoted exactly to that.
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Since this is the first in this series of papers, we will disdusefly the contents
of subsequent papers. In the next paper, we will extend thdtseof the present
paper to dynamic problems. This will allow us to formulate gharp stability cri-
teria for crystalline solids under stress. [29] is a natgralvth of the present paper
and [11], in which we carry out a systematic study of the op$@tstability and
plastic deformation of crystals, includes a classificatibfinear instabilities and
the subsequent nonlinear and atomistic evolution of thetaty[28] is devoted
to the generalization of the classical Peierls—Nabarroehachich is a model of
dislocations that combines an atomistic description orstipesurface and a con-
tinuum description of the linear elastic deformation aweynf the slip surface.
The generalized Peierls—Nabarro model allows us to stuglgdine structure and
dynamics of dislocations and the influence of the underljatiice. Finally [30]
considers the generalization of the classical Cauchy—RBderto low dimensional
and curved structures such as plates, sheets and rods ppitbadions to the me-
chanical properties of carbon nanotubes.

One theme that we will emphasize throughout this series pérzais the in-
terplay between the geometric and physical aspects ofadlipgt solids. As we
said earlier, the geometry of the lattice has a profoundémfite on the physical
properties of the crystal, such as the onset of plastic dedtion, the core structure
and the slip systems of dislocations, and the nature of #heksr However, this is
not the whole story. There are also examples of propertisslafs which are not
reflected at the level of geometry and have to be understabe &tvel of physics,
e.g. the nature of the bonding between atoms. Some of thasesiare discussed
in [28].

2. The Generalities

We will begin with a brief discussion on atomic lattices ahd atomistic po-
tentials of solids.

2.1. Simple and complex lattices

Atoms in crystals are normally arranged on lattices. Comitattice struc-
tures are body-centered cubic (BCC), face-centered c&€], diamond lattice,
hexagonal closed packing (HCP), etc [3]. Under normal erpantal conditions,
i.e. room temperature and pressure, iron (Fe) exists in B@cé, aluminum (Al)
exists in FCC lattice, and silicon (Si) exists in diamondidat

Lattices are divided into two types: simple lattices and ptax lattices.

Simple lattices.Simple lattices are also called Bravais lattices. They thke

form:
d

L(e.0)={x | x= Zvia +0 ' areintegers (2.1)
i1
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Where{a}i":l are the basis vectord,is the dimension, and is a particular lattice
site, which can be taken as the origin, due to the translatiariance of lattices.
The basis vectors are not unique.

Out of the examples listed above, BCC and FCC are simpledattiFor FCC,
one set of basis vectors are

& & &
=—-(0,1,1 =-(1,0,1 ==(1,1,0).
el 2(5 & )5 Q 2(’ b )’ e3 2(5 ’)
For BCC, we may choose
E E &
=2(-1,1,1 ==(1,-11 ==(1,1,-1).
el 2( e & )5 Q 2(5 e )’ e?) 2(5 & )

as the basis vectors. Here and in what follows, weaugedenote the equilibrium
lattice constant.

Another example of a simple lattice is the two-dimensionahgular lattice.
Its basis vectors can be chosen as:

e1=5(1,0), & =s(1/2, V3/2).

Complex lattices.In principle, any lattices can be regarded as a union of con-
gruent simple lattices [12], i.e. they can be expresseddridhm:

L=L(e,0U L(&,0+ p)U--- L(a,0+py)

for certain integek, py, - - , p, are the shift vectors. For example, the two dimen-
sional hexagonal lattice with lattice constarttan be regarded as the union of two
triangular lattices with shift vectop, = &(~1/2, — V3/6). The diamond lattice is
made up of two interpenetrating FCC lattices with shift eeqy, = ¢/4(1 1,1).
The HCP lattice is obtained by stacking two simple hexagtattites with the
shift vectorp;, = &(1/2, V3/6, V6/3). Some solids consist of more than one
species of atoms. Sodium chloride (NaCl), for example, fasalenumber of
sodium ions and chloride ions placed at alternating sitea simple cubic lat-
tice. This can be viewed as the union of two FCC lattices: onéhfe sodium ions
and one for the chloride ions.

In this paper, we focus on the case whea 1. Generalization to high values
of kis in principle straightforward but the technicalities danquite tedious.

2.2. Potentials

We will restrict our attention to classical potentials of florm:
N
Elys o Ynh = VO ) = D 00y, (2.2)
=1
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whereV is the interaction potential between the atog)sandx; are the deformed
and undeformed positions of theh atom respectively often takes the form:

V(s W) = D VaW/e,Yi/e) + ) Va(yi/e, yi/e, Yide) + -+
i, i,j.k

wheres is the lattice constant as before.
Examples of the potentials include:

1. Lennard-Jones potential:
Va(x,y) =Vo(r) and Vz=Vs=---=0,

wherer = |x - y|, and
Vo(r) = 412 - r75),
2. Embeded-atom methods: embeded-atom methods introby @&y ANp Baskes [8,
9] to model realistic metallic systems. The total energysists of two parts:

a function of the electron density and a term that accountshi® repulsive
interaction when atoms get close to each other:

V= Z Fio) + 5 ;vz(ru/s),

wherep; is the electron density around théh atom, and/; is a pair potential,
rij = |[xj — xi|. The density; is usually defined as

pi = Z f(rij).
j#

The functionsf, V, andF are obtained empirically and calibrated by quantum
mechanical calculations.
3. Stillinger—Weber potential [21]

1 1
V= > iZjZVZ(r”/S) * 3 %:(Vs(xi/& Xj/€, Xk/€),

whereV; is a pair potential an; is an angular term which usually takes the
form:

V3(Xi, Xj, Xk) = h(rij, rik, Ok )

where
h(rij, rik, Ojik) = AT )] (costjix + 1/3)2

for some parametersandy, 0ji is angle betweer; — x; andxy — X;.
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4. Tersdf potential: Tersff potential [23] is introduced to describe the open struc-
ture of covalently bonded solids such as carbon and silicdakes the form:

V= :_ZL Z fe(rij/&)(fr(rij /&) + bij fa(rij/£)).

i
Here fc is a cut-df function and
fr(r) = AexpAir), fa(r) = —BexpAar).
The termb;j is a measure of local bond order,
bij = (1+8¢f)20,
where the functio;; is given by

&= Y Tolri/)a@i) exp(rij - ra)’)
ke, |
with

(9)—1+§_C—2
W= 2% %~ @+ (h—cosn)?’

The parameter8, B, 11, A2, 13, B, h, ¢, d andh vary for different materials.

Clearly diferent potentials are required to modeffeiient materials. In this
paper, we will work with general atomistic models, and wd mike the following
assumptions on the potential functions

1. Vs translation invariant.

2. Vis invariant with respect to rigid body motion.

3. Vis smooth in a neighborhood of the equilibrium state.

4. V has finite range and consequently we will consider only adons that
involve a fixed number of atoms.

In fact, our presentation will be limited to potentials tltaintain only two-
body or three-body potentials. However, it is straightfaréito extend our results
to more general potentials that satisfy these conditioasavbid complication in
notation, we will sometimes only write out the three-bodsnte in the expres-
sions for the potential. Extensions to general multi-baglyns should be quite
straightforward from the three-body terms. The first twouasstions are gen-
eral [6], while the latter two are specific technical assuoms. Note that a direct
consequence of the invariance\wiwith respect to rigid body motion is thatis
an even function, i.e.

V(Xl,-'- ,XN) = V(—Xl,--' ,—XN). (23)

This is easily understood sinééis a function of atom distances and angles by
invariance with respect to rigid body motion [15].
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At zero temperature, the atomistic model becomes a mintioizaroblem:

min E{y. - W)

Y1, YN
subject to certain boundary condition
from which we determine the position of every atom. We define
Uj =Yj =X

as the displacement of theth atom under the applied force.

In continuum model of solids, we describe the displacemgra tector field
u. Denote by the domain occupied by the material in the undeformed stéte.
displacement field is determined by a variational problem:

W(Vu(x)) — f(x) - u(x)1dx, (2.4)
[ }

Q

subject to certain boundary conditions. Hevas the stored energy density, which
in general is a function of the displacement gradMuntA very important question
is how to obtainW. In the continuum mechanics literatu¥¥,is often obtained em-
pirically through fitting a few experimental parameterstsas the elastic moduli.
Here we will study howw can be obtained from the atomistic models.

For simplicity, we will concentrate on the case when the qoid boundary
condition is imposed over the material: the displacemeasssimed to be the sum
of a linear function and a periodic function, the linear paidssumed to be fixed.
Extending the analysis to nonperiodic boundary conditi@tpiires substantial
changes of the analysis, since new classes of instabititegsoccur at the bound-
ary.

There are two important length scales in this problem. Ortleadattice con-
stant. The other is the size of the material. Their ratio imalsparameter that we
will use in our estimates below.

2.3. Cauchy—Bornrule

2.3.1. Cauchy—Born rule for simple lattice First of all, let us fix the notations.
We will fix one atom in a perfect lattice as the origin. All otteoms are viewed
as translation of the origin, and we denote the translataor generically as. In
this way, we may writd/,(s) = V2(0, s) andVs(s1, ) = V3(0, 51, ). We assume
thatV is zero if one of thes is zero. Denote

VVa(s1, 82) = (0o, V3(S1, ), 0, Va(S1, 52)).
We let

D; Xi = Xiss — Xis D, Xi = Xi — Xi_s, for ¢=1,2,---,d,
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whered is the dimension of the system, ang,( - - , &) is a fixed basis for the
lattice. Clearly,D; andD; depend ors,. However, using this simplified notation
will not cause confusion.

For complex lattices, we need an additional notation. Assgrihat the lattice
is made up of two simple lattices, one with atoms labeled\tand another with
atoms labeled b, we let:

Dpxf = xP = xf\.
Herex* andx? belong to the same unit cell. The stored energy desiy is a
function ofd x d matrices. Given @ x d matrix A, Wgg(A) is computed by first
deforming an infinite crystal uniformly with displacememagdientA, and then
settingWcg(A) to be the energy of the deformed unit cell

Zyi Y- Yk€(I+A)LnmD V(y| ’ yj ’ yk)
ImD| '

Here D is an arbitrary open domain iRY, L denotes the latticé(e;, 0) defined
in (2.1) andmD| denote the volume ahD.

The key pointin (2.5) is that the lattice is uniformly defaed) i.e. no internal
relaxation is allowed for the atoms mD. This is contrary to the definition of
energy densities in-limits (see [7] and [14]). It is easy to check that this defom
is independent of the choice BX.

The limitin (2.5) can be computed explicitly. For two-bodytentials, we have

Wes(A) = lim. (2.5)

Wea(A) = 5= 3 Valll + A)9). (2.6)

wheres runs over the ranges of the potental 99 is the volume of the unit cell.
For simplicity of notation, we will omit the volume factor subsequent presenta-
tion.

