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Abstract. We introduce a new function space, dubbed as the Barron spectrum space,
which arises from the target function space for the neural network approximation. We
give a Bernstein type sufficient condition for functions in this space, and clarify the
embedding among the Barron spectrum space, the Bessel potential space, the Besov
space and the Sobolev space. Moreover, the unexpected smoothness and the decaying
behavior of the radial functions in the Barron spectrum space have been investigated.
As an application, we prove a dimension explicit Lq error bound for the two-layer
neural network with the Barron spectrum space as the target function space, the rate
is dimension independent.
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1 Introduction

Several target function spaces have been scattered in the literature for the neural network
approximation, such as the potential space, the reproducing kernel space [23, 29, 42], the
Sobolev space [44], the Besov space [17] and its variant of the dominating mixed smooth-
ness [54], among many others. In Barron’s seminal work [2], he proved that for a func-
tion that has a finite first moment of the magnitude of the Fourier transform, the con-
vergence rate for a feedforward artificial neural network with sigmoidal nonlinearity is
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O(n−1/2) with n the number of the neurons. Roughly speaking, such function class may
be rephrased as

f has Fourier transform f̂ with
∫

Rd
|x|| f̂ (x)|dx<∞. (1.1)

For any f ∈L1(Rd), its Fourier transform is defined by

f̂ (ξ)=
∫

Rd
f (x)e−2πix·ξ dx.

The novelty of this result lies in the fact that the convergence rate is independent of the
dimension of the ambient space, and cracks the curse of the dimensionality [4, 16]. The
spectrum norm was extended to second order to study the approximation rate for hing-
ing functions by Breiman in [9]. Hornik et al [26] introduced the spectrum norm of arbi-
trary positive integer order m:

∫

Rd
max{1,|x|m}| f̂ (x)|dx.

Several works have been devoted to study the spectrum norm in the literature; see [10,
§7.2] and [16, 45]. In a series of work [19, 20], E et al have defined a function class, which
is dubbed as Barron space. Barron space contains infinitely wide neural networks with
certain controls over the parameters, which depends on the activation function used in
the neural network. The relation among Barron spaces and the so-called Fourier-analytic
Barron space have been established in [11, §7]. They have studied the pointwise behavior
of the functions in Barron space, and have proved the direct and inverse approximation
theorems for the two-layer neural network approximation. It is worth mentioning that
the approximation class for the deep neural network have recently been investigated
in [19, 24].

Motivated by (1.1), for s∈R and 1≤p≤2, we introduce a new function space Bs,p(Rd),

called Barron spectrum space, which consists of f ∈Lp(Rd) with
∫

Rd |x|s| f̂ (x)|dx<∞ (see
Definition 2.1). Compared with the original Barron class or the Fourier-analytic Barron
space, we include the Lp-norm in addition to the spectrum norm and our definition is in-
dependent of the choice of the activation functions. It is a Banach space as shown in the
next part. We shall study the properties of Bs,p(Rd) and clarify the relationship among

Bs,p(Rd) and certain commonly used target function spaces for the neural network ap-
proximation. For any s>−d/p and 1≤ p≤2, we prove the embedding

B
s+d/p
p,1 (Rd) →֒Bs,p(R

d) →֒Bs
∞,1(R

d)

holds, where Bα
p,q(R

d) is the Besov space with α∈R and 1≤ p,q≤∞. With the aid of this

inclusion, we establish the embedding between Bs,p(Rd) and the Sobolev space. More-

over, we prove the relation between Bs,p(Rd) and the Bessel potential space. Another
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consequence of the above inclusion is that the function in Bs,p with a nonnegative index
s is smooth. We give a precise estimate for this statement; cf. Theorem 4.4. Moreover,
the smoothness of the functions in Bs,p with a negative index s may be characterized by
Lp−modulus of continuity as addressed in Section 3.

To understand the radial basis function neural networks [41], we study the radial
function in Bs,p(Rd) with a nonnegative index s. Roughly speaking, the radial functions
in Bs,p with certain p become smoother as the increasing of the dimension, though at
the expense of an exponentially large embedding constant with respect to the dimension.
Moreover, we prove a decaying result in the spirit of Strauss’ inequality [53], which shows
that the decaying rate of the radial function in Bs,p(Rd) at infinity is (1−d)/2.

