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ABSTRACT

We analyze the stability and accuracy of the local quasi-

continuum method. Optimal estimates are obtained for the

error between the quasicontinuum solution and the macro-

scopic model solution.

§1. Introduction

This is the first of a series of papers devoted to the analysis of the

quasicontinuum method (QC), which is becoming a popular multiscale

technique for simulating the static properties of crystalline materials.

Since QC is a computational method that couples the atomistic models

of crystals with continuum models, the analysis naturally touches upon

the important issue of how these different levels of models are related to

each other. In the present paper, we study the simplest situation when

classic potentials are used in the atomistic models, and when there are

no defects in the crystal.
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Consider the following type of atomistic models of crystal deforma-

tion under applied force:

E{y1, · · · ,yN} = V (y1, · · · ,yN ) −
N∑

i=1

f(xi) · yi, (1.1)

where V is the interaction potential between atoms, f is the external

force, yi is the deformed position of the i−th atom and the undeformed

position we will denote by xi. Let Ω be a sufficiently smooth open

set representing the region occupied by the material in the undeformed

(reference) configuration. We have introduced in V an explicit parameter

ε for the lattice constant. Naturally we are interested in the situation

when ε is much smaller than the size of Ω which is O(1).

In the atomistic model, the deformation of the crystal is described

by the displaced position of each atom. The positions {y1, · · · ,yN} are

computed by minimizing the energy functional (1.1) subject to certain

boundary conditions. In contrast, in the continuum regime, the defor-

mation is described by the displacement field u, and u(xi) = yi − xi is

the displacement of the i−th atom. The vector field u is computed by

minimizing a continuous functional of the type
∫

Ω

W (∇u) dx −
∫

Ω

f(x) · u(x) dx, (1.2)

subject to certain boundary conditions. Here f is again the external

force, and W is the stored energy functional of the material.

A very important practical question is how one gets W . In the linear

elastic response regime, i.e. when the displacement is infinitesimal and

W can be approximated by a quadratic function of ∇u, the coefficients

in this quadratic form can be obtained from V by linearizing the total

potential energy at the equilibrium (undeformed) position. The details

of this procedure can be found in [4]. At finite deformation, it becomes

less clear what form of W one should take. One common proposal is to
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use the Cauchy-Born (CB) rule. But straightforward application of the

CB rule often leads to variational problems that are badly behaved [2].

For simple lattice, WCB is defined as

WCB(A) = lim
k→∞

∑
yi,yj ,yk∈(I+A)L∩ kD V (yi,yj ,yk)

|kD| , (1.3)

where D is an open domain in R
d and L denotes the lattice.

As to the complex lattice, WCB is defined as

WCB(A) = min
p
W (A,p), (1.4)

where

W (A,p) = lim
k→∞

1

|kD|
∑[

V (yi + p,yj + p,yk + p) + V (yi,yj ,yk)
]
,

where the summation is carried out for yi,yj ,yk ∈ (I + A)L ∩ kD.

The quasicontinuum method put forward by Tadmor, Ortiz and Phillips

[15] is a procedure for modelling the deformation of crystalline material

using directly atomistic models. We refer to [11] for an updated review

of QC. The deformation of the crystal is represented by a collection of

representative atoms (repatoms) on an adaptively generated finite ele-

ment mesh that resolves but does not over-resolve the variations of the

displacement field. The repatoms can either be on the vertices of the

mesh or the center of the elements. Once the repatoms are selected,

the displacement of the rest atoms can be approximated via a linear

interpolation:

ui =

Nrep∑

α=1

Sα(xi)uα,

where the subscript α identifies the representative atoms, Nrep is the

number of the repatoms involved. As usual, we use xi to denote the

position of the i−th atom in the undeformed configuration, and ui =
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yi−xi to denote the displacement of the i−th atom. Sα is an appropriate

weight function.

This step reduces the number of the degrees of the freedom. But to

compute the total energy, we still need to visit every atom. To reduce

the computational complexity in this step, several summation rules are

introduced. The simplest one is to assume the deformation gradient A =
∂y
∂x

is uniform within each element, therefore, the Cauchy-Born rule holds

true [8]. Denote by E(A) the strain energy density obtained from the

Cauchy-Born rule. The strain energy in element K can be approximated

by E(AK)|K| where |K| is the volume of the element K and AK is

the deformation gradient of the element K. With these approximation,

the evaluation of the total energy is reduced to a summation over the

elements:

E '
∑

K∈TH

E(AK)|K|.

