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Abstract We study the effect of “ghost forces” for a quasicontinuum method in three dimension with a planar

interface. “Ghost forces” are the inconsistency of the quasicontinuum method across the interface between the

atomistic region and the continuum region. Numerical results suggest that “ghost forces” may lead to a negilible

error on the solution, while lead to a finite size error on the gradient of the solution. The error has a layer-like

profile, and the interfacial layer width is of O(ε). The error in certain component of the displacement gradient

decays algebraically from O(1) to O(ε) away from the interface. A surrogate model is proposed and analyzed,

which suggests the same scenario for the effect of “ghost forces”. Our analysis is based on the explicit solution

of the surrogate model.
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1 Introduction

Multiscale methods that couple the atomistic model and the continuum model have been extensively

studied over the past few decades, and these methods have been employed to simulate various properties

of materials, in particular for solids [1, 5, 14]. One critical issue of these methods is the so-called ghost

force, which is the none-zero force that atoms experience at the undeformed state [19]. From the numerical

analysis aspect of view, ghost force is nothing but the inconsistency of the method. Some efforts have been

devoted to studying the effect of the ghost force. The ghost force issue for the one-dimensional problem is

well-understood now, see [4,15,16]. The main findings are nicely summarized in [5, p. 278]: (1) the ghost

force induces a negligible error on the solution, which is usually as small as the lattice spacing, while it

may lead to an O(1) error on the gradient of the solution; (2) the influence of the ghost force decays

exponentially fast away from the interface; (3) away from the interfacial layer of width O(ε|ln ε|), the
error in the displacement gradient is of O(ε) with ε being the lattice spacing. The effect of the ghost force

for a two-dimensional problem with a planar atomistic to continuum (a/c) interface has recently been

carried out in [3]. The story is almost the same except that the decay of the error in the displacement

gradient is much slower than that of the one-dimensional problem. The decay rate is algebraical, and
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away from the interfacial layer of width at most O(
√
ε), the error in the displacement gradient is of O(ε).

Identifying the effect of the ghost force for the dynamical problem is largely unexplored, but we refer

to [11] for a preliminary study.

For statics problems, the elimination of the ghost force is a necessary ingredient to achieve uniform

accuracy [6, 17]. It is worth mentioning some work on the convergence analysis for the ghost force free

multiscale coupling methods in high dimension, we refer to [12, 13, 18] for the related work.

The aim of this work is to quantify the error caused by the ghost force for a quasicontinuum method

(QC) [7, 20] in three dimensions. QC is a representative multiscale coupling method. We begin by

studying a face-centered cubic (FCC) lattice model interacted with Lennard-Jones potential [10]. The

Cauchy-Born (CB) elasticity model [2] couples with the atomistic model. Numerical results suggest that

the displacement gradient has an O(1) error as those of one and two-dimensional problems. The error

has a layer-like profile and the layer width is of O(ε). Moreover, the displacement gradient decays from

O(1) to O(ε) algebraically away from the interface.

To understand such phenomenon, we propose a cubic lattice model with a special interaction range

and a QC approximation, which is in the same spirit of the one studied in [3]. Numerical results give

the same scenario as those of the FCC lattice model with a QC approximation. This model admits an

analytical solution, which is exploited to prove that the displacement gradient indeed decays algebraically

away from the interface.

The paper is organized as follows. Numerical results for the FCC lattice model with a QC approxima-

tion and the cubic lattice model with a QC approximation are presented in Sections 2 and 3, respectively.

In Section 4, we derive an analytical solution to the cubic lattice model, and the pointwise estimates of

the error are obtained in Section 5. We draw the conclusion in the last section. Some detailed derivation

omitted in Section 3 can be found in Appendixes A and B.

2 A QC method for FCC lattice

2.1 Atomistic and continuum models for FCC lattice

We consider the FCC lattice L, which can be written as

L = { x ∈ R
3 | x = ps1 + qs2 + rs3, p, q, r ∈ Z }

with the basis vectors s1 = (1/2, 1/2, 0), s2 = (0, 1/2, 1/2) and s3 = (1/2, 0, 1/2). The domain Ω is

defined as Ω = { x = x1s1 + x2s2 + x3s3 | 0 � x1, x2 < 1/2,−1/2 � x3 < 1/2 }. Let Ωε = Ω ∩ εL with

ε = 1/(2N) being the equilibrium bond length. If the third nearest neighbor interaction is considered,

then the total energy of the system is

Etot
at [y](x) =

1

2

∑

x∈Ωε

∑

x′∈x+S
V (|y(x)− y(x′)|),

where V is the Lennard-Jones potential and the interaction range S = S1 ∪ S2 ∪ S3 with

S1 = {±s1,±s2,±s3,±(s1 − s2),±(s1 − s3),±(s2 − s3)},
S2 = {±(s2 + s3 − s1),±(s1 + s2 − s3),±(s1 + s3 − s2)},

and
S3 = {±(2s1 − s2),±(s1 + s2),±(2s2 − s1),±(2s2 − s3),±(s1 + s2),

± (2s3 − s1),±(2s1 − s2),±(s1 + s2),±(2s3 − s2),±(2s1 − s1 − s2),

± (2s2 − s1 − s3),±(2s3 − s1 − s2)}.
Let Ωc = { x ∈ Ω | x3 > 0 } and Ωa = Ωε \ Ωc. In Ωa, we use the atomistic model, and in Ωc we use

the continuum model with the stored energy functional

ECB
Ωc

=

∫

Ωc

WCB(∇y(x))dx
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with WCB(∇y) = 1
2ϑ0

∑
s∈S V (|(s · ∇)y|), where y(x) is the deformation of x-th atom, and ϑ0 is the

volume of the unit cell of L. Since we are primarily interested in the coupling between the atomistic and

continuum models, we will take the finite element mesh as a triangulation of Ωε with each atom site as an

element vertex. The linear finite element is used to approximate WCB. The total energy of the coupled

system is given by

Etot[y](x) =
1

2

∑

x∈Ωa

∑

x′∈x+S
V (|y(x′)− y(x)|) + 1

2

∑

x3=0

∑

x′∈x+S
x′
3�0

V (|y(x)− y(x′)|) + ECB
Ωc,ε,

where ECB
Ωc,ε

is the finite element approximation of ECB
Ωc

. We minimize Etot with respect to y(x) subject

to the Dirichlet boundary condition y(x) = x for x ∈ ∂Ωε, where the boundary ∂Ωε is defined as

