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Abstract In this paper, we consider the cascadic multigrid method for a parabolic type equation.
Backward Euler approximation in time and linear finite element approximation in space are employed.
A stability result is established under some conditions on the smoother. Using new and sharper
estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh
parameter, these conditions are verified for a number of popular smoothers. Optimal error bounds
are derived for both smooth and non-smooth data. Iteration strategies guaranteeing both the optimal
accuracy and the optimal complexity are presented.
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1 Introduction

The cascadic multigrid method presented by Deuflhard, Leinen and Yserentant in [1] is a one-
way multigrid method which may be viewed as a multilevel method without the coarse mesh
correction. The method dates back to Wachspress’ pioneering work [2]. The basic idea of this
method is to control the iteration number over successively refined mesh as long as the algebraic
error is below the discretization error. The first algorithmic realization for two dimensional ellip-
tic problems was given in [1] while the three dimensional realizations and convincing numerical
results were reported in Bornemann, Erdmann and Kornhuber [3]. In Deuflhard [4], the use of
a posteriori algorithmic control in combination with conjugate gradient method was proposed,
suggesting more iterations on coarser levels to be used so as to perform less iteration on finer
levels. Shaidurov [5] gave the first convergence proof that provides a theoretical justification of
the numerical performance. Based on the cascade principle given in [1] that suggests the termi-
nation of the iteration when the discretization error dominates the algebraic error, Bornemann
and Deuflhard [6] extended the results to the case when other traditional iteration methods are

Received ; accepted

DOI:
† Corresponding author

The work of Du was supported in part by NSF DMS-0409297, NSF DMR-0205232, NSF CCF-0430349 and

NIH-NCI 1R01CA125707-01A1. The work of Ming was supported by National Natural Science Foundation of
China under the grant 10571172, the National Basic Research Program under the grant 2005CB321704 and the

Youth’s Innovative Program of Chinese Academy of Sciences under the grants K7290312G9, K7502712F9.



66 Qiang Du & Pingbing Ming

employed as smoothers. Optimal error bounds for the cascadic solution were derived and the
algorithm was shown to have the multigrid complexity [7]. Later, the cascadic multigrid method
was applied to the elliptic problems in domains with re-entrant corners [8], Stokes problem [9],
some indefinite and semi-linear problems [10], some mildly nonlinear problems [11,12], and more
recently it was extended to the Mortar setting [13] and variational inequality [14]. In [15,16],
the cascadic algorithm with non-conforming finite element discretization was considered, and
in [17], the cascadic algorithm with finite volume discretization has been studied. We refer
to [18] for the review of recent progress of this method.

Studies on the cascadic multigrid method for parabolic problems, have also been made
during the last decade, see, e.g. [19, 20, 21]. With a discrete in time formulation, cascadic
multigrid methods can be directly applied to the resulting elliptic problems by treating the
time step size as a parameter. Though numerical experiments presented in [19] indicate that
the method behaves quite well for parabolic problems, a complete mathematical analysis is not
yet available. In fact, one important issue that has not been addressed is how the choice of
parameters would affect the interplay between the stability of the algorithm and the iteration
strategy. Moreover, it remains to be studied whether the optimal error bounds can be rigorously
derived and if the algorithm is still of multigrid complexity. A key to the establishment of such
results is a careful investigation of the stability properties of the cascadic multigrid algorithm
when applied to parabolic problems with the time and space discretization. In turn, this
requires improved estimates on the various smoothers that reflect the intrinsic spatial and
temporal structures of the fully discrete approximations.

To put our work in a larger context, we note that there have been much interests in the study
of the effect of iterative solvers on the numerical solution of parabolic equations with implicit-in-
time discretizations [22]. Such studies are not only practically important but also theoretically
interesting. In fact, it has been widely known that, for implicit in time discretizations, it is often
possible to gain computational efficiency while preserving the order of accuracy through suitable
approximations. To give an illustrative example, an earlier work of Dawson, Du and Dupont
[23] proposed a coupled explicit/implicit domain decomposition algorithm as an alternative
to a fully implicit discretization of parabolic equations. The domain decomposition algorithm
may be seen as an approximation to the fully implicit scheme but with very different stability
properties. Here, we also face the issue of establishing new stability estimates. Moreover, while
the particular emphasis of our present paper is to give a comprehensive analysis of the cascadic
multigrid method for parabolic equations, the framework and technical details may be useful
in the study of other similar models and methods as well.

For the purpose of illustration, we focus on a linear parabolic problem in two dimensional
space. We establish the stability of the cascadic algorithm under some conditions on the
smoothers. We also prove an optimal error bound in the L2 norm for the cascadic solution
of the parabolic problem in spite of the fact that it is impossible to obtain such a bound when
the cascadic algorithm is applied to a standard second order elliptic problem with the linear
finite element discretization [24]. It is also worth mentioning that as addressed in [24], cas-
cadic multigrid method is different from the idea of incomplete iteration proposed in [25, 22]
and [Ch. 11, 26]. New techniques are used in our discussion to obtain the desired estimates.
In addition, our analytical results provided here also give practical guidance on the choices of
various parameters in the implementation of the cascadic algorithms for both the smooth and
non-smooth initial data.
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The rest of the paper is organized as follows: in § 2, we describe a Cascadic Algorithm for
parabolic problems. In § 3, we study the time stability of the algorithm under some assumptions
made on the smoothers. This is essential for the convergence of the cascadic algorithm when
applied to the time-dependent problems. Using new estimates particularly suitable for parabolic
type of problems, these assumptions are verified in § 4 for smoothers such as Simple Jacobi,
Symmetric Gauß-Seidel, and Conjugate Gradient. Though many similar smoother estimates
have been discussed in the literature, they are not directly applicable in our setting to derive
the optimal results. Our improved estimates are generally sharper in their precise dependence
on the mesh parameters and time steps. Error estimates are derived in § 5 for both smooth
and non-smooth initial data. The iteration strategies are addressed in § 6 and some conclusion
remarks are given in § 7.

Throughout this paper, C is always a generic constant and is independent of the mesh size
h and the time step τ .

2 Cascadic algorithm for a parabolic problem

2.1 The model parabolic problem

We consider the following parabolic problem




∂u

∂t
+ Au = f in Ω× (0, T ],

u(x, t) = 0 on ∂Ω× (0, T ],

u(x, 0) = u0(x) in Ω,

(2.1)

where Ω is a convex polygonal domain in R2 with boundary ∂Ω, and A is an elliptic operator
of the form:

Au = −
2∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ c(x)u.

A weak form of (2.1) is: Find u ∈ H1
0(Ω), with u(x, 0) = u0(x) in Ω and

(∂u

∂t
, v

)
+A(u, v) = (f, v) ∀v ∈ H1

0(Ω), ∀t ∈ [0, T ]. (2.2)

Here, H1
0(Ω) is the standard Sobolev space and the bilinear form A is defined as

A(v, w) =
2∑

i,j=1

∫

Ω

aij
∂v

∂xi

∂w

∂xj
dx +

∫

Ω

c(x)vw dx ∀v, w ∈ H1
0(Ω) ,

in particular, define ‖v‖2A: = A(v, v), and (f, v) =
∫
Ω

fv dx for v ∈ H1
0(Ω). The usual assump-

tion on the bilinear form A reads

(i) |A(v, w)| ≤ C‖v‖1‖w‖1 ∀v, w ∈ H1
0(Ω),

(ii) A(v, v) ≥ C‖v‖21 ∀v ∈ H1
0(Ω).

For the basic theory of parabolic equations and relevant function spaces, we refer to [27, 28].
For the application of classical multigrid methods to parabolic equations, see, for example, [29,
30, 31, 32, 33, 34] and [Ch. 11, 26].
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For simplicity, we choose a Backward Euler scheme for the time discretization. Given a
time interval (0, T ), let τ be the time step size, n the total number of time steps taken such
that nτ = T . The semi-discrete in time scheme is

(uk − uk−1

τ
, v

)
+A(uk, v) = (fk, v) ∀v ∈ H1

0(Ω), k ≥ 1, (2.3)

with u(x, 0) = u0(x) and fk = f(x, tk).

