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ANALYSIS OF SOME LOW ORDER QUADRILATERAL

REISSNER-MINDLIN PLATE ELEMENTS

PINGBING MING AND ZHONG-CI SHI

Abstract. Four quadrilateral elements for the Reissner-Mindlin plate model
are considered. The elements are the stabilized MITC4 element of Lyly, Sten-
berg and Vihinen [27], the MIN4 element of Tessler and Hughes [35], the
Q4BL element of Zienkiewicz et al [39] and the FMIN4 element of Kikuchi
and Ishii [21]. For all elements except the Q4BL element, a unifying varia-
tional formulation is introduced, and optimal H1 and L2 error bounds uniform
in the plate thickness are proven. Moreover, we propose a modified Q4BL
element and show that it admits the optimal H1 and L2 error bounds uniform
in the plate thickness. In particular, we study the convergence behavior of all
elements regarding the mesh distortion.

1. Introduction

Considerable attention has been paid to the design and analysis of low or-
der locking-free elements for the Reissner-Mindlin plate model over the past two
decades, see, e.g., [10, 13, 14, 20]. However, there is still a gap between plate el-
ements commonly used in engineering and those for which a sound mathematical
theory exists. Even worse, the existing analyses are mostly confined to either trian-
gular elements or rectangular elements, but exclude most widely used quadrilateral
elements, like the stabilized MITC4 element of Lyly, Stenberg and Vihinen [27],
the aniso-parametrically interpolated MIN4 element of Tessler and Hughes [35],
the linked interpolated Q4BL element of Zienkiewicz et al [39], as well as an el-
ement proposed recently by Kikuchi and Ishii [21] (FMIN4). These elements are
constructed in different settings and perform extremely well in the benchmark com-
putation, however, a rigorous convergence analysis for them seems lacking except
the stabilized MITC4 element [25, 26, 30], and the connections between them are
unclear. The connections are known for the corresponding triangular elements [24].

The goal of this paper is to analyze the aforementioned quadrilateral elements
and to see which one is already locking-free and otherwise which elements with
guaranteed stability are close and can be used with minimal modifications. Our re-
sults indicate that all these elements are almost the same, or all of them are mutatis
mutandis. The MIN4 element is the same as the FMIN4 element if the quadrilateral
reduces to a parallelogram. Based on an identity which bridges the kinematically
linked interpolation operator [7, 24, 35, 37, 38, 39] and the lowest-order Raviart-
Thomas type interpolation operator [2, 36] (see Theorem 4.1 and Theorem 4.2),
we introduce a general finite element formulation covering all elements except the
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Q4BL element, which is known to be a locking element [7, 39]. Assuming that
the distance between the mid-points of two diagonals of each quadrilateral K is
O(h1+α

K )(α ≥ 0), where hK is the diameter of K, we derive the H1 and L2 error
bounds for these three elements. We prove that the FMIN4 element converges with
optimal rate over the shape regular mesh. The stabilized MITC4 element admits
the optimal H1 error over the shape regular mesh, while it attains the optimal L2

error provided that either the plate thickness is commensurable to the mesh size
or the mesh satisfies the Bi-Section Condition (α = 1). The MIN4 element admits
optimal H1 and L2 error bounds for the mildly distorted mesh, i.e., α = 1/2.

On the other hand, we stabilize the Q4BL element by a modification of Auricchio
and Lovadina’s augmented formulation [7], and derive optimal H1 and L2 errors for
the mildly distorted mesh as that in the MIN4 element.

We only consider these four elements for the sake of exposition, while it is believed
that our methodology can equally apply to analyze other quadrilateral Reissner-
Mindlin plate elements appeared in the literature [8, 9, 38].

The remainder of the paper is organized as follows. The Reissner-Mindlin plate
model is described in the next section. We introduce all elements in §3. The
connections among them are established in §4. Error estimate for all elements
except the Q4BL element is carried out in §5. In §6, a variant of the Q4BL element
is proposed and is proven to be locking-free. Conclusions are drawn in the last
section.

Throughout this paper, the generic constant C is assumed to be independent of
the plate thickness t and the mesh size h.

2. Reissner-Mindlin plate model

Let Ω be a convex polygon representing the mid-surface of the plate. We assume
that the plate is clamped along the boundary of Ω. The bending behavior of the
Reissner-Mindlin plate is described by the rotations φ and the deflection ω, which
are determined by the following variational problem: Find (φ, ω) ∈H1

0(Ω)×H1
0 (Ω)

such that

(2.1) B(φ, ω;ψ, v) = (g, v) ∀(ψ, v) ∈H1
0(Ω) ×H1

0 (Ω).

For any (η, w) and (ψ, v) in H1
0(Ω) ×H1

0 (Ω), the bilinear form B is defined as

B(η, w;ψ, v): = a(η,ψ) + λt−2(∇w − η,∇v −ψ)

with a(η,ψ): =
(
CE(η), E(ψ)

)
. Here E(η) denotes the symmetric part of the

gradient of η, g the scaled transverse loading function, t the plate thickness and
λ = Eκ/[2(1 + ν)] with E Young’s modulus, ν the Poisson ratio and κ the shear
correction factor. For all 2 × 2 symmetric matrix τ , Cτ is defined as

Cτ : =
E

12(1− ν2)
[(1 − ν)τ + ν tr(τ )I ] ,

where I is the 2×2 identity matrix. Denote H1
0 (Ω) the standard Sobolev space, and

H1
0(Ω) the corresponding space of 2-vector-valued functions. This rule is applicable

to other spaces. Define H−1(Ω) and H−1(Ω) as the dual space of H1
0 (Ω) and

H1
0(Ω), respectively. Define V : = H1

0(Ω),W : = H1
0 (Ω) and M : = L2(Ω).

Given the rotations φ and the deflection ω, the shear stress γ is defined as

(2.2) γ: = λt−2(∇ω − φ).



QUADRILATERAL RM PLATE ELEMENT 3

A proper space for the shear stress γ is H−1(div,Ω), which is defined as the dual
space of

H0(rot,Ω): = { q ∈ L2(Ω) | rotq ∈ L2(Ω), q · τ = 0 on ∂Ω }
with τ the unit tangent to ∂Ω, and rotq = rot(q1, q2) = ∂xq2 − ∂yq1. It can be
shown that

H−1(div,Ω) = { q ∈H−1(Ω) | div q ∈ H−1(Ω) }
with div q: = ∂xq1 + ∂yq2. Define

H(div,Ω): = { q ∈ L2(Ω) | div q ∈ L2(Ω) },
and the norm in H(div,Ω) is given by

‖q‖H(div): = (‖q‖2
0 + ‖ div q‖2

0)
1/2.

We recast (2.1) and (2.2) into a mixed variational problem as

Problem 2.1. Find (φ, ω,γ) ∈ V ×W ×M such that

(2.3) A(φ, ω,γ;ψ, v, s) = (g, v) ∀(ψ, v, s) ∈ V ×W ×M ,

where

A(φ, ω,γ;ψ, v, s): = a(φ,ψ) + (γ,∇v −ψ) + (∇ω − φ, s) − λ−1t2(γ, s).

The following a priori estimates and refined regularity properties are included
in [5, 15, 26], and in particular [28, Theorem 2.1].

‖ω‖1+‖φ‖1 + ‖γ‖0 ≤ C‖g‖−1,(2.4)

‖φ‖2 ≤ C‖g‖−1, ‖ω‖2 ≤ C(‖g‖−1 + t2‖g‖0),(2.5)

‖ divγ‖0 ≤ C‖g‖0, t‖γ‖1 ≤ C(‖g‖−1 + t‖g‖0).(2.6)

The following regularity estimate is crucial for the L2 error estimate of the sta-
bilized MITC4 element.

Lemma 2.2. Let φ be solution of (2.1), then

(2.7) ‖ rotφ‖0 ≤ Ct‖g‖−1.

Proof. Following the Appendix of [5], we obtain

γ = ∇r + curl p,

where r and p are solutions of some auxiliary problems. Using the definition of γ
(2.2), we get rotφ = −λ−1t2 rotγ, which together with the above identity leads to

rotφ = λ−1t24p.
We thus have

‖ rotφ‖0 ≤ Ct2|p|2 ≤ Ct‖g‖−1,

where we have used t‖p‖2 ≤ C‖g‖−1 (see, e.g., [5, inequality (7.5)]). �

Remark 2.3. If there is an extra forcing term (F ,ψ) in the right-hand side
of (2.1), then the estimate (2.7) changes to

‖ rotφ‖0 ≤ Ct(‖g‖−1 + ‖F ‖0).