As an application, we derive the approximation rate of the two-layer neural network
with Bs,p(Rd) as the target function space. For the two-layer neural networks with com-
monly used activation functions, we prove Lq approximation rate with an explicit dimen-
sion dependence. The rate is O(n−γ(q)) with γ(q)=min(1−1/q,1/2) and n the number
of neurons, which is dimension independent. This recovers the classical approximation
results [2, 9, 30, 46, 48] when q = 2, while we only need a target function with a smaller
smoothness index s. In case of 1≤ q< 2, the rate 1−1/q may be improved to 1/2 when
s≥ 1/2. We conclude that Bs,p(Rd) may also be used as a target function space for the
neural network approximation in high dimension.

Barron spectrum space Bs,p(Rd) may be regarded as one realization of Barron’s def-
inition (1.1). It definitely admits other realizations such as f is a tempered distribution,
and endowed with merely the spectrum norm. This realization is a special case of the
so-called Fourier Besov space [27] or Fourier-Herz space [12, 33], which has been ex-
ploited to prove the global existence of the solution for Navier-Stokes equation [34] and
Keller-Segel equations [27]. We shall study the relationship among Bs,p(Rd) and this
realization as well as some other target function spaces in the neural network approxi-
mation [3, 10, 37, 48], just name a few of them, in the future work.

The paper is organized as follows. In Section 2, we introduce the Barron spectrum
space and prove some basic properties. In Section 3, we give some sufficient conditions
for functions in the Barron spectrum spaces. In Section 4, we clarify its relation to the
Sobolev space, the Besov space and the Bessel potential space with suitable indices. In
Section 5, we discuss the decay behavior of the radial functions in the Barron spectrum
spaces. And in the last section, we show an application of the Barron spectrum space for
the approximation of two-layer neural networks.

Finally, we make some conventions on notation. Throughout this paper, we denote
by C a positive constant which is independent of the main parameters, but may vary
from line to line. The symbol f .g means that there exists a positive constant C such that
f ≤Cg, and f &g means that there exists a positive constant C such that f ≥Cg. Moreover,
f ∼ g abbreviates f .g. f . Given any p∈ [1,∞], let p′ := p/(p−1) be its conjugate index.
Also, for any subset E ⊂ Rd, χE denotes its characteristic function. For any x ∈ Rd, let
‖x‖p :=(∑d

i=1|xi|p)1/p be the ℓp norm of x with 1≤ p<∞. We may use |x| in lieu of ‖x‖2

without abuse of the notations. We denote the unit ball of the ℓ1 norm on Rd by Bd
1 , whose
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volume is 2d/d!. The ball of the ℓ1 norm on Rd centered at the origin with radius r>0 is
denoted by Bd

1(r), whose volume is 2drd/d!. We denote the surface area of the unit sphere
by ωd−1, i.e., ωd−1=2πd/2/Γ(d/2).

2 Barron spectrum space and its basic properties

Definition 2.1. Let 1≤ p≤2 and s∈R. The Barron spectrum space consists of functions
f ∈Lp(Rd) satisfying

‖ f ‖υs
:=
∫

Rd
‖x‖s

1 | f̂ (x)|dx<∞.

Moreover, define
‖ f ‖Bs,p(Rd) :=‖ f ‖Lp(Rd)+‖ f ‖υs

.

We firstly show that Bs,p(Rd) is a Banach space.

Theorem 2.1. (i) For 1≤ p≤2 and −∞< s<∞, Bs,p(Rd) is a Banach space;

(ii) Bs,p(Rd) is not a Banach space if the norm ‖ f ‖Bs,p(Rd) is replaced by ‖ f ‖υs
whenever

s+d/p>0.

We shall frequently use the Hausdorff-Young inequality [50]. For any 1≤ p≤ 2 and
f ∈Lp(Rd), there holds ∥∥∥ f̂

∥∥∥
Lp′(Rd)

≤‖ f ‖Lp(Rd) . (2.1)

Proof of Theorem 2.1. (i) It is easy to verify that ‖·‖Bs,p(Rd) is a norm and Bs,p(Rd) is a linear

metric space. Thus, it remains to check that Bs,p(Rd) is complete. For any Cauchy series

{ f j}∞
j=1 in Bs,p(Rd), there exists f ∈Lp(Rd) such that

lim
j→∞

∥∥ f − f j

∥∥
Lp(Rd)

=0.

From the Hausdorff-Young inequality (2.1), it follows that

lim
j→∞

∥∥∥ f̂ − f̂ j

∥∥∥
Lp′(Rd)

=0.

Therefore, there exists a subsequence { f jk} such that

lim
k→∞

f̂ jk(x)= f̂ (x) a.e. x∈R
d.