2.2 Finite element discretization

Given a nested family of triangulation {Tj}`
j=0 with mesh parameter {hj}`

j=0. Throughout
the paper, all triangulations are assumed to be quasi-uniform such that there exists a positive
constant C satisfying C−1 ≤ 2jhj ≤ C. The family of continuous piecewise linear finite element
spaces X0 ⊂ X1 ⊂ · · · ⊂ X` are given by

Xj = {u ∈ H1
0(Ω) | u|K ∈ P1(K) ∀K ∈ Tj },

where P1(K) denotes the set of linear functions on the triangle K.

The fully discrete problem corresponding to (2.3) is defined as: Find un
j ∈ Xj(0 ≤ j ≤ `)

such that (un
j − un−1

j

τ
, v

)
+A(un

j , v) = (fn, v) ∀v ∈ Xj . (2.4)

Denote by Rhu ∈ X` the elliptic projection with respect to A, and Ph the L2 projection on X`.
Define an auxiliary bilinear form as

Aτ (w, v) := τ−1(w, v) +A(w, v) ∀w, v ∈ H1
0(Ω),

We define the Cascadic Algorithm for solving (2.1) as follows:

CASCADIC ALGORITHM for problem (2.1).

Step 1: For n = 0, u0
∗ = Phu0.

Step 2: Once un−1
∗ is known, un

∗ is defined as follows: for j = 0, solve finite element equations

Aτ (wn
0 , v) = (fn, v)−A(un−1

∗ , v) ∀v ∈ X0

exactly, and let wn,∗
0 = wn

0 .
For j = 1, · · · , `, let wn,∗

j = Cj,mj,n
wn,∗

j−1 and wn
∗ = wn,∗

` . We then let un
∗ = wn

∗ + un−1
∗ ,

where Cj,mj,n
denotes the mj,n steps of a basic iteration applied on level j at time step n.

Here, for simplicity, we have dropped the index ` for the un
∗ which always refers to the Cascadic

solution at time step tn and level `.

We call a cascadic multigrid algorithm optimal on level ` if the algebraic error is commen-
surate with the discretization error, i.e.,

‖un
∗ − un

` ‖τ ≈ ‖un − un
` ‖τ ,

and with multigrid complexity if the amount of work on time step tn isO(n`), where n` = dimX`.

www.SciChina.com www.SpringerLink.com 68



Cascadic MGM 69

2.3 Additional notations and technical lemmas

The following lemma gives the regularity of the resulting elliptic problem, the proof is standard
(see [35]).

Lemma 2.1. For a given g ∈ H−1(Ω), the problem

Aτ (w, v) = (g, v) ∀v ∈ H1
0(Ω)

has a unique solution w ∈ H1
0(Ω), and if g ∈ L2(Ω), then w admits the following regularity

estimate:
τ−1/2‖w‖1 + ‖w‖2 ≤ CR‖g‖0 , (2.5)

for some constant CR.

Let us define the τ -norm by ‖v‖2τ : = Aτ (v, v), the τ -inner product by (v, w)τ : = Aτ (v, w)
for any v, w ∈ H1

0(Ω), and the orthogonal subspaces by

X⊥
j−1: = { v ∈ Xj | (v, w)τ = 0 ∀w ∈ Xj−1 }. (2.6)

For 0 ≤ j ≤ `, we define some linear operators Aτ,j :Xj → Xj by

(Aτ,jv, w): = Aτ (v, w) ∀v, w ∈ Xj .

Note that Aτ,j = τ−1I + Aj is positive definite with Aj defined by

(Ajv, w): = A(v, w) ∀v, w ∈ Xj .

In particular, we let Ah = A`. Denote by λ̂j and λ̂1 the largest and smallest eigenvalue of
Aτ,j and by κj the condition number of Aτ,j . We see that λ̂j = τ−1 + λj , with λj the largest
eigenvalue of Aj . It is well known that λj = O(h−2

j ).

As a convention, we let ‖B‖ be the matrix norm ‖B‖: = sup‖x‖=1 xTBx for any matrix B,
and ρ(B) be its spectra radius, and κ(B) be its condition number.

3 Stability

For the sake of clarity, we first present a new stability analysis of the Cascadic Algorithm for the
parabolic equations under some assumptions on the smoothers. We assume that the smoothers
satisfy: for j = 1, . . . , ` and k = 1, . . . , n,

‖Cj,mj,k
v‖τ ≤ ‖v‖τ ∀v ∈ Xj ,

‖Cj,mj,k
v‖τ ≤ γj,k‖v‖τ ∀v ∈ X⊥

j−1 .
(3.1)

Detailed derivation of the above estimates are presented later for some smoothers of interests
(see Theorem 4.2, Corollary 4.3 and Theorem 4.4).

Theorem 3.1. Under the condition

∑̀

j=1

γ2
j,k < 1 for k = 1, . . . , n, (3.2)
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the Cascadic Algorithm is stable in the sense that the solution un
∗ satisfies

‖un
∗‖2A ≤ C‖u0‖2A +

n∑

k=1

τ‖fk‖20. (3.3)

Proof. For 1 ≤ k ≤ n and 1 ≤ j ≤ `, let u k
` be the solution of

Aτ (u k
` , v) = (fk, v) + τ−1(uk−1

∗ , v) ∀v ∈ X` . (3.4)

And we define w k
j ∈ Xj satisfying

Aτ (w k
j , v) = (fk, v)−A(uk−1

∗ , v) ∀v ∈ Xj .

Comparing with the algorithm, we have u k
` = w k

` +uk−1
∗ , thus uk

∗−u k
` = wk

∗ −w k
` and a bound

on uk
∗ − u k

` can be found by getting a bound on wk
∗ − w k

` .

Similar to [6], we note that for any 1 ≤ k ≤ n and 1 ≤ j ≤ `,

wk,∗
j − wk

j = Cj,mj,k
(wk,∗

j−1 − w k
j )

= Cj,mj,k
(wk,∗

j−1 − w k
j−1) + Cj,mj,k

(w k
j−1 − w k

j ). (3.5)

Invoking (3.1) as well as (3.5) yields

‖w k,∗
j − w k

j ‖τ ≤ ‖w k,∗
j−1 − w k

j−1‖τ + γj,k‖w k
j − w k

j−1‖τ .

A recursive application of the above inequality leads to

‖wk
∗ − w k

` ‖τ ≤
∑̀

j=1

γj,k ‖w k
j − w k

j−1‖τ . (3.6)

Using Cauchy-Schwartz inequality and ‖w k
j − w k

j−1‖2τ = ‖w k
j ‖2τ − ‖w k

j−1‖2τ , we get

‖wk
∗ − w k

` ‖τ ≤
(∑̀

j=1

γ2
j,k

)1/2(∑̀

j=1

‖w k
j − w k

j−1‖2τ
)1/2

=
(∑̀

j=1

γ2
j,k

)1/2(∑̀

j=1

‖w k
j ‖2τ − ‖w k

j−1‖2τ
)1/2

≤
(∑̀

j=1

γ2
j,k

)1/2

‖w k
l ‖τ .

In view of the assumption (3.2), we obtain

‖uk
∗ − uk

` ‖τ ≤ ‖uk
` − uk−1

∗ ‖τ ,

which implies
‖uk
∗‖2τ ≤ ‖uk−1

∗ ‖2τ + 2(uk
∗ − uk−1

∗ , uk
` )τ .

Notice that Aτ is symmetric and using (3.4), we have

(uk
∗ − uk−1

∗ , uk
` )τ = (uk

` , uk
∗ − uk−1

∗ )τ = (fk, uk
∗ − uk−1

∗ ) + τ−1(uk−1
∗ , uk

∗ − uk−1
∗ )

= (fk, uk
∗ − uk−1

∗ ) +
1
2τ

(‖uk
∗‖20 − ‖uk−1

∗ ‖20 − ‖uk
∗ − uk−1

∗ ‖20)

≤ τ

2
‖fk‖20 +

1
2τ

(‖uk
∗‖20 − ‖uk−1

∗ ‖20).
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A combination of the above two inequalities leads to

‖uk
∗‖2τ ≤ ‖uk−1

∗ ‖2τ + τ‖fk‖20 +
1
τ

(‖uk
∗‖20 − ‖uk−1

∗ ‖20),

which in turn implies
‖uk
∗‖2A ≤ ‖uk−1

∗ ‖2A + τ‖fk‖20.
Finally, a recursive application of the above inequality and using

‖u0
∗‖A = ‖Phu0‖A ≤ C‖u0‖A

yields (3.3).