In particular, if the atomistic model is a Lennard-Joneseptial on a one-
dimensional simple lattice, we have

£(12)

where((+) is the Riemann zeta function. See Fig. 2.
For three-body potentials, we have

1 1
Wea(A) (21 L+ AT DL+ A®), (2.7)

Wes(®) = 3 SVs((+ A)se, (1 + A)s). 28)
(s1.%)

For general many-body potentials,

Wes(A) = ;% QZSW Va4 R (0 A (29
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Fig. 2. Solid line: stored energy density obtained from the Lennlmges potential via CB
rule in terms of 1+ A. Dotted line: the original Lennard-Jones potential

For three-body potentials, the variational operatoMbs is:

div(DAWes(VU)) = 3 {82, Va)(st - V)?u + (92, Va)(s - V)2u
(s1.%)

+ 20, Va)(s1 - V)(%2 - V)ul, (2.10)

whered? Vs, da,a,Vs anddz Vs are all evaluated df; + (s1 - V)U, s + (S2 - V)u).

2.3.2. Cauchy—Born rule for complex lattice For a complex lattice, we first as-

sociate with it a Bravais sublattice denotedligyso that the unit cell generated by
the basis vectors coincides with the unit cell of the compdgice. The remaining
lattice points are treated as internal degrees of freedemoted byp. These are
the shift vectors. To simplify the notation, we will assurhattthe complex lattice
is the union of two simple latticek (= 1). To computéNcg(A), we deform the
Bravais sublattice uniformly with deformation gradigntWe then relax the inter-
nal degrees of freedom keeping the position of the defornraddss lattice fixed.
This gives

Weg(A) = mpinW(A, P, (2.11)
where

. 1
WA P = im = D V(i +2RY + 2R Y+ 2P, (212)

Here the summation is carried out fgry;, yy € (I+ A)LnmDandz, z;,z = 0, 1.
We will give two specific examples g for complex lattices. First we con-

sider a one-dimensional chain with two alternating speaiegomsA andB, with

pairwise interactions. We denote the interaction potéb&bwveenA atoms byWaa,
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the interaction potential betwe@&atoms bygg, and the interaction potential be-
tweenA andB atoms by g. Denote the shift of 8 atom from its left neighboring
Aatom byp. ThenWeg(A) = min, W(A, p) with

W(A, p) = > (Vas((L+ A)(j + L) = p) + Vag((1 + A)j& + p))
j€z

+ ) (Van((L+ A)je) + Ves((L+ A)je)),

jeZ

wheree is the lattice constant. Observe that for ayW(A, p) is symmetric with
respectt@* = (1+A)e/2, and therefor@* = (1+A)e/2 is either a local maximum
or a local minimum ofV/(A, p). In the latter case, we have

Wes(A) = > (Vaa((1 + A)je) + Vas(L + A)je)
j€z

+ 2Vas((1 + A)(j + 1/2)e)) (2.13)

at that local minimum.

Next we consider the hexagonal lattice. We again assumeltbeg are two
species of atomg\ andB, located at the open and filled circles in Fig. 3, respec-
tively. As in the one-dimensional case, there are threegénw/(A, p):

Fig. 3. Hexagonal Lattice. Two species of atoms: Atom A and atom B.

W(A, p) = Waa(A) + Wag(A, p) + Wgs(A)

with

WelA) = D" Vil(1+ A)s1, (1 +A)s,) k= AorB,
(s1,%)
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and

Wag(A, p) = > [Vas((l +A)si + p. (1 + A)s2 + P)
(s1,%)

+Vap((I + A)sy + p, (1 + A)sp)

+Vap((I + A)st, (1 + A)s2 + p)l.

A special case of this lattice is the graphite sheet for qarbothat case, there is
only one species of atoms. Henéga, Veg andVag are all equal.

We next derive the Euler—Lagrange equations in this casereTére two sets
of Euler-Lagrange equations. The first comes from the logalmization with
respect to the internal degree of freedpnie. (2.11), which reads:

9pWas(A, p) =0, (2.14)
namely,

D (@, + 0 Vas((1 + A)s1 + p, (1 + A + )
(s1,%2)

+ 0o, Vas((1 + A)s1 + p, (1 + A)Sp)

+ 0, Vap((I + A)st, (1 + A)s2 + p)] = 0. (2.15)

The second Euler—Lagrange equation comes from the mirtimizaroblem (2.4),
div(DaWcg(Vu)) = f, (2.16)

whereDaWcg(A) = Da(Waa(A) + Wag(A, p) + Wag(A)), and fork, «” = Aor B,

2
AV(DAW,e (VU)) = > > (024, Vi (S - V(s - V),
(s1,%)1,j=1
whereagiajvkk/ (x,x” = AorB)is evaluated ats; + (s1 - V)U, S + (2 - V)u).
It follows from the Hellmann—Feynman theorem [27] that

div(DaWag(Vu))

2
= Z Z 20, Vas(s - V)(sj - V)u

(s1.9)1,j=1
+ 102, (VAg + Vi) + Gasa,(Vas + Va))(St - V)(Dap- V)
(s1,%)
+ (Barar(Vag + V3g) + 92, (Vag + V3p))(st - V)(Dap- V)ul,
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whereVag = Vig + V25 + V35 with
Vig = Vag(ss + (St V)U + p(VU), S + (S - V)u + p(Vu)),
V25 = Vag(sy + (st - V)u + p(Vu), S + (2 - V)u),
Vig = Vag(st + (1 - V)U, & + (82 - V)u + p(Vu)),
wherepis obtained from the algebraic equations (2.14).

2.3.3. The elastic sffness tensor For a given stored energy functidicg, the
elastic stifness tensor can be expressed as

0*Weg
Cuss = ————(0 1<a,B,y,6 £d.
Bys aAa,BaAyé( ) Sa.By
If Weg is obtained from a pairwise potential, we have
Capyo = » (V5(Is) 1572 = V5(1) 197°) 8, 555,55, (217)
S
where the summation is carried out for alE (s, - - , ). The above formula is

proven in Lemma 3.2. Discussions for the more general casdsand in Appen-
dix B.

2.4. Spectral analysis of the dynamical matrix

A lot can be learned about the lattice statics and latticeadyos from phonon
analysis, which is the discrete Fourier analysis of lattieees at the equilibrium
or uniformly deformed states. This is standard materia¢ititooks on solid state
physics (see for example [3] and [26]). As we need some ofehmihology, we
will briefly discuss a simple example ofcane-dimensionathain.

Consider the following example:

dy; __av _,, :
MW = _6_y,- =V'(Yjr1 =) = V'(Yj - ¥j-2),
whereM is the mass of the atom. Lg} = je +j, and linearizing the above

equation, we get
&Y _ _
ae V7 (€)¥j+1 = ) +Vj-1)- (2.18)

Letyj(k) = €k~ we obtain
4 ke
2 _ N\ f e
w (k) = MV (¢) sir? >
wherek = 2L with £ = —[N/2], - ,[N/2].

For the more general case, it is useful to define the reciptattize, which
is the lattice of points in th&-space that satisfg“* = 1 for all x € L. The first
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Brillouin zone in thek-space is defined to be the subset of points that are closer to
the origin than to any other point on the reciprocal lattice.

For complex lattices, the phonon spectrum contains bothsimoand optical
branches [3], which will be denoted lay, andw, respectively.

What we really need in the present work is the spectral aisatyshe dynam-
ical matrix, which is the matrix defined by the right-handesiaf (2.18). For the
simple example discussed above, we consider the eigermaibiem:

— ov , ,
&%= —— =V' (Y1 - Y)) = V'(Yj - Yj-0).
9y;
Then
~2 ’” : ke
@2(K) = 4V"' (&) sir? >

The diference between the phonon spectrum and the spectrum of iaendy
ical matrix lies in the mass matrix. If there is only one speaf atoms, the mass
matrix is a scalar matrix. In this case, the two spectra ageséiie up to a scaling
factor. If there are more than one species of atoms, thenatbespectra can be
quite diterent. However, they are still closely related [18,26]. artfgular, the
spectrum of the dynamical matrix will have acoustic andegtbranches, which
will be denoted byw, andw, respectively.

In the general case, the dynamical matrix is defined by theretis Fourier
transform of the Hessian matrix of the potential functiGrwhich is given by

oV
ayi(@)ay;(B)
wherey;(e) denotes ther—th component ofy;. Let Hy = H(X) be the Hessian

matrix at the undeformed state. For a complex lattice with $pecies of atoms,
for example, the Hessian mattiy takes a block form

Ho = (HAA HAB)
0—= £
Hga Hes

H(Y) = {Hap(i, DIY): = )

where
82V

3y (@)ay; (B)
for k,k¥’ = A or B. The dynamical matrix associated with each block is defined
by

{HKK’ }a,b’(iv J) = (X)

N N
(Opelilles = El] ,Z;{HW Japi, )5 2%
fork, k&’ = A or B, X = X;+X(x) with x(«) being the shift vector, anik,} belongs
to the reciprocal space. Obviouslyjs a 2 x 2d block matrix.
Using [18, equation (2.22)], we have thafs Hermitian. Therefore, all eigen-
values are real. Denote Bfw(k)]?} the set of eigenvalues &f. We callw(k) the
spectrum of the dynamical matrix
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2.5. Main results

Let Q be a bounded cube. For any nonnegative integand positive integer
k, we denote byWP(Q; R™) the Sobolev space of mappings 2 — R™ such
that||yllwxe < oo (see [1] for the definition). In particuIaW,';’p(Q; R™ denotes the
Sobolev space of periodic functions whose distributioreivétives of order less
thank are in the spaceP(Q). We write W-P(Q) for W-P(Q; R1) and HY(Q) for
W2(Q).

Summation convention will be used. We will usg to denote the absolute
value of a scalar quantity, the Euclidean norm of a vectorthad/olume of a set.
In several places we denote by|l,, the £, norm of a vector to avoid confusion.
For a vectow, Vv is the tensor with component8\);; = d;v;; for a tensor fields,
divS is the vector with component;S;;. Given any functiory: R4 — R, we

define 5 52
y 2 Y
Day(A) = (7z;) and DRy(A) = (F555)
whereR™? denotes the set of redlx d matrices. We also defing?? as the set
of reald x d matrices with positive determinant. For a mathix {a;j} € R e
define the normiAl: = (52, 29, ai"})l/z.
For anyp > d andm = O define

X: = {veW””z’p(Q; RY N WP, RY) | fv= o},
Q

andY: = W™P(Q; RY).
Let B € R4, Given the total energy functional

1(v): = f {Wes(Vv(x) = f(x) - v(x)}dx, (2.19)

Q

whereWcg(VV) is given by (2.5) or (2.11) witth = Vv, we seek a solution, such
thatu — B - x € X and

[(u) = min I(Vv).
v—B-xeX
The Euler—Lagrange equation of the above minimization lerobs:

{L(v): = —div(DaWcg(VV)) = f in Q,

o (2.20)
v-B-x is periodic on Q.