∂Ωε = ∂Ω1
ε ∪ ∂Ω2

ε ∪ ∂Ω3
ε

with

∂Ω1
ε = { x ∈ εL | p ∈ {−2,−1, N + 1, N + 2}, q = 0, . . . , N, r = −N, . . . , N },

∂Ω2
ε = { x ∈ εL | q ∈ {−2,−1, N + 1, N + 2}, p = 0, . . . , N, r = −N, . . . , N },

∂Ω3
ε = { x ∈ εL | r ∈ {−N − 2,−N − 1, N + 1, N + 2}, p, q = 0, . . . , N }.

The Euler-Lagrangian equation of the above minimization problem is

Lqc[y(x)] = 0, (2.1)

where Lqc is the variational operator of Etot. The displacement u(x) := y(x)− x satisfies

Lqc[u(x) + x] = 0.

If Lqc is linear, then

Lqc[u(x)] = f(x) with f(x) := −Lqc[x]. (2.2)

The source term f(x) is the so-called ghost force. The effect of the ghost force is characterized by u(x).

2.2 Numerical results

We solve (2.1) and find that all components of u have a clear layer-like profile. For brevity we only plot u3
and its discrete gradient Diu3 in Figure 1, where

Diu(x) := (u(x+ εsi)− u(x))/ε, i = 1, 2, 3.

Motivated by the previous study in [3, 4, 16], the maximum of Du is the main quantity of interest,

and we report ‖Du‖∞ := max3i,j=1 ‖Diuj‖L∞(Ωε) in Table 1. The result suggests that Du is uniformly

bounded with respect to ε. In view of Figure 1, we find that D3u3 also has a layer-like profile. It would

be interesting to find the layer width and the decay rate of D3u3. The definition of the layer width is

slightly different from that of [3]. It reads as

d := max
p,q

(r − r)(p, q)ε,

where

r(p, q) = argmin
r>r∗(p,q)

such that |D3u3(p, q, r)| � 1

2
|D3u3(p, q, r

∗)|,

r(p, q) = argmax
r<r∗(p,q)

such that |D3u3(p, q, r)| � 1

2
|D3u3(p, q, r

∗)|,

and

r∗(p, q) = argmax
r

|D3u3(p, q, r)|.

Table 2 shows that the width of the interfacial layer is of O(ε).
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Figure 1 The sectional view of u3(p, q, r) and its discrete gradient when N = 31 and q = 18

Table 1 ‖Du‖∞ versus the equilibrium bond length ε

ε 2−4 2−5 2−6 2−7 2−8

‖Du‖∞ 1.674e−3 1.675e−3 1.675e−3 1.675e−3 1.675e−3

Table 2 The layer width d versus the equilibrium bond length ε

ε 2−4 2−5 2−6 2−7 2−8

d 1.28e−1 6.4e−2 3.2e−2 1.6e−2 8e−3

To get the decay rate ofD3u3, we need a threshold value c0. For fixed p and q, we find two points (p, q, r)

and (p, q, r) with r and r defined by

r(p, q) = argmax
r

such that |D3u3|(p, q, r) > c0ε,

r(p, q) = argmin
r

such that |D3u3|(p, q, r) > c0ε.

The decay rate R is defined by

R := logmax
p,q

(r − r)(p, q)ε/ log ε.

We report the decay rate in Table 3 for different c0. The decay rate seems to be close to 1/2. Though

we cannot prove this fact, we shall give an explanation on this observation by using the lattice Green’s

function in the end of Section 5.

Since the operator Lqc coincides with Lcb in the local region, where Lcb is the variational operator

associated with WCB, it is natural to look at a similar model to (2.1), where Lqc is replaced by Lcb. We

replace Lqc by Lcb in the left-hand side of (2.2) and obtain

Lcb[u(x) + x] = −Lqc[x]. (2.3)
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Table 3 The decay rate R with respect to different c0 versus the equilibrium bond length ε

ε 2−4 2−5 2−6 2−7 2−8 rate (R)

c0 = 0.0004 0.500 0.366 0.264 0.192 0.137 0.467

c0 = 0.0008 0.357 0.254 0.188 0.134 0.097 0.468

c0 = 0.0012 0.288 0.210 0.143 0.109 0.079 0.469

c0 = 0.0016 0.270 0.186 0.129 0.095 0.068 0.496

The profiles for u3 and D3u3 can be found in Figure 2, and we report ‖Du‖∞ in Table 4, which shows

that Du is uniformly bounded with respect to ε. By Table 5, we conclude that the layer width is of O(ε).

Choosing different c0, we report the decay rate in Table 6. It is clear that the decay rate is still close

to 1/2. These evidences show that the model (2.3) may be viewed as a surrogate model for the original

FCC lattice model.
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Figure 2 The sectional view of u3(p, q, r)cb and its gradient when N = 31 and q = 18

Table 4 ‖Du‖∞ versus the equilibrium bond length ε

ε 2−4 2−5 2−6 2−7 2−8

‖Du‖∞ 1.545e−3 1.546e−3 1.546e−3 1.546e−3 1.546e−3

Table 5 The layer width d versus the equilibrium bond length ε

ε 2−4 2−5 2−6 2−7 2−8

d 1.28e−1 6.4e−2 3.2e−2 1.6e−2 8.0e−3
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Table 6 The decay rate R with respect to different c0 versus the equilibrium bond length ε

ε 2−4 2−5 2−6 2−7 2−8 rate (R)

c0 = 0.0004 0.496 0.365 0.265 0.192 0.136 0.467

c0 = 0.0008 0.334 0.250 0.184 0.135 0.095 0.451

c0 = 0.0012 0.281 0.200 0.142 0.109 0.078 0.459

c0 = 0.0016 0.254 0.171 0.126 0.094 0.067 0.473

3 A QC method for cubic lattice

In this section, we introduce a cubic lattice model that is motivated by the square lattice model proposed

in [3]. We shall show in the next two sections that this model not only captures the main features of

the FCC lattice model described in the last section, but also lends itself theoretically tractable, i.e., this

model can be solved exactly. Therefore, it may be viewed as a suitable surrogate model for the original

FCC lattice model.