Remark 3.2. By Theorem (3.1), we see that sufficiently many smoothing operations at each
time step would not affect the stability of the marching algorithm, even though the discrete
solutions are only computed approximately. The condition (3.2) allows us to quantitatively
characterize the properties of the smoothers to guarantee the stability in time. It will be shown
later that efficient iteration strategies can be developed for several popular smoothers so that
both the stability property and the optimal multigrid complexity hold simultaneously. This in
turn implies the convergence of the cascadic algorithms with both optimal accuracy and optimal
complexity.

4 Smoothers

To avoid complicated notation, we focus on the smoother estimate at a particular time step.
Thus, we drop the subscript k used for indexing the time steps. For example, we simply use
Cj,mj

to denote the basic iterations applied mj times on level j. As in [6], we call the basic
iteration a smoother, if it satisfies

‖Cj,mj
v‖a ≤ ‖v‖a , ‖Cj,mj

v‖a ≤ C
h−1

j

mγ
j

‖v‖0 , ∀v ∈ Xj , (4.1)

where ‖ · ‖a is the energy norm corresponding to the basic iteration, that is, in our case,
‖ · ‖a = ‖ · ‖τ . It is known that γ = 1/2 for Simple Jacobi, Symmetric Gauß-Seidel, SSOR [7]
and γ = 1 for Conjugate Gradient iterations [6, 7, 36, 5, 8]. Notice that in practice, it is expected
that an increase in iteration number should lead to a decrease of ‖Cj,mj

v‖a/‖v‖a ; similarly, the
smaller κj is, the smaller ‖Cj,mj

v‖a/‖v‖a and ‖Cj,mj
v‖a/‖v‖0 ought to be. Unfortunately, such

expected behaviors are not reflected in (4.1). In addition, the dependence on h and τ is also
not explicitly revealed. In fact, the smoother estimates derived in the literature usually do not
make a clear and precise distinction on the effects of h and τ in the smoothing step. We now
derive some new estimates for the afore-mentioned smoothers with respect to τ -norm. Two
cases are discriminated, one for the usual symmetric iteration, another for Conjugate Gradient
iteration.

4.1 Symmetric iterations

For symmetric iterations, the iteration matrix usually takes the form S = I − W−1B, with
smoother Sm = Sm, m ∈ N. Here, W and B are operators (matrices) from Xj to Xj , and I is
the identity operator. Denote the energy norm by ‖x‖a: = (Bx, x) for any x ∈ Xj .
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For our discussion, we only consider the symmetric iterations satisfying the following general
assumption: 1) B is symmetric and positive definite; 2)W is regular with W = WT and 3)
W ≥ B, i. e., W −B is positive definite.

The following theorems contain smoother estimates along the same spirits of those obtained
in [37, 5, 20]. We omit some technical derivations but emphasize on the precise nature of the
estimates particularly suitable to parabolic problems.

Theorem 4.1. Under the above assumptions, we have that for any v ∈ Xj,

‖Smv‖a ≤ ρ(I −W−1B)i

√
2(m− i)

‖W −B‖1/2‖v‖0 i ∈ [0,m),

‖Smv‖a ≤ ρ(I −W−1B)i

√
2(m− i) + 1

‖W‖1/2‖v‖0 i ∈ [0,m] .

(4.2)

Proof. Let C = W−1/2BW−1/2, we have 0 ≤ C ≤ I. Since I −W−1B = W−1/2(I − C)W 1/2,
we get Sm = (I −W−1B)m = W−1/2(I − C)mW 1/2 and

‖Smv‖2a = (BSmv,Smv) =
(
C(I − C)2mw, w

)

with w = W 1/2v, Then for i ∈ [0,m),

‖Smv‖2a ≤ ρ(I − C)2i
(
C(I − C)2(m−i)w, w

)

=
(
(I − C)2m−2iw − (I − C)2m−2i+1w, w

)
ρ(I − C)2i

≤ ρ(I − C)2i

2(m− i)

(2m−2i∑

k=1

(I − C)kw − (I − C)k+1w, w
)

≤ ρ(I − C)2i

2(m− i)
(w − Cw, w) ≤ ρ(I −W−1B)2i

2(m− i)
‖W −B‖ ‖v‖20.

This gives (4.2)1. For (4.2)2, we note that for i ∈ [0,m],

‖Smv‖2a ≤
ρ(I − C)2i

2(m− i) + 1
(w, w) ≤ ρ(I −W−1B)2i

2(m− i) + 1
‖W‖ ‖v‖20 .

Applying (4.2)2 to the Simple Jacobi iteration gives

‖Cj,mj
v‖τ ≤

( λ̂j

2mj − 2i + 1

)1/2( λj

τ−1 + λj

)i

‖v‖0 , ∀v ∈ Xj , ∀i ∈ [0,mj ] . (4.3)

For the Symmetric Gauß-Seidel, the following lemma is given as a remark in [38]. A slightly
weaker form valid for more general matrices and norm is given in [39].

Lemma 4.2. For any real n× n, m−band symmetric positive definite matrix B with λmax(B)
and the λmin(B) being the largest and smallest eigenvalues and L being its lower triangular part,
we have for some constant C and CL = C log 2m that

‖L‖ ≤ CL[λmax(B)− λmin(B)] . (4.4)
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It is easy to see that (4.4) can be rewritten as

‖L‖ ≤ CLλmax(B)
(
1− 1/κ(B)

)
. (4.5)

The iteration matrix for the Gauß-Seidel is MGS = −(Dj +Lj)−1LT
j with Aτ,j = Dj−Lj−

LT
j , where Dj and Lj are the diagonal part and the lower triangular part of Aτ,j . By [40], the

Gauß-Seidel iteration admits the bound:

‖MGS‖2τ = 1− ‖A−1/2
τ,j (Dj + Lj)D

−1/2
j ‖−2. (4.6)

We now have the following theorem for the Symmetric Gauß-Seidel iteration.

Theorem 4.3. Assume the diagonal part of Aτ,j admits the following estimate

‖D−1/2
j ‖ ≤ CDλ̂

−1/2
j , (4.7)

then for any v ∈ Xj, the Symmetric Gauß-Seidel iteration satisfies, for i ∈ [0,mj),

‖Sj,mj v‖τ ≤ CDCL

( λj

2mj − 2i

)1/2( λj

CGSτ−1 + λj

)i

‖v‖0, (4.8)

and for i ∈ [0,mj ],

‖Sj,mj v‖τ ≤ (1 + C2
DC2

L)1/2
( λ̂j

2mj − 2i + 1

)1/2( λj

CGSτ−1 + λj

)i

‖v‖0 (4.9)

with CGS = 1/(1 + CDCL)2.

Proof. By Theorem 4.1, we only need to estimate terms like ‖Wj − Aτ,j‖, ‖Wj‖ and ρ(I −
W−1

j Aτ,j). Note that Wj −Aτ,j = LjD
−1
j LT

j , by Lemma 4.2, we get

‖Wj −Aτ,j‖ ≤ C2
D‖Lj‖2/λ̂j ≤ C2

DC2
L(λ̂j − λ̂1)2/λ̂j ≤ C2

DC2
Lλj , (4.10)

which together with the triangle inequality leads to

‖Wj‖ ≤ (1 + C2
DC2

L)λ̂j . (4.11)

We now turn to (4.8). Resorting to Lemma 4.2 once again, we obtain

‖(Dj + Lj)D
−1/2
j ‖ ≤ ‖D1/2

j ‖+ ‖Lj‖ ‖D−1/2
j ‖ ≤ λ̂

1/2
j + CDCL(λ̂j − λ̂1)λ̂

−1/2
j

≤ λ̂
1/2
j

(
1 + CDCL(1− 1/κj)

)
. (4.12)

A combination of (4.12) and (4.6) gives

‖MGS‖2τ ≤ 1− 1

κj

(
1 + CDCL(1− 1/κj)

)2 . (4.13)

A simple calculation yields

κj(1 + CDCL(1− 1/κj))2 ≤ κj + 2CDCL(κj − 1) + C2
DC2

L(κj − 1)

= 1 + (1 + CDCL)2(κj − 1). (4.14)
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With CGS = 1/(1 + CDCL)2, it follows from (4.13) and (4.14) that

‖MGS‖2τ ≤
κj − 1

κj − 1 + CGS
.

