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Abstract. We propose a Specht triangle discretization for a geometrically non-

linear Kirchhoff plate model with large bending isometries. A combination of

an adaptive time-stepping gradient flow and a Newton’s method is employed to

solve the ensuing nonlinear minimization problem. Γ−convergence of the Specht

triangle discretization and the unconditional energy stability of the gradient flow

algorithm are proved. We present several numerical examples to demonstrate

that our approach significantly enhances both the computational efficiency and

accuracy.
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1 Introduction

The geometrically nonlinear Kirchhoff plate models have drawn great attention re-

cently because they capture the critical feature of large bending deformations of
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thin plates in modern nanotechnological applications [9, 20, 22, 27, 30]. The dimen-

sional reduced nonlinear plate model has been proposed by Kirchhoff in 1850 [21],

which is based on a curvature functional subject to a pointwise isometry constraint.

Friesecke and Müller [18] have derived this model from three dimensional hyperelas-

ticity via Γ− convergence. Since then, extensive studies have been carried out from

the perspective of modeling and numerics, such as the single layer problem [3, 13],

the bilayer problem [7, 12, 14], the thermally actuated bilayer problem [6], just to

mention a few. The above models all involve minimizing an energy functional with

the isometry constraint. One of the numerical difficulties is the non-convexity of the

model caused by the isometry constraint [5].

In this work we focus on the single layer model, and find a deformation y :Ω→R3

of a bounded Lipschitz domain Ω⊂R2 by minimizing

E[y]=
1

2

∫
Ω

|H|2dx−
∫

Ω

f(x)·y(x)]dx (1.1)

subject to the isometry constraint

(∇y)>(∇y)=Id2, a.e. in Ω, (1.2)

and Dirichlet boundary condition

y(x)=g, ∇y=Φ, Φ>Φ=Id2 on ΓD,

where H ∈L2(Ω;R2×2) is the second fundamental form of the parametrized surface

given by

Hij =n·∂i∂jy=(∂1y×∂2y)·∂i∂jy, i,j=1,2,

and Id2 is the identity matrix of order 2. ΓD is part of the boundary of D. We

assume that

g∈H2(Ω;R3), Φ∈H2(Ω;R3×2), f ∈L2(Ω,R3). (1.3)

The numerical approximation of this problem consists of two parts: discretiza-

tion and minimization. A proper finite element discretization needs to take into

account both high order differential operator of (1.1) and the pointwise isometry

constraint. In [3, 7], the authors employed a discrete Kirchhoff triangle (DKT),

which was developed in [10] for the linear bending problem. DKT element possess
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the degrees of freedom of gradient at the nodes, which is convenient for imposing

the constraint (1.2). The implementation of DKT element is based on the con-

struction of a discrete gradient operator that maps the gradient to another space.

Although this operator makes the proof of Γ−convergence of the discrete energy

more straightforward, its numerical realization is quite complicate. Moreover, DKT

is not included in the standard finite element library [13]. In addition, the quadrilat-

eral DKT element is not suitable for the adaptive grid refinement. A discontinuous

Galerkin (DG) method has been employed in [12, 13] to simulate (1.1) and (1.2).

DG method has been included in many existing softwares and are more flexible in

imposing the boundary conditions, while it needs a careful reconstruction of the

discrete energy, and a fine-tuned penalty factor.

In the present work we turn to the nonconforming finite element method, in

particular we shall exploit the Specht triangle, which is an excellent nonconforming

plate bending element [31], and passes all the patch tests and performs excellently,

and is one of the best thin plate triangles with 9 degrees of freedom that currently

available [34, Quotation from p. 345]. The Specht triangle has been systematically

studied by Shi and his collaborators in [24, 28, 29, 32]. Recently the second order

Specht triangle has been designed and test in [23]. The constraint (1.2) may also be

imposed on the nodes, and we prove Γ-convergence of Eh to E in H1(Ω;R3), which

shows the correctness of the energy discretization.

To ensure the energy (1.1) decreases while maintaining the constraint (1.2), a

discrete H2−gradient flow method has been designed in [3,5,7,12,13] for geometri-

cally nonlinear Kirchhoff type models. For the single layer plate, the gradient flow

exhibits two attractive properties. One is the unconditional energy stability, and

the other is that the L1 error of the constraint (1.2) is controlled by a pseudo-time

step, which is independent of the number of the iteration. However, due to the

first-order nature of the gradient flow method, it usually takes a large number of

iteration to lower the error committed by the constraint to a reasonable thresh-

old. To speed up the iteration, we shall exploit an adaptive time-stepping strategy

developed in [16, 25, 33] for the phase filed models. Compared to [3], our method

is around five times faster without loss of accuracy. We combine the H2−gradient

flow and a Newton’s method to construct a global-local algorithm that improves

the accuracy by around 1∼ 2 order of magnitude and results into a second order
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method for examples with smooth minimizers. Similar idea has been used in [2] for

simulation of the harmonic maps into sphere.

The remaining part of the paper is organized as follows. In Section 2, we use

the Specht triangle to discretize the variational problem. The Γ-convergence of the

discrete energy to the exact energy is proved in Section 3. In Section 4, we introduce

a new method that combines a discrete adaptive time-stepping H2-gradient flow and

the Newton’s method. We present numerical experiments and test the accuracy and

efficiency of the method in the last section.

2 The Specht Triangle Discretization

We fix some notations firstly. The standard notations for the Sobolev spaces, the

norms and semi-norms [1] will be used. The function space L2(Ω) consists of func-

tions that are square integrable over Ω, which is equipped with the inner product

(·,·) and the norm ‖·‖L2(Ω), respectively. Let Hm(Ω) be the Sobolev space of square

integrable functions whose weak derivatives up to order m are also square integrable

with the norm defined by ‖v‖2
Hm(Ω):=

∑m
k=0 |v|

2
Hk(Ω), where the semi-norm

|v|Hk(Ω) :=
∑
|α|=k

‖∂αv‖L2(Ω),

where α= (α1,α2) is a multi-index whose components αi are nonnegative integers,

|α|=α1+α2 and ∂α=∂|α|/∂xα1
1 ∂x

α2
2 . For k≥0, Hk

0 (Ω) is the closure in Hk(Ω) of the

space of C∞(Ω) functions with compact supports in Ω.