Define a measure µ by setting that for any measurable set E⊂Rd,

µ(E) :=
∫

E
‖x‖s

1 dx.
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From the fact that { f j} is the Cauchy sequence in Bs,p(Rd), it follows that

lim
k,i→∞

∫

Rd
| f̂ jk (x)− f̂ ji (x)|dµ(x)=0.

This implies that there exists a subsequence { f jkm
} and g∈L1(µ) such that

lim
m→∞

f̂ jkm
(x)= g(x) µ−a.e. x∈R

d.

It is easy to verify that for any measurable set E⊂Rd, µ(E)= 0 is equivalent to |E|= 0.
This leads to

lim
m→∞

f̂ jkm
(x)= g(x) a.e. x∈R

d.

Therefore,

g(x)= f̂ (x) a.e. x∈R
d,

and then f ∈Bs,p(Rd). This proves that Bs,p(Rd) is a Banach space.

(ii) If Bs,p(Rd) is also complete equipped with the norm ‖·‖υs
, then by Banach’s theo-

rem, we would have that for any f ∈Bs,p(Rd),

‖ f‖Bs,p(Rd)∼‖ f ‖υs
.

Therefore,

‖ f ‖Lp(Rd).‖ f ‖υs
. (2.2)

We shall show this is not the case by the following example.

Define

fn(x):=

(
n

∑
k=1

2k(s+2d)φk

)∨

(x),

where φk(x)=∏
d
i=1ψk(xi) with

ψk(t)=





2−k−|t|, 3

4
2−k < |t|≤2−k,

|t|−2−k−1, 2−k−1≤|t|< 3

4
2−k,

0, otherwise.

We only give the details for d=1 because the extension to d>1 is straightforward.

A direct calculation gives

fn(x)=
1

2π2x2

n

∑
k=1

2k(s+2)

(
2cos

3πx

2k
−cos

2πx

2k
−cos

πx

2k

)
.
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By trigonometric identity, we have

2cos
3πx

2k
−cos

2πx

2k
−cos

πx

2k
=−2sin

πx

2k+1

(
2sin

5πx

2k+1
+sin

3πx

2k+1

)
.

Using the elementary inequality |sinx|≤ |x|, we obtain

∣∣∣∣2cos
3πx

2k
−cos

2πx

2k
−cos

πx

2k

∣∣∣∣≤
13

2

π2x2

4k
.

This gives

| fn(x)|≤4
n

∑
k=1

2ks, |x|≤1.

Moreover, for |x|>1, we have

| fn(x)|≤ 2

π2x2

n

∑
k=1

2k(s+2).

Using the above two estimates, we get

‖ fn‖p

Lp(R)
=2

∫ ∞

0
| fn(x)|p dx

≤2

(
n

∑
k=1

2k(s+2)

)p(
4p+

(
2

π2

)p∫ ∞

1
x−2pdx

)

=2

(
n

∑
k=1

2k(s+2)

)p(
4p+

(
2

π2

)p 1

2p−1

)
.

Hence,

‖ fn‖Lp(R)≤21/p

(
4+

2

π2

(
1

2p−1

)1/p
)

n

∑
k=1

2k(s+2).2n(s+2).

This means that for any fixed n,
‖ fn‖Lp(R)<∞.

By the Hausdorff-Young inequality,

‖ fn‖Lp(R)≥
∥∥∥ f̂n

∥∥∥
Lp′(R)

=
1

4
(p′+1)1/p′

(
n

∑
k=1

2k((s+1)p′−1)

)1/p′

∼2n(s+1/p).

On the other hand, a direct computation gives

‖ fn‖υs
=

n

∑
k=1

2k(s+2)
∫

R

|x|sψk(x)dx=
1

2(s+2)

n

∑
k=1

1

2k
<

1

2(s+2)
.
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For such fn with sufficiently large n, it is impossible for the inequality (2.2) to be true
because the right-hand side of (2.2) is O(1), while the left-hand side is O(2ns) when
s >−1/p. Therefore, we conclude that Bs,p(R) is not complete endowed with merely
the spectral norm ‖·‖υs

. This proves the second statement and completes the proof of
Theorem 2.1.

A direct consequence of the above theorem is

Corollary 2.1. For s∈R, Bs,1(R
d) is a commutative Banach algebra under convolution.

Proof. By Young’s inequality, we obtain that for any f ,g∈Bs,1(R
d),

‖ f ∗g‖L1(Rd)≤‖ f ‖L1(Rd)‖g‖L1(Rd) .