Note that κj = (τ−1 + λj)(τ−1 + λ1)−1, we thus have

‖MGS‖2τ ≤
λj − λ1

CGS(τ−1 + λ1) + λj − λ1
≤ λj

CGSτ−1 + λj
.

By [40, Theorem 4.8.10], the spectral radius of the Symmetric Gauß-Seidel iteration ρ(SGS) =
‖MGS‖2τ , using (4.10) and (4.11), we get (4.8) and (4.9), respectively.

4.2 Conjugate Gradient iterations

We now give an estimate for Conjugate Gradient (CG) iterations. The classical approach for
estimating the convergence rate of the CG-iteration is to exploit dominated polynomials that
may yield different bounds. Let Q̂k be the scaled Chebyshev polynomial defined as

Q̂k(x) = Ck(x/d)/Ck(1/d) for x ∈ [0, d].

Here, Ck(x) = cos(k arccos(x)) for x ∈ [−1, 1] is the kth degree Chebyshev polynomial of the
first kind. Let pk =

√
d/(2k + 1), the Lanczos polynomial [42] is defined as

√
xQk(x) = (−1)kpk cos

(
(2k + 1) arccos(

√
x/d)

)
for x ∈ [0, d].

For any i ∈ [0, k], define Si
k(x): = Q̂i(x)Qk−i(x). Qk and Si

k satisfy (see [41], [§4.1, 36], [Lemma
3.1, 8] and [7, 43]):

Lemma 4.4. For interval [0, b], a ∈ [0, b], integers k, and i ∈ [0, k],

1. For any k,

max
0≤x≤b

|Qk(x)| ≤ 1 and max
0≤x≤b

|√xQk(x)| ≤
√

b/(2k + 1) .

2. Si
k(0) = 1,

max
0≤x≤b

|Si
k(x)| ≤ 1, and max

a≤x≤b
|Si

k(x)| ≤ 2
(√b−√a√

b +
√

a

)i

.

3. For weight
√

x,

max
0≤x≤b

|√xSi
k(x)| ≤ 2

√
b

2(k − i) + 1

(√b−√a√
b +

√
a

)i

.

We now define a family of auxiliary operators by

Si
j,mj

:= Si
mj

(Aτ,j) ∀i ∈ [0,mj ], (4.15)

which dominate the error reduction operator Cj,mj for the CG-method and they are smoothers
in the sense of (4.1).
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Theorem 4.5. Define Si
j,mj

as in (4.15), then for any v ∈ Xj, there holds

‖Si
j,mj

v‖τ ≤ ‖v‖τ ,

‖Si
j,mj

v‖τ ≤
2λ̂

1/2
j

2(mj − i) + 1

( λj

4τ−1 + λj

)i

‖v‖0.

The proof of the above theorem is standard (see [8]) and we omit the details.

4.3 Smoother estimates on orthogonal subspaces

It is known that the smoother on the level j actually only damps out the error components in
some subspaces rather than the entire space. To be more precise, we will translate our previous
estimate for the smoother Sj,mj into one confined to the subspace X⊥

j−1 instead of Xj , here
X⊥

j−1 is defined as in (2.6). Such kind of refined estimate is crucial for the convergence study
of classical multigrid method [37, 44], while it is not yet exploited in the present setting. We
start from the following lemma which is actually a dual estimate for the parabolic problem.

Lemma 4.6. Let uj ∈ Xj satisfy the following finite element approximation

Aτ (uj , v) = 0 ∀v ∈ Xj−1. (4.16)

Let CI be a constant in the following estimate

inf
v∈Xj−1

‖u− v‖τ ≤ CIλ
−1/2
j (τ−1/2‖u‖1 + ‖u‖2), (4.17)

and CR be defined in (2.5). We have for CB = max(1, CICR) that,

‖uj‖0 ≤ CBλ̂
−1/2
j ‖uj‖τ . (4.18)

Proof. Resorting to the Aubin-Nitsche trick, we let w ∈ H1
0(Ω) satisfy

Aτ (v, w) = (uj , v) ∀v ∈ H1
0(Ω). (4.19)

By virtue of (2.5), we have
τ−1/2‖w‖1 + ‖w‖2 ≤ CR‖uj‖0. (4.20)

Take v = uj on the right-hand side of (4.19), let Πw ∈ Xj−1 be the Clément interpolant of
w [45], using (4.16), (4.17) and (4.20), we have

‖uj‖20 = Aτ (uj , w) = Aτ (uj , w −Πw)

≤ ‖uj‖τ‖w −Πw‖τ ≤ CICRλ
−1/2
j ‖uj‖τ‖uj‖0,

so ‖uj‖0 ≤ CICRλ
−1/2
j ‖uj‖τ . Together with the bound ‖uj‖0 ≤ τ1/2‖uj‖τ , we get

(τ−1 + λj)‖uj‖20 ≤ max(1, C2
I C2

R)‖uj‖2τ .

This in turn implies (4.18).

Combining Theorem 4.3, Theorem 4.5 and Lemma 4.6, we have:
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Theorem 4.7. The Symmetric smoothers and the CG smoother Cj,mj
satisfy

‖Cj,mj
v‖τ ≤ γj(i)‖v‖τ ∀v ∈ X⊥

j−1 , (4.21)

where
γj(i) =

CSCB(
2(mj − i) + 1

)γ

( λj

C∗τ−1 + λj

)i

i ∈ [0,mj ],

with γ = 1/2 for the Symmetric smoothers and γ = 1 for the CG smoother; CB is defined
in Lemma 4.6; CS and C∗ are constants depending on the smoother, defined as in previous
theorems.

Remark 4.8. Note that in practice, we may allow mj to vary not only with the spatial level
j, but also with the temporal step k. Thus, in such case, mj and γj should be replaced by mj,k

and γj,k just like that in the previous section .

5 Convergence analysis

We now present the error estimate for our algorithm. Discussions of convergence of other
multigrid methods for parabolic problems have been given, for example, in [33].

In simple matrix terms, the Backward Euler method is given by:

(I + τB)Un = Un−1 + τfn, for n ≥ 1, with U0 = v, (5.1)

where B is a positive definite self-adjoint operator in the Hilbert space H. Let |v| = ‖(I +
τB)1/2v‖ where ‖ · ‖ is the norm in H. The corresponding dual norm and the associated
s-norms are defined by

|v|∗ = ‖(I + τB)−1/2v‖ , |v|s = ‖Bs/2v‖ and |v|∗,s = |Bs/2v|∗. (5.2)

In case of B = Ah, we use instead the notation |χ|−s,h = ‖A−s/2
h χ‖0.

First, we state some stability estimates for the Backward Euler scheme:

Lemma 5.1. Let Un be the solutions of (5.1), ∂Un = τ−1(Un − Un−1), and p ≥ 0. Then for
n ≥ 1 and tn = nτ ,

tpn‖Un‖2 + τ
n∑

k=1

tpk|Uk|21 ≤ C(|v|2−p + τp‖v‖2) + Cτ
n∑

k=1

(|fk|2−p−1 + tpk|fk|2−1) , (5.3)

τ

n∑

k=1

tpk|∂Uk|2 ≤ C(τp−1|v|2 + |v|2∗,−p+1) + Cτ

n∑

k=1

(tpk|fk|2∗ + |fk|2∗,−p) , (5.4)

tpn|Un|21 ≤ C(τp−1|v|2 + |v|2∗,−p+1) + Cτ
n∑

k=1

(tpk|fk|2∗ + |fk|2∗,−p) . (5.5)

Proof. The estimates (5.3) and (5.4) are derived in [Lemma 10.3, 26] and [Lemma 11.1, 26],
respectively. To prove (5.5), by eigen-decomposition, it suffices to consider the scalar case with
B = µ > 0. For such a case, (5.5) reduces to

τpnpµ(Un)2 ≤ C(τp−1(1 + τµ) + µ−p+1(1 + τµ)−1)v2

+ Cτ
n∑

k=1

(1 + τµ)−1|fk|2(kpτp + µ−p) .
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Replacing τµ by λ and τfk by gk, we have

np(Un)2 ≤ C(1 + 1/λ + λ−p(1 + λ)−1)v2 +
C

λ(1 + λ)

n∑

j=1

g2j(jp + λ−p) , (5.6)

The proof of the above inequality can be made in two cases, first for gj = 0 with j ≥ 1 and
v = 1, then for v = 0. The final results follow from the linearity of the equation.