For mesΓD 6=0, the following Friedrich’s inequality holds: for any v∈H1(Ω) that

vanishes over ΓD, there exists CF depending only on ΓD and Ω such that

‖v‖L2(Ω)≤CF‖∇v‖L2(Ω). (2.1)

The values of Friedrichs’ constant CF may be found in [26] for simple domains such

as balls, rectangles, etc.

Under the constraint (1.2), the following identity holds pointwise:

|H|2 =
∣∣D2y

∣∣2 = |∆y|2 ,
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which was proved in [12, 13]. Hence, the energy functional E[z] may be rewritten

into

E[z]=
1

2

∫
Ω

∣∣D2z(x)
∣∣2−∫

Ω

f(x)·z(x)dx. (2.2)

We reshape the variational problem into

y=argminz∈AE[z], (2.3)

where the admissible set A is defined by

A:=
{
z∈V | (∇z)>(∇z)=Id a.e. in Ω

}
with

V:=
{
z∈H2(Ω;R3) | z(x)=g,∇z=Φ on ΓD

}
.

2.1 The Specht triangle

Let Th be a triangulation of Ω with maximum diameter h, and we assume that all

the elements are shape regular in the sense of Ciarlet-Raviart [17]. We also assume

that Th satisfies the inverse assumption: there holds h/hK≤ν for K∈Th and some

ν>0, where hK is the diameter of the element K. We denote the set of all vertices

of Th by Vh, the set of all edges of Th by Eh, and the set of all internal edges of

Th by E in
h . Let ∇h be a piecewise differential operator defined for any K ∈Th as

(∇hz)|K =(∇z)|K .

The Specht triangle is defined by a finite element triple (K,PK ,ΣK) as:{
PK =ZK+bKP1(K),

ΣK ={p(ai),∂xp(ai),∂yp(ai),1≤ i≤3},

where K is a triangle, and ZK is the Zienkiewicz space [11] defined by

ZK =P2(K)+Span
{
λ2
iλj−λiλ2

j |1≤ i 6=j≤3
}
,

and the element bubble function bK :=λ1λ2λ3 with {λi}3
i=1 the barycentric coordi-

nates of K.

Define the finite element space Xh of the Specht triangle as

Xh :=
{
v∈H3(Ω) | v|K∈PK ,K∈Th, v(a),∇v(a) are continuous for all a∈Vh

}
.
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The interpolate operate Π associated with Xh is defined locally as Π|K=ΠK for any

v∈H3(K) and

ΠKv(a)=v(a), ∇ΠKv(a)=∇v(a) for all a∈Vh. (2.4)

For all v∈H3(Ω), there holds [17]:

2∑
j=0

hj‖∇j(v−Πv)‖L2(Ω)≤Ch3‖∇3v‖L2(Ω). (2.5)

For all k= 1,2,3 and v∈Xh, it follows from the inverse assumption that there

exists Cinv depending on ν and k but independent of v such that

‖∇k
hv‖L2(Ω)≤Cinvh

−1‖∇k−1
h v‖L2(Ω). (2.6)

2.2 Discrete energy

We approximate (2.2) by the Specht triangle. The function in Xh is continuous over

the whole domain and its gradient is continuous at all nodes, which allows us to

impose the isometry constraint (1.2) at each node. Define the discrete admissible

set by

Ah:=
{
z∈Vh | [(∇z)>∇z](a)=Id for all a∈Vh

}
with

Vh:=
{
z∈ [Xh]

3 | z(a)=g(a),∇z(a)=Φ(a) for all a∈Vh∩ΓD
}
.

The discrete energy minimization problem reads as

yh=argminz∈Ah
Eh[z], (2.7)

where

Eh[z]=
1

2

∫
Ω

∣∣∇2
hz(x)

∣∣2dx−
∫

Ω

f(x)·z(x)dx,

and
∫

Ω
|∇2

hz(x)|2 :=
∑
K∈Th

∫
K
|∇2z|2 is in a piecewise manner.

Proposition 2.1. Minimization problem (2.7) has a solution.

The proof is standard, we omit it.
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3 Γ-convergence of the Discrete Energy

The discrete minimization problem (2.7) is non-convex, the standard finite element

error analysis fails. Instead, we prove the Γ-convergence of Eh to E in H1(Ω;R3),

which shows the correctness of our energy discretization. Following a standard Γ-

convergence procedure in [15], we firstly show the compactness and equi-coercivity

for any z∈Ah, and secondly, we prove the lim-sup and lim-inf inequalities. We start

with the equi-coercivity of {Eh}h≥0.

3.1 Equi-coercivity and compactness

Lemma 3.1 (Coercivity of Eh). Let the data (f,g,Φ) satisfy (1.3). There exists a

positive constant C depending on Ω,ΓD and the triangulation, but independent of h

such that for any z∈Ah,

‖z‖H1(Ω)≤C
(
E

1/2
h [z]+‖g‖H2(Ω)+‖Φ‖H2(Ω)+‖f ‖L2(Ω)

)
, (3.1)

and

‖∇2
hz‖L2(Ω)≤C

(
E

1/2
h [z]+‖g‖H2(Ω)+‖Φ‖H2(Ω)+‖f ‖L2(Ω)

)
. (3.2)

Compared to the known equi-coercivity results in the literature, we clarify the

upper bound on the data and the discrete energy functional, and the constants C

in (3.1) and (3.2) may also be elucidated from the proof.