Moreover,

‖ f ∗g‖υs
=
∫

Rd
‖x‖s

1 | f̂ ∗g(x)|dx=
∫

Rd
‖x‖s

1 | f̂ (x)||ĝ(x)|dx≤‖ f ‖υs
‖g‖L1(Rd) .

A combination of the above two inequalities leads to

‖ f ∗g‖Bs,1(Rd)≤‖ f ‖Bs,1(Rd)‖g‖L1(Rd)≤‖ f ‖Bs,1(Rd)‖g‖Bs,1(Rd) .

This proves the assertion.

It is natural to discuss the chain of embedding for Bs,p(Rd) with varying s and p.

Theorem 2.2 (Monotonicity of Bs,p(Rd)). (i) Let 1≤p≤2 and −d/p<s1<s2. There holds

Bs2,p(R
d) →֒Bs1,p(R

d). (2.3)

(ii) Let 1≤ p≤2 and s≥0. There holds

Bs,1(R
d) →֒Bs,p(R

d) →֒Bs,2(R
d).

Remark 2.1. We point that the inclusion (2.3) is proper. Indeed, consider the distance
function on R:

f (x) :=max(1−|x|,0).
Thus, for any x∈R,

f̂ (x)=

(
sinπx

πx

)2

.

It is clear that

‖ f ‖Lp(R)=(2/(1+p))1/p
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with 1≤ p≤2. And for any −1< s<1,

‖ f ‖υs
=2

∫ ∞

0
xs sin2(πx)

π2x2
dx≤2

∫ 1

0
xs dx+

2

π2

∫ ∞

1
xs−2dx

=
2

1+s
+

2

π2(1−s)
<∞.

This implies that f ∈Bs,p(R) with −1< s<1, while

‖ f ‖υ1
=

2

π2

∫ ∞

0

sin2(πx)

x
dx≥ 2

π2

∫ ∞

1

sin2(πx)

x
dx

=
1

π2

(∫ ∞

1

1

x
dx−

∫ ∞

1

cos(2πx)

x
dx

)
=∞.

Hence f /∈B1,p(R). This means that the inclusion (2.3) is proper.

To prove Theorem 2.2, we need an interpolation inequality that connects the spectrum
norms of different orders, which is key to the properties of Bs,p(Rd). This inequality also

motivates our definition for Bs,p(Rd).

Lemma 2.1. Let 1 ≤ p ≤ 2 and −d/p < s1 < s2. There exists C(p;s1,s2) such that for any
f ∈Bs2 ,p(Rd),

‖ f ‖υs1
≤C(p;s1,s2)‖ f ‖γ

Lp(Rd)
‖ f ‖1−γ

υs2
, (2.4)

where γ=(s2−s1)/(s2+d/p) and

C(p;s1,s2):=
1+γ

γγ

(
2d

(d+s1 p)(d−1)!

)γ/p

.

For large d, C(p;s1,s2)∼ (2e/d)s2−s1 .

The dependence of C(p;s1,s2) on d is sharp by substituting f (x) = e−π|x|2 into (2.4).
The proof of Lemma 2.1 is based on Fourier modes splitting.

Proof. Let K>0 be a constant to be determined later on. Decompose

‖ f ‖υs1
=
∫

‖x‖1≤K
‖x‖s1

1 | f̂ (x)|dx+
∫

‖x‖1>K
‖x‖s1

1 | f̂ (x)|dx.

By symmetry, we obtain that for any s>−d,
∫

‖x‖1≤K
‖x‖s

1 dx=2d
∫

x1+···+xd≤K,xi≥0
(x1+···+xd)

sdx1 ···dxd

=2d
∫ ∞

0
···
∫ ∞

0

∫ K

y1+···+yd−1

tsdtdy1 ···dyd−1

=2d
∫ K

0
ts
∫

y1+···+yd−1≤t,yi≥0
dy1 ···dyd−1dt

=
2d

(d−1)!

Kd+s

d+s
. (2.5)
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It follows from the Hausdorff-Young inequality (2.1) and the above identity that

∫

‖x‖1≤K
‖x‖s1

1 | f̂ (x)|dx≤
∥∥∥ f̂
∥∥∥

Lp′(Rd)

(∫

‖x‖1≤K
‖x‖s1 p

1 dx

)1/p

≤Ks1+d/p

(
2d

(d+s1 p)(d−1)!

)1/p

‖ f ‖Lp(Rd) .