As to the atomistic model, we assume tjiatx — B - x is periodic forx belongs
to L N 92, whereB = B ® lonxen- TO guarantee the uniqueness of solutions, we
require, for example, for the case there are two specie®ofst
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We write the minimization problem for the atomistic model as

minE{y;, -, Yoy} (2.21)
yeA

where the admissible s¢t is defined as
_ 2N
A= {yeRZNXd | y-x—B-xis periodic forx € L N 9Q andZ:yi = O}.
i=1
The Euler—Lagrange equation associated with the aboveniziafion problem is

T(y) =0
- o 2N (2.22)
y— X —B - xis periodic and fox € L n 9Q and Zyi =0,
i=1
whereT = (Ty,---, Toy) with T; : RAN*d — RY defined by

Ti(y): = —g—;/_ -f(x) 1sis<2N (2.23)

Definition 2.1. The functionvg — B - X € X is aW%> local minimizer ofl if and
only if there exist$ > 0 such that

1(vo) = 1(V)
forall v— B - x € X satisfying
IV = Vollwee < 6.

Definition 2.2. 7o € A is a discret&V>> local minimizer ofE if and only if there
existsé > 0 such that

E(z) < E(9
for all z e A satisfying
|Z_ ZO|1,oo < 6’

where the discret&/>*—norm is defined for any € R2N*¢ excluding the constant
vector by

— 1 . _ 7.
1d1e =& 12@33'@?;!& zj], (2.24)

wherexi; = X — X;j.
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Our main assumption is the following:

Assumption A: There exist two constanty andA,, independent of, such that
the acoustic and optical branches of the spectrum of thendipahmatrix satisfy

wa(K) 2 A1 1K, (2.25)

and
wo(K) 2 Az/e, (2.26)

respectively, wheré is any vector in the first Brillouin zone.

In the next section, we will discuss where the scaling fagtior (2.26) comes
from. In subsequent papers [17] and [29], we will show tha&ssumption A is
violated, then results of the type (2.27) cease to be validr@fore Assumption A
is not only stficient for Theorems 2.1, 2.2 and 2.3, but also essentiallgssy.

Our main results are:

Theorem 2.1.1f Assumption A holds and p> d,m = 0, then there exist three
constants«, k; and § such that for anyB € R%9 with ||B|| < «; and for any
f e Y with||f|lwme £ k2, the problem(2.20)has one and only one solutiarxg
that satisfiedlucg — B - X|lwmezr < 6, anducg is a W local minimizer of the total
energy functionaf2.19)

Theorem 2.2.1f Assumption A holds and p> d,m > 6, then there exist two
constants M and M, such that for anyB € R%>? with ||B]| < M; and for any
f € Y with|/f|lwme £ My, the problem(2.22) has one and only one solutign,

andy is a discrete W local minimizer of the energy function@.2). Moreover,
y° satisfies

I1Y* = Yeglla £ Ce, (2.27)

whereycg = X + Ucg(X). The normj| - ||y is defined as
Il zlla: = £%(Z" Ho )"/ (2.28)

for anyz e R?N*4 excluding the constant vector, wheig is the Hessian matrix of
the atomistic potential at the undeformed state.

We will see later thalf - ||q is a discrete analogue of the' Horm (cf. Lemma
6.4 and Lemma 6.5).

Theorem 2.3.Under the same condition as in Theorem 2.2, if the crystéitkats
a simple lattice, thei2.27)can be improved to

Y - Yeslla < Ce?. (2.29)
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3. The Stability Condition

In this section, we will show that oukssumption A implies thatW/(A, p) sat-
isfies a generalizedegendre—Hadamard conditiokiVe will also discuss explicit
examples of the stability conditions. This allows us to @pjate the dference
between the results of Blamt al. and the results of the present paper.

Lemma 3.1.1f Assumption Ais valid, then WA, p) satisfies thgeneralized Legendre—
Hadamard conditioat the undeformed configuration: there exist two constants
andA,, independent of, such that for ali, 5, £ € RY,

D2W(0. py) DapW(O. po)

¢®nQ)

(f ®n
DpaW(O, p) D2W(O, o)

p );Auﬂzlnlzwzw, (3.1)

wherep, is the shift vector at the undeformed configuration.

Proof. We first note the following equivalent form of (3.1), we calhssumption
B.

— DZW(0, py) is positive definite.
— Weg satisfies the Legendre—Hadamard condition at the undetbcoraigura-
tion:
D2Wea(O)¢ @, £ @) = AR |n[*  forall e R,

The equivalence between (3.1) aAdsumption B is a consequence of the
following simple calculation: ad = 0 andp = p,, we have

2
~[D2W] ' DpaW |

0 !
DmW D2W
_ (DAW - DApW[D2W] 'DpaW 0 | _ (D3Wes O
0 D2W 0 Diw/)

In terms of the elastic gthess tensor, the second conditionrAasSumption B
can also be rewritten as:

CéenéonzAEl|n  forallgpeRrd. (3.2)

Next we prove thaAssumption A implies Assumption B. We only give the
proof for the simple lattice here, while that for the complttice is postponed to
Appendix C since it is much more involved.

Using the translation invariance bf we writeD[ k] as

N
Day[Kl = D" Ha (0, )&,
=
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For the simple lattice, each atom site is a center of invarsjgnmetry. Therefore,
we rewriteD[K] as

Dy, [K] =

NI

N N
D Hey 0, + &%) = " i (0, ) costk - x,).
=1

j=1

By translation invariance, we ha@ﬂ-\‘:l Hay (0, j) = 0. Therefore,
N . N kX
Dmy[k] = JZ:; sz(O, J)(COS(k : Xi) - 1) = _2; sz(O, J) S|r12 T
19 2
J:
+ 22N: Hay (0 j)[(—k' 5) - sirf kX
j:1 ay > 2 2 .
Using the expression @ [26], we have
K- Xj

N Ly
Doy Kl = Capyskshs +2 " Hay (0, j)[(7)2 ~ sir? %]. (3.3)
j=1

Using the basic inequality: cos< 1 — x2/2 + x*/(4!) for all x € R, we have

koxpe o kexp K[
5 1) —si? —- < : (3.4)

Oé( 2 - 12

Using the assumption that has finite range and the fact thag, = O(s72), we
get that there exist independent of andk such that

N . X
2|3 Hoy 0. j)[(%)2 ~ sir? %] < Ce? k",
=t

Substituting the above two equations into (3.3), and ugisgumption A, we
obtain, for anyy € RY andk € RY in the first Brillouin zone,
C(k®n, ke n) z 0" D[Kln - Ce?|k* [
> (A1 - C&2 kD) K2 o’
> (A1/2)IK2 |nf°
where we have used the fact tHais of O(1) since they are in the first Brillouin

zone. The above inequality is homogeneous with respekt ttoerefore, it is also
valid for anyk e RY. This givesAssumption B.
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3.1. Stability condition for the continuum model

We shall prove that (3.2) is valid for the triangular lattiged fails for the
square lattice with the Lennard-Jones potential. We whigeltennard-Jones po-
tential as

V(r) = 42 - r79). (3.5)

The following lemma simplifies the expression of the elastiffness tensor
by exploiting the symmetry property of the underlying ledts.

Lemma 3.2.The elastic stfness tensoc€ is of the form:

Capys = Y (V/(I) 197 = V(1) 1) 187 5,545, - (3.6)

Proof. A direct calculation gives
Capys = Y (V' (1s) 182 = V(1) 1)) IS 5,555,
+ 3 V(18) 197 60y 5.
Using
DaWcg(0) = 0, (3.7)
we have
Z V/(19) 197 60y 55 = SayDaWes(0) = 0.
Thus (3.6) holds.

Using (3.6), we have

Ci111=Cozpp = ) (V' (IS 182 = V(1) 1) I8* 11,

S

(3.8)
Ci122= Cran2= ) (V" (1) 182 = V(1) 1) 18" 517 5/

S

For the triangular lattice, using the above lemma, we obtain

Cé®n.£®n) = Cr(éin; + &n) + 2C1126162mm2
+ Craodéama + Eom)°
= (C1111— C1129(&] + &5175)
+ Craod(é1m + €am2)? + (éam2 + Eam1)].

Using the explicit form ol (3.5), a straightforward calculation gives

C1111—C1120>0 and Ci322> 0.
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C(¢®n,£®1n) = MiN(Ci111— Ci122 C1129)[E202 + Ea15 + (E11 + Eamp2)?
+ (&2 + E0m1)%)

Using the elementary identity:
EMS + Em5 + (Eam1 + Eam2)° + (€2 + Eom)?
1 2 3 1
=5 12 |'l| + 5(.51771 +Emp)? + 5(61772 + &m)?,

we have 2
CEeneen) 2 AlEln|

with A = % min(Cllll— C1122, C]_]_zz) > 0.
For the square lattice, I&t = , = 0, we have

Cé@n.é®n) = Ciazdon; <0

for any&,, n1 # 0 sinceCi122 < 0 by (3.8} and a direct calculation.

If we only consider the nearest neighborhood interactios,haveCii2o =
Ci212 = 0, i.e., the shear modulus of the macroscopic model is zesorafér
to [17] for discussions on the manifestation of this indighi

3.2. Stability condition for the atomistic model
We will checkAssumption A for N x N triangular and square lattices. Write

(k) = 22(K). (3.9)

A straightforward calculation gives, in the case of trialaguiattice with nearest
neighbor interaction

AK) =ala++y - ((@-p?+B-7)7+ - a)P)?/V2],
wherea = V" (¢g), and
a = sir? %kl, B = sir? %kg, y = sir %(kl “ ko) (3.10)

with k = (kg, ko).
If the next-nearest neighbor interaction is taken into aotahen

Ak)=(@+b)(a+B+7y)+(c+ d)(?i+,§+3/)
- %([(a— b)(2a - B -y) + (d-)(26- @ -7))?
+3[@-b)B-y) +c-d@-y»"
wherea, 8 andy are the same as (3.10) while

@ = sir? %(kl + ko), B = sir? %(—k1 +2k,), 7 = sir? %(—2|<l + ko),
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and
b=V/(e)e™, c=V/(V3), d=V(V3)(V3e)7?,
where
1+35 16
*=(r53)

For the square lattice, if we only consider the nearest figimteraction, then
we have

(k) =2ae,  A2(K) = 288,

wherea, 8 are defined earlier. Obviously, there does not exist a cohdtauch
that

(k) = AlK].
If we take into account the next-nearest neighbor intevacthen we have

AK)=(@+b)(a+B)+(e+ fa+7y)
~ ((a-b)X(a - B)* + (e~ F2@- A",

where
e=V"(V2s), f=V(V2)(V2e)L,
and
1+25 16
£ (21 + 2—3)

From Fig. 4 we sedssumption A is satisfied by the triangular lattice but
fails for the square lattice. Therefore, our results impittthe Cauchy—Born rule
is valid for the triangular lattice but not for the squardita. Numerical results
show that this is indeed the case [17]. Note that the work ahBét al. does not
distinguish between the two cases.
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Fig. 4. Spectrum of the dynamical matrix corresponding to the largare speed for trian-
gular (left) and square (right) lattices with next-nearesghbor Lennard-Jones interaction.
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Next we turn to complex lattices. Again we will consider a alimensional
chain with two species of atom& and B. We do not assume nearest neighbor
interaction. The equilibrium equations fArandB are:

d2y’
mA—yIA = VAB(yiB - )’iA) + VZ\A(yiAu - Yﬁ)

dt?
- V;-\B(yiL\ - YiB—1) - V;\A(Yﬁ - YiA—1),
dzle ’ B ’ B B
MG = VasVi1 = ¥P) + Vis(o, - ¥P)

— Vas(E — ¥ — Vig(y? - y2)).