In the first case we have by the defining equation, Un = (1 + λ)−n for n ≥ 0. It is easy to
see that there exists a constant C > 0 such that

np(1 + λ)−2n ≤ C(λ−p(1 + λ)−1 + 1 + 1/λ) ,

for any n, which implies (5.6).

In the second case we have

Un =
n∑

j=1

(1 + λ)−(n+1−j)gj for j ≥ 1.

Using the inequality

np ≤ C(p)(jp + (n− j)p) with C(p) = max(2p−1, 1),

we obtain that

np(Un)2 ≤ C(p)
(1 + λ)2

(n−1∑

j=0

(1 + λ)−j(jp/2 + (n− j)p/2)gn−j
)2

≤ C(p)
(1 + λ)2

n−1∑

j=0

(1 + λ)−2j
n∑

j=1

jpg2j +
C(p)

(1 + λ)2

n−1∑

j=0

(1 + λ)−2jjp
n∑

j=1

g2j

= :I1 + I2.

I1 can be easily bounded as

|I1| ≤ C(p)
(1 + λ)2

1
1− (1 + λ)−2

n∑

j=1

jpg2j ≤ C(p)
λ(1 + λ)

n∑

j=1

jpg2j . (5.7)

Using the inequality

∞∑

j=1

jpxj ≤ Cx(1− x)−p−1 for 0 ≤ x < 1,

we have

1
(1 + λ)2

n−1∑

j=0

(1 + λ)−2jjp ≤ C(1 + λ)−4
(
1− (1 + λ)−2

)−p−1

= Cλ−p−1(1 + λ)2p−2(λ + 2)−p−1.

If λ ≥ 1, we have

(1 + λ)2p−2

λp+1(λ + 2)p+1
=

1
λ(1 + λ)

(
1 +

1
λ(2 + λ)

)p

≤
(

4
3

)p 1
6λ(1 + λ)

.
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If 0 < λ < 1, we have

(1 + λ)2p−2

λp+1(λ + 2)p+1
=

1
λp+1(1 + λ)

(1 + λ)2p

(1 + λ)(2 + λ)p+1
≤ 2p−1λ−p−1(1 + λ)−1.

Combining the above two inequalities leads to

|I2| ≤ C1(p)
λ(1 + λ)

n∑

j=1

g2j(1 + λ−p) ≤ C1(p)
λ(1 + λ)

n∑

j=1

g2j(jp + λ−p), (5.8)

with C1(p) = C(p)max((4/3)p/6, 2p−1). A combination of (5.7) and (5.8) gives (5.6) and
thus (5.5).

5.1 Convergence for the smooth data

Note that for smooth data, whenever the Backward Euler scheme is applicable in the time
discretization, it is customary to have τ ≥ Ch2

` with some positive constant C. Thus, a simple
calculation shows that there exists j0 ∈ [1, `] such that λj0 ≤ τ−1 < λj0+1. We express γj as
follows,

γj =





CSCB

(
λj

C∗τ−1+λj

)mj

if j ∈ [0, j0 − 1];
CSCB

(2(mj−1)+1)γ

λj

C∗τ−1+λj
if j ∈ [j0, `] ,

(5.9)

where CB = max(1, CICR) as in the Lemma 4.6. The choice of constants C∗, CS and γ depends
on the particular smoother, such constants for several smoothers are listed in the following table.

Table 1: Constants in the estimate of smoother (5.9)
Smoother C∗ CS γ

Simple Jacobi 1 1 1/2

S-GS CGS (1 + C2
DC2

L)1/2 1/2

CG 4 2 1

We note that there is a mild dependence of CS on j (or `) in our theoretical estimates
(due to the dependence on the bandwidth as in Lemma 4.2) for the Symmetric Gauß-Seidel
smoother.

Let K =
∑`

j=1 γj with γj defined in (5.9). By Theorem 3.1, the Cascadic Algorithm is
stable if K < 1. Obviously, we have K < β by the expression of γj where

β: = CSCB

[j0−1∑

j=1

( λj

C∗τ−1 + λj

)mj−1

+
∑̀

j=j0

1
(2mj − 1)γ

]
. (5.10)

Theorem 5.2. Let un
∗ be the solution of the Cascadic Algorithm, u is a smooth solution of

(2.1). If u1
∗ = u1

` , then there exists a positive constant δ < 1 such that for K ≤ δ,

‖un
∗ − u(x, tn)‖0 ≤ C(T, u)(h2

` + βτ), for tn ≤ T . (5.11)
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Proof. With un = u(x, tn), we have that

en = un
∗ − un = un

∗ −Rh un +Rh un − un = θn + ρn,

The estimate for ρn is standard, i. e.,

‖ρn‖0 ≤ C(u)h2
` . (5.12)

Define ∂θn = τ−1(θn − θn−1) and let un
` be defined by (3.4) and ωn = τ−1(un

∗ − un
` ). Notice

that AhRh = PhA, where Ph is the L2 projection onto X`, we get

∂θn +Ahθn = ∂un
∗ +Ahun

∗ − (AhRhun +Rh∂un)

= τ−1(un
∗ − un−1

∗ ) +Ah(un
∗ − un

` ) +Ahun
` − PhAun − ∂Rhun

= τ−1(un
∗ − un

` ) +Ah(un
∗ − un

` ) + Ph(fn −Aun)− ∂Rhun

= Ph∂tu
n − ∂Rhun + (I + τAh)ωn =: σn

1 + σn
2 ,

for n ≥ 1. Since ‖θ0‖0 ≤ Ch2
` , by (5.3) with p = 0, we have

‖θn‖20 ≤ Ch2
` + Cτ

n∑

k=1

(|σk
1 |2−1,h + |σk

2 |2−1,h) . (5.13)

Obviously, using standard techniques, we have

|σk
1 |−1,h ≤ C‖σk

1‖0 ≤ C‖∂tu
k − ∂uk‖0 + C‖(Ph −Rh)∂uk‖0

≤ Cτ1/2
(∫ tk

tk−1

‖utt‖20 dt
)1/2

+ Ch2
`τ
−1/2

(∫ tk

tk−1

‖ut‖22 dt
)1/2

.

We also have |σk
2 |−1,h ≤ Cτ1/2‖ωk‖τ and using u1

∗ = u1
` , so we get the bound on the right-hand

side of (5.13):

‖θn‖20 ≤ C(u)(h2
` + τ)2 + Cτ2

n∑

k=2

‖ωk‖2τ . (5.14)

It remains to estimate τ2
∑n

k=2 ‖ωk‖2τ =
∑n

k=2 ‖uk
∗ − u k

` ‖2τ . By (3.6) and using

‖w k
j − w k

j−1‖τ ≤ inf
v∈Xj−1

‖w k
` − v‖τ ,

we have

‖uk
∗ − u k

` ‖τ ≤
∑̀

j=1

γj inf
v∈Xj−1

‖w k
` − v‖τ .