The proof follows the same line of Lemma 2.2.
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3. Finite element approximation

Let Ch be a partition of Ω by convex quadrilateralsK with diameter hK , and the
subscript h is defined by h = maxK∈Ch

hK .We assume that Ch is shape regular in
the sense of Ciarlet-Raviart (see-[16, p. 247]). Define Pk the space of polynomials
of degree no more than k, Qm,n the space of polynomials of degree no more than m
in the first variable and n in the second variable, and denote Qk = Qk,k for brevity.

M
1

M
2

M
3

M
4

O
1

O
2

Figure 1. Left: A typical quadrilateral Right: a particular mesh

satisfies α = 0

Let K̂ = (−1, 1)2 be the reference square. For each element K ∈ Ch, there exists

a bilinear map F such that F (K̂) = K with

(3.1) F = (a0 + a1x̂+ a2ŷ + a12x̂ŷ, b0 + b1x̂+ b2ŷ + b12x̂ŷ).

In view of the left figure in Fig. 1, we have
−−−−→
M4M2 = 2(a1, b1),

−−−−→
M1M3 = 2(a2, b2) and−−−→

O1O2 = 2(a12, b12). An elementary calculation gives |a1|, |a2|, |a12|, |b1|, |b2|, |b12| ≤
hK .

To each scalar function v̂ defined on K̂, we associate it with a function v defined
on K such that v(x) = v(F (x̂)) = v̂(x̂). Given a vector function v̂, we define v on
K by the rotated Piola transform as

v(x) = [DF (x̂)]−T v̂(x̂),

where x = F (x̂), and DF (x̂) is the Jacobian matrix of the mapping F . AT denotes
the transpose of a matrix A.

We introduce below a mesh condition that quantifies the deviation of a quadri-
lateral from a parallelogram.

(1+α)-Section Condition (0 ≤ α ≤ 1) [31] The distance dK between the mid-points
of two diagonals of K is O(h1+α

K ) uniformly for all elements K ∈ Ch as h→ 0.

The extreme case α = 0 represents an unstructured quadrilateral mesh subdi-
vision. The mesh in the right figure of Fig. 1 is a particular one, which consists
of trapezoids generating from a typical trapezoid with translation and dilation. In
case of α = 1, the mesh satisfies the Bi-Section Condition [34]. We call a mesh
asymptotically regular parallelogram mesh if it is shape regular and satisfies the
Bi-Section Condition simultaneously.

Remark 3.1. In [22], the authors call (1+α)-Section Condition the (1+α)-Regular
Condition.
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Define the finite element approximation spaces as

V h: = {ψ ∈ V | ψ|K ∈ [Q1(K)]2 ∀K ∈ Ch },
Wh: = { v ∈W | v|K ∈ Q1(K) ∀K ∈ Ch }.

Define Π1: = (Π1,Π1), where Π1 is the standard bilinear interpolation operator.
We define two kinds of H0(rot)−finite element space. One is constructed by

Thomas [36] as

(3.2) Γh: = { s ∈H0(rot,Ω) ∩H1(Ω) | s = DF−T ŝ, ŝ ∈ Γ(K̂) ∀K ∈ Ch },

where Γ(K̂) is spanned by (1, 0), (0, 1), (ŷ, 0) and (0, x̂). The standard interpolation
operator into Γh is denoted by Π (see [36] for a definition).

Another one is recently proposed by Arnold, Boffi and Falk [2] (ABF0). It is

the same as Γh except that Γ(K̂) is spanned by (1, 0), (0, 1), (ŷ, 0), (0, x̂), (ŷ2, 0) and

(0, x̂2). The standard interpolation operator into this space is denoted by Π̃ (see [2]
for details).

We denote Π and Π̃ as Rh, and let Rh|K = RK , Π|K = ΠK and Π̃|K = Π̃K .

3.1. The stabilized MITC4 element. The stabilized MITC4 element (Mixed
Interpolation for Tensorial Components 4-nodes) is introduced by Lyly, Stenberg
and Vihinen [27]. The main ingredient of this element is the MITC interpolation
operator Π .

The method is realized through the following bilinear form Bh and the linear
form lh. For any (η, w) and (ψ, v) in V h ×Wh, we define Bh as

Bh(η, w;ψ, v): = a(η,ψ) +
∑

K∈Ch

λ

t2 + αKh2
K

(∇w −ΠKη,∇v −ΠKψ),

and `h(ψ, v) = (g, v), where αK is a piecewise constant. The method is formulated
as: Find (φh, ωh) ∈ V h ×Wh such that

Bh(φh, ωh;ψ, v) = `h(ψ, v) ∀(ψ, v) ∈ V h ×Wh.

Given (φh, ωh), the solution of the above equation, γh is locally defined as

γh|K
: =

λ

t2 + αKh2
K

(∇ωh −ΠKφh) ∀K ∈ Ch.

Remark 3.2. If we set αK = 0, the stabilized MITC4 element reduces to the
MITC4 element of Bathe and Dvorkin [11].

Remark 3.3. There is another kind of the stabilized MITC4 element which is the
lowest order case of the general MITC stabilized method in [26, Method 4.1 with
k = 1]. As shown in [30], all results for the stabilized MITC4 element defined above
also hold true for that case.

3.2. MIN4 element. The MIN4 element (Mindlin element 4 nodes) is introduced
by Tessler and Hughes [35], which employed two types of the numerical stabilization
tricks.

The deflection is firstly approximated by the serendipity quadratic element Qr
2,

which can be locally decomposed as Qr
2(K) = Q1(K) + E(K), where

E(K) = { v ∈ Qr
2(K) | v = 0 at all vertices of K }.
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Secondly, the part of the deflection belonging to E(K) is eliminated by forcing the
tangent component of the discrete shear strain to be constant along element edges.
Let LK : [Q1(K)]2 → E(K) be the linear operator defined by

(3.3)
∂

∂s

(
(∇LKψ −ψ) · τ

)
= 0 along each edge of K

with s the arc-length. The operator LK is called the kinematically linked interpo-
lation operator.

Another numerical stabilization trick is the so-called modified shear correction
factor which was emanated from Fried and Young’s work [18]. When isotropic
materials are taken into account, Tessler and Hughes proposed that the numerical
factor t2/(t2 + αKh

2
K) should be used to locally balance the shear strain energy

term, where αK is a positive parameter independent of t and h.
For any (η, w) and (ψ, v) in V h ×Wh, Bh and `h are defined as

Bh(η, w;ψ, v): = a(η,ψ) +
∑

K∈Ch

λ

t2 + αKh2
K

(
∇(w + LKη) − η,∇(v + LKψ) −ψ

)

and `h(ψ, v): =
∑

K∈Ch
(g, v + LKψ).

The MIN4 element is defined as: Find (φh, ωh) ∈ V h ×Wh such that

Bh(φh, ωh;ψ, v) = `h(ψ, v) ∀(ψ, v) ∈ V h ×Wh,

and the shear stress is computed from

γh|K
: =

λ

t2 + αKh2
K

(
∇(ωh + LKφh) − φh

)
.

3.3. Q4BL element. The third method to be considered is the Q4BL element
(Quadrilateral 4 nodes Bubble Stabilized Linked interpolated), which is introduced
by Zienkiewicz, Xu, Zeng, Samuelsson and Wiberg [39]. The stabilization trick
used in this element is similar to that in the MIN4 element.

The main difference between the MIN4 element and the Q4BL element is that
the latter is based upon a mixed formulation and uses a bubble-enriched space for
approximating the rotations. The finite element space for the rotations is defined
as

V ∗
h: = V h + V 0

h

with the quadratic bubble function space

V 0
h: = {ψ ∈ V | ψ|K ∈ B(K) ∀K ∈ Ch },

where B(K): = Span[(1 − x̂2)(1 − ŷ2)]2. The approximation procedure for the
deflection is still firstly approximated by the serendipity quadratic element Qr

2, and
then the part of E(K) is eliminated by forcing the tangent component of the discrete
shear strain to be constant along element edges. The shear stress is approximated
by a piecewise constant element as

Mh: = { s ∈M | s|K ∈ [P0(K)]2 ∀K ∈ Ch }.
The method is formulated as: Find (φh, ωh,γh) ∈ V ∗

h ×Wh ×Mh such that

a(φh,ψ) +
∑

K∈Ch

(
γh,∇(v + LKψ) −ψ

)
= lh(v, ψ) ∀(ψ, v) ∈ V ∗

h ×Wh,(3.4)

∑

K∈Ch

(
∇(ωh + LKφh) − φh, s

)
− λ−1t2(γh, s) = 0 ∀s ∈Mh,(3.5)
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where `h(v,ψ): =
∑

K∈Ch
(g, v + LKψ).