3.1 Setup and formulation

We consider a simple cubic lattice L interacted with the harmonic potential. The domain Ω := (0, 1)

× (−1, 1)× (0, 1), and we denote Ωε = Ω∩ εL with ε = 1/N . We assume the nearest neighbor interaction

for x-direction and z-direction, and next-to-nearest neighbor interaction in y-direction. The neighbors of

a point p0 are shown in Figure 3(a).

For any lattice function u : Ωε → R
3, we let u(p, q, r) = u(x) with x = (p, q, r)ε, where the labels

p, r = 0, . . . , N and q = −N, . . . , N . We employ the atomistic model for the region with |x2| � Kε, and

outside this region, the CB elastic model is used. The domain Ω is illustrated in Figure 3(b). We assume

that the total energy E =
∑

x∈Ωε
Ex with

Ex =
κ1
2

∑

|x′−x|=ε

|y(x′)− y(x)|2 + κ2
2
(|y(x1, x2 − 2ε, x3)− y(x)|2 + |y(x1, x2 + 2ε, x3)− y(x)|2),

where |x′ − x| := |x′1 − x1|+ |x′2 − x2|+ |x′3 − x3|, and κ1 and κ2 are the force constants computed from

the interatomic potential. We assume that κ2 < 0.

For |x2| � (K − 2)ε,Lqc[u(x)] = Lat[u(x)] with

Lat[u(x)] := 2(3κ1 + κ2)u(x)− κ1
∑

|x′−x|=ε

u(x′)− κ2(u(x1, x2 + 2ε, x3) + u(x1, x2 − 2ε, x3)).

For |x2| � (K + 2)ε, Lqc[u](x) = Lcb[u](x) with

Lcb[u(x)] := 2(3κ1 + 4κ2)u(x)− κ1(u(x1 − ε, x2, x3) + u(x1 + ε, x2, x3))

− (κ1 + 4κ2)(u(x1, x2 − ε, x3) + u(x1, x2 + ε, x3))

− κ1(u(x1, x2, x3 − ε) + u(x1, x2, x3 + ε)).

x
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p8 p3 p0
p1 p7

p2
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(a) The interaction range for atom p 
0

(b) The CB-Atom-CB coupling model

Figure 3 Interaction range and the domain Ω
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In the interfacial region, when x2 = (K − 1)ε,

Lqc[u(x)] := (6κ1 + 3κ2/2)u(x)− κ1
∑

|x′−x|=ε

u(x′)− κ2
2
u(x1, x2 + 2ε, x3)− κ2u(x1, x2 − 2ε, x3).

When x2 = −(K − 1)ε, we obtain the expression of Lqc by replacing the second coordinate of u(x) by

its inversion, i.e., u(x1, x2, x3) is replaced by u(x1,−x2, x3). This rule applies to the other interfacial

equations.

When x2 = Kε,

Lqc[u(x)] := (6κ1 + 5κ2)u(x)− κ1
∑

|x′−x|=ε,

x′
2 �=(K+1)ε

u(x′)− (κ1 + 4κ2)u(x1, x2 + ε, x3)− κ2u(x1, x2 − 2ε, x3).

When x2 = (K + 1)ε,

Lqc[u(x)] := (6κ1 + 17κ2/2)u(x)− κ1
∑

|x′−x|=ε,

x′
2
�=(K+2)ε,x′

2
�=Kε

u(x′)

− (κ1 + 4κ2)(u(x1, x2 + ε, x3) + u(x1, x2 − ε, x3))− κ2
2
u(x1, x2 − 2ε, x3).

It is clear that for all x ∈ Ωε, we have Lqc[x]1 = Lqc[x]3 = 0, and

Lqc[x]2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x2 � (K + 2)ε or x2 � (2 −K)ε,

κ2ε sgn(x2), |x2| = (K − 1)ε,

−2κ2ε sgn(x2), |x2| = Kε,

κ2ε sgn(x2), |x2| = (K + 1)ε.

In what follows, we only study the second component of u(x), which is also denoted by u(x). It satisfies

Lqc[u(x)] = f(x) (3.1)
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Figure 4 The XOY sectional view of u and its gradients when N = 31, z = 0.25 and K = (N + 1)/2
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with f(x) = −Lqc[x]. We supplement the above equation with the Dirichlet boundary condition u(x) = 0

for x ∈ ∂Ωε.

By the symmetry of the domain Ωε and the operator Lqc, we conclude that the solution is odd in

y-direction. Therefore, we only consider the domain with x2 � 0, i.e., Ω is a unit cube (0, 1)3. In this

case, the term sgn(x2) in f(x) vanishes.

3.2 Numerical results

Let κ1 = 60.093 and κ2 = −0.741379 in (3.1). The profiles for u and Du can be found in Figures 4 and 5

when N = 31 with different positions of the a/c interface.

We report ‖Du‖∞ in Table 7 for different positions of the a/c interface K and the lattice spacing ε.

Table 8 shows that the layer width is of O(ε).
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Table 7 ‖Du‖∞ versus the equilibrium bond length ε for different positions of the a/c interface

ε 2−5 2−6 2−7 2−8 2−9

‖Du‖∞ (K = (N + 1)/2) 1.292e−2 1.296e−2 1.297e−2 1.298e−2 1.298e−2

‖Du‖∞ (K =
√
N + 1) 1.298e−2 1.298e−2 1.298e−2 1.298e−2 1.298e−2

Table 8 The layer width d versus the equilibrium bond length ε

ε 2−5 2−6 2−7 2−8 2−9

d (K = (N + 1)/2) 6.787e−2 3.393e−2 1.697e−2 8.48e−3 4.24e−3

d (K =
√
N + 1) 6.787e−2 3.393e−2 1.697e−2 8.48e−3 4.24e−3
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4 Exact solution to cubic lattice model

4.1 Representation of the solution

Using the ansatz of separation of variables, we obtain the following representation of u.