We may assumai, = mg = 1 since we concern the spectrum of the dynamical
matrix. Lety® = is + ¥* andy? = ie + p+ ¥, linearizing the above equation, and
using the Euler—Lagrange equation for optimizing with extgo the shiftp, we
obtain

d«v’

d—? = Vie(P)F = 1) — Vie(e = PO = V)
+ V@) Vi1 — 0 + V),

dzy;B ’” B ’”

5z = VAsle P01 V) — VAe(POT - 1)

+ VgB(a)@ﬁl - 2y7 +ViB—1)-
LetVA = gad®e-wY andy? = gge®io-w, we get
D[K|(ea. £8)" = (0,0)"

with
Du1 = o? = AVy,\(8) it & — V/(g(p) = Vigle - P),
D12 = V(e — PEX + Vip(p)eP,
D21 = Vig(e — P + Vig(p)e P,
D22 = w? — 4Vgg(e) Sint & — Via(p) — Vig(e — p).

Solving the equation d&fk] = 0 we get
W2 = V) + VRN ST 2 + Z(VRe(P) + Viale — D)
& [40Ve(e) ~ Via(e) il 2
+ (VEa(P) + Via(e -~ P - AVEa(PViele — Py s 2]

We have, for ank € R,
ewo(K) = ew,(K) 2 As (3.12)
with 1
Azl = E(VKB(p) + V(e - p)*e.
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Next we write the acoustic branch as
W3(K) = w? (K) = [, (K- (K)]?/ws (K).
A direct calculation gives

V;.\'B( p)VA’B(s -p)
V'A,B(p) + V/’_\’B(g -p)

 (VEa(P) + Viale - P Sir? 2.

[, 012 2 4VZa(e) + Vig(e) +

We boundw? as
? < 2(VAa(P) + V(e — P)) + g(sinke/2)
with
2 1 1/2
9(): = ((V8a(e) = VAaE) T + SVia(P)Visle — P)) It
+ (Via(e) + Vgg(e)?  forall 0sts<1l.

Therefore, we estimateZ as

VXB(D)VXB(S -p) ) i ke

W2(K) = Ko(V2A(e) + Via(e) + -
a( ) 2( AA( ) BB( ) VXB(p) +VXB(8_ p) 2

where 5 )
2= 2[Vae(P) + Vag(e — Pl
[Vig(p) + Vig(e — P)] + g(sin)
Obviously,

2[Vie(P) +Vigle-P] .
[Vie(P) + Vigle - Pl +9(1)
Itis seen thaK is independent of.

Using the basic inequality

Kz 2

sinx _ 2
_Z_
X

we obtain, fork in the first Brillouin zone, i.eke| £ /2,

T
forall [x] £ =,
||_2

Via(P)Visle — p) \1/2] . ke
wa(K) = VK(VIA(E) + Vig(e) + — A2 AB sm—'
a( ) ( AA( ) BB( ) VXB(p) +VXB(‘9_ p) 2
2 A1lK, (3.12)

where

VK

e

VXB(p)VXB(S -p) 12

A
' Vis(P) + Vig(e - P)

(VXA(S) + Vigg(e) +

It is obvious thatA; is independent of.
In view of (3.12) and (3.11), we veriffsssumption A.
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In the general case, the factotelin w, is a consequence of scaling: if we take
the lattice constant to b@(1), thenw, = O(1). If we take the lattice constant to be
O(¢) as we do, theV”’ () = O(£72), which givesw, = O(s™Y).

In our analysis, it is sfficient to impose stability conditions on rank-one de-
formations only. This is due to the fact that we have fixed thedr part of the
deformation gradient tensor through boundary condititinse allow the linear
part to vary, we have to impose additional stability coratisi with respect to de-
formations of higher rank. In this case, we need to requiattthe elastic moduli
tensor be positive definite. We refer to [19] for a discussion

4. Local Minimizers for the Continuum Model

In this section, we prove Theorem 2.1. The proof is quiteddiath. The main
tool is the implicit function theorem.
The linearized operator of atu is defined by:

Liin(U)V = — div(DZ Wes(VU)VV)
for anyv € W;P(2; RY)
Proof of Theorem 2.1For anyp > d, define the map
T:Yx X>RY with T(f,v):= L(v+B-x)-f.
Without loss of generality, we assume tlgais a unit cube and write
V(X) = Z andZ™  with  ap= f v(X)e Xy
nezd o

Therefore,
f Vv - D2Wcp(0) - Vvdx
Q

d

:471'2 Z Z Caﬁy&ﬂamyanﬁaméfei%(n—m).xdx
Q

a,B,y,0=1 n,mezd
d
= 4 Z Z CapysNayan,an, -

a,B,y,0=1 nezd

By Lemma 3.1, we havAssumption B. Using the above expression, we obtain

f Vv - D2Wes(0) - Vv 2 474 > Inf [anf?
° nezd

=A f |Vv? dx. (4.1)
Q
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Sincefv = 0, using Poincaré’s inequality, we get
Q

f V- D2Weg(0) - Vvelx = CyllviE, (4.2)
Q

whereC; depends o, e.9.C; = An?/(1+ n?). Definex = min(Cy/(2M), 1) with
M = maxacgaa |DEWeg(A)|. If [IB]| < &, then

|D2Wes(B) — DAWes(0)| < MIIB|| < Cy1/2.

Therefore,

f Vv - D2Wcg(B) - Vvdx 2 (C1/2)|MI3- (4.3)

Q
Notice thatT(0,0) = 0. Standard regularity theory for elliptic systems (seé [2]
allows us to conclude thdd, T(0, Q) is a bijection fromX ontoY. Sincep > d,
we know thatW<P(Q; R%) is a Banach algebra [1] for arky> 1. Therefore, it is
easy to verify thaDaWcg is aC? function fromR%d to R4, It follows from the
implicit function theorem [25, Appendix I] that there existo constantsk andr
such that for allf satisfying||f|lwms < r, there exists one and only one solution
v(f) € X that satisfies

T(Ev(f) =0, IMDlm2p=R (4.4)

andv(0) = 0. Finally we letucg = v(f) + B - x. It is clear thatucg satisfies
equation (2.20cg — B - x is periodic ovep2 and

luce — B - Xllwm2r < R (4.5)

Next we show thaticg is actually aw** local minimizer. Using a Taylor
expansion aroundcg and using (2.20) gives

[(v) - I(uce)
1
= f V(v - ucs) - ( f (1 - )DAW(VU')dt) - V(v — ucg)dx, (4.6)
0
Q

whereu' = tv + (1 - t)ucg. Itis clear that
Vu' — B = tV(v — ucg) + Vv(f).

Therefore, there exigtands such that if|f||.» < x and|lv — Ucg|l1.. < 6, then

f V(v - ucs) - DAW(VUY) - V(v — ucs)dx 2 (C1/4)Iv-ucsll  (4.7)
Q
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forany 0<t < 1. It follows from the above inequality and (4.6) that
1(v) - 1(ucs) 2 (C1/4)lIv - ucsll3.

This proves thaticg is aW* local minimizer ofl. O

The next two sections are devoted to the proof of TheoremVEeZfirst con-
struct an approximation solution that satisfies the equilibh equations of the
atomistic problem ir§ 5 with higher-order accuracy. To construct exact solutions
we analyze the stability of the atomistic model. This is dong 6, by first con-
structing and characterizing the nojjm||4, and then proving a perturbation lemma
for this norm. The existence of the solution of the atomistiodel then follows
from the fixed-point theorem.

5. Asymptotic Analysis on Lattices

In this section, we carry out asymptotic analysis on lastidéne results in this
section not only serve as a preliminary step for proving Taen2.2, but also have
interests of their own.

5.1. Asymptotic analysis on simple lattices

We first discuss asymptotic analysis on simple lattices. Asaid earlier, with-
out loss of generality, we will restrict our attention to ttese where the potential
V is a three-body potential. The equilibrium equation at itesiss of the form:

oV

Ls(yi) = _a_y_ = f(Xi), (51)

where

L) = D, [00,V(D}¥:, D3¥;) = 9a, V(D1 ¥is D3 Vi)
(s1,%)

+ 00, V(D1 i, D3 Vi) = 0a, V(D1 Yis,» D2 YI)]-

Here the summation runs over &b, s, ) € L x L. In writing this expression, we
have paired the interaction st ands, directions (see Fig. 5).

The plan is to carry out the analysis in two steps: the firsoigpproxi-
mate (5.1) by dterential equations. The second is to carry out asymptotityais
on these dferential equations.

Assuming thaty; = x; + u(x;) and substituting it into the above equilibrium
equations, collecting terms of the same order, we may write

La(%) = Lo(u(x) + eLa(u(x)) + £ La(u(x)) + O(e’). (5.2)
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- X +
S L K

- +
S, XSy

Fig. 5. A schematic example for the atomic interactions on simptéeks

Lemma 5.1.The leading order operatafy is the same as the variational opera-
tor for Wep.
Moreover,£; = 0 and £, is an operator in divergence form.

Proof. We may rewrite the operataf.(y;) as

Loy) = D, [00:V(D}¥;, D3¥;) — 80, V(D1 Vics, D3¥is,)
(s1,%2)

+0a,V(D1Yi, D3 Vi) = 0a,V(D1Yis,» D3 Yis,)]

= > (D70aV + D305,V)(D}¥;, D5 Y)).
(s1,%)

Denote byd,,V(D1Yi, D3y;) = d,,Vi for j = 1,2. For any smooth functiop(x)
satisfying the periodic boundary condition, after sumoratly parts, we have
N N

DILWPC) == D1 D 9 ViDip(x) + 30, ViDip(x).  (5.3)
i=1 i=1

i=1 (s1,%)
Fix i, for j = 1,2, Taylor expansion at; gives
1
Dip(x) = (s;- V)e(x) + 5(5; - V)’0(x) + O(e?),
Diyi = s + (5 - V)u(xi) + aj + bj + O(s*),
where

aj = %(Sj V)2u(x) and bj= %(Si - 9)%u(x).

In what follows, we omit the argument afandV sinceu is always evaluated
atx; andV is always evaluated &s + (s - V)u(xi), 2 + (2 - V)u(xi)).