Proof. For any z∈Ah, let Ih be the linear Lagrange interpolation operator, note the

fact that

Ih(z−g)∈H1
0 (Ω;R3), Ih(∇z−Φ)∈H1

0 (Ω;R3×2).

Applying the Friedrich’s inequality (2.1) to Ih(z−g) and Ih(∇z−Φ), we obtain

‖Ih(z−g)‖L2(Ω)≤CF‖∇Ih(z−g)‖L2(Ω),

‖Ih(∇z−Φ)‖L2(Ω)≤CF‖∇Ih(∇z−Φ)‖L2(Ω).
(3.3)

For j= 0,1, we use the standard interpolation estimate for Ih and the inverse

inequality (2.6) to obtain

‖∇j(z−Ihz)‖L2(Ω)≤CIh2−j‖∇2
hz‖L2(Ω),

‖∇j(∇z−Ih∇z)‖L2(Ω)≤CIh2−j‖∇3
hz‖L2(Ω)≤CICinvh

1−j‖∇2
hz‖L2(Ω).

(3.4)
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Using the triangle inequality, the Friedrichs inequality (3.3) and the interpolation

estimate (3.4), we obtain

‖∇z−Φ‖L2(Ω)≤‖Ih(∇z−Φ)‖L2(Ω)+‖(Id−Ih)(∇z−Φ)‖L2(Ω)

≤CF‖∇Ih(∇z−Φ)‖L2(Ω)+CIh‖∇h(∇z−Φ)‖L2(Ω)

≤CF‖∇h(∇z−Φ)‖L2(Ω)+CF‖∇(Id−Ih)(∇z−Φ)‖L2(Ω)

+CIh
(
‖∇2

hz‖L2(Ω)+‖∇Φ‖L2(Ω)

)
≤(CF +CIh)

(
‖∇2

hz‖L2(Ω)+‖∇Φ‖L2(Ω)

)
+CF‖∇(Id−Ih)∇z‖L2(Ω)+CF‖∇(Id−Ih)Φ‖L2(Ω).

Using (3.4)2 with j=1, we obtain

‖∇(Id−Ih)∇z‖L2(Ω)≤CICinv‖∇2
hz‖L2(Ω),

and using (3.4)1 with j=1, we obtain

‖∇(Id−Ih)Φ‖L2(Ω)≤CIh‖∇2Φ‖L2(Ω).

A combination of the above three inequalities gives

‖∇z−Φ‖L2(Ω)≤(CF +CIh)
(
‖∇2

hz‖L2(Ω)+‖∇Φ‖L2(Ω)

)
+CFCICinv‖∇2

hz‖L2(Ω)+CFCIh‖∇2Φ‖L2(Ω).

Hence,

‖∇z‖L2(Ω)≤A‖∇2
hz‖L2(Ω)+(1+CF )(1+CIh)‖Φ‖H2(Ω), (3.5)

where A=CF +CIh+CFCICinv.

Proceeding along the same line that leads to the above inequality, we obtain

‖z‖L2(Ω)≤CFCIh‖∇2
hz‖L2(Ω)+(CF +CIh)‖∇z‖L2(Ω)

+(1+CF )(1+CIh)‖g‖H2(Ω).

A combination of the above two inequalities leads to

‖z‖L2(Ω)≤ Ã‖∇2
hz‖L2(Ω)+B

(
‖Φ‖H2(Ω)+‖g‖H2(Ω)

)
(3.6)
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with

Ã:=(CF +CIh)A+CFCIh and B:=(1+CF +CIh)(1+CF )(1+CIh).

It is clear that

Eh[z]≥ 1

2
‖∇2

hz‖2
L2(Ω)−‖f‖L2(Ω)‖z‖L2(Ω).

Using Young’s inequality, we get

‖∇2
hz‖2

L2(Ω)≤2Eh[z]+2‖f‖L2(Ω)‖z‖L2(Ω)

≤2Eh[z]+2‖f ‖L2(Ω)

(
Ã‖∇2

hz‖L2(Ω)+B
(
‖Φ‖H2(Ω)+‖g‖H2(Ω)

))
≤2Eh[z]+

1

2
‖∇2

hz‖2
L2(Ω)+2Ã2‖f ‖2

L2(Ω)

+2B‖f ‖L2(Ω)

(
‖Φ‖H2(Ω)+‖g‖H2(Ω)

)
.

This immediately implies

‖∇2
hz‖L2(Ω)≤2

√
Eh[z]+2Ã‖f ‖L2(Ω)+2

√
B‖f ‖1/2

L2(Ω)

(
‖Φ‖1/2

H2(Ω)+‖g‖
1/2

H2(Ω)

)
,

which leads to (3.2).

Substituting the above inequality into (3.5) and (3.6), we obtain

‖z‖H1(Ω)≤2(A+Ã)
√
Eh[z]+2(A+Ã)Ã‖f ‖L2(Ω)

+2(A+Ã)
√
B‖f ‖1/2

L2(Ω)(‖Φ‖
1/2

H2(Ω)+‖g‖
1/2

H2(Ω))

+2B
(
‖f ‖L2(Ω)+‖Φ‖H2(Ω)+‖g‖H2(Ω)

)
≤2(A+Ã)

√
Eh[z]

+2
(

(A+Ã)2+B
)(
‖f ‖L2(Ω)+‖Φ‖H2(Ω)+‖g‖H2(Ω)

)
.

This gives (3.1).

This immediately implies

Proposition 3.1 (Equi-coercivity). Let the data (f,g,Φ) satisfy (1.3). The sequence

{yh}h>0⊂Ah has a uniform energy bound Eh[yh]≤Λ, where Λ is independent of h.