Eliminating the shear stress γh on the element level from (3.5), we obtain

(3.6) γh|K
= λt−2Π0

(
∇(ωh + LKφh) − φh

)
,

where Π0 = (Π0,Π0) with Π0 the L2 projection operator onto P0(K). Substitut-
ing (3.6) into (3.4), we get the following displacement oriented variational problem:
Find (φh, ωh) ∈ V h ×Wh such that for all (ψ, v) ∈ V h ×Wh

a(φh,ψ)+λt−2
∑

K∈Ch

(
Π0

(
∇(ωh +LKφh)−φh

)
,Π0

(
∇(v+LKψ)−ψ

))
= `h(v,ψ).

3.4. FMIN4 element. The element proposed by Kikuchi and Ishii (Full MIN4)
[21] is similar to the MIN4 element. The only difference is that it employs the com-
plete quadratic element Q2 for the deflection and the constraints in the definition
of LK are imposed not only on the four edges but also the two centerlines, and

we denote by L̃K this full kinematically linked interpolation operator. Numerical
shear correction factor is also used to balance the shear strain energy.

Remark 3.4. The employment of the full Q2 in the FMIN4 element is to ac-
count for the mesh distortion, which is justified by our later theoretic results, cf.
Theorem 5.5 and 5.7 (see also [3] for related discussions.)

4. Connections between the elements

In this section, we consider the connection between the elements discussed above.
The key ingredient is an identity connecting the kinematically linked interpolation

operator LK , L̃K and the Raviart-Thomas type interpolation operator ΠK , Π̃K ,
which will be presented in the first part of this section. Some properties of LK and

L̃K are given in the second part. We shall reformulate all elements in the last part.

4.1. Identities for LK and L̃K. As proven in [24, Theorem 4.1], there is a beau-
tiful identity between the gradient of LK and ΠK for the linear triangular element,
i.e.,

(4.1) ∇LKψ = ψ −ΠKψ ∀ψ ∈ [P1(K)]2.

Unfortunately, this identity does not hold when ψ belongs to [Q1(K)]2, the method
exploited in [24] is not applicable in the present situation since [Q1(K)]2 cannot be
hierarchically decomposed into Γ(K) +∇E(K). Nevertheless, in the next theorem,

we shall prove a similar identity for LK with a residue term. As to L̃K , we shall
establish an identity in Theorem 4.2 as

∇L̃Kψ = ψ − Π̃Kψ ∀ψ ∈ [Q1(K)]2.

Naturally, this identity can be viewed as a quadrilateral analog of (4.1).

Theorem 4.1.

(4.2) ∇LKψ = ψ −ΠKψ +ψ ∗ ∀ψ ∈ [Q1(K)]2.

The residue ψ ∗ may be written into ψ ∗ = ψ ∗
1 +ψ ∗

2 with

(4.3)
|(s,ψ ∗

1 )K | ≤ Ch2
K‖ div s‖0,K |ψ|1,K ∀s ∈H(div,K),

‖ψ ∗
2 ‖0,K ≤ ChK‖ rot(ψ −ΠKψ)‖0,K .
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Proof. Our proof is based on a direct calculation.
In view of the definition of ΠK , we obtain

(4.4) ψ −ΠKψ = DF−T (DF Tψ −ΠK DF Tψ).

On the reference element K̂, we write ψ as ψ(x) = ψ̂(x̂) = (ψ̂1, ψ̂2)
T with

ψ̂1(x̂, ŷ) = A0 +A1x̂+A2ŷ +A12x̂ŷ and ψ̂2(x̂, ŷ) = B0 +B1x̂+B2ŷ +B12x̂ŷ,

where

(4.5)

A0 = ψ̂1(0, 0), A1 =
∂ψ̂1

∂x̂
(0, 0), A2 =

∂ψ̂1

∂ŷ
(0, 0), A12 =

∂2ψ̂1

∂x̂∂ŷ
,

B0 = ψ̂2(0, 0), B1 =
∂ψ̂2

∂x̂
(0, 0), B2 =

∂ψ̂2

∂ŷ
(0, 0), B12 =

∂2ψ̂2

∂x̂∂ŷ
.

Invoking (3.1) and the above expression, we get

(DF Tψ −ΠK DF Tψ)1 = (a1A1 + b1B1)x̂ + (a1A12 + a12A1 + b1B12 + b12B1)x̂ŷ

+ (a12A12 + b12B12)x̂ŷ
2 − (a12A2 + b12B2)(1 − ŷ2),

(DF Tψ −ΠK DF Tψ)2 = (a2A2 + b2B2)ŷ + (a2A12 + a12A2 + b2B12 + b12B2)x̂ŷ

+ (a12A12 + b12B12)x̂
2ŷ − (a12A1 + b12B1)(1 − x̂2).

Noting ∇LKψ = DF−T ∇̂L̂Kψ and using the explicit expression in [35], we have

∂

∂x̂
L̂Kψ = (a1A1 + b1B1 + a12A12 + b12B12)x̂

+ (a1A12 + a12A1 + b1B12 + b12B1)x̂ŷ

− 1

2
(a12A2 + a2A12 + b12B2 + b2B12)(1 − ŷ2),

∂

∂ŷ
L̂Kψ = (a2A2 + b2B2 + a12A12 + b12B12)ŷ

+ (a2A12 + a12A2 + b2B12 + b12B2)x̂ŷ

− 1

2
(a12A1 + a1A12 + b12B1 + b1B12)(1 − x̂2).

A combination of above four equations yields (4.2). The residue ψ ∗ can be further
decomposed into ψ ∗ = ψ ∗

1 +ψ ∗
2 with

ψ ∗
1 : = DF−T (a12A12 + b12B12)

(
x̂(1 − ŷ2), ŷ(1 − x̂2)

)T
,(4.6)

ψ ∗
2 : = DF−T

(
C(1 − ŷ2)/2,D(1 − x̂2)/2

)T
,(4.7)

where C: = a12A2 +b12B2−a2A12−b2B12 and D: = a12A1 +b12B1−a1A12−b1B12.
Note that ψ ∗

1 = ∇q with q = − 1
2 (a12A12 + b12B12)(x̂

2 − 1)(ŷ2 − 1). For any
s ∈H(div,K), an integration by parts leads to

(s,ψ ∗
1 )K = (s,∇q)K = −(div s, q)K

since q ∈ H1
0 (K). Using Poincaré’s inequality, we obtain

‖q‖0,K ≤ ChK‖∇q‖0,K .

Note that A12 and B12 can be rewritten into

A12 =
∂ψ̂1

∂x̂
(0, 1) − ∂ψ̂1

∂x̂
(0, 0), B12 =

∂ψ̂2

∂x̂
(0, 1) − ∂ψ̂2

∂x̂
(0, 0),
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we thus have

(4.8) ‖ψ ∗
1 ‖0,K ≤ C|a12A12 + b12B12| ≤ ChK |ψ̂|1,K̂ ≤ ChK |ψ|1,K .

Combining the estimate for q and (4.8) leads to

|(s,ψ ∗
1 )K | ≤ ‖ div s‖0,K‖q‖0,K ≤ ChK‖ div s‖0,K‖∇q‖0,K

= ChK‖ div s‖0,K‖ψ ∗
1 ‖0,K ≤ Ch2

K‖ div s‖0,K |ψ|1,K ,(4.9)

which gives (4.3)1.

Using (4.7), we get ‖ψ ∗
2 ‖2

0,K̂
= 8

15 (C2 + D2) = 4
3‖r̂otψ̂

∗

2 ‖0,K̂ . Noting that

rotψ ∗
2 = rot(ΠKψ −ψ), we get

‖ψ ∗
2 ‖0,K ≤ C‖ψ̂ ∗

2 ‖0,K̂ =
4

3
C‖r̂otψ̂

∗

2 ‖0,K̂ ≤ ChK‖ rotψ ∗
2 ‖0,K

= ChK‖ rot(ψ −ΠKψ)‖0,K ,(4.10)

which yields (4.3)2. �

Theorem 4.2.

(4.11) ∇L̃Kψ = ψ − Π̃Kψ ∀ψ ∈ [Q1(K)]2.