6ajVi = aa,jV + ((al + bl)aal + (a2 + bz)aaz)aa,jv

+ %((a1 + b1)da, + (82 + b2)a,) 30,V + O(?).
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Substituting the above four equations into (5.3) and gaibeterms of the
same order, we obtain the expressions for the operdigrg; and £L5:

N N 2
D LouxiNe(x) = =D D" > 80 V(Si - Ve(x),
i=1

i=1 (s1,%) j=1

N N 2
Z Li(u(xi))e(xi) = - Z (8100, + 8204,)30,V(S; - V)e(X)
i=1 i=1 (s1.%) j=1

" %a"iv(sj V) (xi)],
and
N
> La(u(x))e(x)
i=1
N 2
- Z Z Z[(bla"l + bzadz)adjv(sj - V)e(xi)
i=1(s1,%) j=1

1
+ 5(315a1 + 8200,)00, V(S - V)?0(x;)

1

MG

8 V(s - V()]

Passing to the limit, and integrating by parts, we have

2
[ £otwtaretade = [ 373 2, v(s;- Ty
Q

o (%) j=1

2
- Z Z f div(a; VS)p(X)dX,
(s1.%) j=19

which gives

Lo(u) = Z (02,V(S1 - V)2U + 284,0,V(S1 - V)(S2 - V)U
(s1,%2)

+ 05, V(s - V)?u).

We see that’ is the same as the operator that appears in (2.10).
The proof for the fact that the operatgs is of divergence form is similar.
Since each atom site in the simple lattices a center of inversion symmet-
rici.e. if s € L, then-s € L, and thusf; = 0. This can also be proved by a
straightforward but tedious calculation.
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Next we expand the solution
U=Uy+&Us+&Up+--.

Substituting it into (5.2), we obtain the equations @igr u; andu,. The equation
for ug is simply the Euler—Lagrange equation (2.10), apdsatisfies the same
boundary condition as farcg. Therefore,

Up = UcB.
Foru; andu,, we have
Lemma 5.2.u, satisfies
Liin(Uo)uz =0, (5.4)
andu, satisfies
Liin(Uo)uz = —L2(uo). (5.5)

Moreover, ifAssumption A holds, theru; = 0 and there exists a functiam € X
that satisfie¢5.5).

Proof. A straightforward calculation gives
Liin(ug)ug = —L3(ug) = 0.

Using Lemma 5.1, we get (5.4). Using (4.7) witl- O, there exists a constant
such that if|| f||_» < &, thenLy, is elliptic atucg = ug. Thereforep; = 0.
A simple calculation gives

1,6° 5
Liin(Uo)uz = _E(WLZO(UO)UI)Ul - %(Uo)ul — L2(uo) = —L2(uo),

which gives (5.5). It remains to prove that the right-hanigsf (5.5) is orthogonal
to a constant function, namely,

f Lo(Up(x))dx = 0. (5.6)
Q

This is true sincel; is of divergence form, see Lemma 5.1.

As a direct consequence of Lemma 5.1 and Lemma 5.2, we have

Corollary 5.1. Define
Y = X + Uo(X) + £2Ua(X). (5.7)

If f e WoP(Q; RY), then there exists a constant C such that

|£.() - f| < C&. (5.8)
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Proof. Sincef € WeP(Q; RY), using Theorem 2.1, we conclude thigte W8P(Q; RY).
Thereforepp € C7(Q2) by Sobolev embedding theorem. This gives that £2u, €
C5(Q). Therefore,

| L. — Lo(uo + £2Up) — £2Lo(uo + £%uz)| < Ce®,
where the constai@ depends onuo||c7(§). Using.Lo(ug) = f and (5.5), we obtain
| Lo(uo + £2Up) + €2 Lo(Up + £%U2) — f| < C&?,

where the constar@ depends OlﬂUo||C4(§)- A combination of the above two in-
equalities leads to (5.8).

5.2. Asymptotic analysis on complex lattices

Assume that in equilibrium, the crystal consists of two typéatomsA and
B, each of which occupy a simple lattice. Let us express thédikgqum equations
for atomsA andB in the form:

LAY YD) = f()  and L2 YD) = F(xD). (5.9)
We will make the following ansatz:
yi =X U,

VB = VA + avi(XD) + 2V (XY + 3va(x2) + gt () + - - - .
Substituting this ansatz into (5.9), we obtain
LA = %Zf\l(u, V1) + L5(U, V1, V2) + LU, V1, Vo, V3)
+ &2 L5 (U, V1, V2, V3, Vg) + O(%), (5.10)
LB = %f?l(u, Vi) + L8(U, Vi, o) + eLE(U, Vi, Va, V3)
+ 2 L3(U, Vi, V2, Va, Vg) + O(°). (5.11)
Therefore,
LAy rB= :—SL (L2, (u, v1) + £8,(u, V1)) + LA, V1, Vo) + LE(U, Vi, Vo)
+ e[ LU, V1, Vo, V3) + LE(U, Vi, Vo, V)]
+ e[ L5(U, V1, V2, V3, Va) + L5(U, V1, V2, V3, Va) | + O(%).
We will show later that

1. LB + LA =0
2. Vi, cancels out in thé(e') term fori > 0.
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Therefore we may write

%(LQ +L2) = Lo(u, v1) + £L1(U, V1, Vo)
+ &2 L(U, Vi, V2, V3) + O(°) (5.12)
with
Lo(u,va) = [L5(u,v1,0) + L5(u.v1. 0)]/2.

L1(u, Vi, Vo) = [L(U, V1, Vo, 0) + L5(u, v1, Vs, 0)]/2,

L5(U, V1, V2, V3) = [L5(U, V1, V2, V3, 0) + L3(U, V1, V2, V3, 0)]/2.
Next considet — £8, we obtain

LA (u,v) = L8, (u,v) = 0,
f@(u,vl, Vo) — fg(U,VL V) = —(pp - V)F,

_ _ 1

LU, Vi, V2, V3) — LU, Vi, V2, v3) = —5(Ro- V)2,
_ 1
L3(U. V1. V2. V3, Va) = L3(U. V1. V2. V3. Va) = = =(Po - V)°f.

Observe that these are algebraic equationsifor,, vs andv, respectively. Their
solvability will be proved in Lemma 5.3.
In the second step, we assume

U=Up+eUp+&Up+---.

Substituting the above ansatz into (5.12), we obtain theagops satisfied by
Uo, U1 andusy:

Lo(ug,v1) =0, (5.13)

1
Liin(Uo, vi)ur = —L1(Uo, V1, V) + E(po Wi, (5.14)

oL
Liin(Ug, Va)uz = —Lo(Uo, V1, V2, V3) — 5—A1(UO,V1, V2)U1

1,62Lo 1
- E(W(Uo, V1)U1)U1 + Z(po -V)?f, (5.15)

where Ljin (-, v1) is the linearized operator o, for fixed v;. We next relate these
equations to the Euler—Lagrange equations and show thaatkesolvable.

To carry out the details of this analysis, again we will woikhithe case when
V consists of three-body interactions only. It is easy to s®e the argument can
be extended to the general case.

Depending on the type of atoms that participate in the ioteya, we can group
the terms ol into the following subsetsAAA AAB ABBandBBB TheAAAand



34 WEmaN E, PBNGBING MING

A A
= XHPHS,
X =S, X+p (S,

A A,
= 4
>(I Sl X‘ X\ sl

Fig. 6. A schematic illustration of the interactions between atamgomplex lattices for
pair(p,p-s)

BBBterms are treated in the same way as for simple lattices.dHeaavill restrict
our attention to théA\ABandABBterms.

Fix an A atom at sitex;. Consider its interaction with tw8 atoms atx; + p
andx; + p— s1. As in the case of simple lattice, we pair this interactiothvihe
interactions between the atoms/AB, and atABB(see Fig. 6). Neglecting other
terms inL,, we have

LI YP):
= [aaqVAB(yiB - Yﬁ’ yiB—sl - yf\) - 601VAB(Yi°\ - yiB’ yﬁ—sl - le)
+ 00, Vas(Y: — Y Vs, = W) = 00, Vas(ts, = Yoo M = V251,

where the first and third terms come from the interaction ofret atx;, X; + p, X +

p - 1, the second term comes from the interaction of atoms,a¢ + p, X + S1,

and the last term comes from the interaction of atoms,at + p— S1, Xj — X3.
Similarly for theB atom at the site; + p, we have, corresponding to the inter-

action pair shown in Fig. 6:

LIV Y
= [aalvAB(YiA - Y.B’ yiisl - le) - a¢1/1VAB(yiB - yiA’ y|B—sl - y|A)
+ 3a2VAB()¢ - le’ Yiisl - y|B) - 602VAB(yE—sl - Yﬁ—sl’ yiB - )’ﬁsl)]

We may rewrite/2 and £B into a more compact form as

LI YP) = 0, Vas(Dp) D5, Y1) + 0, Vas(DpYs Dy Vi)
+ D, Vas(DHYE, D V)
+ 80, VaB(DpYi s, D6, Y1),

and

L2 YP) = ~00,Vas(DpY'. Dy o YY) = 0 Vas(DpY'. Dy M)
— 30, Vas(DpY D o Vi)
- aagvAB(DEYﬁ—sp D?—yslyﬁsl)
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Let ¢ be a smooth periodic function, using summation by parts, awe h

N
DL YD) + L2V YE)e

i=1

N

= > (0o Vas(DpY, Do Y1) + G, Vas(DpYe s, Dy ¥))Ds 01
i=1
Taylor expansion at” gives
- 1 2 3
Dsg = (s1-V)p — 5(51- V)% + O,

DhYR = avi + 8%V, + £%v3 + 8%y + O(6°),

and
Dy o ¥ = —(I + Vu)s; + &v1 + ay, Dpyls =&+ by,

where

1
ay = E(5;1 V2u-e(s-V)vi+e2wm and by = —&(s, - V)i + 2w

The following lemma gives a characterization for thetfiential operatorfifiA and
8.

Lemma 5.3.For i = 0, the djferential operatorSZiA(-,viJ,z) and fiB(-,\/i+2) are
algebraic equations for the argumewnt,.
Moreover,

LA uv) + £8(u,v) =0 (5.16)

for any smooth functions andv.

Proof. This lemma is a tedious but straightforward calculation.Wileomit the
details except to say that it is useful to note the following:

Oa;Vas(—X, —=Y) = =0, Vas(X,y) for j=1,2
which is a direct consequence of (2.3).
Lemma 5.4.The djferential operatorLy is of the form:
Lo(u, v1) = = div(9a,Vas(evi, —S1 = (S1 - V)U + &v1)$1). (5.17)

Moreover, it is the variational operator for Y.
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Proof. We omit the interaction between the same species. For thé pgi— s, ),
we consider the following term ipg:

Vas(p, —=(I + A)s1 + p) with A =Vu.

Applying (2.16) to the pait p, p— s1 ), we get the dierential operator correspond-
ing to this pair:

L(u,v1) = 32 Vag[(s1 - V)?U = (St - V)Pl = Baya, Vas(st - V)P
= —div(dq,Vas(p, —(I + A)si + p) - s1),
which is the same as the corresponding term in the equatidi)(5

Lemma 5.5.All higher-order djferential operatorsZi(i = 1) are in divergence
form.

Proof. This claim is a straightforward consequence of the fact fifat £8 is in
divergence form.

Next we consider the terms i — £B.
Lemma 5.6.If Assumption A holds, then for = -1,0,1,- - -,

LU vy Vi) =0 and  ZB(Uvi--- ,Vieo) =0 (5.18)
are solvable in terms of;, .