On the other hand, it is clear that
∫

‖x‖1>K
‖x‖s1

1 | f̂ (x)|dx≤Ks1−s2‖ f ‖υs2
.

Combining the above two inequalities, optimizing with respect to K, and then taking

K=

(
s2−s1

s2+d/p

‖ f ‖υs2

‖ f ‖Lp(Rd)

(
(d+s1 p)(d−1)!

2d

)1/p
)1/(s2+d/p)

,

we obtain (2.4).

A direct consequence of Lemma 2.1 is the integrability of f̂ for any function f ∈
Bs,p(Rd) with a nonnegative index s.

Corollary 2.2. Let s≥0 and 1≤ p≤2. Then for any f ∈Bs,p(Rd), there holds f̂ ∈L1(Rd).

Proof. If s=0, then f̂ ∈L1(Rd) because

∥∥∥ f̂
∥∥∥

L1(Rd)
=‖ f ‖υs

.

If s>0, then we take s1=0 and s2= s in (2.4). Thus,

∥∥∥ f̂
∥∥∥

L1(Rd)
=‖ f ‖υ0

.‖ f ‖γ

Lp(Rd)
‖ f ‖1−γ

υs
.‖ f ‖Bs,p(Rd) , (2.6)

where γ= s/(s+d/p).

We are ready to prove Theorem 2.2.

Proof of Theorem 2.2. (i) By (2.4), we obtain

‖ f ‖υs1
.γ‖ f ‖Lp(Rd)+(1−γ)‖ f ‖υs2

.

This immediately implies
‖ f ‖Bs1,p(Rd).‖ f ‖Bs2,p(Rd) ,

and hence (2.3) is true.
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(ii) Using Corollary 2.2, we have that for any f ∈ Bs,1(R
d) with s ≥ 0, f̂ ∈ L1(Rd).

Therefore, by the Fourier inversion theorem and (2.6) with p=1, we obtain

‖ f ‖L∞(Rd)≤
∥∥∥ f̂
∥∥∥

L1(Rd)
.‖ f ‖Bs,1(Rd) .

Thus, for any 1< p<2,

‖ f ‖Lp(Rd)≤‖ f ‖1/p

L1(Rd)
‖ f ‖1−1/p

L∞(Rd)
.‖ f ‖Bs,1(Rd) .

This proves that f ∈Bs,p(Rd) and the embedding Bs,1(R
d) →֒Bs,p(Rd).

Next, invoking Corollary 2.2 again, we conclude that for any f ∈Bs,p(Rd), f̂ ∈L1(Rd).
Therefore, using the Fourier inversion theorem again and (2.6) with 1< p<2, we obtain

‖ f ‖L∞(Rd)≤
∥∥∥ f̂
∥∥∥

L1(Rd)
.‖ f ‖Bs,p(Rd) .

Thus,
‖ f ‖2

L2(Rd)≤‖ f ‖p

Lp(Rd)
‖ f ‖2−p

L∞(Rd)
.

Combining the above two inequalities, we obtain

‖ f ‖2
L2(Rd).‖ f ‖p

Lp(Rd)
‖ f ‖2−p

Bs,p(Rd)
.‖ f ‖2

Bs,p(Rd) . (2.7)

This proves that f ∈Bs,2(Rd) and the embedding Bs,p(Rd) →֒Bs,2(Rd).

To deal with the endpoint for s=−d and p=1 in Theorem 2.2, we recall the definition
of real Hardy space H1(Rd).

Definition 2.2. [51] The Hardy space H1(Rd) is defined by

H1(Rd) :=

{
f is a distribution | ϕ+( f ):=sup

t>0

|ϕt∗ f |∈L1(Rd)

}
,

where ϕ is Schwartz function with
∫

Rd ϕ(x)dx=1, and for all y∈Rd and t∈(0,∞), ϕt(y):=

t−d ϕ(y/t). Moreover, define

‖ f ‖H1(Rd) :=
∥∥ϕ+( f )

∥∥
L1(Rd)

.

Theorem 2.3. Let L1
0(R

d) be the subspace of L1(Rd) with zero mean. There holds

H1(Rd) →֒B−d,1(R
d) →֒ L1

0(R
d). (2.8)

To prove Theorem 2.3, we need the following Hardy type inequality due to BOUR-
GAIN [5, 6], and we refer to [22, Chapter 3, Corollary 7.23 with p=1].
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Lemma 2.2. There exists a positive constant C such that for any f ∈H1(Rd),

∫

Rd

| f̂ (x)|
|x|d dx≤C‖ f ‖H1(Rd) . (2.9)

Proof of Theorem 2.3. We rewrite (2.9) as

‖ f ‖υ−d
.‖ f ‖H1(Rd) ,

which together with

‖ f ‖L1(Rd)≤‖ f ‖H1(Rd)

yields that H1(Rd) →֒B−d,1(R
d).