This version is called the local QC.

In the presence of defects, the deformation is non-smooth and the

local QC may not be accurate enough. A nonloccal version of QC has

been developed in which the energy is computed by

E '
Nrep∑

α=1

nαEα(uα).

Here the energyEα from each repatoms is computed by visiting its neigh-

boring atoms whose positions are generated using the local deformation,

and nα is a set of suitably chosen weights. There are several approaches

to determine nα, all can be reformulated as certain summation rules, we

refer to [14] and [9] for different types of summation rules and we will

analyze a special one in the last section.

Another version of QC, which is based on the force balance, has been

proposed in [9]. The method generates clusters around the repatoms
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and performs the force calculation using the atoms within the cluster

(see Fig. 1 below).

Figure 1: Schematic demonstration for the cluster-based nonlocal QC (cour-

tesy of M. Ortiz)

There are very few existing work on the error estimate of QC. P.

Lin [10] analyzed QC in the absence of external forces (hence no de-

formation). When deformation is present, the situation becomes quite

different. Naively one might expect to prove a result stating that the

global minimizers of the atomistic model (1.1) can be approximated to

good accuracy by QC solutions. Such a result is in general false. In

fact, it has been realized for some time that the global minimizers of the

atomistic model does not support extensional stress [16]. This can be

seen from the simple one-dimensional model in [6], which shows that a

fractured state has less energy than uniformly deformed state. A compre-

hensive analysis of one-dimensional QC with extenal forces was recently

carried out by Blanc, Le Bris and Legoll [3].

Define

e(QC): = max
K∈TH

|1 − nK/|K| | (1.5)

These considerations motivate the following theorem:
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Theorem 1.1. Assuming UCB ∈ W 2,∞(Ω; Rd) the solution of (2.2).

There exist two constant H0 and M1 such that for any 0 < H < H0

and e(QC) < M1, there exists a locally unique QC solution UQC satis-

fying (3.1) and for d = 1, 3,

‖UQC − UCB‖1 ≤ C
(
H + e(QC)

)
,

‖UQC − UCB‖1,∞ ≤ C
(
H + e(QC)

)
.

(1.6)

Moreover, let yQC = x + UQC(x), there exists a local minimizer y of

the full atomistic model such that

‖y − yQC ‖d ≤ C(ε+H + e(QC)), (1.7)

where ‖ · ‖d is defined in (2.6).

For the case d = 2, the above two estimates remain to be true except

that e(QC) in (1.6)2 and (1.7) should be replaced by e(QC)|lnH |.

It remains to estimate e(QC). As to the local QC [15],

e(QC) = 0; (1.8)

while there is no general estimate for the nonlocal QC. For a special case

when the cluster-based summation rule is employed [9], we have

e(QC) ≤ C
ε

r
, (1.9)

where r is the cluster size.

Remark 1.2. Theorem 1.1 is only valid for perfect crystalline solids

without defects. Therefore, it is not surprising that the local QC is more

accurate than the nonlocal QC for this ideal case.

Throughout this paper, the constant C is assumed to be independent

of ε and H . The main results of this paper have been announced in [5].

§2. The existence theorem for the continuum and the
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atomistic models

Let Ω be a bounded cube. For any positive integer m and k, we

denote by W k,p(Ω; Rm) the Sobolev space of mappings y: Ω → R
m

such that ‖y‖k,p < ∞ (see [1] for definition). We write W 1,p(Ω) for

W 1,p(Ω; R1) and H1(Ω) for W 1,2(Ω). In particular, W 1,p
# (Ω; Rm) de-

notes the subspace of W 1,p(Ω; Rm) with the same trace on the opposite

faces of ∂Ω.