Proof. We only consider the interactions shown in Fig. 6.
First, we consider th@(1/¢) equations. Applying (2.15) to the pdip, p—s1 ),
we obtain

9o, Vas(P, —(I + A)s1 + P) + 0o, Vas(P, —(1 + A)s1 + p) = 0,
which is always solvable with respect padue toAssumption A. Notice that
LP(UP, V1) = (Oay + Bay)Vas(eva, —(1 + VU)S] + £Vy).

Therefore, thed(1/e) equations forA atoms are also solvable with = p. Us-
ing (5.16), we see that the oth@(1/«¢) equationsff‘l(u,vl) = 0 for B atoms are
also solvable with respect tq.

In the case when2 0, a straightforward calculation gives that the @méents
of the argument;,; is:

Doy + 0a,)*Vap(eVe, =St + (S - V)U + &v4),
which is positive definite sincpis a local minimizer.

From theO(1) equations, it is straightforward to obtain the equatitor u;
andus,.
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Lemma 5.7.1f Assumption A holds, then there exiat;, u; € X that satisfies
equationg5.14)and (5.15) respectively.

Proof. Using Lemma 5.5, we see that the right-hand side of (5.14)aid) be-
long toY. Next, byAssumption A, there exists a constansuch that if|| f||.» < «,
then Ly, is elliptic atug. Therefore, there existy, u, € X that satisfy the equa-
tions (5.14) and (5.15), respectively.

As a direct consequence of Lemma 5.4 and Lemma 5.7, we have
Corollary 5.2. Define

V= X + Uo(X) + sur(X) + 2Ua(X),

5.19
V2 =V + avi(X) + 82Va(X) + &3v5(X) + &*Va(X). (5:19)

If f € WoP(Q; RY), then there exists a constant C such that
LAV - flsce® L2 Y) - f|sCs’, (5.20)

Proof. Sincef € WeP(Q; RY), using Theorem 2.1, we conclude thigte W8P(Q; RY).
Thereforepg € C7(Q) by the Sobolev embedding theorem. This givesiﬁa?B €
C5(Q). Therefore, using (5.14), (5.15), (5.17) and (5.12), we ge

< Cé®,

|SLLGF) + L2 - 1

whereC depends ornu0||c7(§).
Using Lemma 5.6 and the equations satisfiedhyws andv,, we obtain

[L2VY%) - L2 V) = C&°,

whereC depends onu0||cs@. A combination of the above two results give (5.20).

6. Local Minimizer for the Atomistic Model

In this section, we prove Theorem 2.2 and Theorem 2.3. Wededl directly
with complex lattices with two species of atoms. We assuratttiere are a total
of 2N atoms )N atoms of typeA, andN atoms of typeB.

By translation invariance of, we haveH,4(i, j) depends only on thefierence
of i andj, namely,Hus(i, j) = Hap(0, j — i), which immediately implies a simpler
expression of the dynamical matiix

N
(D [M}ap = Z{HKK’ }o (0, ) +XOXW) o,
=1
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Itis clear that

K

R o
{HKK’ }a,b’(l, J) = N Z{DKK’[n] }a,b’eil(xl Xi).kn- (61)
n=1

For anyz e RN*¢, we have

1 N
L _ = S —iXj-Km
7= D, Amle ™,
m=1
where{Zm|} are the Fourier caicients of{z}, defined as

N
Am: = Z Zpe X km,
n=1

and {kn} are the discrete wave vectors in the first Brillouin zone. iirly, we
may definez*[m] and 22[m.
Forze RN*9, we define the discrete’+horm as

N
lath: = (7 > kol 2000P) "
n=1

Throughout this section, we will frequently refer to therntiges:

Z ¥k = Noyo, (6.2)

X

and
Z &K = Noyo, (6.3)
k

wherex = x* or x = xB andk runs through all the sites in the first Brillouin zone
of lattice L. We refer to [3, Appendix F] for a proof.

We first establish several inequalities concernimg which serve to give a
description of the norrfj - ||q defined in (2.28).

For anyz = (2", ) e R*"\*4, define yet another norm

N

1Zla: = gd/Z—l(Z Z MA _ Z,NZ + zN: Z |ziB _ Z|j3|)1/2,

e i
wherex; = X — x{ with k = A, B.

Lemma 6.1.For any z = (2%, 22) € R™N*4| there exists a constant C that only
depends on the coordination number of L such that

I1Zlla < CUIZMIL + 128]12). (6.4)
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Proof. We have

N

e et et
nm=1

e X kme IX kn+e|x knm].

We will decompose®? 3N >

- ZA' into I + I + I3 + 14 according to

|xA =&

the above expression. Using (6.2), we obtain

Z ANz [m]Ze'x ko

nm=1

Z AN Z [MNGm =

nm=1 n=1

whereK is the coordination number of the underlying lattice. Samy, 1, =
Note that

K

lp = — N2 Z > Z A7 [m]eX kg0 X}k,

|l| ‘ nm=1

For any p0|n1x|A, x,’? is the same since all atoms have the same environment. There-

fore, we denoter; = x . A direct manipulation leads to

2= - Z 2 Z S P L AR

i= 1| cnm=1
= N2 n;lz‘\[n]z [m]Ze'X k"mZe ki

- A1 Ze"“l o
n=1
Similarly,
372 N . K .
—— n; |zA[n]|ZJZ:;e"’J kn.

Summing up the expression fby; - - - , 14, we obtain

o 2 2692 L o
#2)) 3 144 = S A Y- coser ko)
n= i=

i=1 ‘xi’? =
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Similarly,

N d—2 N K .
2 Y S R A = N Y s O
n=1

=1 e =1

From these two identities and the definition of the discrétebrm||2Z|;, we have

2 o a2 2
120 < = > (20 +[201]) ) e - kol
n=1 j=1
< CUZME + 1271,
which leads to the desired estimate (6.1).

The following simple fact is useful.

Lemma 6.2.Given a block matriya e R2dx2d

~ (A1 A
A— ( il 12),
Arp A2z

whereAr; € R and Ay, € R%4 are positive definite. IA is semi-positive defi-
nite, then for anw, v € RY,

1 _
WIALW + VI Agov > E(W, v)TA(W, V). (6.5)

Lemma 6.3.UnderAssumption A, for anyz = (2, 28), there exists a constant
independent of N and a constant @at depends on the coordination number of
L, A, and the dimension d such that

1Zllg 2 V4/2428Y2 12 = 2Pllg, = o121 + 1 2%01)- (6.6)

Proof. Using the translation invariance b, for any 1< j £ 2N, we have

2N
D Hofi, j) = 0. 6.7)
i=1

Using the above identities, we get

1 & .
Z'Hoz= -3 i;(z ~ Z)Ho(i, )(2 - 7).
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which can be expanded into

=

N
Z'Hoz= -3 ; Z 7 - Z)Huli. )(Z - Z)
1 N
-5 2@~ DHaeli ) - 2)
i,j=1
N

(a ~ Z))Hpgli. )(Z - Z).

I\)Il—‘

i

We rewrite the above equation as

Z"Hoz= -

N
Z(z’* — Z)(Haa + Hag)(i. )(Z - Z)

I\)II—‘

N|l—‘
MZ T

(Z| - ZB)(HBB+ Hae) (., 1)(Z - Z; %)

|
NI~
IMZ

(2 - D)Hasli, (2 - 2D)

1

|
NI
IMZ

(2 - D)Hpgli N - 2) + 15,

1

where

z“ Z)Hae(l. ))(Z' - 2)

I\)II—‘

'MZ %MZ

(Z' - 2)Has(i. )(Z - 2)

NI =

1

ij

I\)ll—‘
MZ

(Z| - Z)Hae(i. )(Z - )

|
NI
IMZ

(Z' =~ Z)Haeli, (@ - ).

i,j=1

Using (6.7), we have

N N
D THaa(is §) + Hag(i, D1 = 0, > [Hag(i. j) + Heali, )] = O,
i=1 i=1

(6.8)

41
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which implies
N

N
Z'Hoz = % PNCAEES) {Z(HAA(L i) + Hes(i, j))} @ -2
j=1

=)

L3 (£ Z)Han s+ H( D~ 2)

i,j=1
- Z(f - Z)Hes(i, )2 - )| + 13 =11+ 12+ 1
ij=1

Using (6.1), we have
N 1 N
Z(HAA(L P+ Hea() = i 2, (Oan + Dol (6.9)

Using (6.5) withw = v = zlA B for eachi andn, we have
(2 -2 )T(DAA+ Des)[N|(Z - Z°)
> (- 2.2 - Do - 27 - B)

For each fixech, we letQ[n] be a 2 x 2d matrix consisting of the normalized
eigenvectors of the eigenvalue problem:

D[NIQi[N] = @ [N]Q[n]  1<is<2d,
whereQ[n] is thei—th column ofQ[n]. Let Qi[n] = (Q*[n], Q®[n])T. Combining
the above two equations, we get

2d

N N
% 2.2, 2 @ @] + QP[n) - (2 - 2). (6.10)

n=1 i=1 j=1

IIV

Using (6.5) again wittw = z* — 2 andv = z% — 7, for eachi andn, we have
(£~ 2%) - (Daa+ Deg)ln] - (2" - 2)
R AR I 1) AR )

Repeating the above procedure, we get another lower-baumhg f

=z

2d

Z S @M Q- QP - (-2 (6.11)

i=1 j=1

IIV
Zl-
MZ

1
sy

n

A combination of (6.10) and (6.11) gives

N N 2
D0 D@ (] - (@ - D + Q- (- ).

n=1i=1 j=1

IIV
Zl~
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Next we claim that there exists a constarihdependent oN such that
l1 2 A3 - 22 (6.12)

For a fixedn, the optical branch, for example,js= 1,--- ,d. Therefore,

N N d
>3 @ (- D) + Q- (7 - AP

n=1i=1 j=1

IIV
2|~

As tod = 1, using the fact that the eigenvec@n] is normalized, we have

|QInl - (2= ) + |QFInl - (2 - ) = |2 - 2,
which gives

S N L (6.13)

n=1 i=1

As tod = 3, we claim there exists a constaitindependent of andN such
that

N d
SN @ (N - (2 - ) + Q¥ - (£ - D))

M=z

n=1i=1 j=1
NJ N d

NI LI A (6.14)
n=1 i=1 j=1

Denote byw = (2 - )/ |2* - 28| and
d
F) = > @n)(Qn - wi” + |QB[n] - wf?).
=1

ObviouslyF(w) = 0. If F(w) = 0, we have
Qj[n-w=0 fork =A,B,j=1,23.
Obviously, there exist three nonzero constgrthat may depend onsuch that
Q= Qfml - j=123
By the orthogonality otQ;[n]}, we have
1+616,=0 1+6,63=0 1+ ¢1¢63=0.

This is obviously impossible. Thereforé(w) > 0 for all w. Sincelw| = 1, there
exists a constant(n) such that

F(w) = A(n).

This gives (6.14) withl; = mini<n<n A(N).

43
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As tod = 2, repeating the above procedure, we have
Qnl = QP and QP[nl-w=0  j=12,

and
O(n)a(n) = -1 forn=1,---,N.