Proof. Proceeding along the same line of Theorem 4.1, noting that

(DF Tψ − Π̃K DF Tψ)1 = (DF Tψ −ΠK̂DF
Tψ)1

+ (a12A2 + b12B2 − a2A12 − b2B12)(1 − ŷ2)/2,

(DF Tψ − Π̃K DF Tψ)2 = (DF Tψ −ΠK̂DF
Tψ)2

+ (a12A1 + b12B1 − a1A12 − b1B12)(1 − x̂2)/2,

and using the explicit expression of the gradient of L̃K [21]:

∂

∂x̂
̂̃LKψ = (a1A1 + b1B1)x̂+ (a1A12 + a12A1 + b1B12 + b12B1)x̂ŷ

− 1

2
(a12A2 + a2A12 + b12B2 + b2B12)(1 − ŷ2) + (a12A12 + b12B12)x̂ŷ

2,

∂

∂ŷ
̂̃LKψ = (a2A2 + b2B2)ŷ + (a2A12 + a12A2 + b2B12 + b12B2)x̂ŷ

− 1

2
(a12A1 + a1A12 + b12B1 + b1B12)(1 − x̂2) + (a12A12 + b12B12)x̂

2ŷ,

we come to (4.11). �

In view of the above proof, we get

(4.12) ∇L̃Kψ = ψ −ΠKψ +ψ ∗
2 ∀ψ ∈ [Q1(K)]2.

Using (4.11), we can rewrite (4.2) into

(4.13) ∇LKψ = ψ − Π̃Kψ +ψ ∗
1 ∀ψ ∈ [Q1(K)]2.

If [Q1(K)]2 is enriched with the bubble function [B(K)]2, we still have a similar
decomposition as well as the estimates. For any ψ ∈ [Q1(K)⊕B(K)]2, we have the
natural decomposition ψ = ψl +ψb with ψl ∈ [Q1(K)]2 and ψb ∈ [B(K)]2, then a
direct calculation gives

(4.14) |ψl|1,K ≤ C|ψ|1,K and |ψl|2,K ≤ C|ψ|2,K .
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Corollary 4.3. For any ψ ∈ [Q1(K) ⊕ B(K)]2, we have

(4.15) ∇LKψ = ψ − Π̃K ψ +ψ ∗.

Moreover, the residue ψ ∗ admits the following estimates

(4.16)
|(s,ψ ∗)K | ≤ Ch2

K(‖s‖0,K |ψ|2,K + ‖ div s‖0,K |ψ|1,K) ∀s ∈H(div,K),

‖ψ ∗‖0,K ≤ C(d2
K/hK)|ψ|2,K .

Proof. Considering the definition of LK , we see that LKψb = 0. It follows from

(4.13) that ∇LKψ−ψ = −Π̃Kψ+ψ ∗, which gives (4.15) with ψ ∗ = ψ ∗
l +Π̃Kψb−

ψb.
It remains to bound the residue. An integration by parts gives

∫

K

∂ψb

∂x
dx = 0 and

∫

K

∂ψb

∂y
dx = 0

since ψb vanishes on ∂K. Invoking Poincaré’s inequality, we have

|ψb|1,K ≤ ChK |ψb|2,K .

By the triangle inequality and (4.14),

|ψb|2,K ≤ |ψl|2,K + |ψ|2,K ≤ C|ψ|2,K .

A combination of above two inequalities leads to

(4.17) |ψb|1,K ≤ ChK |ψ|2,K ,

which together with the interpolation estimate (4.21) for Π̃K gives

(4.18) ‖ψb − Π̃Kψb‖0,K ≤ ChK |ψb|1,K ≤ Ch2
K |ψ|2,K .

Combining the above inequality and (4.3)1, we get (4.16)1.
Note that (4.8) can be improved to

(4.19) ‖ψ ∗
l ‖0,K ≤ C(d2

K/hK)|ψl|2,K ≤ C(d2
K/hK)|ψ|2,K ,

where we have used (4.14) in the last step. Using the above inequality and (4.18),
we obtain

‖ψ ∗‖0,K ≤ ‖ψ ∗
l ‖0,K + ‖ψb − Π̃Kψb‖0,K ≤ C(d2

K/hK)|ψ|2,K ,

which gives (4.16)2. �

Remark 4.4. In view of Theorem 4.1 and Corollary 4.3, the residue ψ ∗ does not
vanish even the quadrilateral reduces to a parallelogram or a rectangle.

Using (4.13) and (4.15), we have for any ψ in V h or V ∗
h,

(4.20) ∇LKψ = ψ − Π̃Kψ +ψ ∗.

Denote TKψ: = ψ ∗ for any ψ in V h or V ∗
h. TK is a well-defined linear operator due

to the above identity (4.20). Define a global operator Th by Th|K : = TK . By the
locally defined operator LK we embed it into a global operator Lh with Lh|K = LK .

Similarly, using (4.11), we may define a global operator L̃h by L̃h|K = L̃K .
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4.2. Properties for the kinematically linked interpolation operator. Before
proceeding, we cite some interpolation estimates for Rh.

Lemma 4.5. For any u ∈H1(K), there exists a constant C such that

(4.21) ‖u−RKu‖0,K ≤ ChK |u|1,K .

Moreover, if u ∈H1(K) and rotu ∈ H1(K), then

(4.22) ‖ rot(u− Π̃Ku)‖0,K ≤ ChK |rotu|1,K .

If the (1 + α)−Section Condition holds, then

(4.23) ‖ rot(u−ΠKu)‖0,K ≤ C(hK |rotu|1,K + hα
K‖ rotu‖0,K)

for all u ∈H1(K) and rotu ∈ H1(K).

The interpolation estimate (4.21) is essentially proved in [19, Lemma 7.1] and [2,
Theorem 7] 1. We refer to [30, Theorem 3.1] for (4.23) and [2, Theorem 8] for (4.22).

Remark 4.6. The interpolation estimate (4.23) is sharp in the sense that the term
hα

K‖ rotu‖0,K is indispensable. See [2] for a related counter-example.

We shall state a property for operatorsΠ and Π̃ which is crucial for reformulating
the method.

Lemma 4.7. For any u ∈Hs(K) with s > 1, we have

ΠK∇u = ∇Π1u,(4.24)

Π̃K∇u = ∇Π1u.(4.25)

Proof. The first identity (4.24) is well-known, we refer to [17, Lemma 2.1] and [26,
32].

Given s for which Π̃Ks is well-defined, we have

Π̃Ks = ΠKs+
(∫

K̂

r̂otŝ · x̂
)(

0
3
8 (x̂2 − 1)

)
+

(∫

K̂

r̂otŝ · ŷ
)(

3
8 (1 − ŷ2)

0

)
.

Let s = ∇u. Using r̂otŝ(x̂) = JK rots(F (x̂)), we get Π̃K∇u = ΠK∇u = ∇Π1u,
which gives (4.25). �

The following two lemmas concern the estimates for Th,Lh and L̃H .

Lemma 4.8. For any ψ in V h or V ∗
h, we have

(4.26) ‖Thψ‖0 ≤ Ch|ψ|1.

If the (1 +α)−Section Condition holds, then the above estimate can be improved to

(4.27) ‖Thψ‖0 ≤ C
( ∑

K∈Ch

h2+4α
K |ψ|22,K

)1/2

.

1In fact, a proof for the interpolation error of the lowest orderH(div)−Raviart-Thomas element
with respect to the L

2 norm was given in [19, Lemma 7.1] and [2, Theorem 8].
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Proof. If ψ ∈ V h, then using (4.8), we have

(4.28) ‖TKψ‖0,K = ‖ψ ∗
1 ‖0,K ≤ ChK |ψ|1,K .

In the case of ψ ∈ V ∗
h, invoking (4.8) and noting (4.21) for RK = Π̃K , we get

(4.29) ‖TKψ‖0,K ≤ ChK(|ψl|1,K + |ψb|1,K) ≤ ChK |ψ|1,K ,

where we have used |ψl|1,K + |ψb|1,K ≤ |ψ|1,K + 2|ψl|1,K ≤ C|ψ|1,K . Summing
over all quadrilaterals K, the estimate (4.26) follows from (4.28) and (4.29).