Then the sequence {yh}h>0 is uniformly bounded in H1(Ω), i.e.,

‖yh‖H1(Ω)≤C

with C independent of h.
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The uniformly boundedness of {yh} in Proposition 3.1 ensures the existence of

a subsequence (not relabeled) of {yh}h such that

yh⇀y in H1(Ω;R3) as h→0,

for some y∈H1(Ω;R3). We want to show that there exists y∈A⊂H2(Ω;R3) such

that

∇yh→∇y in L2(Ω;R3×2).

Proposition 3.2. (Compactness in H1(Ω)) Let the data (f,g,Φ) satisfy (1.3). If

the sequence {yh}h>0⊂Ah has a uniform energy bound Eh[yh]≤Λ for all h>0, where

Λ is independent of h, then there exit y ∈A⊂H2(Ω;R3) and a subsequence (not

relabeled) of {yh}h such that

yh→y in H1(Ω;R3) as h→0.

Proof. It follows from Lemma 3.1 and Proposition 3.1 that {yh}h and {Ih(∇yh)}h
are uniform H1 bounded, hence there exists a weakly converging subsequence of

{yh}h such that

yh→y strongly in L2(Ω;R3),

∇yh⇀∇y weekly in L2(Ω;R3×2),

Ih(∇yh)→z strongly in L2(Ω;R3×2),

∇Ih(∇yh)⇀∇z weekly in L2(Ω;R3×2×2),

for some y∈H1(Ω;R3) and z∈H1(Ω;R3×2) as h→0. We apply the standard inter-

polation estimate for Ih and the inverse inequality to get

‖∇yh−z‖L2(Ω)≤‖∇yh−Ih(∇yh)‖L2(Ω)+‖Ih(∇yh)−z‖L2(Ω)

≤Ch‖∇2
hyh‖L2(Ω)+‖Ih(∇yh)−z‖L2(Ω),

which implies

∇yh→z in L2(Ω;R3×2).

The uniqueness of L2 weak limit implies ∇y=z, and hence y∈H2(Ω;R3).

Moreover, it follows from ∇yh⇀∇y and (3.2) that

∇y>h∇yh⇀∇y>∇y in L1(Ω;R2×2).
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It remains to prove that y is an isometry.

Note that Ih
(
∇y>h∇yh

)
=Id2. Invoking the interpolation estimate and the inverse

inequality again, we obtain

‖∇y>h∇yh−Id2‖L1(Ω) =‖∇y>h∇yh−Ih(∇y>h∇yh)‖L1(Ω)

≤Ch2‖∇2
h(∇y>h∇yh)‖L1(Ω)

≤Ch2
(
‖∇3

hyh‖L2(Ω)‖∇yh‖L2(Ω)+‖∇2
hyh‖2

L2(Ω)

)
≤Ch

(
‖∇2

hyh‖L2(Ω)‖∇yh‖L2(Ω)+‖∇2
hyh‖2

L2(Ω)

)
≤Ch,

(3.7)

where we have used Lemma 3.1 in the last step.

The uniqueness of the weak limit implies that y is an isometry and this completes

the proof.

We are ready to prove Γ-convergence of Eh to E in H1(Ω;R3). Firstly we extend

the domain of discrete energy functional to H1(Ω;R3) as follows.

Eh[yh]=

{
Eh[yh] yh∈Ah,

∞ yh∈H1(Ω;R3)\Ah.
(3.8)

Theorem 3.1 (Γ-convergence). Let the data (f,g,Φ) satisfy (1.3). The following

two properties hold

1. Lim-inf inequality: For every sequence {yh}h⊂H1(Ω;R3) converging to y in

H1(Ω;R3), we have

E[y]≤ liminf
h→0

Eh[yh].

2. Lim-sup inequality: For any y∈H1(Ω;R3), there exits a sequence {yh}h with

yh∈H1(Ω;R3) such that yh→y and

limsup
h→0

Eh[yh]≤E[y].

Proof. We firstly prove the lim-inf inequality. Without loss of generality, we assume

that yh∈Ah⊂H1(Ω;R3) and Eh[yh]≤Λ, where Λ is a positive constant independent

of h. Otherwise, liminfh→0Eh[yh]=+∞, and the lim-inf inequality holds.
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Proposition 3.2 implies that y∈A⊂H2(Ω;R3). We shall show

∇2
hyh⇀∇2y weakly in L2(Ω;R3×2×2),

and

‖∇2y‖L2(Ω)≤ liminf
h→0

‖∇2
hyh‖L2(Ω),

and

E[y]=
1

2
‖∇2y‖2

L2(Ω)−
∫

Ω

fy≤ liminf
h→0

{
1

2
‖∇2

hyh‖2
L2(Ω)−

∫
Ω

fyh

}
=liminf

h→0
Eh[yh].

For any φ∈C∞c (Ω;R3×2×2), integration by parts, we obtain∫
Ω

∇2
hyh :φ=

∑
K∈Th

∫
K

∇2yh :φ

=−
∑
K∈Th

∫
K

∇yh :divφ+
∑
K∈Th

∫
∂K

∇yh : (φn)

=−
∫

Ω

∇yh :divφ+
∑
e∈Ein

∫
e

J∂nyhK·(φ[n⊗n])

=

∫
Ω

∇yh :divφ+
∑
e∈Ein

∫
e

J∂nyhK·(φ[n⊗n]−Ce),

for any constant vector Ce, where we have used∫
e

J∂nyhK=0 for any edge e

in the last step [28].

Denote e=K1∩K2,K=K1∪K2. Using the rescaled trace inequalities, we get∣∣∣∣∫
e

J∂nyhK·(φ[n⊗n]−Ce)
∣∣∣∣≤‖J∂nyhK‖L2(e)‖φ[n⊗n]−Ce‖L2(e)

≤Ch
1
2
K‖∇

2
hyh‖L2(K)(h

− 1
2

K ‖φ[n⊗n]−Ce‖L2(K)

+h
1
2
K‖∇φ‖L2(K))

≤ChK‖∇2
hyh‖L2(K)‖∇φ‖L2(K).
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Therefore, we obtain∣∣∣∣∣∑
e∈Ein

∫
e

J∂nyhK·(φ[n⊗n])

∣∣∣∣∣≤Ch‖∇2
hyh‖L2(Ω))‖∇φ‖L2(Ω).