Theorem 4.1. For q = K + 1, . . . , Nand p, r = 1, . . . , N ,

u(p, q, r) =
N∑

k,l=1

ak,l sinh[(N − q)αk,l] sin
pkπ

N
sin

rlπ

N

with

coshαk,l = 1 +
κ1
κ
(λk + λl),

where κ = κ1 + 4κ2 and λk = 2 sin2 kπ/[2N ].

For q = 1, . . . ,K and p, r = 1, . . . , N ,

u(p, q, r) =
N∑

k,l=1

(bk,l sinh[qβk,l] + ck,l sinh[qδk,l]) sin
pkπ

N
sin

rlπ

N
,

where βk,l and δk,l are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

coshβk,l =
−κ1 +

√
κ2 + 8κ1κ2(λk + λl)

4κ2
,

cosh δk,l =
−κ1 −

√
κ2 + 8κ1κ2(λk + λl)

4κ2
.

(4.1)

Here and in what follows, we denote u(p, q, r) by uat for q = 1, . . . ,K, and ucb for q = K + 1, . . . , N .

Note that coshβk,l = a1/2 and cosh δk,l = a2/2, where a1 and a2 are two roots of the quadratic

equation

κ2x
2 + κ1x− 2κ1 (λk + λl)− 2(κ1 + 2κ2) = 0. (4.2)

By definition, we have

2κ2 cosh
2 x+ κ1 coshx = κ1(λk + λl + 1) + 2κ2, x = βk,l, δk,l. (4.3)

We also have

coshβk,l + cosh δk,l = − κ1
2κ2

, (4.4)

from which we obtain

2κ2 coshβk,l + κ = 2κ2(2− cosh δk,l), 2κ2 cosh δk,l + κ = 2κ2(2− coshβk,l). (4.5)

The roots also satisfies

cosβk,l cosh δk,l = − κ1
2κ2

(1 + λk + λl)− 1. (4.6)

The above relations will be frequently used later on.

Next, we shall exploit the interfacial equations to determine the coefficients ak,l, bk,l and ck,l, as in [16]

and [3].

We firstly write the interfacial equation at x2 = (K − 1)ε as

(6κ1 + 3κ2/2)uat(x) − κ1
∑

|x′−x|=ε

uat(x
′)− κ2

2
ucb(x1, x2 + 2ε, x3)− κ2uat(x1, x2 − 2ε, x3) = −κ2ε.

Using the homogeneous equation satisfied by uat, we obtain

−κ2
2
(uat(x1, (K − 1)ε, x3) + ucb(x1, (K + 1)ε, x3)) + κ2uat(x1, (K + 1)ε, x3) = −κ2ε. (4.7)
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Next, we write the interfacial equation at x2 = Kε as

(6κ1 + 5κ2)uat(x) − κ1
∑

|x′−x|=ε,x′
2 �=(K+1)ε

uat(x
′)

− κucb(x1, (K + 1)ε, x3)− κ2uat(x1, (K − 2)ε, x3) = 2κ2ε.

Using the homogeneous equation satisfied by uat, we obtain

3κ2uat(x1,Kε, x3) + κ1uat(x1, (K + 1)ε, x3) + κ2uat(x1, (K + 2)ε, x3)

− κucb(x1, (K + 1)ε, x3) = 2κ2ε. (4.8)

Finally, we write the equation for x2 = (K + 1)ε as

(6κ1 + 17κ2/2)ucb(x) − κ1
∑

|x′−x|=ε,x′
2 �=(K+2)ε,x′

2 �=Kε

ucb(x
′)

− κ(ucb(x1, (K + 2)ε, x3) + uat(x1,Kε, x3))− κ2
2
uat(x1, (K − 1)ε, x3) = −κ2ε.

Using the homogeneous equation satisfied by ucb, we obtain

κ2
2
(ucb(x1, (K + 1)ε, x3)− uat(x1, (K − 1)ε, x3)) + κ(ucb(x1,Kε, x3)− uat(x1,Kε, x3)) = −κ2ε. (4.9)

Subtracting (4.7) from (4.9), we obtain

κucb(x1,Kε, x3) + κ2ucb(x1, (K + 1)ε, x3) = κuat(x1,Kε, x3) + κ2uat(x1, (K + 1)ε, x3).

Substituting the expression of u into the above identity, we get

ak,l =
g(βk,l)

h(αk,l)
bk,l +

g(δk,l)

h(αk,l)
ck,l,

where g and h are defined by

g(x) := κ sinh[Kx] + κ2 sinh[(K + 1)x],

h(x) := κ sinh[(N −K)x] + κ2 sinh[(N −K − 1)x].

Denote ρk,l := κ2 sinh[(N −K − 1)αk,l]/h(αk,l). Substituting the expression of uat and ucb into (4.8)

and using the discrete Fourier transform, we obtain

φ(βk,l)bk,l + φ(δk,l)ck,l =
8κ2ε

N2

1− (−1)k

2

1− (−1)l

2
cot

kπ

2N
cot

lπ

2N
,

where

φ(x) = 3κ2 sinh[Kx] + κ1 sinh[(K + 1)x] + κ2 sinh[(K + 2)x]− κ

κ2
ρk,lg(x).

Substituting the expressions of uat and ucb into (4.7) and using the discrete Fourier transform, we

obtain

ψ(βk,l)bk,l + ψ(δk,l)ck,l = −8κ2ε

N2

1− (−1)k

2

1− (−1)l

2
cot

kπ

2N
cot

lπ

2N
,

where

ψ(x) = −κ2 sinh[(K − 1)x] + 2κ2 sinh[(K + 1)x]− ρk,lg(x).