Summation convention will be used. We will use | · | to denote the

absolute value of a scalar quantity, the Euclidean norm of a vector and

the volume of a set. In several places, we denote by | · |`2 the `2 norm

of a vector to avoid confusion. For a vector v, ∇v is the tensor with

components (∇v)ij = ∂jvi; for a tensor field S, div S is the vector with

components ∂jSij . Given any function W : Md×d → R, we define

DAW (A) =
( ∂W
∂Aij

)
and D2

AW (A) =
( ∂2W

∂Aij∂Akl

)
,

where Mm×n denotes the set of real m× n matrices. For any p > d and

m ≥ 0, define

X : = Wm+2,p(Ω; Rd) ∩ W 1,p
# (Ω; Rd),

and Y : = Wm,p(Ω; Rd).

Given the total energy functional

I(v): =

∫

Ω

(
WCB(∇v(x)) − f(x) · v(x)

)
dx, (2.1)

where WCB(∇v) is given by (1.3) or (1.4) with A = ∇v. We seek a

solution u − B · x ∈ X such that

I(u) = min
v−B·x∈X

I(v).
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The Euler-Lagrange equation of the above minimization problem is:

{
L(v): = − div

(
DAWCB(∇v)

)
= f in Ω,

v − B · x is periodic on ∂Ω.
(2.2)

As to the atomistic model, we consider the following minimization

problem:

min
y−x−B·xis periodic and

∑
i
yi=0

E{y1, · · · ,yN}. (2.3)

The existence result is based upon the following two assumptions:

Assumption A: W (A,p) satisfies the generalized Legendre-Hadamard

condition at the undeformed configuration: There exist two constants

Λ1 and Λ2, independent of ε, such that for all ξ,η, ζ ∈ R
d, there holds

(ξ⊗η, ζ)

(
D2

A
W (0,p0) DApW (0,p0)

DpAW (0,p0) D2
pW (0,p0)

)(
ξ ⊗ η

ζ

)
≥ Λ1|ξ|2|η|2+Λ2|ζ|2,

where p0 is the shift at the undeformed configuration.

The second assumption is:

Assumption B: There exist two constants Λ̃1 and Λ̃2 such that the

acoustic branch and the optical branch of the phonon spectrum satisfy

ωa(k) ≥ Λ̃1|k| and ωo(k) ≥ Λ̃2/ε, (2.4)

respectively, where k belongs to the first Brillouin zone, and ωa(k), ωo(k)

are respectively the acoustic and the optical branches of the phonon

spectrum.

Theorem 2.3. [6, Theorem 2.1, Theorem 2.2] If Assumption A holds

and p > d,m ≥ 0, then there exist three constants κ1,κ2 and δ such that

for any B ∈ R
d×d
+ with ‖B‖ ≤ κ1 and for any f ∈ Y with ‖f‖W m,p(Ω) ≤

κ2, the problem (2.2) has a unique solution UCB that satisfies

‖UCB − B · x‖W m+2,p(Ω) ≤ δ,
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and UCB is a W 1,∞-local minimizer of the total energy functional (2.1).

Moreover, if Assumption B holds and p > d,m ≥ 6, then there

exist two constants M1 and M2 such that for any B ∈ R
d×d
+ satisfying

‖B‖ ≤M1 and for any f ∈ Y with ‖f‖W m,p(Ω) ≤M2, the problem (2.3)

has a local minimizer y that satisfies

‖y − yCB ‖d ≤ Cε, (2.5)

where yCB = x+UCB(x). The norm ‖ · ‖d is defined for any z ∈ R
N×d

with
∑N

i=1 zi = 0 as

‖ z ‖d: = εd/2(zTH0z)1/2, (2.6)

where H0 = H(x) be the Hessian of V at the undeformed state and ‖ · ‖d

is a discrete analog of H1−norm.

The linearized operator of L at u ∈ X for any v ∈ X is defined as

Llin(u)v = − div
(
D2

A
W (∇u)∇v

)
.

We associate Llin with a bilinear form Â for any v,w ∈ X :

Â(u; v,w) =

∫

Ω

∇w ·D2
A
W (∇u)∇v dx.

A direct consequence of Theorem 2.3 is:

Corollary 2.4. [6, Lemma 4.1] For any p > d, there exists a constant

κ > 0 and Λ > 0 such that for any ‖f‖Lp(Ω) ≤ κ,

Â(UCB; v,v) ≥ Λ‖v‖2
1 for all v ∈ X.