Taking the limit h→0, we get

lim
h→0

∫
Ω

∇2
hyh :φ=− lim

h→0

∫
Ω

∇yh :divφ+lim
h→0

∑
e∈Ein

∫
e

J∂nyhK·(φ[n⊗n])

=−
∫

Ω

∇y :divφ=

∫
Ω

∇2y :φ,

i.e., ∇2
hyh⇀∇2y weakly in L2(Ω;R3×2×2).

Next we prove the lim-sup inequality. Without loss of generality, we assume

that y∈A⊂H2(Ω;R3). The fact that smooth isometries is dense among isometries in

H2(Ω)3 [19] allows us to assume that y∈H3(Ω;R3). Let yh be the Specht interpolant

of y, for all a∈Vh, we get

[∇y>h∇yh](a)=[∇y>∇y](a)=Id2.

Hence yh∈Ah. Using the interpolation estimate (2.5), we obtain yh→y in H2(Ω;R3),

and whence the convergence of the discrete energy, i.e.,

lim
h→0

Eh[yh]=E[y].

Combining Proposition 3.2 and Theorem 3.1, we obtain that the cluster points

of the global minimizers of Eh are global minimizers of E.

Corollary 3.1. Let data (f,g,Φ) satisfies (1.3). Let {yh}h be a sequence of almost-

global minimizers of Eh, i.e.

Eh[yh]≤ inf
wh∈Ah

Eh[wh]+εh≤C,

where εh→0 as h→0 and C is a constant independent of h. Then {yh}h is uniformly

bounded in the H1 norm, and every cluster point y of {yh} is a global minimizer of

E, i.e.

E[y]= inf
w∈A

E[w].

Moreover, there exits a subsequence of {yh}h(not relabeled) such that

yh→y in H1(Ω) and lim
h→0

Eh[yh]=E[y].
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4 A Combination of the Gradient Flow and New-

ton’s method

The H2-gradient flow algorithm developed in [3] is an efficient method to solve the

problem with constraint, while the first oder convergence rate seems a hurdle for

efficient implementation. To speed up the iteration, we firstly adopt the H2-gradient

flow method with an adaptive time-stepping technique, which is based on the energy

variation; Such techniques appeared in the simulation of the phase field model in [25];

See also [16,33]. Secondly, we combine the gradient flow and a Newton’s method.

4.1 H2-gradient flow

At a point yh∈X3
h, we define the tangent space Fh[yh] of the admissible space Ah by

Fh[yh] :={vh∈X3
h :vh|ΓD

=0, ∇vh|ΓD
=0,

[∇v>h∇yh](a)+[∇y>h∇vh](a)=0 for alla∈Vh}.
(4.1)

Let τ >0 be a pseudo-time parameter, y0
h∈Ah be the initial deformation, and ε be

the stopping threshold. Define

dτy
k
h :=

1

τ
(yk+1
h −ykh).

At (k+1)th step, we solve

yk+1
h 7−→ min

yk+1
h ∈ykh+Fh[ykh]

1

2τ
‖∇2

h(y
k+1
h −yk)‖2

h+Eh[y
k+1
h ],

where we have included a regularized term

1

2τ
‖∇2

h(y
k+1
h −yk)‖2

h

to ensure the energy decay. Until the stopping criterion
∥∥∇2

hdτy
k
h

∥∥
L2(Ω)

≤ ε is met,

we find dτy
k
h∈Fh[ykh] such that(

∇2
hdτy

k
h,∇2

hv
)
+
(
∇2
h

(
ykh+τdτy

k
h

)
,∇2

hv
)

=(f,v) for all v∈Fh[ykh]. (4.2)

We set

yk+1
h :=ykh+τdτy

k
h.
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Theorem 4.1. Let yk+1
h be the k+1th step solution of the gradient flow (4.2), there

holds

1. Energy decay:

Eh[y
k+1
h ]+τ

k∑
n=0

‖∇2
hdτy

n
h‖2

h≤Eh[y0
h]. (4.3)

2. Isometry violation:

‖Ih([∇yk+1
h ]T [∇yk+1

h ])−Id2‖L1(Ω)≤6C2
F (1+CIh)2Eh[y

0
h]τ. (4.4)

Proof. Choosing v=dτy
k
h in (4.2), and using the elementary identity

a(a−b)=
1

2
(a2−b2)+

1

2
(a−b)2, a,b∈R,

we get

Eh[y
k+1
h ]+

τ 2+2τ

2
‖∇2

hdτy
k
h‖2

L2(Ω) =Eh[y
k
h],

which implies

Eh[y
k+1
h ]+τ‖∇2

hdτy
k
h‖2

h≤Eh[ykh].

Using the telescoping sum, we obtain (4.3).

Note that for all a∈Vh, there holds

[∇dτykh(a)]>[∇ykh(a)]+[∇ykh(a)]>[∇dτykh(a)]=0.

By the definition of dτy
k
h (4.2), we get

[∇yk+1
h (a)]>[∇yk+1

h (a)]=[∇ykh(a)]>[∇ykh(a)]+τ 2[∇dτykh(a)]>[∇dτykh(a)]

=Id2+τ 2

k∑
n=0

[∇dτynh(a)]>[∇dτynh(a)].