On the other hand, for any f ∈B−d,1(R
d), f ∈L1(Rd), and then f̂ is uniformly contin-

uous. By ‖ f ‖υ−d
<∞, we conclude that f̂ (0)=0. This implies

∫

Rd
f (x)dx=0.

Hence f ∈ L1
0(R

d). This proves the second embedding of (2.8) and completes the proof.

3 Sufficient conditions for functions in Barron spectrum spaces

In this part, we give sufficient conditions for functions in Bs,p(Rd) with suitable indices.
We start with the characterization in one dimension. To this end, we firstly introduce the
Lp−modulus of continuity: for any f ∈Lp(R) with 1≤ p≤∞ and t∈R, define

ωp( f ; t):=‖ f (·+t)− f (·)‖Lp(R) .

It is clear that ωp( f ; t)→0 as t→0 for any f ∈Lp(R).

Theorem 3.1. Suppose that f ∈ Lp(R) with 1≤ p≤2 satisfies ωp( f ; t)≤C|t|α with 0<α≤1,
then f ∈Bs,p(R) with −1/p< s<α−1/p.

The following example shows that Theorem 3.1 fails when s=α−1/p.

Example 3.1. Let 1< p≤2 and −1/p<β<0, and let f be an even function with

f (x)=
1

x+x−β
, x>0.
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A direct calculation gives

∫

R

| f (x)|p dx=2
∫ ∞

0
(x+x−β)−pdx

=2
∫ 1

0
(x+x−β)−pdx+2

∫ ∞

1
(x+x−β)−pdx

≤2
∫ 1

0
xpβdx+2

∫ ∞

1
x−pdx

=
2

1+pβ
+

2

p−1
.

This shows f ∈Lp(R).
Without loss of generality, we may assume 0 < t < 1. For any x > t, there exists a

constant 0< θ<1 such that

| f (x+t)− f (x)|= t| f ′(x+θt)|≤ t| f ′(x)|,

because

| f ′(x)|= 1−βx−β−1

(x+x−β)2

is positive and decreasing for x>0. This leads to

∫ ∞

t
| f (x+t)− f (x)|p dx≤ tp

∫ ∞

t
| f ′(x)|p dx

≤ (1−β)ptp

(∫ 1

t
x−(1−β)pdx+

∫ ∞

1
x−2pdx

)

≤ (1−β)p
[ t1+pβ

(1−β)p−1
+

tp

2p−1

]

≤ (1−β)p
[ 1

(1−β)p−1
+

1

2p−1

]
t1+pβ.

On the other hand, a direct calculation gives us that for any x>0,

| f (x+t)− f (x)|= f (x)− f (x+t)≤ xβ .

Hence, ∫ t

0
| f (x+t)− f (x)|p dx≤ t1+pβ

1+pβ
.

Choose α=β+1/p. Then, for any 0< t<1,

ωp( f ; t)≤C|t|α .

By Theorem 3.1, we conclude that f ∈Bs,p(R) with −1/p< s<β.
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Using [56, Theorem 126], we obtain the following growth property for f̂ :

| f̂ (x)|∼ |x|−β−1 for |x|→∞.

Hence,

‖ f ‖υβ
&

∫ ∞

1
|x|−1dx=∞.

We conclude that f /∈Bβ,p(R). This means the range of the index s in Theorem 3.1 cannot
be extended to s=α−1/p.

Proof of Theorem 3.1. By the Hausdorff-Young inequality (2.1), we obtain that for any
k∈N∪{0},

∫

2k≤|x|<2k+1
|x|s| f̂ (x)|dx

≤
(∫

2k≤|x|<2k+1
|x|spdx

)1/p(∫

2k≤|x|<2k+1
| f̂ (x)|p′ dx

)1/p′

.2k(s+1/p)

(∫

2k≤|x|<2k+1
|e2πixt−1|p′ | f̂ (x)|p′ dx

)1/p′

.2k(s+1/p)
∥∥∥ ̂f (·+t)− f (·)

∥∥∥
Lp′(Rd)

.2k(s+1/p)‖ f (·+t)− f (·)‖Lp(Rd)

.2k(s+1/p−α),

where we have chosen t=2−k−2 and have used the fact that for any |x|∈ [2k ,2k+1),

|e2πixt−1|2 =4sin2(πxt)≥16x2t2≥1.