Taking v = Pj−1(uk−1
∗ − uk−2

∗ ) in the above inequality, with Pj−1 defined by

Aτ (Pj−1u, v) = Aτ (u, v) ∀v ∈ Xj−1,

and using the obvious decomposition,

w k
` − Pj−1(uk−1

∗ − uk−2
∗ ) = u k

` − uk−1
∗ − Pj−1(uk−1

∗ − uk−2
∗ )

= u k
` − uk

∗ + (uk
∗ − 2uk−1

∗ + uk−2
∗ ) + (I − Pj−1)(uk−1

∗ − uk−2
∗ ),
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we have

‖uk
∗ − u k

` ‖τ ≤
∑̀

j=1

γj‖uk
∗ − u k

` ‖τ +
∑̀

j=1

γj‖uk
∗ − 2uk−1

∗ + uk−2
∗ ‖τ

+
∑̀

j=1

γj‖(I − Pj−1)(uk−1
∗ − uk−2

∗ )‖τ =: I1 + I2 + I3. (5.15)

By the definition of K, I1 = K‖uk
∗ − u k

` ‖τ . Notice that

uk
∗ − 2uk−1

∗ + uk−2
∗ = τ2(∂

2
θk +Rh∂

2
uk)

= τ(∂θk − ∂θk−1) + τ2Rh∂
2
uk, (5.16)

and

Kτ2‖Rh∂
2
uk‖τ ≤ CKτ

3
2 ‖∂ 2

uk‖1 ≤ CKτ
3
2 ‖∂ 2

∫ tk

tk−2

(tk − s)utt(s) ds‖1

≤ CKτ
(∫ tk

tk−2

‖utt‖21 ds
)1/2

,

so we bound I2 by

|I2| ≤ Kτ(‖∂θk‖τ + ‖∂θk−1‖τ ) + CKτ
(∫ tk

tk−2

‖utt‖21 ds
)1/2

. (5.17)

Note that (I − Pj−1)Rh = (I − Pj−1)(Rh − I) + I − Pj−1, we decompose I3 into

I3 =
∑̀

j=1

γj

(
τ‖(I − Pj−1)∂θk−1‖τ + τ‖(I − Pj−1)Rh∂uk−1‖τ

)

≤ Kτ‖∂θk−1‖τ +
∑̀

j=1

γjτ‖(I −Rh)∂uk−1‖τ +
∑̀

j=1

γjτ‖(I − Pj−1)∂uk−1‖τ

=: I31 + I32 + I33.

where ‖(I − Pj−1)u‖τ ≤ ‖u‖τ is used in deriving the last inequality.

The standard estimate for the Galerkin projection Rh gives us an bound on I32:

|I32| ≤ CK(h2
` + h`τ

1
2 )τ

1
2 ‖∂uk−1‖2 ≤ CK(h2

` + h`τ
1
2 )

(∫ tk

tk−1

‖ut‖22 dt
)1/2

.

I33 can thus be estimated by

|I33| ≤
∑̀

j=1

γjh
2
j−1τ

1
2 ‖∂uk−1‖2 +

∑̀

j=1

γjhj−1τ‖∂uk−1‖2 =: B1 + B2 .

From the construction of γj , we see that B1 can be further decomposed into

B1 =
(j0−1∑

j=1

γjh
2
j−1 +

∑̀

j=j0

γjh
2
j−1

)
τ

1
2 ‖∂uk−1‖2.
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Moreover, using λjh
2
j−1 ≤ C, we have

j0−1∑

j=1

γjh
2
j−1 ≤

CSCB

C∗

j0−1∑

j=1

( λj

C∗τ−1 + λj

)mj−1

τλjh
2
j−1

≤ C CSCBτ

j0−1∑

j=1

( λj

C∗τ−1 + λj

)mj−1

,

and
∑̀

j=j0

γjh
2
j−1 ≤ C

∑̀

j=j0

CSCB

(2mj − 1)γ
τλjh

2
j−1 = Cτ

∑̀

j=j0

CSCB

(2mj − 1)γ
.

Combining the above two, and using (5.10), we get a bound on B1:

|B1| ≤ Cβτ
(∫ tk

tk−1

‖ut‖22 dt
)1/2

. (5.18)

Repeating the above procedure and using λj ≤ C∗τ−1 + λj , we bound B2 as

|B2| ≤ Cβτ
(∫ tk

tk−1

‖ut‖22 dt
)1/2

,

which, in combination with (5.18), leads to a bound on I33:

|I33| ≤ Cβτ
(∫ tk

tk−1

‖ut‖22 dt
)1/2

.

Combining the estimates for I1, I2 and I3 together, we get

n∑

k=2

‖uk
∗ − uk

` ‖2τ ≤ C
( 2K

1−K
)2

τ2
n∑

k=2

‖∂θk‖2τ + C(h4
` + β2τ2)

∫ T

0

‖∂tu‖22 dt . (5.19)

Now, let K ≤ δ, for some δ to be specified later and let K/(1−K) ≤ δ/(1− δ) = ε, then (5.14)
and (5.19) yield

‖θn‖20 ≤ C(u)(h2
` + τ)2 + Cε2τ2

n∑

k=2

‖∂θk‖2τ + C(u)β2τ2 . (5.20)

Applying (5.4) with p = 0, we are led to

τ2
n∑

k=1

‖∂θk‖2τ ≤ Cτ
n∑

k=1

(|σk
1 |2∗ + |σk

2 |2∗) .

As above, we can get

τ
n∑

k=1

(|σk
1 |2∗ + |σk

2 |2∗) ≤ C(u)(h2
` + τ)2 + Cτ2

n∑

k=1

‖ωk‖2τ

≤ C(u)(h2
` + τ)2 + Cε2τ2

n∑

k=1

‖∂θk‖2τ + C(u)β2τ2

≤ C(u)(h2
` + τ)2 + Cε2τ

n∑

k=1

(|σk
1 |2∗ + |σk

2 |2∗) + C(u)β2τ2 . (5.21)
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Taking ε suitably small (thus, δ suitably small), we have

τ2
n∑

k=1

‖∂θk‖2τ ≤ Cτ
n∑

k=1

|σk|2∗ ≤ C(u)(h2
` + τ)2 + C(u)β2τ2 . (5.22)

A combination of (5.20) and (5.22) gives (5.11).

An error bound in the energy norm is given below:

Theorem 5.3. Under the same assumption of Theorem 5.2, we have

‖un
∗ − u(x, tn)‖1 ≤ C(u, T )(h` + βτ). (5.23)

Proof. Following the argument given in Theorem 5.2, we have en = θn + ρn with

‖ρn‖1 ≤ Ch`‖un‖2 . (5.24)

To estimate ‖θn‖1, since ‖θ0‖1 ≤ Ch`, instead of (5.3), we have by (5.5) with p = 0 that

‖θn‖21 ≤ Ch2
` + Cτ

n∑

k=1

|σk
1 |2∗ + Cτ

n∑

k=1

|σk
2 |2∗.

In view of (5.21), we have
‖θn‖1 ≤ C(u, T )(h` + βτ),

which, together with (5.24), yields (5.23).

5.2 Convergence for nonsmooth data

In the remaining part of this section, we consider the homogeneous equation with nonsmooth
initial data. Recall that the Backward-Euler satisfies

‖un
l − u(x, tn)‖0 ≤ C(h2

` + τ)t−1
n ‖u0‖0 . (5.25)

We show that our Cascadic Algorithm can be designed so that the above type of error bound
remains valid.

We define the semi-discrete in space approximation by:

uh,t +Ahuh = 0, for t > 0, with uh(0) = Phu0, (5.26)

then the solution of (5.26) satisfies

‖uh(t)− u(x, t)‖0 ≤ Ch2
` t
−1‖u0‖0, for t > 0. (5.27)

By virtue of [Theorem 3.4, 26], we have

‖∂t

(
uh(t)− u(x, t)

)‖0 ≤ Ch2
` t
−2‖u0‖0, (5.28)

the above estimate together with the inverse inequality [46] leads to

‖∂t

(
uh(t)− u(x, t)

)‖1 ≤ Ch−1
` ‖∂t

(
uh(t)−Rhu

)‖0 + ‖∂t

(Rhu− u(x, t)
)‖1

≤ Ch−1
`

(
‖∂t

(
uh(t)− u(x, t)

)‖0 + ‖∂t

(Rhu− u(x, t)
)‖0

)

+ C‖∂t

(Rhu− u(x, t)
)‖1

≤ Ch`t
−2‖u0‖0 + Ch`‖∂tu‖2 ≤ Ch`t

−2‖u0‖0 . (5.29)

www.SciChina.com www.SpringerLink.com 82



Cascadic MGM 83

Here, we have used ‖∂su‖2 ≤ Cs−2‖u0‖0 in the last step [26].

To more effectively resolving the initial layer, we allow the iteration strategies to vary with
respect to time. Thus, to emphasize on the dependence on the time steps, we introduce the
subscript k for the time step tk and define αk :=

∑`
j=1 γj,k and

βk := CSCB

[j0−1∑

j=1

( λj,k

C∗τ−1 + λj,k

)mj,k−1

+
∑̀

j=j0

1
(2mj,k − 1)γ

]
, (5.30)

where γj,k’s are the constants in the smoother estimates mj,k are the iteration number used in
the smoothers.