On every node a∈Vh, we have

∣∣[∇yk+1
h (a)]>[∇yk+1

h (a)]−Id2

∣∣≤τ 2

k∑
n=0

∣∣[∇dτynh(a)]>[∇dτynh(a)]
∣∣

=τ 2

k∑
n=0

|∇dτynh(a)|2 .
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Let a,b,c be the three vertices of the element K, a direct calculation gives∫
K

|Ihv|2dx=
|K|
6

(
v2(a)+v2(b)+v2(c)+v(a)v(b)+v(b)v(c)+v(c)v(a)

)
=
|K|
12

(
v2(a)+v2(b)+v2(c)+(v(a)+v(b)+v(c))2)

≥ |K|
12

(
v2(a)+v2(b)+v2(c)

)
.

Hence, ∥∥Ih([∇yk+1
h ]>[∇yk+1

h ]
)
−Id2

∥∥
L1(Ω)

≤6τ 2

k∑
n=0

‖Ih(∇dτynh)‖2
L2(Ω) .

Invoking the Friedrichs’ inequality (2.1) and the energy decay estimate (4.3), we

obtain

‖Ih
(
[∇yk+1

h ]>[∇yk+1
h ]

)
−Id2‖L1(Ω)≤6C2

F τ
2

k∑
n=0

‖∇Ih(∇dτynh)‖2
L2(Ω)

≤6C2
F (1+CIh)2τ 2

k∑
n=0

∥∥∇2
hdτy

n
h

∥∥2

L2(Ω)

≤6C2
F (1+CIh)2τ

(
Eh[y

0
h]−Eh[yk+1

h ]
)

≤6C2
F (1+CIh)2Eh[y

0
h]τ.

4.2 Adaptive time-stepping method

The simulation of the large bending problem needs long time computations, and

the adaptive time-stepping method seems a natural choice. Theorem 4.1 implies

that the H2-gradient flow method is unconditionally stable, and the accumulation

of isometry violation is related to the energy drop at each step. Therefore, we

adopt a time step adaptive approach based on the energy variation to accelerate

the iterations while maintaining the accuracy. Such time step adaptive strategy has

been developed in [16,25,33] for the phase filed models. The choice of the step size

τk+1 is based on the variations of the energy∣∣∣∣Eh[ykh]−Eh[yk−1
h ]

τk

∣∣∣∣2
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during the gradient flow iteration. In particular, if the energy changes smoothly,

then the step size will be increased to accelerate the convergence. On the other

hand, if the energy is changing rapidly, the step size will be decreased to maintain

the isometry constraint.

At step k+1, we adjust the time step τk+1 as

τk+1 =max

τmin,
τmax√

1+α
∣∣∣Eh[ykh]−Eh[yk−1

h ]

τk

∣∣∣2
, (4.5)

where the parameters τmax and τmin represent the maximum and minimum step

lengths, respectively, and α is a case dependent parameter.

4.3 Newton’s method

Unlike the gradient flow method, which has global convergence properties, the New-

ton’s method is a local method, which achieves a second-order rate of convergence

once a good initial point is chosen. Thus we apply Newton’s method with the start-

ing point obtained by the gradient flow method. Moreover, we find numerically that

Newton’s method efficiently reduces the violation error of the isometric constraints.

Three constraints of isometry [∇y>h∇yh](a)=Id2 on every node a∈Vh are
C11(a) : ∂1yh(a)·∂1yh(a)−1=0,

C12(a) : ∂1yh(a)·∂2yh(a)=0,

C22(a) : ∂2yh(a)·∂2yh(a)−1=0.

We write the discrete Lagrangian as

L(yh,λh)=Eh(yh)+
∑
a∈Vh

λ1
h(a)C11(a)+λ2

h(a)C12(a)+λ3
h(a)C22(a). (4.6)

For every step k, we add a regularized term 1
2τ
‖∇2

h(y
k
h−yk−1

h )‖2
L2(Ω) of step length

and apply the Newton’s method as

∇2

(
L(yk−1

h ,λk−1
h )+

1

2τ
‖∇2

h(y
k−1
h −yk−1

h )‖2
L2(Ω)

)(
τ ·dτykh
dτλ

k
h

)
=−∇L(yk−1

h ,λk−1
h ),
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and we define (
ykh
λkh

)
:=

(
yk−1
h

λk−1
h

)
+

(
τ ·dτykh
dτλ

k
h

)
.

5 Numerical Experiments

We list the basis functions of the Specht triangle [28] for the sake of implementation.

For i=1,2,3,

ζi=λ2
i (3−2λi)+6

∑
i 6=j

∇λi ·∇λj
|∇λj|2

φj,

θi=λ2
i (ξjλk−ξkλj)+2(ξj+ξk)bK(λj−λk)+3

∇λi ·∇λj
|∇λj|2

ξjφj

−3
∇λi ·∇λk
|∇λk|2

ξkφk,

ωi=λ2
i (ηjλk−ηkλj)+2(ηj+ηk)bK(λj−λk)+3

∇λi ·∇λj
|∇λj|2

ηjφj

−3
∇λi ·∇λk
|∇λk|2

ηkφk,

φi=bK(2λi−1)

where ζi,θi,ωi are basis functions associated with the degrees of freedom v(ai),

∂xv(ai), ∂yv(ai), respectively.

Define

I1h[yh]:=
∥∥Ih(∇y>h∇yh)−Id2

∥∥
L1(Ω)

to measure the violation of the nodal isometry constraint. It follows from Theo-

rem 4.1 that I1h[yh] is of O(τ). Similarly, we define

I2h[yh]:=
∥∥∇y>h∇yh−Id2

∥∥
L1(Ω)

,

as another measurement for the violation of the isometry constraint. It follows from

the estimate (3.7) that I2h[yh] is bounded by O(h). Finally, we define Kh[yh] as the

L1 error of the discrete Gaussian curvature of yh:

Kh[yh] :=
∥∥det(−[∇(Ihnh)]T [∇(Ihyh)])

∥∥
L1(Ω)

,
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where nh=∂1yh×∂2yh denotes the outer normal vector of the solution surface. Under

isometric condition, Gauss theorema egregium implies that Guass curvature of every

point of the exact solution should vanish.