Solving this linear system, we obtain

bk,l =
(φ + ψ)(δk,l)

Δ

8κ2ε

N2

1− (−1)k

2

1− (−1)l

2
cot

kπ

2N
cot

lπ

2N
,

and

ck,l = − (φ+ ψ)(βk,l)

Δ

8κ2ε

N2

1− (−1)k

2

1− (−1)l

2
cot

kπ

2N
cot

lπ

2N
,
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where

Δ = φ(βk,l)ψ(δk,l)− φ(δk,l)ψ(βk,l).

A direct calculation gives

Δ = Ak,l sinh[Kβk,l] sinh[Kδk,l] +Bk,l sinh[Kβk,l] cosh[Kδk,l]

+ Ck,l sinh[Kδk,l] cosh[Kβk,l] +Dk,l cosh[Kβk,l] cosh[Kδk,l], (4.10)

where

Ak,l = ρk,lκ[(τk,l − 1)κ+ τk,l(λk + λl)κ1](cosh δk,l − coshβk,l),

Bk,l = ρk,l sinh δk,lκ
2
2F (βk,l, κ/|κ2|), Ck,l = −ρk,l sinhβk,lκ22F (δk,l, κ/|κ2|),

Dk,l = −2(3− ρk,l)κ
2
2 sinhβk,l sinh δk,l(cosh δk,l − coshβk,l).

Here, for b = βk,l, δk,l,

F (b, t) := (4τk,l(1 + λk + λl)− τk,l cosh b− 3)t2

− 2((τk,l − 1)(2 cosh b− 1) + (λk + λl)(1− 8τk,l))t− 8(λk + λl).

The derivation of the above representation of Δ will be given in Appendix A.

5 Pointwise estimate of the error

5.1 Preliminaries

It follows from Theorem 4.1 that the stability condition κ2 + 8κ1κ2(λk + λl) > 0 for all k, l. By κ2 < 0,

we immediately have κ2 � 32κ1|κ2|. Solving this equation, we obtain

κ > 8(2 +
√
6)|κ2|. (5.1)

In what follows, we impose a stronger stability condition unless otherwise stated,

κ � 56|κ2|. (5.2)

The following lemma gives a tight bound for τk,l.

Lemma 5.1. There holds

expαk,l < τk,l < expαk,l + exp[−(2N − 2K − 3)αk,l]. (5.3)

Proof. By definition,

τk,l − expαk,l =
sinhαk,l

sinh[(N −K − 1)αk,l]
exp[−(N − k − 1)αk,l],

which gives the left-hand side of (5.3).

On the other hand, using the elementary inequality

sinh[(N −K − 1)t]

sinh t
� exp[(N −K − 2)t], t � 0,

which implies the right-hand side of (5.3).

A direct consequence of (5.3) is

τk,l > coshαk,l + sinhαk,l = 1 +
κ1
κ
(λk + λl) +

κ1
κ

√
(2κ/κ1 + λk + λl)(λk + λl), (5.4)

which immediately implies

τk,l � 1 +
2κ1
κ

(λk + λl) � 1 + 2(λk + λl), (5.5)

and

τk,l � 1 +
√
2(λk + λl). (5.6)

The next lemma gives the bounds for βk,l and δk,l.
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Lemma 5.2. There holds

1 +
κ1
κ
(λk + λl) � coshβk,l � 1 +

2κ1
κ

(λk + λl), (5.7)

and

1 +
κ

2|κ2| −
2κ1
κ

(λk + λl) � cosh δk,l � 1 +
κ

2|κ2| −
κ1
κ
(λk + λl). (5.8)

Proof. An elementary calculation gives

coshβk,l = 1 +
κ

4|κ2| (1 −
√
1− 8κ1|κ2|(λk + λl)/κ

2)

= 1 +
2κ1(λk + λl)/κ

1 +
√
1− 8κ1|κ2|(λk + λl)/κ

2
,

which immediately implies (5.7).

Proceeding along the same line, we obtain (5.8).

Using (5.7), we obtain

sinh[βk,l/2] � 3

(
sin

kπ

2N
+ sin

lπ

2N

)
. (5.9)

It is clear that Ak,l, Dk,l < 0. It follows from (5.7) and (5.8) that

cosh δk,l − coshβk,l �
κ

2|κ2| −
4κ1
κ

(λk + λl),

which together with (5.2) yields

4κ1
κ

(λk + λl) � 16κ1/κ � 18 � 1

3

κ

|κ2| .

This implies

cosh δk,l − coshβk,l �
κ

6|κ2| .

Using (4.4) and (4.6), we obtain

sinh2 βk,l sinh
2 δk,l = (coshβk,l cosh δk,l + 1)2 − (coshβk,l + cosh δk,l)

2

=
κ21
4κ22

(λk + λl)(2 + λk + λl).

Combining the above two inequalities, we bound

|Dk,l| �
√
(λk + λl)/2 κ

2. (5.10)

It remains to determine the signs of Bk,l and Ck,l, which depend on the following two lemmas.

Lemma 5.3. Let Λ = 8(2+
√
6). If the stability condition (5.1) holds true, then for all k, l and t � Λ,

we have

F (βk,l, t) > 0. (5.11)

Lemma 5.4. Let Λ1 = 56. If the stability condition (5.2) holds true, then for all k, l and t � Λ1,

we have

F (δk,l, t) < 0.

By Lemma 5.3, we conclude that Bk,l = ρk,l sinh δk,lκ
2
2F (βk,l, κ/|κ2|) < 0. By Lemma 5.4, we conclude

that Ck,l = |ρk,l| sinhβk,lκ22F (δk,l, κ/|κ2|) < 0. The proof for the above two lemmas are postponed to

Appendix B.

We are ready to bound |Δ| from below.
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Lemma 5.5. Under (5.2), there holds

|Δ| �
√
2

8
κ2

√
λk + λl exp[K(βk,l + δk,l)]. (5.12)

Proof. Because Ak,l, Bk,l, Ck,l and Dk,l are negative for all k, l, we obtain

|Δ| � |Dk,l| cosh[Kβk,l] cosh[Kδk,l],

which together with (5.10) yields (5.12).

Remark 5.6. We are not intending to pursue a tight lower bound for Δ, while the order is optimal

because it is easy to find that |Ak,l|, |Bk,l|, |Ck,l| = O(
√
λk + λl κ

2).