§3. Local quasicontinuum method

The original local QC [15] is based on the Cauchy-Born rule, which

can be formulated as
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Problem 3.5. Find UH ∈ XH such that

IH (UH) = min
V ∈XH

IH (V ),

where

IH (V ): = WQC(∇V ) −
∫

Ω

f(x) · V (x) dx,

with

WQC(∇V ) =
∑

K∈TH

nKWCB(∇V ).

The Euler-Lagrange equations associated with the above minimiza-

tion problem is of the form: Find UH ∈ XH such that

AH (UH ,V ) = (f ,V ) for all V ∈ XH , (3.1)

where AH is defined for all V ,W ∈ XH as

AH(V ,W ): =
∑

K∈TH

(nK/|K|)
∫

K

DAWCB(∇V )∇W dx.

For any v,vH ,w ∈ X , define

R(v,vH ,w): = A(vH ,w) −A(v,w) − Â(v; vH − v,w). (3.2)

Here R satisfies for eH : = v − vH and 1
p + 1

q = 1, p, q ≥ 1,

|R(v,vH ,w)| ≤ C(M)‖∇eH‖2
0,2p‖∇w‖0,q (3.3)

with any v and vH satisfying ‖v‖1,∞ + ‖vH‖1,∞ ≤M .

The existence and the local uniqueness of the solutions of (3.1) are

established in the following lemma, which is similar to [7, Theorem 5.1].

We only give proof for the case d = 2. The other cases are the same

except the estimate for the discrete Green’s function changes to:

‖Gh‖1,1 ≤ C, d = 1, 3.
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Lemma 3.6. Assuming that UCB ∈ W 2,p(Ω) with p > d the solution

of (2.2). There exists a constant H0 such that for all 0 < H ≤ H0, the

problem (3.1) has a solution UH satisfying

‖UH − PHUCB‖1,∞ ≤ e(QC)1/2 +H1−d/p,

‖UCB − UH‖1,∞ ≤ C
(
e(QC)1/2 +H1−d/p

)
,

(3.4)

where PHUCB is defined as

Â(UCB;PHUCB,V ) = Â(UCB; UCB,V ) for all V ∈ XH . (3.5)

Moreover, if there exists a constant η(M) with 0 < η(M) < 1 such that

e(QC)
∑

K∈TH

∫

K

(
DAWCB(∇V ) −DAWCB(∇W )

)
∇Z dx

< η(M)‖∇(V − W )‖0‖∇Z‖0 (3.6)

for all V ,W ∈ XH ∩W 1,∞(Ω; Rd) and Z ∈ XH , then the QC solution

UH satisfying (3.1) is locally unique.

Proof. In view of Corollary 2.4, for sufficiently small κ, Â is coercive at

UCB. Using Schatz’s argument [13], we infer that there exists a constant

H0 > 0 such that for 0 < H ≤ H0,

sup
W∈XH

Â(UCB; V ,W )

‖W‖1
≥ C‖V ‖1 for all V ∈ XH . (3.7)

Hence there is a unique solution PHUCB satisfying (3.5) and

‖UCB − PHUCB‖1,∞ ≤ CH1−d/p. (3.8)

Define a nonlinear mapping T : XH → XH by

Â(UCB;T (V ),W ) = Â(UCB; UCB,W ) −R(UCB,V ,W )

+A(V ,W ) −AH(V ,W ),
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for any W ∈ XH . Obviously T is continuous.

Define the set

B: = {V ∈ XH | ‖V − PHUCB‖1,∞ ≤ e(QC)1/2 +H1−d/p }.

We claim that there exists a constant H0 > 0 such that for all 0 < H ≤
H0, T (B) ⊂ B. Notice that

Â(UCB;T (V ) − PHUCB,W ) = −R(UCB,V ,W )

+A(V ,W ) −AH(V ,W ).