If the (1 + α)−Section Condition holds, the improved estimate (4.27) follows
from (4.19) and (4.16)2. �

Lemma 4.9. For any ψ in V h or V ∗
h, we have Lhψ ∈ H1

0 (Ω) and

(4.30) ‖Lhψ‖0 ≤ Ch‖∇Lhψ‖0 ≤ Ch2|ψ|1.
Similarly, for any ψ in V h or V ∗

h, we have L̃hψ ∈ H1
0 (Ω) and

(4.31) ‖L̃hψ‖0 ≤ Ch‖∇L̃hψ‖0 ≤ Ch2|ψ|1.
Proof. For any ψ in V h or V ∗

h, LKψ is completely determined by ψ · τ , so Lhψ ∈
C0(Ω). On each element K, LKψ ∈ E(K), by [16, Theorem 2.1.1], we conclude
Lhψ ∈ H1

0 (Ω).
Notice that LKψ vanishes at four vertices of K, we have

(4.32) ‖LKψ‖0,K = ‖LKψ − Π1LKψ‖0,K ≤ ChK‖∇LKψ‖0,K .

From (4.20), (4.28), (4.29) and (4.21), it follows that

‖∇LKψ‖0,K ≤ ‖ψ − Π̃Kψ‖0,K + ‖TKψ‖0,K ≤ ChK |ψ|1,K .

Combining above two inequalities, summing over all quadrilaterals K, and noting
that Lhψ ∈ H1

0 (Ω), we obtain (4.30).

Noting that L̃K = LK along each edge of the element K and proceeding along

the same line, we obtain L̃h ∈ H1
0 (Ω) and the estimate (4.31). �

As an application of the above lemma, we prove a result which is crucial for the
L2 error estimate of lower order quadrilateral elements for the Reissner-Mindlin
plate [17].

Lemma 4.10. If ψ ∈H1
0(Ω) ∩H2(Ω) and ζ ∈H(div,Ω), then

|(ζ,Π1ψ −ΠΠ1ψ)| ≤ Ch2‖ div ζ‖0|Π1ψ|1
+ Ch‖ζ‖0‖ rot(Π1ψ −ΠΠ1ψ)‖0,(4.33)

|(ζ,Π1ψ − Π̃Π1ψ)| ≤ Ch2‖ div ζ‖0|Π1ψ|1.(4.34)

Moreover, if the (1 + α)−Section Condition holds, then we may bound (4.33) as

(4.35) |(ζ,Π1ψ −ΠΠ1ψ)| ≤ Ch2‖ζ‖H(div)‖ψ‖2 + Ch1+α‖ζ‖0‖ rotψ‖0.

Proof. Using (4.12), we have

(ζ,Π1ψ −ΠΠ1ψ) = (ζ,∇L̃hΠ1ψ) −
∑

K∈Ch

∫

K

ζ(Π1ψ)∗2 dx.

Noting that L̃hΠ1ψ ∈H1
0(Ω) and ζ ∈H(div,Ω), an integration by parts gives

(ζ,∇L̃hΠ1ψ) = −(div ζ, L̃hΠ1ψ).
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It follows from Lemma 4.9 that

(4.36) |(ζ,∇L̃hΠ1ψ)| ≤ Ch2‖ div ζ‖0|Π1ψ|1.
Invoking (4.3)2 gives

(4.37)
∣∣ ∑

K∈Ch

∫

K

ζ(Π1ψ)∗2 dx
∣∣ ≤ Ch‖ζ‖0‖ rot(Π1ψ −ΠΠ1ψ)‖0.

A combination of above two inequalities gives (4.33). The last estimate (4.35)
follows from (4.33) and (4.23).

Proceeding along the same line of the above procedure and using Theorem 4.2,
we obtain (4.34). �

Remark 4.11. Estimates similar to (4.33) have been established in [28, Lemma
3.1], [17, Lemma 4.2] and [30, Lemma 3.5], but the estimate (4.34) appears to be
new. The proof is different from methodologies in [17, 28, 30], which are essentially
based upon the Hemholtz decomposition [14].

4.3. Reformulation of the method. Based on Theorem 4.1 and Theorem 4.2,
we introduce a general variational formulation which covers the stabilized MITC4,
MIN4 and FMIN4 elements.

Problem 4.12. Find (φh, ωh) ∈ V h ×Wh such that

Bh(φh, ωh;ψ, v) = `h(ψ, v) ∀(ψ, v) ∈ V h ×Wh,

where

Bh(φh,ωh;ψ, v): = a(φh,ψ)

+
∑

K∈Ch

λ

t2 + αKh2
K

(
RK(∇ωh − φh) + TKφh,RK(∇v −ψ) + TKψ

)
.

γh is defined locally as γh|K
= [λ/(t2 + αKh

2
K)]

(
(RK(∇ωh − φh) + TKφh

)
.

• The stabilized MITC4 element: TK = 0,RK = ΠK and `h(ψ, v) = (g, v).

• The FMIN4 element: TK = 0,RK = Π̃K and `h(ψ, v) = (g, v + L̃hψ).

• The MIN4 element: RK = Π̃K and `h(ψ, v) = (g, v + Lhψ).

Remark 4.13. If we let the right-hand side of the MIN4 and FMIN4 elements be
the same as the stabilized MITC4 element, then in view of Lemma 4.9 and as that
in [29, §4], we can show that the difference between the modified MIN4, FMIN4
elements and the original ones is O(h2) with respect to the ||| · |||−norm defined
below.

If the quadrilateral changes to a rectangle, then we can use the standard static
condensation procedure [33] to reformulate the Q4BL element as:

Find (φh, ωh) ∈ V h ×Wh such that Bh(φh, ωh;ψ, v) = `h(ψ, v) for all (ψ, v) ∈
V h ×Wh. Here Bh and `h are defined respectively as

Bh(η, w;ψ, v): = a(η,ψ) −
∑

K∈Ch

(
(B−1

K − λ−1t2I)Aη, Aψ
)

+
∑

K∈Ch

(
BKΠ0

(
Π̃K(∇w − η) + T Kη

)
− (B−1

K − λ−1t2I)Aη,

Π0

(
Π̃K(∇v − ψ) + T Kψ

)
− (B−1

K − λ−1t2I)Aψ
)

(4.38)
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with BK : =
(
λ−1t2 + 16

81 |K|A−1
K

)−1
, where

AK =

(
a(φ1,φ1) a(φ1,φ2)
a(φ1,φ2) a(φ2,φ2)

)
,

and |K| is the area of element K, φ is the quadratic bubble function in B(K)
and φ1 = (φ, 0),φ2 = (0, φ). The differential operator A is defined as (Aη,ψ) =
−a(η,ψ). It is easy to see that

‖BK‖ = O
( 1

t2 + h2
K

)
and ‖B−1

K − λ−1t2I‖ = O(h2
K),

where ‖ · ‖ denotes the matrix norm by ‖A‖: = supx∈R2,|x|=1|Ax|. The linear form

`h is defined as `h(v,ψ): = (g, v + Lhψ).
Consequently, the Q4BL element is actually the stabilized MITC4 element in-

troduced in [25] or [26, Method 4.1 with k=1] provided that the operator Π0 is
replaced by I and T K vanishes.

It is reported in [39] that there is one zero energy mode for the Q4BL element,
which is clear from (4.38). Such defect is due to the lack of stability. To overcome
this difficulty, Auricchio and Lovadina [7] proposed an augmented variational for-
mulation and analyzed rectangular elements. This modified Q4BL element behaves
quite well in the benchmark computation, whereas the analysis therein indicates
that it is locking since the right-hand side of the error bound depends on ‖γ‖1 and
‖ω‖3, which is of O(t−1/2) for the clamped plate, and even worse for other bound-
ary conditions [6]. In §6, we will modify their variational formulation as that in [15]
and give a complete analysis for general quadrilateral elements.

5. Error estimate for the stabilized MITC4, MIN4 and FMIN4
elements

To analyze Problem 4.12, we introduce some mesh-dependent norms. For any
ψ ∈ V h or V ∗

h, v ∈Wh and s ∈ Γh or Mh, define

(5.1) ‖ψ, v‖: = ‖ψ‖1 + ‖v‖1 + |ψ, v|h,
and

‖s‖h: =
( ∑

K∈Ch

(t2 + αKh
2
K)‖s‖2

0,K

)1/2

, |||ψ, v, s|||: = ‖ψ, v‖ + ‖s‖h,

where |ψ, v|h is defined as

|ψ, v|h: =
( ∑

K∈Ch

(t2 + αKh
2
K)−1‖RK(∇v −ψ)‖2

0,K

)1/2

.