5.2 Pointwise estimate of the error

We firstly write ρk,l as

ρk,l =
κ2

τk,lκ+ κ2
with τk,l :=

sinh[(N − k)αk,l]

sinh[(N −K − 1)αk,l]
,

and 1− (κ/κ2 +1)ρk,l = (τk,l − 1)ρk,lκ/κ2. Using (A.1) and (A.2) in Appendix A and the above identity,

we obtain

|(φ+ ψ)(x)| � Cκ
√
λk + μl exp[Kx], x = βk,l, δk,l. (5.13)

The following lemma is similar to [3, Lemma 5.2], the proof is slightly different.

Lemma 5.7. For 1 � k, l � N , we have

exp[−βk,l] � exp

[
− k + l

2N

]
, exp[−αk,l] � exp

[
− k + l

2N

]
, (5.14)

exp[−δk,l] � 3|κ2|
2κ

. (5.15)

Proof. Using (5.7), we have

exp[βk,l] � 1 + sinhβk,l � 1 +
√
2(λk + λl)

� 1 +
√
2

(
sin

kπ

2N
+ sin

lπ

2N

)

� 1 +

√
2(k + l)

N
.

Using the elementary inequality,

ln(1 + x) � 2x

2 + x
, x > 0,

we obtain

ln(1 +
√
2(k + l)/N) � 2(k + l)√

2N + k + l
� k + l

2N
.

Combining the above two inequalities, we obtain

exp[−βk,l] � (1 +
√
2(k + l)/N)−1 = exp[− ln(1 +

√
2(k + l)/N)] � exp

[
− k + l

2N

]
.

This gives the upper bound for exp[−βk,l]. The upper bound for exp[−αk,l] is similar, we omit the details.

Note that

sinh δk,l �
κ

3|κ2| , (5.16)

which implies (5.15) by using exp[δk,l] � 2 sinh[δk,l].
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Based on all the previous results, we are ready to bound Du. We only bound D2u, the estimates

for D1u and D3u are similar.

A direct calculation gives, for q � K − 1,

D2u(p, q, r) =
κ2
N2

N∑

k,l=1
k,l odd

1

Δ
((φ+ ψ)(δk,l) cosh[(q + 1/2)βk,l] sinh[βk,l/2]

− (φ+ ψ)(βk,l) cosh[(q + 1/2)δk,l] sinh[δk,l/2])

× sin
pkπ

N
cot

kπ

2N
sin

rlπ

N
cot

lπ

2N
,

and for q � K + 1,

D2u(p, q, r) =
κ2
N2

N∑

k,l=1
k,l odd

(φ+ ψ)(δk,l)g(βk,l)− (φ + ψ)(βk,l)g(δk,l)

Δh(αk,l)
cosh

[(
N − q − 1

2

)
αk,l

]
sinh

[
αk,l

2

]

× sin
pkπ

N
cot

kπ

2N
sin

rlπ

N
cot

lπ

2N
.

It follows from the above expression that D2u(p, q, r) = D2u(N − p, q, r) = D2u(p, q,N − r). Therefore,

we only consider 1 � p, r � N/2. Using (5.13)–(5.15) and (5.9), we have, for q � K − 1, there holds

|D2u(p, q, r)| � C
|κ2|
κN2

N∑

k,l=1
k,l odd

(
exp[−|K − q − 1/2|βk,l]

(
sin

kπ

2N
+ sin

lπ

2N

)

+ exp[−|K − q|δk,l]
)
cot

kπ

2N
cot

lπ

2N

� C
|κ2|
κN2

N∑

k,l=1
k,l odd

exp[−(K − q − 1/2)(k + l)/(2N)] cos
kπ

2N
cot

lπ

2N

+ C
|κ2|
κN2

(|κ2|/κ)K−q−1/2
N∑

k,l=1
k,l odd

cot
kπ

2N
cot

lπ

2N
.

Denoting � = exp[−(K − q − 1/2)/(2N)], we rewrite the above inequality as

|D2u(p, q, r)| � C
|κ2|
κN2

N∑

l=1
l odd

�l cot
lπ

2N

N∑

k=1
k odd

�k + C
|κ2|
κN2

(|κ2|/κ)K−q−1/2

( N∑

l=1
l odd

cot
lπ

2N

)2

.

Using Lozarević’s inequality [9] cosh t � ( sinh t
t )3, t 	= 0, and the elementary inequality cosh t � et/2, t ∈ R,

we obtain
N∑

k=1
k odd

�k � �

1− �2
=

1

2 sinh[(K − q)/(2N)]
� 2N

K − q
exp

[
− (K − q)

6N

]
.

Using the inequality cotx � 1/x for x > 0, we obtain

N∑

l=1
l odd

�l cot
lπ

2N
� 2N

π

N∑

l=1
l odd

�l

l
� 2N

π

∞∑

l=1
l odd

�l

l
=
N

π
ln

1 + �

1− �
� CN ln

N

K − q − 1/2
.

Proceeding along the same line that leads to the above inequality, we obtain

N∑

l=1
k,l odd

cot
lπ

2N
� 2N

π

N∑

l=1
k,l odd

1

l
� CN lnN.
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To sum up, we obtain

|D2u(p, q, r)| � C
|κ2|
κ

ln (N/(K − q − 1/2))

K − q − 1/2
+ C

( |κ2|
κ

)K−q+1/2

ln2N.

We deal with q = K,K + 1 separately. If q = K, then we have

|D1u(p, q, r)| � C
|κ2|
κN

N∑

l=1
l odd

cot
lπ

2N
+ C

|κ2|2
κ2N

N∑

l=1
l odd

cot
lπ

2N
� C

|κ2|
κ

lnN.