Taking W = Gz
H , where Gz

H is the discrete regularized Green’s func-

tion [12], using the classical estimate for the Green’s function [12], we

obtain

‖T (V ) − PHUCB‖1,∞ ≤ C|lnH | ‖UCB − V ‖2
1,∞ + Ce(QC)|lnH |

≤ C
(
‖UCB − PHUCB‖2

1,∞ + ‖PHUCB − V ‖2
1,∞ + Ce(QC)|lnH |

)

≤ C
(
e(QC) +H2−2d/p +H

)
|lnH |

≤ e(QC)1/2 +H1−d/p.

An application of Brouwer’s fixed point theorem gives the existence of

a UH ∈ B such that T (UH) = UH . By definition, UH satisfies (3.4)1.

An application of the triangle inequality and (3.8) yield (3.4)2.

Suppose that both UH and ÛH are solutions of (3.1), then we have

C‖UH − ÛH‖1 ≤ sup
W∈XH

∫ 1

0 Â(U t
H ; UH − ÛH ,W ) dt

‖W‖1

≤ sup
W∈XH

|A(UH ,W ) −A(ÛH ,W )|
‖W‖1

,

where U t
H = (1 − t)ÛH + tUH . Note that

A(UH ,W ) −A(ÛH ,W ) =
(
A(UH ,W ) −AH(UH ,W )

)

−
(
A(ÛH ,W ) −AH (ÛH ,W )

)
.
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We have

‖UH − ÛH‖1 ≤ η(M)‖UH − ÛH‖1.

So if η(M) < 1, we must have UH = ÛH .

Based on the above lemma, we can derive the final error bounds.

Lemma 3.7. Assuming that UCB ∈W 2,∞(Ω; Rd). There exists C0 and

H0 such that if

e(QC) < C0, (3.9)

then for 0 < H < H0, we have

‖UCB − UH‖1 ≤ C
(
H + e(QC)

)
, (3.10)

‖UCB − UH‖1,∞ ≤ C
(
H + e(QC)|lnH |

)
. (3.11)

Proof. Note that UCB ∈ W 2,∞(Ω; Rd) and from (3.7), we have

‖UCB − PHUCB‖1 ≤ CH, ‖UCB − PHUCB‖1,∞ ≤ CH. (3.12)

Using (3.3) with V = PHUCB − UH , and invoking (3.7) we obtain

‖PHUCB − UH‖1 ≤ C‖UCB − UH‖2
1,4 + Ce(QC)

≤ C‖PHUCB − UH‖2
1,4 + Ce(QC) + CH2.

Using the interpolation inequality we have

‖PHUCB − UH‖2
1,4 ≤ ‖PHUCB − UH‖1‖PHUCB − UH‖1,∞.

There exist C1 = 1/(4C2) and H1 = (1/(4C2))1/(1−d/p) such that if

e(QC) < C1 and H < H1, we have

e(QC)1/2 +H1−d/p ≤ 1/(2C).

Therefore, using (3.4)1, we have

‖PHUCB − UH‖1 ≤ C(e(QC)1/2 +H1−d/p)‖PHUCB − UH‖1

+ Ce(QC) + CH2

≤ 1

2
‖PHUCB − UH‖1 + Ce(QC) + CH2,
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which gives

‖PHUCB − UH‖1 ≤ C(e(QC) +H2),

this inequality together with (3.12) yields (3.10).

Putting V = Gz
H in (3.3) and repeating the above procedure, we

obtain that there exist C2 and H2 such that if e(QC) < C2 and H < H2,

we come to (3.11).

Finally, let C0 = min(C1, C2) and H0 = min(H1, H2), we finish the

proof.

§4. Estimate of e(QC)

It remains to estimate e(QC). For local QC of [11], we obviously have

e(QC) = 0. However, it is difficult to give a general estimate of e(QC)

for the nonlocal QC. We will give an estimate of e(QC) for nonlocal QC

that employs the summation rule of Knop and Ortiz [9].

Define a discrete inner product as

(φ, ψ)L: =
∑

xi∈L∩D

φ(xi)ψ(xi).

For each node x of TH , defined a cluster Br(x) = :{xi ∈ L | |xi−x| ≤ r}.
For any domain D1, χD1

denotes its characteristic function. We let

all the nodes as {xi}M
i=1, the corresponding basis function is {φi}M

i=1.