Remark 5.1. If RK = ΠK , it follows from (4.28) that there exist constants C1

and C2 such that

C1|ψ, v|h ≤
( ∑

K∈Ch

(t2 + αKh
2
K)−1‖∇(v + LKψ) −ψ‖2

0,K

)1/2

+ |ψ|1,

and
( ∑

K∈Ch

(t2 + αKh
2
K)−1‖∇(v + LKψ) −ψ‖2

0,K

)1/2

≤ C2(|ψ, v|h + |ψ|1).
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If RK = Π̃K , using (4.11) we obtain

|ψ, v|h =
( ∑

K∈Ch

(t2 + αKh
2
K)−1‖∇(v + L̃Kψ) −ψ‖2

0,K

)1/2

.

Define a piecewise constant µ by

(5.2) µ|K : = µK : = t2/(t2 + αKh
2
K).

The following lemma indicates that the above mesh-dependent norms admit
optimal approximation error bounds.

Lemma 5.2. If (φ, ω,γ) are solutions of Problem 2.1, then

inf
ψ∈V h or V ∗

h
,v∈Wh

‖φ−ψ, ω − v‖ ≤ Ch(‖φ‖2 + ‖ω‖2),(5.3)

inf
s∈Mh

‖γ − s‖h ≤ Ch(‖γ‖0 + t‖γ‖1),(5.4)

inf
s∈Γh

‖γ − s‖h ≤ Ch(‖γ‖0 + t‖γ‖1 + ‖φ‖2).(5.5)

Proof. Let ψ = Π1φ and v = Π1ω1. Using Lemma 4.7, we obtain RK∇Π1ω =
RK∇ω, therefore,

(5.6) RK

(
∇(ω − Π1ω) − (φ−Π1φ)

)
= RK(Π1φ− φ),

which implies
∣∣φ − Π1φ, ω − Π1ω

∣∣
h

=
∣∣φ − Π1φ, 0

∣∣
h
. The standard interpolation

error estimate for Π1 and Rh yields

‖RK(φ−Π1φ)‖0,K ≤ ‖(RK − I)(φ−Π1φ)‖0,K + ‖φ−Π1φ‖0,K

≤ Ch2
K‖φ‖2,K .(5.7)

Therefore, ∣∣φ− Π1φ, ω − Π1ω
∣∣
h
≤ Ch‖φ‖2.

This inequality together with the standard interpolation result for the bilinear ele-
ment gives (5.3).

Putting s = Π0γ ∈Mh in the left-hand side of (5.4), we have

‖γ −Π0γ‖h ≤ t‖γ −Π0γ‖0 + Ch‖γ −Π0γ‖0 ≤ Ch(t‖γ‖1 + ‖γ‖0),

which leads to (5.4).
Define γ := λµ t−2(∇Π1ω −RhΠ1φ). By Lemma 4.7, we conclude that γ ∈ Γh

and we may write γ as

γ = λµt−2
(
Rh(∇ω − φ) +Rh(φ−Π1φ)

)
= µRhγ + λµt−2Rh(φ−Π1φ).

Therefore, γ − γ = (1 − µ)γ + µ(γ −Rhγ) + λµt−2Rh(Π1φ− φ). It follows that

‖γ − γ‖h ≤
( ∑

K∈Ch

t2(1 − µK)2/µK‖γ‖2
0,K

)1/2

+
( ∑

K∈Ch

t2µK‖γ −RKγ‖2
0,K

)1/2

+
( ∑

K∈Ch

λ2µKt
−2‖RK(φ−Π1φ)‖2

0,K

)1/2

≤ Ch(‖γ‖0 + t‖γ‖1 + ‖φ‖2),(5.8)

where we have used

t2(1 − µK)2/µK ≤ t2(1 − µK)/µK = αKh
2
K ,

and (5.7) to bound the first and the last term in the right-hand side of the above
inequality, respectively. �
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A direct consequence of (5.5) is

Corollary 5.3. Let (φ, ω,γ) be solutions of Problem 2.1, if we define

γ̂: = µλt−2(∇(Π1ω+LhΠ1φ)−Π1φ) and γ̃: = µλt−2(∇(Π1ω+L̃hΠ1φ)−Π1φ),

then

(5.9)
‖γ − γ̂‖h ≤ Ch(‖γ‖0 + t‖γ‖1 + ‖φ‖2) + Ch2α‖φ‖2,

‖γ − γ̃‖h ≤ Ch(‖γ‖0 + t‖γ‖1 + ‖φ‖2).

Proof. By Lemma 4.7, γ̂ = γ + λµt−2ThΠ1φ with Rh = Π . Therefore,

‖γ − γ̂‖h ≤ ‖γ − γ‖h + ‖λµt−2ThΠ1φ‖h.

Using (4.27)1, we obtain

‖λµt−2ThΠ1φ‖h ≤ C
( ∑

K∈Ch

µKt
−2(h4

K + h2+4α
K )‖Π1φ‖2

2,K

)1/2

≤ C(h+ h2α)‖φ‖2,

thus (5.9)1 follows.

Notice that γ̃ = γ with Rh = Π̃ , invoking (5.5) leads to (5.9)2. �

We have the coercivity inequality for Problem 4.12 as follows:

Lemma 5.4. There exists a constant C such that

(5.10) Bh(ψ, v;ψ, v) ≥ C‖ψ, v‖2 ∀(ψ, v) ∈ V h ×Wh.

The proof of (5.10) for the stabilized MITC4 element is referred to [26, Theorem
3.5]. Proceeding along the same line of [26, Theorem 3.5] and using Remark 5.1,
we may establish (5.10) for the MIN4 and FMIN4 elements. A combination of the
above interpolation and stability results gives

Theorem 5.5. Let (φ, ω,γ) and (φh, ωh,γh) be solutions of Problem 2.1 and Prob-
lem 4.12, respectively. If the (1 + α)−Section Condition holds, then for the MIN4
element,

(5.11) |||φ− φh, ω − ωh,γ − γh||| ≤ Ch(‖g‖−1 + t‖g‖0) + Ch2α‖g‖−1.

For the stabilized MITC4 and FMIN4 elements,

(5.12) |||φ− φh, ω − ωh,γ − γh||| ≤ Ch(‖g‖−1 + t‖g‖0).

Proof. We start from the MIN4 element. Define ψ: = φh−Π1φ and v: = ωh−Π1ω.
We expand Bh(ψ, v;ψ, v) as

Bh(φh −Π1φ, ωh − Π1ω;ψ, v) = Bh(φh, ωh;ψ, v) − Bh(Π1φ,Π1ω;ψ, v)

= (g, v + Lhψ) − Bh(Π1φ,Π1ω;ψ, v)

= B(φ, ω;ψ, v + Lhψ) − Bh(Π1φ,Π1ω;ψ, v)

= a(φ−Π1φ,ψ) +
(
γ − γ̂,∇(v + Lhψ) −ψ

)
.(5.13)

It follows that
∣∣Bh(φh −Π1φ, ωh − Π1ω;ψ, v)

∣∣ ≤ C(‖φ−Π1φ‖1 + ‖γ − γ̂‖h)‖ψ, v‖,
which together with the stability property (5.10) leads to

‖φh −Π1φ, ωh − Π1ω‖ ≤ Ch(‖g‖−1 + t‖g‖0) + Ch2α‖g‖−1.
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By definition, ‖γ̂ − γh‖h ≤
√
λ |φh −Π1φ, ωh − Π1ω|h. It easily follows that

|||φh −Π1φ, ωh − Π1ω, γ̂ − γh||| ≤ Ch(‖g‖−1 + t‖g‖0) + Ch2α‖g‖−1.

The final estimate (5.11) now follows directly from the triangle inequality, the
interpolation estimate (5.3) and (5.9)1.

The proof for the FMIN4 element and the stabilized MITC4 element is the same.
As to the FMIN4 element, we have

Bh(φh −Π1φ, ωh − Π1ω;ψ, v) = a(φ−Π1φ,ψ) +
(
γ − γ̃,∇(v + L̃hψ) −ψ

)
.

This gives ‖φh −Π1φ, ωh − Π1ω‖ ≤ Ch(‖g‖−1 + t‖g‖0) by (5.9)2 and (5.10).
As to the stabilized MITC4 element,

Bh(φh −Π1φ, ωh − Π1ω;ψ, v) = a(φ−Π1φ,ψ)

+ (γ, Πψ −ψ) +
(
γ − γ, Π(∇v −ψ)

)
.