The linear system of the k-th step gradient flow iteration is[
(1+τ)S B>k
Bk 0

][
dYk

Λ

]
=

[
F−S∗YK−1

0

]
, (5.1)

where S is the stiff matrix and Bk encodes the linearized isometry constraint.

The linear system of the k-th step of Newton’s method is[
(1+τ)S+τSλ B>k

Bk 0

][
dYk

Λ

]
=

[
F−S∗YK−1

0

]
−Fλ, (5.2)

where the two extra items Fλ and Sλ come from the exact isometric constraints in

Lagrangian multiplier terms of L(yh,λh). We note that the cost of each iteration of

the Newton’s method is similar to that of the gradient flow.

Our numerical examples are motivated by [3] and [13]. We choose τmin = h,

τmax = 10h, α= 1e5 and ε= 1e−3 unless otherwise stated. We firstly consider a

simple example to test the numerical performance of our method for a relatively

smooth deformation.

Example 5.1 (Rectangular plate under vertical load). Let Ω = (0,4)×(0,1). We

consider the clamped boundary condition

yD(x)=(x,0)> and ∇yD(x)=[I2,0]>

on part of the boundary ΓD ={0}×[0,1]. We apply a constant vertical force f(x)=

(0,0,2.5×10−2)> on the whole domain Ω.

In view of Table 1, we apply the gradient flow iteration on a sequence of tri-

angulation T2, T3, T4 and T5, and take τmin = h, τmax = 10h. The energy of the

final configuration is −1.58e−2, while the convergence rate of both I1h and I2h are

around 1, which is consistent with Theorem 4.1. In view of Table 5, a significant

improvement in I1h and I2h has been observed with two extra Newton’s iterations.

Compared to [4], the error of I2h is 1∼ 2 order of magnitude smaller, while only

one sixth number of the iteration steps have been used. In view of Table 3, I2h
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(a) Initial deformation y0h (b) Deformation under vertical load.

Figure 1: The plate is clamped on one side and the vertical load is applied on the opposite side.

Table 1: The Specht triangle and H2−gradient flow (τmin =h).

No. triangles DoFs h step Eh I1h I2h Kh
128 765 2−2 7 -1.58e-2 3.35e-2 3.35e-2 2.00e-5

512 2673 2−3 11 -1.58e-2 2.12e-2 2.12e-2 4.27e-6

2048 9945 2−4 18 -1.58e-2 1.26e-2 1.26e-2 8.91e-7

8192 38313 2−5 32 -1.58e-2 7.09e-3 7.09e-3 1.83e-7

Table 2: Newton’s method (τ=h) with ykh from Table 1 as an initial guess.

No. triangles DoFs h step Eh I1h I2h Kh
128 765 2−2 2 -1.58e-2 2.03e-7 3.32e-4 2.00e-5

512 2673 2−3 2 -1.58e-2 1.71e-7 8.28e-5 4.27e-6

2048 9945 2−4 2 -1.58e-2 1.65e-7 2.07e-5 8.93e-7

8192 38313 2−5 2 -1.58e-2 6.43e-8 5.19e-6 1.81e-7

Table 3: Convergence rate: a combination of the gradient flow and the Newton’s method.

h 2−2 2−3 2−4 2−5

I2h - 2.00 2.00 2.00
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converges with second order, which is better than the first order rate observed in [3]

and superlinear convergence observed in [13].

In what follows, we test the same example with the second order Specht triangle

developed in [23] with the parameter α1 =18,α2 =α3 =−45 as the spatial discretiza-

tion†. It follows from Table 4 and Table 1 that the method with the second-order

Specht triangle yields almost the same values for I1h and I2h. Nevertheless, it is

clear in Table 4 that the accuracy is improved to certain degree for I1h,I2h and Kh
if we combine the Newton’s method with the H2 gradient flow method.

Table 4: The 2nd oder Specht triangle and H2−gradient flow (τmin =h).

No. triangles DoFs h step Eh I1h I2h Kh
128 1401 2−2 7 -1.59e-2 3.35e-2 3.35e-2 9.44e-7

512 5097 2−3 11 -1.58e-2 2.12e-2 2.12e-2 7.18e-7

2048 19401 2−4 18 -1.58e-2 1.26e-2 1.26e-2 2.12e-7

8192 75657 2−5 32 -1.58e-2 7.09e-3 7.09e-3 6.20e-8

Table 5: The 2nd order Specht triangle discretization with Newton’s method: τ=h and ykh from Table 4
has been used as the initial guess.

No. triangles DoFs h step Eh I1h I2h Kh
128 1401 2−2 2 -1.58e-2 1.25e-7 3.30e-4 5.01e-7

512 5907 2−3 2 -1.58e-2 5.29e-8 6.41e-5 2.92e-7

2048 19401 2−4 2 -1.58e-2 1.56e-8 1.20e-5 8.93e-7

8192 75657 2−5 2 -1.58e-2 4.50e-9 2.60e-6 7.33e-8

Example 5.2 (Square plate under vertical load). Let Ω=(0,4)×(0,4). We consider

the clamped boundary condition

yD(x)=(x,0)> and ∇yD(x)=[I2,0]>

on part of the boundary ΓD = {0}×[0,4]∪[0,4]×{0}. We then apply a constant

vertical force f(x)=(0,0,2.5×10−2)> on the whole domain Ω.

†There are many choices of the second order Specht triangle in [23]. We take the one with the best

numerical performance.
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(a) Initial deformation y0h. (b) Deformation under the vertical load over

the triangulation T4.

Figure 2: vertical load

Table 6: The Specht triangle and H2−gradient flow.