When q � K + 1, notice the following identity:

(φ+ ψ)(δk,l)g(βk,l)− (φ + ψ)(βk,l)g(δk,l)

= κ1(λk + λl)(sinh[Kδk,l]g(βk,l)− sinh[Kβk,l]g(δk,l))

+ 2κ2(1 − coshβk,l) sinh δk,l cosh[Kδk,l]g(βk,l)

+ 2κ2(cosh δk,l − 1) sinhβk,l cosh[Kβk,l]g(δk,l),

and using (5.13), we have

|D2u(p, q, r)| � C
|κ2|
κN2

N∑

k=1
l odd

�k cos
kπ

2N

N∑

l=1
l odd

�l cot
lπ

2N
� C

|κ2|
κ

lnN/(q + 1/2−K)

q + 1/2−K
.

Summing up the above estimate, we have the following theorem.

Theorem 5.8. There exists C such that

|Du(p, q, r)| � C
|κ2|
κ

lnN/|K − q − 1/2|
|K − q − 1/2| + C

( |κ2|
κ

)K−q+1/2

ln2N, (5.17)

where C is independent of ε.

Remark 5.9. If p = 1 or r = 1, then the above estimate can be improved to

|Du(p, q, r)| � C
|κ2|
κ

lnN/|K − q − 1/2|
|K − q − 1/2|2 + C

( |κ2|
κ

)K−q+1/2

lnN.

If p = r = 1, then we have the improved estimate as

|Du(1, q, 1)| � C
|κ2|
κ

|K − q − 1/2|−3 + C

( |κ2|
κ

)K−q+1/2

.

The estimate (5.17) is far from optimal in two aspects compared to the numerical results. First, it is

hard to judge whether the presence of the logarithmic factor in (5.17) is due to the tricks we employed

or it is essential, while it seems that ‖Du‖∞ increases slightly when N is small as suggested by Table 7.

Second, the decay rate should be one half as suggested by Table 2. We believe the estimate (5.17) can

be improved by refining the argument, which however seems quite subtle and we shall pursue it in other

publication. Instead, we give a heuristic explanation about this conjecture by using the lattice Green’s

function.

Let the interface Γ be the x− y plane, and f(x) takes the same form as that in (3.1) with x2 replaced

by x3. Denote by m(x) = dist(x,Γ)/ε, then

|Du(x)| � C

1 +m2(x)
, (5.18)

where C is independent of ε.
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By the definition of the Green’s function associated with Lqc, we have u(x) =
∑

y G(x; y)f(y), where

y runs over the support of f . Notice that the source term f is a discrete delta function supported in the

vicinity of the interface, we write

u(x) = ε2
∑

y2,y3

(G(x;−ε, y2, y3)− 2G(x; 0, y2, y3) +G(x; ε, y2, y3)) = ε4
∑

y2,y3

D2
y1
G(x; 0, y2, y3), (5.19)

which implies

Dxu(x) = ε4
∑

y2,y3

DxD
2
y1
G(x; 0, y2, y3).

If the following estimate for the Green’s function is true,

|DxD
2
yG(x; y)| �

C

|x− y|4 + ε4
, (5.20)

where C is independent of ε, then we have

|Dxu(x)| � ε4
∑

y2,y3

|DxD
2
yG(x; 0, y2, y3)|

= C
∑

y2,y3

1

1 + |x1/ε|4 + |(x2 − y2)/ε|4 + |(x3 − y3)/ε|4

= C
∑

n′,p′

1

1 +m4(x) + (n− n′)4 + (p− p′)4
.

The above sum can be estimated as follows. We give the details for estimating one item of the above sum

for brevity.

n−1∑

n′=1

p−1∑

p′=1

1

1 +m4(x) + (n− n′)4 + (p− p′)4
�

n−1∑

n′=1

p−1∑

p′=1

8

(1 +m(x))4 + 8n′4 + 8p′4

� 8
n−1∑

n′=1

∫ p′−1

0

1

(1 +m(x))4 + 8n′4 + 8s4
d s

� 64

n−1∑

n′=1

∫ p′−1

0

1

(1 +m(x) + n′)4 + 64s4
d s

� C

n−1∑

n′=1

(1 +m(x) + n′)−3 � C

1 +m2(x)
.

This gives (5.18).

The above procedure is quite general, while it heavily depends on the following two facts: (1) the

special structure of f that makes the error into a discrete gradient as (5.19); (2) the pointwise estimate

for the lattice Greens function (5.20), which may not be available for Lqc, while such estimate is true for

Lcb and we refer to [8] for related results.

6 Conclusion

Based on a series of models with different complexity, we have shown that

(1) the ghost force leads to a finite size error over the displacement gradient, while the magnitude of

such an error is quite small, which is usually related to the ratio among the elastic constants;

(2) the error has a layer-like profile, and the width of the interfacial layer is of O(ε);

(3) the error in the displacement gradient decays algebraically from O(1) to O(ε) away from the

interface.
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The first point is not new, while it actually justifies the linearized model or even the harmonic lattice

model. The second point seems new, while it is actually hidden in the previous study for one-dimensional

and two-dimensional problems. Our study together with the previous investigation suggest that the

O(ε)-layer width is generic for problems in one, two and three dimensions. The last point is new while

the sharp decay rate is still unknown.

It is worth mentioning that the surrogate model tells the same story for the effect of the ghost force,

while it is much simpler and analytically tractable. Whether such surrogate model can be trusted deserves

further tests for more realistic cases. We note that a similar surrogate model has been exploited to study

the effect of the ghost force for the dynamic problems in one dimension [11].

The present approach does not seem to apply to the nonplanar a/c interface. A possible way to do

this is the approach presented in the end of Sections, which relies on the structure of the ghost force and

the estimate of the lattice Green’s function associated with the method.
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A Explicit form for Δ

We firstly write φ(x) as

φ(x) = (3κ2 + κ1 coshx+ κ2 cosh[2x]) sinh[Kx] + (κ1 sinhx+ κ2 sinh[2x]) cosh[Kx]− (κ/κ2)ρk,lg(x).

Using (4.3), we get, for x = βk,l, δk,l,

3κ2 + κ1 coshx+ κ2 cosh[2x] = 2κ2 + κ1 coshx+ 2κ2 cosh
2 x = κ1(1 + λk + λl) + 4κ2

= κ+ κ1(λk + λl).