The weight associates with the node xi is defined as ni, and let n =

(n1, · · · , nM )T . The cluster summation rule can be formulated as

B n = g, (4.1)

where B is a M ×M matrix with Bij = (φi, χBr(xj))L and the M × 1

vector g is defined as gi = (φi, 1)L.
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To get the weights we have to solve a system ofM×M linear algebraic

equations, which is very expensive in particular for big N . Therefore,

mass lumping is commonly employed in practice, which amounts to as-

sembling all entries in each line of B into the diagonal entry, namely, we

need to solve the following simple linear equations:

B̃ñ = g, (4.2)

with B̃ii = gi/(
∑M

j=1 Bij) and B̃ij = 0 for i 6= j.

With the above consideration, the energy IH is defined as

IH(∇V ) =

M∑

i=1

niWi(∇V ), (4.3)

where

Wi(∇V ) =
3
√

3

2π

∑

Kj⊂Mi

|Br(xi) ∩Kj |WCB(∇V i)

is the energy associated with the i−th node, where 3
√

3/(2π) is a scaling

factor. Here Mi is the set of elements sharing the common node xi. For

any element K ∈ TH , assembling the energy contribution of each vertices

in K, we rewrite (4.3) into

IH (∇V ) =
3
√

3

2π

∑

K∈TH

3∑

i=1

nK,i|Br(xi) ∩K|WCB(∇V i),

where {nK,i}3
i=1 denotes three weights associated with three vertices of

the element K. If we define

n̂K =
3
√

3

2π

3∑

i=1

nK,i|Br(xi) ∩K|/|K|, (4.4)

then the energy can be rewritten as

IH (∇V ) =
∑

K∈TH

n̂KWCB(∇V ).

· 15 ·



This is similar to the original QC formulation.

In what follows, we estimate e(QC) for the case when all elements K

are equal and the lattice summation rule in [9] is employed (see Fig. 2).

We define L0 to be the number of atoms over each edge and r0ε the

cluster radius.

Figure 2: A special cluster-based summation rule in 2-D. Here L0 = 4 and

r0 = 1

Lemma 4.8. If all elements K ∈ TH are equal and the first order lattice

summation rule of Knap and Ortiz [9] is employed, then

n̂K =
3r20

1 + 3r0(r0 + 1)
. (4.5)

Proof. Let φ be the linear base function associated with the center of

the hexagonal. A direct calculation gives

∑

x∈L∩M

φ(x) = 1 + 6

L0∑

i=1

(i− 1)(L0 + 1 − i)/L0 = L2
0.

· 16 ·



We calculate
∑

x∈L∩M
φχBr(xi)(x). The contribution of the local sums

at each vertices is

I1: =

6∑

i=1

∑

x∈L∩M

φχBr0ε(xi)(x) = 6

r∑

i=1

i2/L0,

and the contribution of the sum at the center is

I2: =
∑

x∈L∩M

φχBε r0
(x0)(x) = 1 + 6

r∑

i=1

i(L0 − i)/L0.

Therefore, the overall contribution of the cluster summation is

I1 + I2 = 1 + 3r0(r0 + 1).

Thus the weight at vertices is n = L2
0/(1 + 3r0(r0 + 1)). Using (4.4), we

get the equivalent weight of each element (4.5)

Remark 4.9. For the full atomistic model, the weight at vertices reduces

to 1. Indeed, since L = 1 and r = 0 in this case.

A straightforward calculation gives that

e(QC) =

∣∣∣∣ 1 − 3r20
1 + 3r0(r0 + 1)

∣∣∣∣ ≤
4

3r0
=

4ε

3r
.

This proves (1.9).

Proof for Theorem 1.1 By the estimates (1.8) and (1.9) for e(QC), if ε/r

is sufficiently small, then e(QC) can be smaller than any given threshold;

this verifies (3.6). Therefore, the estimate (1.6) follows from Lemma 3.7.

Let y be the local minimizer of the full atomistic model obtained in

Theorem 2.3, using (2.5) and (1.6), we obtain

‖y − yQC ‖d ≤ ‖y − yCB ‖d + ‖yCB − yQC ‖d

≤ Cε+ C‖UCB − UQC‖1,∞

≤ C
(
ε+H + e(QC)

)
,

which gives (1.7).

· 17 ·
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