ForN = 2, there always exit two linearly independent veci@ﬁnl] and Q]B[ng]
such thatQjB[ni] -w = 0 fori = 1,2, which immediately leads tv = 0. This
contradicts withw| = 1. Repeating the procedure fdr= 3, we obtain (6.14)
remains valid fod = 2.

Finally, usingAssumption A, (6.13) and (6.14), we get (6.12) with= min(4y, 1).

Using Lemma 6.1 and the fact that the atomistic potentiafinéte range, we
have

llal < Cos™ (1215 + 1I211). (6.15)

Similarly, we get
lla| < Cae™ > H|Z* — I, (1211 + 122]1). (6.16)
A combination of (6.12), (6.15) and (6.16) gives (6.6).

Lemma 6.4.UnderAssumption A, there exists a constant C that only depends on
A1, Az, d and the coordination number of L such that

Il zlla 2 CUIZML + 18]l + eVZ Y12 = )i, (6.17)
Proof. Itis easy to see that
Z'Hoz = [Z]"HaaZ" + [ HasZ® + [Z]TH g2 + [2%] "HRsZ2.

Using (6.1), we express each item in terms of the dynamicaixna.

[Z]"HanZ*
1NN iy A N 'AAkN—A ixA.K
— m Z Z 'zA[m]e—lxi Km Z DAA[n]efl(xi —=x{)-kn Z 5 [p]e|xl o
i,j=1m=1 n=1 p=1
1 9 A A § _ixA.k \ —ixA.k
=15 2 ZImDadnZ [p)(Y, e k) B e,
mn,p=1 i=1 j=1
Using (6.2), we rewrite the above identity into
T 1w, =A
(2] HanZ' = 5 > mINGuDAAlNZ [p]N6n
mn,p=1

N
= & > AP .
n=1
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Proceeding along the same line, we obtain

N ’
[Z] Hew 2 = % ; Z#[NIDe[NZ [N]

for «, k¥’ = A, B. We thus writez' Hoz as

N
7THyz= < 21, Z[olriA . 2.

As in Lemma 6.3 and using
w3(n) 2 Aflkal*  and @5(n) 2 F5(n) 2 A7 [knl?,

we have

d
Zn]"D[n|4n] = Z((Ga(n))i + (@a(M)i) Q[N Zn] (6.18)
i=1
2 2A7 [kal? 1QZN]I? = 243 [knl |ZN] 1,
where we have used the fact tl@ats an orthogonal matrix. Therefore, we obtain

2A2 N
ZHozz T2 3" Ikl (2InI[° + [22[00[) 2 243NQIZ0E + 12°1)
n=1

> CAZe (12 + 1122112),

which leads to
Il zI3 = CAZ(IZIF + 1 2)13). (6.19)

A convex combination of (6.19) and (6.6) leads to (6.17).

The identity (6.18) give an alternative characterizatibfj e || norm. In the
next lemma, we will show that the right-hand side of (6.1&dtually an equiva-
lent norm of|| z||4.

Lemma 6.5.If there exists a constant C independentsafuch that the optical
branch of the dynamical matrix satisfigg(k) < C/s, then for anyz € R?N<9,
there exists a constant;Guch that

Il zlla < Ca(I 2 + 1220 + &2 7112 = 2°)l,). (6.20)
Proof. We start with the identity (6.9) in Lemma 6.3. Using the fautt
(@a(n)i < (wo(n))i < C/e

for1<i £d, we have
l1 < Cas2| 2 - 2|17,



46 WEmaN E, PBNGBING MING

which together with (6.15) and (6.16) leads to

| zII3 < Cas® 2012 = 2812, + C2(IZNE + 1 2°11)
+ CaeW2 Y2~ 21, (1211 + 1128110)
< maxCa, Ca, C3/2) (1M1 + 18]I, + 27412 - 2B|Iy,)2,

which gives (6.20) wittC; = vmax(Cs, C», C3/2).

Next we establish a discreRoincaré inequality
Lemma 6.6.For any z € RN*4 that satisfies{)’j\‘=1 zj = 0, there exists a constant C

such that
I2le, < Ce™21 2. (6.21)

Proof. Sincez’j\'=1 z; = 0andk; = 0, Z1] = 0. Therefore, by definition,

”2”52 — Z Z Amle iXj-Km Z Z[m]eixi'km-

j=1 m=2 m=2
By the Cauchy-Schwartz inequality, we have

N - N 1/2 N 1/2
> omle ke < (37 1 miP (kl?) (D] Ikl 2)
m=2 m=2 m=2

Combining the above two statements, we obtain

1 N N N
2 Sr2 1 12 -2 _ 2 -2
ll2lz, < N E_ [l | Kml mEzzlkml = Nlizllf mEzzlkml :

Sincekm = Z, 1N b,, where{b;} is the basis of the reciprocal lattice, we get

IKml = ( 29 [mi/Nj| ) . A direct calculation gives
Z|km| 25 (5) ZZIWN! < ZHZZZ(eNJ/mJ
m=2 j=1 ( ) j=1mj=1
d N
<C) Y m?scC,
j=1 mi:l

where we have usedN; < Cfor1 < j < d. Combining the above two inequalities
and noting thaN = O(s™9), we obtain (6.21).

Lemma 6.7.If there exists a constartsuch that
g2 H(y)zz k23 forall z= (2 %) e RN, (6.22)

then there exists a constansuch that for any, that satisfiesy; — y,|, _ <6, we
have .
97T H(y,)z 2 E||z||§ forall z= (2" 2%) e R2\d (6.23)

for syficiently smalle.
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Proof. Using translation invariance, we have for ang 1 < 2N,

2N
D IHGL D) =0,
=1

which leads to

2N
THz= -3 22~ M. D0z - 2),

Therefore, using the fact that the poten¥ak of finite range, and noting the basic
inequality , , ,
-2 s2lg - 2 42l - 4T

we get

2N
Z(Za = z))(H(i, ))(y1) — H(. N(Y2))(z - Z))

ij=1

N
scos?y Y (2-2f+ |- 2+ |2- 2P

=1 |xij|=e
N N

< C(Sg’zz Z (|2 - zj*|2 + |28 - Zl]-3|2) + CL(Sg’zZ |2 - ziB|2.
E =

It follows from Lemma 6.4 that
| Z'[H(y,) — H(y1)14 < Csllzl3 + CLoe™2|| 2 - 222, < Col 23,
which yields
12H(y,)z = £92 H(y;) 2 + %2 [H(y,) — H(y1)]z
2«25 - Céllzlg
2 («/2)ll 2l
for 6 = k/(2C). This gives (6.23).
Lemma 6.8.Assume thay satisfies:
1. There exists a constansuch that

s1Z7HY)z2 «l|Z3 forall ze RN,

2. There exists a constant2 such that%?|| T (y) lle, £ Kagt.
3.y - x—B - xis periodic.

Then there exists a unique solutigthat satisfie¢2.22)and

lly = Vlla = Ce". (6.24)
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Proof. Write .
T() =T®+f0 (L - OH) dt - (y - ).

wherey' = ty + (1 — t)y. Hencey is a solution of (2.22) if and only if

1
j; (A-tHHY) dt-(y-y) = =T (). (6.25)

Let
B:={yedA|lly-Va <&}

We define a map : B — B as follows. For any € B, let F(y) be the solution
of the linear system

1
fo (L - YHK) dt - () -) = ~T(H). (6.26)

We first show thaf is well defined. Sincdly' — Vil < tlly — Vlla £ &%, we have
V' = V], <Ce%%2 <3, if £is suficiently small, given thadl < 3. Using the first
assumption o1y and Lemma 6.7, we conclude that there exists a constanth
that

K
4Z"H(Y)z 2 125

Therefore, the linear system (6.26) is solvable &nid well defined. Moreover,
F(y) - x — B - x is periodic.

F is also continuous sind¢is smooth. Using Lemma 6.6 and note thf?[_l\‘l[F(y)i—
V] = 0, we obtain

ke IF(Y) =V < IFY) = Vlal T lle,
< CKie™IF(y) - Vlla- (6.27)

If || F(y) - ¥Ylla = 0, we have=(B) c B. Otherwise, the above inequality gives
IF(y) - Vlla < Cef,

which in turn impliesF(B) c B for suficiently smalle sinceq > 2. Now the exis-
tence ofy follows from the Brouwer fixed point theorem. Moreover, waclude
thaty satisfies (6.24), and the solutigns locally unique since the Hessianyais

nondegenerate.

Lemma 6.9.There exist two constants ;Mind M, such that if||B|] £ M; and
IIfllwer < Mg, then there existy that satisfies the second and third conditions of

Lemma 6.8 for &= 2.

This is a direct consequence of Lemma 5.1 and Corollary 5.2.
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Lemma 6.10.There exist two constants;Mind M, such that if||B|| £ M; and
[Ifllwer £ My, then there exist a constant andy such that
g2 HMzz kil zl}  forall ze RN (6.28)

Proof. DefineM; = M, = §/(4C), whereC is the constant that appears in the
right-hand side of the following inequality. For simpletiegs,

IV— Xll,oo < C|[VucgllL + Ce?||Vug| e
< C[[V(ucs - B - X)liL~ + CIIBI| + C&?|[Vugl|L~
< Clluce ~ B Xllz.p + C&?lluzllzp + CIIB]|
< Clifllep + ClIBIl < C(M1 + M) = 6/2 < 6.

For complex lattices, the estimate fff - xA|loo is the same as above. In
addition, ’

WB - XB|1,00 S WA - XA|1,00

2 3 4
+ C(eIVV2llLeo + €°IVVall100 + €711V Vall1,00)

< [V = x4, + Cllulls.o
< C(My + Mp) + ClIfls p
< C(2M1 + My) = 36/4 < 6.

Note thatz"Hoz = £79|| z|I3, therefore (6.28) follows from Lemma 6.7.

Proof of Theorem 2.21t follows from Lemma 6.8 that there existsya that
satisfies (2.22) angly® — y|lq < Cs®. Therefore,

1Y = Yeglla <MY =Vlla + 1Y - Yeg lla < Ce® + Ce < Ce.

This gives (2.27).
For anyy € R2Nd with |§ — y*|; ., < 6/2, wheres is the same as in Lemma 6.7,
we write

1
E®-EY)=0-¥)- fo (I-DHEY + (1 -t)y)dt- (V- y°).
Note that

Ity + (1 - t)y* —7|1,m ST - Vil + |V —37|Lw <6/2+Cs¥92<s

for sufficiently smalle. Using Lemma 6.7, there exists a const@rsuch that

E®) - E() zCe Y 9-y 5> 0.

Thereforey® is a discretéV>> local minimizer. O
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Proof of Theorem 2.3he proof is essentially the same as that of Theorem 2.2.
The only diference is

1Y = Yeglla <MY =Vlla + 1Y - Yeg lla < Ce® + Ce® < Ce?,

sinceu; = 0 due to Lemma 5.2. This gives (2.29)0

Appendix A. Detailed asymptotic analysis for the one-dimesional model

In this appendix, we will give a detailed asymptotic anaysfitheone dimen-
sional model. Explicit expressions fafy, £1 and £, that have been omitted in
§ 5.2 will be given here. We consider a complex lattice with species of atoms
AandB.