It follows from Lemma 4.5, (5.5) and the stability property (5.10) that

‖φh −Π1φ, ωh − Π1ω‖ ≤ Ch(‖g‖−1 + t‖g‖0).

The remaining part of the proof may be proceeded as that in the MIN4 element. �

In what follows, we turn to the L2 estimate. Define an auxiliary problem as

Problem 5.6. Find (ψ, z) ∈ V ×W such that

(5.14) B(m, n;ψ, z) = (φ− φh,m) + (ω − ωh, n) ∀(m, n) ∈ V ×W.

Define s := λt−2(∇z −ψ).

The regularity property for the solution of the above problem follows from (2.5),
(2.6), Lemma 2.2 and Remark 2.3 as

(5.15) ‖ψ‖2+‖z‖3+‖s‖H(div)+t‖s‖1+t−1‖ rotψ‖0 ≤ C(‖φ−φh‖0+‖ω−ωh‖0).

For the MIN4 element, denote ψ = Π1ψ, z = Π1z+Lhψ and ŝ = λµ t−2(∇z −
ψ). While for the FMIN4 element, the definitions for ψ, z and ŝ are the same

except that Lh is replaced by L̃h. As to the stabilized MITC4 element, we define
ψ = Π1ψ, z = Π1z and ŝ = λµ t−2(∇z −Πψ). It follows from (5.2) that

(5.16) ‖µs− ŝ‖h ≤ ‖(1− µ)s‖h + ‖s− ŝ‖h ≤ Ch‖s‖0 + ‖s− ŝ‖h.

In view of Corollary 5.3, we get

(5.17) ‖µs− ŝ‖h ≤
{
Ch(‖ψ‖2 + ‖s‖0 + t‖s‖1) + Ch2α‖ψ‖2, MIN4,

Ch(‖ψ‖2 + ‖s‖0 + t‖s‖1), FMIN4.

Using (5.8) with Rh = Π , we obtain

(5.18) ‖µs− ŝ‖h ≤ Ch(‖ψ‖2 + ‖s‖0 + t‖s‖1), stabilized MITC4.

With this auxiliary problem (5.6) and exploiting the dual argument, we obtain
the L2 estimate as

Theorem 5.7. Let (φ, ω,γ) and (φh, ωh,γh) be solutions of Problem 2.1 and Prob-
lem 4.12, respectively. If the (1 + α)−Section Condition holds, then for the MIN4
element,

(5.19) ‖φ− φh‖0 + ‖ω − ωh‖0 ≤ C(h2 + h1+2α)(‖g‖−1 + t‖g‖0) + Ch4α‖g‖−1,
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for the stabilized MITC4 element,

(5.20) ‖φ− φh‖0 + ‖ω − ωh‖0 ≤ Ch1+αt‖g‖−1 + Ch2‖g‖0.

For the FMIN4 element,

(5.21) ‖φ− φh‖0 + ‖ω − ωh‖0 ≤ Ch2(‖g‖−1 + t‖g‖0).

Proof. Inserting m = φ− φh and n = ω − ωh into (5.14), we get

‖φ− φh‖2
0 + ‖ω − ωh‖2

0 = B(φ− φh, ω − ωh;ψ, z) = (g, z)− B(φh, ωh;ψ, z)

= (g, z − z) + [Bh(φh, ωh;ψ,Π1z) − B(φh, ωh;ψ, z)].(5.22)

Noting that − divγ = g and z, z ∈ H1
0 (Ω), an integration by parts gives

(5.23) (g, z − z) = (γ,∇z −∇z).

We write the second term on the right-hand side of (5.22) as

Bh(φh, ωh;ψ,Π1z) − B(φh, ωh;ψ, z) = a(φh,ψ −ψ) + (γh,∇z −ψ −∇z +ψ)

+ λ−1t2(γh, s) − (∇ωh − φh, s).(5.24)

Using (5.23) and (γ,ψ −ψ) = a(φ,ψ −ψ), we obtain

(g, z − z) + (γh,∇z −ψ −∇z +ψ)

= (γh − γ,∇z −ψ −∇z +ψ) + (γ,ψ −ψ)

= (λµ)−1t2(γ − γh, µs− ŝ) + a(φ,ψ −ψ).

Combining the above four identities, we obtain

‖φ− φh‖2
0 + ‖ω − ωh‖2

0 = a(φ− φh,ψ −ψ) + (λµ)−1t2(γ − γh, µs− ŝ)
+

(
λ−1t2γh − (∇ωh − φh), s

)
.(5.25)

Using the local expression of γh, we get
(
λ−1t2γh − (∇ωh − φh), s

)
= λ−1t2(1 − 1/µ)(γh, s) + (∇Lhφh, s)

= λ−1t2(1 − 1/µ)(γh, s) − (Lhφh, div s)(5.26)

It follows from (4.30) that
∣∣(λ−1t2γh − (∇ωh −φh), s

)∣∣ ≤ C(h‖γ−γh‖h +h2‖γ‖0)‖s‖0 +Ch2‖φh‖1‖ div s‖0.

Therefore, we obtain

‖φ− φh‖2
0 + ‖ω − ωh‖2

0 ≤ λ−1‖γ − γh‖h‖µs− ŝ‖h + C‖φ− φh‖1‖ψ −ψ‖1

+ C(h‖γ − γh‖h + h2‖γ‖0)‖s‖0 + Ch2‖φh‖1‖ div s‖0.

Invoking (5.17)1 for the MIN4 element, and (5.17)2 for the FMIN4 element, using
Theorem 5.5 and the regularity estimate (5.15), we get (5.19) and (5.21).

We turn to the stabilized MITC4 element. Proceeding along the same way, we
obtain an equation similar to (5.25):

‖φ− φh‖2
0 + ‖ω − ωh‖2

0 = a(φ− φh,ψ −ψ) + (λµ)−1t2(γ − γh, µs− ŝ)
+ (γ,ψ −Πψ) +

(
λ−1t2γh − (∇ωh − φh), s

)
.
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Similar to (5.26), we have
(
λ−1t2γh − (∇ωh − φh), s

)
= λ−1t2(1 − 1/µ)(γh, s) + (φh −Πφh, s)

= λ−1t2(1 − 1/µ)(γh, s) +
(
(I −Π)(φh −Π1φ), s

)

+ (Π1φ−ΠΠ1φ, s).

It follows from (5.12) and (4.35) that
∣∣(λ−1t2γh−(∇ωh − φh), s

)∣∣ ≤ Ch(‖φ− φh‖1 + ‖γ − γh‖h)‖s‖0

+ Ch1+α‖ rotφ‖0‖s‖0 + Ch2(‖φ‖2 + ‖γ‖0)‖s‖H(div).

Using (4.35), we get

|(γ,ψ −Πψ)| ≤ C(h2‖γ‖H(div) + h1+αt‖γ‖0)(‖ψ‖2 + t−1‖ rotψ‖0).

Repeating the procedure for the MIN4 element, we come to (5.20). �

6. Error estimate for a modified Q4BL element

The modified Q4BL element can be formulated as

Problem 6.1. Find (φh, ωh,γh) ∈ V ∗
h ×Wh ×Mh such that

(6.1) Ah(φh, ωh,γh;ψ, v, s) = (g, v + Lhψ) ∀(ψ, v, s) ∈ V ∗
h ×Wh ×Mh,

where Ah(φh, ωh,γh;ψ, v, s) = Âh(φh, ωh + Lhφh,γh;ψ, v + Lhψ, s), and Âh is
defined for any (η, w, z) and (ψ, v, s) ∈ V ×W ×M as

Âh(η, w, z;ψ, v, s) = A(η, w, z;ψ, v, s)

+ µλ/t2(∇w − η − λ−1t2z,∇v − ψ − λ−1t2s)

with

(6.2) µ|K : = µK = ρ t2/(t2 + αKh
2
K) for some ρ ∈ (0, 1).

Noting that for any (η, w, z) ∈ V ×W ×M ,

(6.3) Âh(η, w, z;ψ, v, s) = µB(η, w;ψ, s) + (1 − µ)A(η, w, z;ψ, v, s)

for all (ψ, v, s) ∈ V ×W ×M .

Remark 6.2. The only difference between Problem 6.1 and the original formulation
of Auricchio and Lovadina is the definition of µ. We define a piecewise constant
with a special form as (6.2).