Theorem 5.4. For the fully discrete method (2.4) with f = 0, j = ` and u0,h = Phu0, let
uk
∗ = u k

` for k = 1, 2, and let mk,j be the iteration number on the j-th level at the time step tk.
If for some suitably small constant ε ∈ (0, 1), we have that

βk

1− βk
≤ ε min(t2k, 1), (5.31)

then there exists a constant C > 0 such that

‖un
∗ − u(x, tn)‖0 ≤ C(h2

` + τ)t−1
n ‖u0‖0 for n ≥ 3 and tn ≤ T. (5.32)

Proof. With ωn = (un
∗ − un

` )/τ , ϑn = ∂uh(tn)− uh,t(tn), and en = un
∗ − uh(tn), we have, as in

Theorem 5.2, the error equation

∂en +Ahen = −ϑn + (I + τAh)ωn = :σn . (5.33)

since e0 = 0, an application of (5.3) with p = 2 gives

t2n‖en‖20 ≤ Cτ
n∑

k=1

(t2k|σk|2−1,h + |σk|2−3,h).

Since Ah is positive definite and tn is bounded,

t2k|(I + τAh)ωk|2−1,h + |(I + τAh)ωk|2−3,h ≤ C|(I + τAh)ωk|2−1,h

≤ C‖(I + τAh)
1
2 ωk‖20 = Cτ‖ωk‖2τ . (5.34)

Since ω1 = ω2 = 0 by assumption, we thus have

t2n‖en‖20 ≤ Cτ
n∑

k=1

(t2k|ϑk|2−1,h + |ϑk|2−3,h) + Cτ2
n∑

k=3

‖ωk‖2τ . (5.35)

The next step is to show that

τ
n∑

k=1

(t2k|ϑk|2−1,h + |ϑk|2−3,h) ≤ Cτ2‖u0‖20 . (5.36)

Let s = 1 or 3. By the definition of ϑk, we get

|ϑk|2−s,h ≤ Cτ

∫ tk

tk−1

|uh,tt(y)|2−s,h dy.
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Then, for k > 1 when s = 1 and k ≥ 1 when s = 3, we have

τt3−s
k |ϑk|2−s,h ≤ Cτ2

∫ tk

tk−1

y3−s|uh,tt(y)|2−s,h dy.

By the eigen-decomposition of the operator Ah, we have

∫ ∞

0

y3−s|uh,tt(y)|2−s,h dy ≤
∫ ∞

0

y3−s

nj∑
m=1

λ4−s
m exp−2λmy(Phu0, φl)2 dy

≤ C

nj∑
m=1

(Phu0, φl)2 = C‖Phu0‖20 ≤ C‖u0‖20. (5.37)

Consequently, we obtain (5.36) except for the terms related to k = 1 and s = 1. For these
terms we have

τ t21|ϑ1|2−1,h = τ3|∂uh(t1)− uh,t(t1)|2−1,h ≤ Cτ3(|∂uh(t1)|2−1 + |uh,t(t1)|2−1)

≤ Cτ2

∫ τ

0

|uh,t|2−1 dt + Cτ3|uh(τ)|21 ≤ Cτ2‖Phu0‖20 ≤ Cτ2‖u0‖20. (5.38)

So, (5.35) together with (5.36) gives

t2n‖en‖20 ≤ Cτ2‖u0‖20 + Cτ2
n∑

k=3

‖ωk‖2τ . (5.39)

As in the proof of Theorem 5.2, we can bound the second term in the above sum as

τ‖ωk‖τ = ‖uk
∗ − uk

` ‖τ ≤
∑̀

j=1

γj,k

(‖uk
∗ − u k

` ‖τ + ‖uk
∗ − 2uk−1

∗ + uk−2
∗ ‖τ

+ ‖(I − Pj−1)(uk−1
∗ − uk−2

∗ )‖τ

)
=: J1 + J2 + J3. (5.40)

By using similar estimates on J1 and J2 as that in Theorem 5.2 and

αk

1− αk
≤ βk

1− βk
≤ εt2k, (5.41)

we may recast (5.40) as

n∑

k=3

‖uk
∗ − uk

` ‖2τ ≤ 8ε2τ2
n∑

k=3

t4k‖∂ek‖2τ + Cτ4
n∑

k=3

t4k‖∂
2
uh(tk)‖2τ

+ Cτ2
n∑

k=3

1
(1− αk)2

(∑̀

j=1

γj,k‖(I − Pj−1)∂uh(tk)‖τ

)2

= :I1 + I2 + I3. (5.42)

We estimate I2 and I3 firstly. For k ≥ 3, we have

t3k‖∂
2
uh(tk)‖20 ≤ Ct3k‖∂

2(∫ t

tk−2

(t− s)uh,tt(s) ds
)
t=tk

‖20 ≤ Cτ−1

∫ tk

tk−2

s3‖uh,tt(s)‖20 ds,

t4k‖∂
2
uh(tk)‖21 ≤ Ct4k |

(
∂

2
∫ t

tk−2

(t− s)uh,tt(s) ds
)
t=tk

|21≤ Cτ−1

∫ tk

tk−2

s4|uh,tt(s)|21 ds.

www.SciChina.com www.SpringerLink.com 84



Cascadic MGM 85

For bounded tn, using the above two inequalities, we may bound I2 as

|I2| ≤ C
n∑

k=3

(
τ3t3k‖∂

2
uh(tk)‖0 + τ4t4k‖∂

2
uh(tk)‖21

)

≤ Cτ2

∫ ∞

0

s3‖uh,tt(s)‖20 ds + Cτ3

∫ ∞

0

s4|uh,tt(s)|21 ds .

As given in (5.37), the above inequality is estimated as

|I2| ≤ Cτ2‖u0‖20.

Note that I3 can be further decomposed into two terms

I3 ≤ C
n∑

k=3

τ2

(1− αk)2
(∑̀

j=1

γj,k‖(I − Pj−1)∂(uh(tk)− u(x, tk))‖τ

)2

+ C
n∑

k=3

τ

(1− αk)2
(∑̀

j=1

γj,k‖(I − Pj−1)∂u(x, tk)‖τ

)2

= :I31 + I32.

In view of (5.28) and (5.29),

‖∂(uh(tk)− u(x, tk))‖2τ ≤ C
(
(h4

`/τ2 + h2
`/τ)

∫ tk

tk−1

ds

s4

)
‖u0‖20.

Notice that ‖I − Pj−1‖τ ≤ 1 and (5.41), we see that I31 is bounded:

|I31| ≤ C
n∑

k=3

τ2

(1− αk)2
(∑̀

j=1

γj,k‖∂(uh(tk)− u(x, tk))‖τ

)2

≤ Cε2(h4
` + h2

`τ)
n∑

k=3

∫ tk

tk−1

t4k
t4

dt ‖u0‖20 ≤ Cε2(h4
` + h2

`τ)‖u0‖20. (5.43)

Similar to the estimation on I33 in Theorem 5.1, we have

∑̀

j=1

γj,k‖(I − Pj−1)∂u(tk)‖τ ≤ Cβkτ
1
2 ‖∂u(tk)‖2 . (5.44)

In view of (5.44) and (5.41), we bound I32 as

|I32| ≤ Cτ2
n∑

k=3

β2
k

(1− αk)2

∫ tk

tk−1

‖∂su‖22 ds ≤ Cτ2
n∑

k=3

β2
k

(1− βk)2

∫ tk

tk−1

‖∂su‖22 ds

≤ Cε2τ2
n∑

k=3

t4k

∫ tk

tk−1

‖∂su‖22 ds ≤ Cε2τ2
n∑

k=3

∫ tk

tk−1

t4k
s4

ds‖u0‖20 ≤ Cε2τ2 ‖u0‖20.

Summing up the estimate for I2 and I3, notice that tn is bounded, we conclude that for any
ε > 0, there holds

τ2
n∑

k=3

‖ωk‖2τ ≤ C(h2
` + τ)2‖u0‖20 + Cετ

n∑

k=3

t3k|∂ek|2 .
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Invoking Lemma 5.1 once again, we obtain

τ
n∑

k=3

t3k|∂ek|2 ≤ Cτ
n∑

k=3

(t3k|ϑk|2∗ + |ϑk|2∗,3) + Cτ2
n∑

k=3

‖ωk‖2τ

≤ Cτ2‖u‖20 + Cτ2
n∑

k=3

‖ωk‖2τ .