No. triangles DoFs h step Eh I1h I2h Kh
512 2304 2−2 5 -1.01e-2 9.61e-3 1.20e-2 3.37e-3

2048 9216 2−3 7 -9.69e-3 5.97e-3 8.76e-3 2.87e-3

8192 36,864 2−4 10 -8.69e-3 3.01e-3 5.38e-3 2.05e-3

32,768 147,456 2−5 16 -7.13e-3 1.27e-3 2.79e-3 1.27e-3

Table 7: Comparison of DKT [3], DG method [13] and our method (without Newton’s method) of the
same example on the triangulation T5.

Methods DoFs h step Eh I2h Kh
DKT 147,456 2−5 130 -7.67e-3 3.03e-3 1.47e-3

DG 491,520 2−5 140 -3.30e-3 2.28e-4 *

ours 147,456 2−5 16 -7.13e-3 2.79e-3 1.27e-3

Table 8: Newton method with ykh from Table 6 as the initial guess.

No. triangles DoFs h step Eh I1h I2h Kh
512 2304 2−2 2 -9.95e-3 5.91e-8 8.04e-3 3.30e-3

2048 9216 2−3 2 -9.46e-3 3.03e-8 6.58e-3 2.76e-3

8192 36,864 2−4 2 -8.40e-3 1.29e-8 4.39e-3 1.96e-3

32768 147,456 2−5 2 -6.89e-3 3.66e-9 2.42e-3 1.22e-3
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Table 9: Convergence rate: a combination of the gradient flows and Newton’s method.

h 2−2 2−3 2−4 2−5

I2h - 0.29 0.58 0.86

In view of Table 6, we apply the H2−gradient flow algorithm with adaptive

time-stepping to a sequence of triangulations T2, T3, T4 and T5. The convergence

rates of both I1h and I2h are still around 1, and the iteration steps of our method

are robust to the variation of the mesh size.

In view of Table 7, compared to [3] and [13], our adaptive strategy significantly

reduces the number of the iteration. In particular on the triangulation T5, the DKT

element in [3] required 130 iteration steps, and the DG method in [13] required 140

iteration steps, while our method achieves the same accuracy as [3] with only 16

iteration steps.

In view of Table 8 and Table 9, Newton’s method is effective in reducing I1h.

However, I2h remains at a similar magnitude and the convergence rate is only around

1. This could be attributed to the way the isometry constraints (1.2) is imposed,

as well as the nature of the example, which is highly prone to the violation of the

isometry constraints.

Another attractive example is the bulking of a plate.

Example 5.3 (Buckling: compress a strip). Let Ω=(−2,2)×(0,1). We impose the

compressive boundary conditions

yD(x)=(x1+1.4,x2,0)> and ∇yD(x)=[Id2,0]>

on the two sides ΓD = {−2,2}×[0,1], and we apply constant verical force f(x) =

(0,0,1.0×10−5)> on the whole domain Ω.

We choose the initial deformation y0
h as

y0
h(x)=


(x1+1.4,x2,0), −2≤x1≤−1.4,

(0,x2,x1+1.4), −1.4≤x1≤0,

(0,x2,−x1+1.4), 0≤x1≤1.4,

(x1−1.4,x2,0), 1.4≤x1≤2,
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and set

Φ=

1 0

0 1

0 0

.
We plot the initial guess and the deformed state in Figure 5.

(a) Initial guess y0h. (b) Buckling.

Figure 3: Buckling

Note that the initial guess is incompatible in the sense that ‖∇y0
h−Φ‖L2(Ω) 6=0,

which yields a relatively high initial energy E[y0
h], we hence adjust the parameters

of the adaptive time-stepping to τmax =100τmin and α=1e−4.

By Figure 3, a bulking deformation occurs, and we display the results in Table 10,

and it seems challenging to maintain I1h and I2h in this example.

Table 10: Specht triangle, H2−gradient flow: Number of triangles, degrees of freedom, number of the
gradient flow iteration, energy, L1-norm of the violation of isometry, L1-norm of the discrete Gauss
curvature.

No. triangles DoFs h step Eh I1h I2h Kh
128 765 2−2 22 56.35 35.04 33.88 1.83e-1

512 2304 2−3 14 23.04 12.51 12.39 3.67e-2

2048 9216 2−4 30 9.16 0.62 0.61 5.69e-3

8192 36,864 2−5 75 9.94 1.35 1.34 4.72e-3

In Table 11, we fix the mesh size as h= 2−5 and take τmin to be h1/2, h, h3/2 ,

respectively. It takes 367 steps to reduce I2h to 9.82e−2, whereas the author in [3]
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required 2,457 steps to reduce I2h to 6.91e−2 with τ=h3/2. Next we use results ykh

Table 11: H2- gradient flow: h=2−5, pseudo-time step, the number of the iteration step, L1-norm of
the violation of the isometry, energy.

τ step I1h I2h Eh Kh
h1/2 18 1.29 1.29 10.02 5.25e-2

h 71 1.35 1.34 9.94 4.75e-3

h3/2 367 9.82e-2 9.64e-2 8.66 2.71e-4

from Table 10 as an initial guess of Newton’s method, and still take εstop< 1e−3.

Table 12 shows that I1h can be reduced to 1e−8 and I2h to 1e−3 after several

additional Newton’s iteration steps.

Table 12: The Specht triangle and the Newton’s method with ykh from Table 10 as an initial guess.

No. triangles DoFs h step Eh I1h I2h Kh
128 765 2−2 46 8.08 1.61e-8 1.96e-1 7.16e-3

512 2304 2−3 45 8.45 7.74e-8 5.25e-2 1.38e-3

2048 9216 2−4 19 8.55 3.22e-8 1.34e-2 2.17e-4

8192 36,864 2−5 37 8.57 3.56e-8 3.36e-3 1.20e-4
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