In view of Remark 5.1 and along the same line of [7, Proposition 3.1], we obtain
the following weak coercivity inequality as

Lemma 6.3. Given (η, w, z) ∈ V ∗
h ×Wh ×Mh, there exist (ψ, v, s) ∈ V ∗

h ×Wh ×
Mh such that |||ψ, v, s||| ≤ C|||η, w, z||| and

Ah(η, w, z;ψ, v, s) ≥ C|||η, w, z|||2.
With the above weak coercivity inequality, we derive the error bound as

Theorem 6.4. Let (φ, ω,γ) and (φh, ωh,γh) be solutions of Problem 2.1 and Prob-
lem 6.1, respectively. If the (1 + α)−Section Condition holds, then

(6.4) |||φ− φh, ω − ωh,γ − γh||| ≤ Ch(‖g‖−1 + t‖g‖0) + Ch2α‖g‖−1.
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Proof. For (φh−Π1φ, ωh−Π1ω,γh−Π0γ) ∈ V ∗
h×Wh×Mh, there exist (ψ, v, s) ∈

V ∗
h ×Wh ×Mh such that |||ψ, v, s||| ≤ C|||φh −Π1φ, ωh − Π1ω,γh −Π0γ||| and

Ah(φh−Π1φ, ωh−Π1ω,γh−Π0γ;ψ, v, z) ≥ C|||φh−Π1φ, ωh−Π1ω,γh−Π0γ|||2.

On the other hand,

Ah(φh −Π1φ, ωh − Π1ω,γh −Π0γ;ψ, v, s) = (g, v + Lhψ)

−Ah(Π1φ,Π1ω,Π0γ;ψ, v, s).

Note that Âh(φ, ω,γ;ψ, v+Lhψ, s) = (g, v+Lhψ) for any (ψ, v, s) ∈ V ∗
h ×Wh ×

Mh. Hence,

Ah(φh −Π1φ, ωh − Π1ω,γ −Π0γ;ψ, v, s)

= Âh(φ−Π1φ, ω − Π1ω −LhΠ1φ,γ −Π0γ;ψ, v + Lhψ, s).

By virtue of (6.3), the above identity can be expanded into

Ah(φh −Π1φ, ωh − Π1ω,γ −Π0γ;ψ, v, s) = a(φ−Π1φ,ψ)

+
(
µγ − γ̂,∇(v + Lhψ) −ψ

)
+ (1 − µ)(γ −Π0γ,∇(v + Lhψ) −ψ)

+ µ−1(1 − µ)λ−1t2(µγ − γ̂, s) − λ−1t2(1 − µ)(γ −Π0γ, s)

= :I1 + · · · + I5.

We bound I1, · · · , I5 separately. I1 can be bounded as

|I1| ≤ Ch‖φ‖2‖ψ‖1.

As that in (5.16), we estimate I2 as

|I2| ≤ C‖µγ − γ̂‖h|ψ, v|h ≤ C(‖γ − γ̂‖h + h‖γ‖0)|ψ, v|h.

I3 can be bounded as

|I3| ≤ ‖γ −Π0γ‖h|ψ, v|h.
Similar to I2, we bound I4 as

|I4| ≤ C(‖γ − γ̂‖h + h‖γ‖0)‖s‖h.

Clearly, I5 = 0. To sum up, we obtain

(6.5) |||φh −Π1φ, ωh − Π1ω,γh −Π0γ||| ≤ Ch(‖g‖−1 + t‖g‖0) + Ch2α‖g‖−1.

A combination of (6.5) and Lemma 5.2 leads to the conclusion. �

In the following, we turn to the L2 estimate for this modified Q4BL element.

Theorem 6.5. Let (φ, ω,γ) and (φh, ωh,γh) be solutions of Problem 2.1 and Prob-
lem 6.1, respectively. If the (1 + α)−Section Condition holds, then

(6.6) ‖φ− φh‖0 + ‖ω − ωh‖0 ≤ C(h2 + h1+2α)(‖g‖−1 + t‖g‖0) + Ch4α‖g‖−1.

Proof. The solution of Problem 5.6 satisfies

(6.7) Âh(m, n,p;ψ, z, s) = (φ−φh,m)+(ω−ωh, n) ∀(m, n,p) ∈ V ×W ×M .
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Substituting m = φ− φh, n = ω − ωh and p = γ − γh into (6.7), we obtain

‖φ− φh‖2
0 + ‖ω − ωh‖2

0 = Âh(φ− φh, ω − ωh,γ − γh;ψ, z, s)

= Âh(φ− φh, ω − ωh −Lhφh,γ − γh;ψ −ψ, z − z, s− s)
+ Âh(φ− φh, ω − ωh −Lhφh,γ − γh;ψ, z, s)

+ Âh(0,Lhφh,0;ψ, z, s)

with ψ: = Π1ψ, z: = Π1z + Lhψ and s: = Π0s. Note that

Âh(φ, ω,γ;ψ, z, s) = (g, z) = Âh(φh, ωh + Lhφh,γh;ψ, z, s)

and Âh(0,Lhφh,0;ψ, z, s) = (∇Lhφh, s). Therefore,

‖φ− φh‖2
0 + ‖ω − ωh‖2

0 = Âh(φ− φh, ω − ωh − Lhφh,γ − γh;ψ −ψ, z − z, s− s)
+ (∇Lhφh, s).

We need to consider the following cross term

µλt−2(∇ω − φ−∇(ωh + Lhφh) + φh,∇z −ψ −∇z +ψ).

This term can be rewritten as
(
∇ω−φ−∇(ωh +Lhφh) +φh, µs− ŝ

)
, which is in

turn bounded by

C‖λµt−2(∇ω − φ−∇(ωh + Lhφh) + φh)‖h‖µs− ŝ‖h.

It follows from (4.30) that

|(∇Lhφh, s)| = |−(Lhφh, div s)| ≤ Ch2‖φh‖1‖ div s‖0.

The remaining terms of Âh can be easily bounded, thus we obtain

‖φ− φh‖2
0 + ‖ω − ωh‖2

0 ≤ C|||φ − φh, ω − ωh,γ − γh||| + Ch2‖φh‖1‖ div s‖0

+ C‖λµt−2(∇ω − φ−∇(ωh + Lhφh) + φh)‖h

× (‖ψ −ψ‖1 + ‖s− s‖h + ‖µs− ŝ‖h).(6.8)

Using Remark 5.1, we get

‖λµ t−2
(
∇(ωh + Lhφh) − φh −∇(Π1ω + LhΠ1φ) + Π1φ

)
‖h

≤ C|φh −Π1φ, ωh − Π1ω|h + C‖φh −Π1φ‖1.

Using λµt−2(∇ω −φ−∇(Π1ω+LhΠ1φ) + Π1φ) = µγ − γ̂ and (5.16), we obtain

‖λµt−2(∇ω − φ−∇(Π1ω + LhΠ1φ) + Π1φ)‖h = ‖µγ − γ̂‖h

≤ C(‖γ − γ̂‖h + h‖γ‖0).

By the triangle inequality, using (6.5) and the interpolation estimate (5.9)1, we get

‖µt−2(∇ω − φ−∇(ωh + Lhφh) + φh)‖h ≤ Ch(‖g‖−1 + t‖g‖0) + Ch2α‖g‖−1.

Substituting the above inequality into (6.8), using Theorem 6.4 and the interpola-
tion estimate (5.4), (5.17)1, we obtain the desired L2 error estimate (6.6). �

Remark 6.6. The modified Q4BL element could attain the optimal H1 and L2

error if we employ the full kinematically linked interpolation operator L̃h in (6.1).
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7. Conclusion

Theorems 5.5, 5.7, 6.4 and 6.5 indicate that the FMIN4 and the stabilized MITC4
elements are more robust than the MIN4 and the modified Q4BL elements from
the viewpoint of the mesh distortion. The (1 + α)−Section Condition, instead of
the commonly used Bi-Section Condition, distinguishes the convergence behavior of
the MIN4 and the modified Q4BL from the stabilized MITC4 and the FMIN4. The
robustness of these elements with respect to the mesh distortion can be expressed
as

FMIN4 > stabilized MITC4 > MIN4, Modified Q4BL.

The degradation of the accuracy of these four elements over the general quadrilat-
eral mesh is actually not widely known. It is also difficult to detect from numerous
numerical reports presented in [27, 35, 39] since they all employed bisection as a
mesh refinement strategy, and the resulting mesh as addressed in [1, 31] is always
the asymptotically regular parallelogram mesh even if the initial mesh is the one as
shown in the right figure of Fig. 1. For these meshes, our theoretic results show
that there is no accuracy loss for all four elements.
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