It follows from (4.4) that

κ1 sinhx+ κ2 sinh[2x] = (κ1 + 2κ2 coshx) sinhx

=

{
−2κ2 cosh δk,l sinhβk,l, x = βk,l,

−2κ2 coshβk,l sinh δk,l, x = δk,l.

Using the above two identities, we obtain

φ(βk,l) = (κ+ κ1(λk + λl)) sinh[Kβk,l]− 2κ2 cosh δk,l sinhβk,l cosh[Kβk,l]− (κ/κ2)ρk,lg(βk,l),

φ(δk,l) = (κ+ κ1(λk + λl)) sinh[Kδk,l]− 2κ2 coshβk,l sinh δk,l cosh[Kδk,l]− (κ/κ2)ρk,lg(δk,l).

Similarly,

ψ(x) = κ2 coshx sinh[Kx] + 3κ2 sinhx cosh[Kx]− ρk,lg(x),

where

x = βk,l, δk,l.

A direct calculation gives

(φ+ ψ)(βk,l) = (κ+ κ1(λk + λl) + κ2 coshβk,l) sinh[Kβk,l]

+ κ2 sinhβk,l cosh[Kβk,l] + 2κ2(1− cosh δk,l) sinhβk,l cosh[Kβk,l]

− (κ/κ2 + 1)ρk,lg(βk,l)

= κ1(λk + λl) sinh[Kβk,l] + 2κ2(1− cosh δk,l) sinhβk,l cosh[Kβk,l]

+ (1 − (κ/κ2 + 1)ρk,l)g(βk,l), (A.1)

and

(φ + ψ)(δk,l) = κ1(λk + λl) sinh[Kδk,l] + 2κ2(1− coshβk,l) sinh δk,l cosh[Kδk,l]

+ (1 − (κ/κ2 + 1)ρk,l)g(δk,l). (A.2)

To calculate Δ, we expand φ(x) + ψ(x) and ψ(x) for x = βk,l as

(φ+ ψ)(βk,l) =

(
κ1(λk + λl) + (τk,l − 1)ρk,l

κ

κ2
(κ+ κ2 coshβk,l)

)
sinh[Kβk,l]

+ (2κ2(1− cosh δk,l) + (τk,l − 1)ρk,lκ) sinhβk,l cosh[Kβk,l], (A.3)

and

ψ(βk,l) = (κ2 coshβk,l(1 − ρk,l)− ρk,lκ) sinh[Kβk,l] + (3− ρk,l)κ2 sinhβk,l cosh[Kβk,l],

using

(1− ρk,l)κ2 = τk,lρk,lκ,

we write

ψ(βk,l) = (τk,l coshβk,l − 1)ρk,lκ sinh[Kβk,l] + (3− ρk,l)κ2 sinhβk,l cosh[Kβk,l].

Similar equations hold true for (φ+ ψ)(δk,l) and ψ(δk,l). Substituting the above equations into

Δ = φ(βk,l)ψ(δk,l)− φ(δk,l)ψ(βk,l) = (φ + ψ)(βk,l)ψ(δk,l)− (φ + ψ)(δk,l)ψ(βk,l),

we obtain (4.10).
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B Proofs of Lemmas 5.3 and 5.4

Proof of Lemma 5.3. Using (5.7), we obtain

4τk,l(1 + λk + λl)− τk,l coshβk,l − 3 = τk,l(1 + 4λk + 4λl − coshβk,l) + 3(τk,l − 1)

� (4− 2κ1/κ) (λk + λl)τk,l + 3(τk,l − 1)

� (λk + λl)τk,l + 3(τk,l − 1),

which together with

F (βk,l, 0) = −8(λk + λl) < 0

implies F (βk,l, t) � F (βk,l,Λ) for t � Λ. A direct calculation gives

F (βk,l,Λ) � (Λ2 − 8)(λk + λl) + (τk,l − 1)(3Λ− 2 coshβk,l)Λ

+ 2 (τk,l − 1− λk − λl) Λ + 16Λτk,l(λk + λl).

Using (5.7), we have

3Λ− 2 coshβk,l � 3Λ− 2 + λk + λl.

Under the stability condition (5.1), we conclude that

F (βk,l,Λ) � (3Λ2 + 2Λ− 2)(τk,l − 1) + (Λ2 + 14Λ− 8)(λk + λl) + 17Λ(τk,l − 1)(λk + λl)

> 3Λ2(τk,l − 1) > 0.

This gives (5.11) and completes the proof.

Proof of Lemma 5.4. Using (5.8) and the stability condition (5.2), we get

4τk,l(1 + λk + λl)− τk,l cosh δk,l − 3 = τk,l(4 + 4λk + 4λl − cosh δk,l)− 3

� τk,l

(
3− κ

2|κ2| + (6 + 8|κ2|/κ)(λk + λl)

)
− 3

� −3.

Invoking the stability condition (5.2) again, we obtain

(τk,l − 1)(2 cosh δk,l − 1) + (λk + λl)(1 − 8τk,l)

� (τk,l − 1) (1 + κ/|κ2| − (12 + 16(|κ2|/κ)) (λk + λl))− 7(λk + λl)

� 5(τk,l − 1)− 7(λk + λl) � 3(λk + λl) > 0,

where we have used (5.5) in the next-to-last step.

The above two inequalities together with the fact F (δk,l, 0) < 0 leads to

F (δk,l, t) � F (δk,l,Λ1) for t � Λ1.

A direct calculation gives

F (δk,l,Λ1) � −3Λ2
1 − 8(λk + λl)− 2((τk,l − 1)(2 cosh δk,l − 1) + (λk + λl)(1− 8τk,l))Λ1

= −2(τk,l − 1)(2 cosh δk,l − 1− 8λk − 8λl)Λ1 − 8(λk + λl) + (14(λk + λl)− 3Λ1)Λ1

� −2(τk,l − 1)(58− 4(κ1/κ+ 2)(λk + λl))Λ1 − 2Λ2
1.

Using the stability condition (5.2), we get 58 − 4(κ1/κ + 2)(λk + λl) > 0. A combination of the above

three inequalities completes the proof.