Considering the equilibrium equations for atomandB respectively

LX) = F0¢) and L2 YD) = F0),
where
LAV YP) = VagW =) = Vag - ¥20)
+Vaais =¥ = Vaa =20,
"LSB(yiA’ yiB) = VAB(Yﬁl - yiB) - V/,AB(yiB - Yﬁ)
+ VisOVha = ¥2) = Vas(F - ¥21),
which can be rewritten as
L2 Y0) = Vag(Dpy) + Vag(Dp- o)) + Do Vaa(D:Y),
LEO YY) = —Vas(Dp-o¥i1) — Vae(Diy) + D; Ves(D}YP).
Proceeding as i§ 5.2, we get

L£1(uvy) =0, Lo(u, vy, vp) = -1,
. 1,, -~ 1. (A1)
L1(u,v1, Vo, V3) = _Ef . Lo(U, V1, V2, V3, Va) = —éf ,

where
L£1(U,v1) = 2Vag(Ve) + 2Vag(va — 1 - uy),
Lo(U, V1, Vo) = 2[Vilg(Va) + VAg(va — 1 — Uy)]va
— Vag(V1 — 1 = Ux)Vix
+ 0x(Vaa(1 + Ux) — V(1 + Uy)),
L1(U, V1, V2, V3) = 2V4g(V1) + Vig(va — 1 — ug)(by + bg)
1
+ VOV + Evg(vl —1-uy)(ad+ad)

+ 0x(Vgg(1 + Ux)Uxx),
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where
1 1
ap = V2 — Vix + 5 Uxx, b1 = V3 — Vox + ZVixx — =Uxxx
2 2 6
1 1
ay =Vix + Euxx, by = vox + Elex + éuxxx,
1 1
ag = Vo — éuxx’ bz =vs - éuxxx~

We omit the expression cffg since we do not need it to solvg.
In what follows, we give the explicit expressions£§, £, and.L,. The argu-
ments 0fVag, Vaa andVgg Will be omitted unless otherwise stated.

Lo(u,v1) = —0x(Vag — Vaa — Vga):
Li(u, vy, v2) = —%5§(VAB +Vaa + Vig)
— 0x(VAga1 — %V;{Auxx - Vegdo),
Lo(u, vy, V2, V) = —%5§(VAB —Vaa— Ves)

1 4 1 4 4

" 1 1 ’ 1
= Ox[Vaghr + EV}_\Séai - EVAAuxxx ~3 S,iu)z(x
1 1
Vi V)

Define
@=Vig(vi—1-uy), B=VigW).
Itis easy to see that
L1(u, vi, Vo) = —0x((a1 + Vix/2 - uxx/Z)VXB +(-ax + Uxx/Z)Vé' .
Differentiating the equatioﬁ,l(u, vp) = 0, we have
(@ +B)Vix = @ Uxx.

Solving Lo(u, v1, V) = — 7, we get

@ Vix _ UodVia—Veg) = '

V2:a+ﬂ7_ 2(@+p)
A combination of the above three equations gives
V;.\,B(Vl)

L1 =0y (VA + Via+ Vi + £/2)),

Vg1 — 1= Ux) + Vig(va)

where , ,
\’7,, _ V/.\B(Vl -1- uX)V/.\B(Vl)

AB T V(v — 1 U + Vig(ve)
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Solvingfl(u, Vi, Vo, V3) = — /2, we obtain

a
V3 = m(VZX/Z — Vixx/4 + Uxxx/6)

_ VW)V V(v —1-uy) a2 +al

a+pf 2 a+pf 4 -G

whereG = (0x(Vgg(1 + Ux)ux) + ”7/4)/(a + B). Substitutingvs, v2, a; andag into
L, we obtain

where
u 4 4
L= ‘3>2<(_XX(VAAJr Vee) + —

+—ax( U2 (VX + Vi) - VEs G).

aff af 1 1 o2 B
L= rp@rmh 5 s g gkt
oB oB
T Tern )
1 2 3
£=0l(gats s g~ e VR~ 1 U
——v‘3>(v1—1 ux)( ap” U+ —2 G)G
@+BR " 0P
BB st

Next letu = ug+ & Uy + &% U + - - -, and substituting this ansatz inty, £, and
Lo, we obtain

—0x(Vag(V1 — 1 — Ugx) — Vaa(1 + Uox) — V(1 + Ugy)) = T(X).
A straightforward calculation gives
Lin(Uo, Vi)Us = 9x((VAp(Va — 1 = Uoe) + VAa(L + Uox) + Vigg(1 + Uox))Ua).
Therefore, we obtain the equations faranduy:

Liin(Uo, vi)ug = — L1 + /2,

Lin(Uo, V)up = =L — — — —(
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Appendix B. Elastic stiffness tensor for simple and complex lattices

Elastic stifness tensor and the elastic modulus tensor are titiereint con-
cepts. They coincide when the internal stress vanishesi[27DAWcg(0) = 0.

Equation (2.17) is an explicit expression for the elastiffretss tensor in the
case of two-body potentials. Here we generalize this foatmimany-body poten-
tials. In the case of simple lattice, we have, for #ny € RY,

Céenéen)
=3 D (5 a) + (S ME - 0e,)) Vi

M=2(s,,Sn1)  (S.S))
I<i<jsm-1
whereVmy = Vm(s1, - -, Sm-1). For example, iV contains only three-body poten-
tial V3, then for any¢, 5 € RY,

Céenéan = > (s-n)E 0u)+ (S ME - 00,))Va(s1, %).

(s1.%2)

Next we turn to complex lattices. We first consider the omaatisional case.
Minimizing W(A, p) with respect top, we obtainp = p(A). Next differentiating
with respect toA, we get

dp  Zs(Vig((1+A)s—p) - V(1 + A)s+ p))s

dA~ YVig((1+A)s—p) + XsVig((L+ A)s+p)’

Note that

D% Wes(A) = DAW(A, p(A)) + DA W(A, p(A))
= D (VA1 + A)9) + VEg((1 + A)9)

+ V(1 + A)s+ p) + Vig((1 + A)s - p))s°
124 144 d p
# (VA1 + Ay pUA) ~ V(14 A)s— pAN)Sgy:
A combination of the above two identities leads to:
DAWea(A) = D (VA1 + A)9) + Vgg((1 + A)s)
S

+ Vig((1+ A)s+ p(A) + Vip((L+ A)s - p(A)))s

) (Zs(VAs((X+ A)s— p(A)) - Vig((1+ A)s + p(A)))s)2
YsVig((L+ A)s— p(A) + X Vig((1+ A)s+ p(A)
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Therefore, letpy = p(0), we have

C = > [VAa(S) + VEa(9) + Vig(S+ Po) + Vig(S— po)ls’

( s[VAg(S— Po) = Vig(s+ po)]s)2
2sVag(s— Po) + Xs Vag(s+ Po) |

As to high dimensional case, we only consider the one whés a three-
body potential. Other cases can be dealt with similarlyiglthe algebraic equa-
tions (2.15), we obtaip = p(A). Differentiating (2.15) with respect &g we get

(B.1)

2
Dap=-S(A)" > > Ki(A)s

(s1,%) i=1
with
S(A) = D" (ay + ) Vag(A) + 35, VAp(A) + 32, Vg(A),
<Sl %)
Ki(A) = Z 92 o Vap(A) + Z 92,0, V23p(A) + Z 92,0, Vas(A).
where

Vag(A) = Vag((l + A3 + p(A), (1 + AS + p(A)),
VZ5(A) = Vag((l + A)S; + pA), (I + A)S),
V35(A) = Vag((l + A)SL, (1 + AS + pA).

Therefore, we get

DiWas= D (St 0o+ % az)ZZVAB(A)

(s1,%)
- Z ZK(A) Z ZS(A) Ki(A)s)).
(s,S) i=1 (s1,8) j=1

DefineV(A) = Vaa(A) + Ves(A) + 232, Vi (A). Then, we have
C@n.&@n)
= 3 (€ du)sm) + (€ - 0)(s2 - 1) VI(O) (8.2)
(S1,%2)
2 2
-( 2] DIKOIEHs 1. Y, D SO KO)E H)s - n).
(s1,%) i=1 (81,8) i=1

Compare this formula with simple lattices, we see that (Bi&3 the form of a
Schur complement when the terms involvipgre eliminated.
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Appendix C. Proof of Lemma 3.1 for the complex lattice

The objective of this section is to prove Lemma 3.1 for the plaxlattice, we
exploit the expansion in [26, Section 12].

Using the definition o¥cg and Lemma 6.4, we obtain thB%W(O, Pp) is pos-
itive definite. It remains to prove that the elastic modWusatisfies thé egendre-
Hadamardcondition at the undeformed configuration. Denote

N
DiwlKl = D Huw (0, )Que (K, X)),
j=1

where
Que (K, X)) = 1+1ik - (Xj + X(k) — X(x")) + %[k - (Xj + (k) - x(K’))]Z.
Fors=1,---,d, we definei(k, s) as
2 )" Capyoksksyy(9) = Ak, 9Ya(9), (C.1)

wherey = {y,} € RY satisfyingY, Y.(9) - Yo(S) = dss. By [26, equation (12.15)],
A(k, s) satisfies _
> DulKl - W (K, 9) = Ak, JWi(9), (C.2)

wherew,(s) = y(s)/ V2 forx = A, B, and
We(K. ) = We(s) + [KIwg(s) + [KI* WE(S). (C.3)

Scrutinizing the derivation in [26, Section 7 and Sectiofy &2 may find thatv?
is just the scaledhifts between atom# and B, and bothw} andw? are linear
functions ofw,(s). We may writew}(s) = sA1w,(s) andw?(s) = £2A,w,(s), where
A; andA; are two constant matrices whose entries are independertaf may
depend on the potential functioh The existence ofy, is a direct consequence
of the translation invariance ¢fp, while the existence ok} andw? follows from
Lemma 6.4. Moreover, proceeding along the same line thdslea(3.4), we ob-
tain

D« [K] - D [KIIl S Cs kP k& =AB, (C4)

whereC is independent of andk.
Using the definition oD and2a, we get

[Wkgfmm-Wkg—awgﬂmzzﬂk@wxw—m
+ [W(k, 9)]T(D - D)[K] - W(k, S).

Note the expressions @, y, using (C.4) and (C.3), we have

lw?(k,9) — Ak, 9)| < Cle Kl Ak, 9) + £ |k[),
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which in turn implies
(1 + Celk)A(k, 8) = w?(k,s) — Celk]®.
Using Assumption A, for suficiently smalle, we obtain
(1+ Celk)A(k, 5) = (A - Celk]) |kI?.

For suficiently smalle and note thak is O(1) for k in the first Brillouin zone,
takingCe |k| = A/2, we obtain

A
Ak, 8) = —— kP
(’S)_A+2||’

which together with (C.1) giveAssumption B.
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