Summing up for all k, we obtain that for −1/p< s<α−1/p,

‖ f ‖υs
=
∫ 1

−1
|x|s| f̂ (x)|dx+

∞

∑
k=0

∫

2k≤|x|<2k+1
|x|s| f̂ (x)|dx

≤2

(∫ 1

0
xspdx

)1/p∥∥∥ f̂
∥∥∥

Lp′(Rd)
+

∞

∑
k=0

2−k(α−1/p−s)

≤ 2

(1+sp)1/p
‖ f ‖Lp(Rd)+

∞

∑
k=0

2−k(α−1/p−s)

<∞.

This implies that f ∈Bs,p(R).

The high dimensional analog of Theorem 3.1 also holds true provided that
Lp−modulus is replaced by a more general average operator. Let µ be a finite Borel
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measure with unit total mass. For any t ∈ R, we define the average operator: for any
f ∈Lp(Rd) and for any x∈Rd,

Mt
µ f (x):=

∫

Rd
f (x+ty)dµ(y);

see [7]. For σ>0, let Kσ be the set of all µ whose Fourier transform satisfying

|1−µ̂(ξ)|∼min(1,|ξ|2σ) for any ξ∈R
d. (3.1)

Theorem 3.2. Let 1 ≤ p ≤ 2, d ≥ 2 and σ > d/(2p). Suppose that µ ∈ Kσ and f ∈ Lp(Rd)
satisfying ∥∥∥Mt

µ f − f
∥∥∥

Lp(Rd)
≤C|t|α

for some C>0 and 0<α≤2σ. Then f ∈Bs,p(Rd) with −d/p< s<α−d/p.

The index σ specifies the possible range of the Lipschitz order α, which limits the
range on the upper bound of s. Before proving the above result, we adapt some examples
from [7, §2] to show that Kσ may be realized.

Example 3.2. Let dµ(x)=dσ(x)/ωd−1, where dσ(x) is the usual surface measure on the
unit sphere Sd−1. For any t ∈ R, the average operator Mt

µ is the spherical mean Mt

defined for any x∈Rd,

Mt f (x):=
1

ωd−1

∫

Sd−1
f (x+ty)dσ(y).

In this case, for any ξ∈Rd,
µ̂(ξ)= jd/2−1(|ξ|)

with jν the spherical Bessel function given by

jν(x)=2νΓ(ν+1)x−ν Jν(x), x∈R, (3.2)

where Jν with ν>−1 is the standard Bessel function of the first kind defined by

Jν(x)=
(x/2)ν

Γ(ν+1/2)Γ(1/2)

∫ π

0
eixcosθ sin2ν θdθ. (3.3)

By [8, Corollary 1.4], we have that for any ξ∈Rd,

1− jd/2−1(|ξ|)∼min(1,|ξ|2).

Hence µ∈K1.

The next example concerns how to achieve a bigger index σ via a combination of the
spherical mean.
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Example 3.3. Define the average operator: For any x∈Rd,

Vt
k f (x):=2

(
2k

k

)−1 k

∑
l=1

(−1)l+1

(
2k

k−l

)
Mlt f (x).

The corresponding measure is

µ=2

(
2k

k

)−1 k

∑
l=1

(−1)l+1

(
2k

k−l

)
ωlt,

where ω=dσ(x)/ωd−1 is the normalized surface measure on the unit sphere defined in
the above example, and ωk is its dilation by k. By [7, Example 2.9], we obtain that for any
ξ∈Rd,

1−µ̂(|ξ|)∼min(1,|ξ|2k).

Hence, µ∈Kk.

Proof of Theorem 3.2. We distinguish p=1 and 1< p≤2.

Let 1< p≤2 firstly. Noting that for any ξ∈Rd,

̂(Mt
µ f − f )(ξ)=(µ̂(tξ)−1) f̂ (ξ),

and using the Hausdorff-Young inequality, we have

(∫

Rd
|1−µ̂(tξ)|p′ | f̂ (ξ)|p′dξ

)1/p′

≤
∥∥∥Mt

µ f − f
∥∥∥

Lp(Rd)
,

which, together with the estimate (3.1) yields

(∫

|ξ|>1/t
| f̂ (ξ)|p′dξ

)1/p′

≤
∥∥∥Mt

µ f − f
∥∥∥

Lp(Rd)
. (3.4)

Using Hölder’s inequality, we obtain that for any k∈N∪{0},

∫

2k≤|x|<2k+1
|x|s| f̂ (x)|dx

≤
(∫

2k≤|x|<2k+1
|x|sp dx

)1/p(∫

2k≤|x|<2k+1
| f̂ (x)|p′ dx

)1/p′

.