Combining the above two and choosing a sufficiently small ε gives

τ2
n∑

k=3

‖ωk‖2τ ≤ C(h2
` + τ)2‖u0‖20, (5.45)

which together with (5.39) implies

‖un
∗ − uh(tn)‖0 ≤ C(h2

` + τ)t−1
n ‖u0‖0. (5.46)

Combining with (5.27), the classical error bound for uh, we get

‖uh(tn)− u(x, tn)‖0 ≤ Ch2
` t
−1
n ‖u0‖0 , (5.47)

we get the desired result (5.32).

An error bound in the energy norm is given below:

Theorem 5.5. Under the same assumption of Theorem 5.4, we have

‖un
∗ − u(x, tn)‖1 ≤ C(u)(h`t

−1
n + (h2

` + τ)t−3/2
n )‖u0‖0. (5.48)

Proof. Following the argument given in Theorem 5.4, we still have the error equation (5.33).
Since e0 = 0, instead of (5.4) we have by (5.5) with p = 3 that

t3n‖un
∗ − uh(tn)‖21 ≤ Cτ

n∑

k=1

(t3k|σk|2∗ + |σk|2∗,−3),

with σk = ϑk + (I + τAh)ωk. As in (5.36), we have

Cτ
n∑

k=1

(t3k|ϑk|2∗ + |ϑk|2∗,−3) ≤ Cτ2‖u0‖20.

And as in (5.34), we get

t3k|(I + τAh)ωk|2∗ + |(I + τAh)ωk|2∗,−3 ≤ Cτ‖ωk‖2τ .

Combining the above three estimates and (5.45) leads to

‖un
∗ − uh(tn)‖1 ≤ C(h2

` + τ)t−3/2
n ‖u0‖0.

As that in (5.29), we have

‖uh(tn)− u(x, tn)‖1 ≤ Ch`‖u(x, tn)‖2 ≤ Ch`t
−1
n ‖u0‖0.

A combination of the above two gives (5.48).
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Remark 5.6. Notice that if we assume u0 ∈ H1
0(Ω), the error estimate in (5.48) can be

improved to O(h` + τ)/tn since we may use (5.5) with p = 2 in such a case.

Remark 5.7. We require that u0 ∈ H1
0(Ω) in the stability estimate (cf. Theorem 3.1), which is

not realistic for the nonsmooth initial data. However, we assume that u1
∗ = u1

` in Theorem 5.4,
hence for the case when u0 ∈ L2(Ω) and f = 0, the stability estimate can be modified as

‖un
∗‖2A ≤ ‖u1

∗‖2A ≤
1
2τ
‖u0‖20.

6 Iteration Strategy

For achieving good performance for the Cascadic Algorithms in practice, parameter tuning is
an important issue in their actual implementation. The theoretical analysis of the Cascadic
Algorithm made in this paper can be useful in practice as a guide for assigning values to the
various parameters used in the algorithm. We now make some discussions on this issue.

Since the constraint on the iteration number for achieving the optimal error bounds is
generally tighter than that for stability, we only consider how the iteration number is selected
so as to give the optimal error bounds.

In view of Theorem 5.2, 5.3, 5.4 and Theorem 5.5, the following three conditions are required
for the Cascadic Algorithm to be of optimal complexity for parabolic equations: for each k,

1. β < 1 (or βk < 1).

2. β/(1− β), or βk/(1− βk), is sufficiently small.

3. The overall computing cost (complexity) is of the order O(n`), i.e.,

∑̀

j=1

mjnj ≈ O(n`) .

To achieve the optimal complexity for smooth data, we have the following choice for the
iteration number mj .

mj =

{
mj0 0 ≤ j ≤ j0,

b(ml − 1
2 )2

2(l−j)
γ+1 + 1

2c j = j0 + 1, · · · , `.

Define dj : = λj/(C∗τ−1 + λj). Noting λj < λj+1, we thus define ĉ: = max1≤j≤j0 λj/λj+1,
which in turn implies that for any 1 ≤ j ≤ j0 − 1:

dj

dj+1
=

(λj/λj+1)C∗τ−1 + λj

C∗τ−1 + λj
≤ ĉC∗τ−1 + λj

C∗τ−1 + λj

≤ ĉC∗ + 1
C∗ + 1

= :c < 1, (6.1)

where we have used τλj ≤ τλj0 ≤ 1. In view of (6.1), we obtain

dj = dj0

j0−1∏

k=j

dk

dk+1
≤ cj0−jdj0 ≤

cj0−j

C∗ + 1
,
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since dj0 ≤ 1/(C∗ + 1). We then get

β ≤ CSCB

(1− cmj0−1)

( c

1 + C∗

)mj0−1

+
CSCB

(2m` − 1)γ

1
1− 2−2γ/(γ+1)

≤ ε ,

which can be smaller than some suitable constant ε. It is easy to verify that β is bounded
uniformly for such mj .

It remains to estimate the overall computing cost on each time level. Notice that 4j/c∗ ≤
dimXj ≤ c∗4j , a simple calculation yields that

∑̀

j=1

mjnj ≤ c2
∗
(
mj0n`(22(j0−`) − 2−2`)/3

+ (m` − 1/2)n`
1− 2

2γ
γ+1 (j0−`−1)

1− 2−2γ/(γ+1)
+

2
3
n`(1− 22(j0−`−1))

)
.

Notice that mj0 ≤ mj0+1, we thus have

mj0(2
2(j0−`) − 2−2`) ≤ (m` − 1/2)

(
2

2γ
γ+1 (j0−`)− 2

γ+1 − 2
−2(γ`+1)

γ+1
)

+ 22(j0−`)−1 − 2−2`−1.

A combination of the above two estimates leads to

∑̀

j=1

mjnj ≤ c2
∗/3

(
(m` − 1/2)n`(2

2γ
γ+1 j0 − 1)2

−2(γ`+1)
γ+1

+ 3(m` − 1/2)n`
1− 2

2γ
γ+1 (j0−`−1)

1− 2−2γ/(γ+1)
+ n`

)
. (6.2)

As to the nonsmooth data, the strategy is basically the same, except when k is small. For
the initial transient period, i. e., small k, we let mj depend on the index k, that is, mj = mk,j

so that it becomes large for small k. The rationale behind the choice is due to the fact that, in
this case, we need

βk ≤ CSCB

(1− c
mj0−1

k )

( c k

1 + C∗

)mj0−1

+
CSCB

(2mk,` − 1)γ

1
1− 2−2γ/(γ+1)

≤ εt2k ,

for some suitably small constant ε, where

c k: =
ĉkC∗ + 1
C∗ + 1

with ĉk: = max
1≤j≤j0

λk,j/λk,j+1.

Such a scenario is as expected when an initial transient layer needs to be resolved.

As above, the overall computing cost on time level k is

∑̀

j=1

mk,jnj ≤ c2
∗/3

(
(mk,` − 1/2)n`(2

2γ
γ+1 j0 − 1)2

−2γ`
γ+1 − 2

γ+1

+ 3(mk,` − 1/2)n`
1− 2

2γ
γ+1 (j0−`−1)

1− 2−2γ/(γ+1)
+ n`

)
. (6.3)
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In the cases of Jacobi smoother and the CG iteration, mj(mk,j)’s are taken to be suitably
large but independent of j and ` and we thus have optimal multigrid complexity. In the case
of the symmetric Gauß-Seidel smoother, we may need to let m` be proportional to some (say,
quadratic) power of log(2m) (m being the bandwidth). For most equations and discretizations
considered in this paper here, we typically expect that log(2m) is on the order of the level index
`, thus the complexity of the Cascadic Algorithm is nearly optimal in the sense that the total
work is on the order of O(n` log2(n`)).

7 Conclusion

In this paper, a comprehensive analysis of a cascadic multigrid algorithm for an implicit in
time discretization of some parabolic equations is presented. New and sharper estimates on
smoothers are established to reflect the spatial and temporal structure of the discrete approx-
imation to the parabolic equations. The stability of the algorithm is established based on
these smoother estimates. Complete error estimates for both smooth and nonsmooth data are
provided. We also combine with a complexity analysis to provide guidance on some optimal
choices of various parameter values. Moreover, the general framework and the technical deriva-
tions provide a basis for studying the applications of cascadic multigrid algorithms to other
time dependent equations.
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