By (2.5) and the fact d+sp>0, we have

∫

2k≤|x|<2k+1
|x|sp dx≤

∫

|x|<2k+1
|x|spdx≤ ωd−1

d+sp
2(k+1)(d+sp).
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It follows from (3.4) that

∫

2k≤|x|<2k+1
| f̂ (x)|p′ dx≤

∥∥∥M2−k
f − f

∥∥∥
p′

Lp(Rd)
≤Cp′2−p′kα.

Using Hölder’s inequality, the Hausdorff-Young inequality, and the fact that −d/p< s<
α−d/p, we get

‖ f ‖υs
≤max(1,ds/2)

(∫

|x|≤1
|x|s| f̂ (x)|dx+

∞

∑
k=0

∫

2k≤|x|<2k+1
|x|s| f̂ (x)|dx

)

≤max(1,ds/2)

((∫

|x|≤1
|x|sp dx

)1/p∥∥∥ f̂
∥∥∥

Lp′(Rd)
+C

∞

∑
k=0

2−k(α−d/p−s)

)

≤max(1,ds/2)

(
ωd−1

d+sp

)1/p
(
‖ f ‖Lp(Rd)+C2s+d/p

∞

∑
k=0

2−k(α−d/p−s)

)

<∞.

This proves f ∈Bs,p(Rd).
The proof for p=1 is exactly the same provided that we replace (3.4) by

sup
|ξ|>1/t

| f̂ (ξ)|≤
∥∥∥Mt

µ f − f
∥∥∥

L1(Rd)
,

because the Hausdorff-Young inequality still holds true for p=1.

Before closing this section, we extend Example 3.1 to high dimension to show that the
index α in Theorem 3.2 cannot be extended to α−d/p. This example is taken from [7].

Example 3.4. Let 1< p≤2 and −d/p<β<0. Define

f (x) :=
1

|x|d+|x|−β
, x∈R

d\{0}.

Let Mt
µ be the spherical mean as in Example 3.2. By [7, eq. 3.5], we see that

∥∥∥Mt
µ f − f

∥∥∥
Lp(Rd)

. |t|α

with α=β+d/p.
By Theorem 3.2, we conclude that f ∈Bs,p(Rd) for any −d/p< s<β. A direct calcula-

tion gives us that for any ξ∈Rd,

f̂ (ξ)=ωd−1

∫ ∞

0
(rd+r−s)−1 jd/2−1(2πr|ξ|)rd−1dr.
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Proceeding along the same line that leads to [56, Theorem 126], we have that for any
ξ∈Rd\{0}:

| f̂ (ξ)|∼ |ξ|−β−d.

This implies

‖ f ‖υβ
≥
∫

|ξ|≥1
|ξ|β | f̂ (ξ)|dξ&

∫ ∞

1
r−1dr=∞.

Hence f /∈Bβ,p(R
d). This means the range of the index α in Theorem 3.2 cannot be ex-

tended to s=α−d/p.

4 The relationship among the Barron spectrum space, the Bessel

potential space, the Besov space and the Sobolev space

We start with the embedding between the Bessel potential space and the Barron spectrum
space. Let α≥0 and Gα be the Bessel potential of order α, i.e., for any x∈Rd,

Gα(x)=
1

(4π)α/2Γ(α/2)

∫ ∞

0
t

α−d
2 e−

π|x|2
t − t

4π
dt

t
. (4.1)

Define the operator Sα: for any g∈Lp(Rd) with 1≤ p≤∞ and for any x∈Rd,

Sα(g)(x):=Gα∗g(x)

for α>0 and S0(g):= g for α=0.

Definition 4.1. [50] Let α≥ 0 and 1≤ p≤∞. The Bessel potential space L
p

α (R
d) is the

set of the function f ∈ Lp(Rd) that can be written as f =Sα(g),g∈ Lp(Rd). Moreover, the
norm of f is defined by

‖ f ‖
L

p
α (Rd)=‖g‖Lp(Rd) .

Theorem 4.1. Let 1≤ p≤2 and α> s+d/p>0. There holds

L
p

α (R
d) →֒Bs,p(R

d). (4.2)

The embedding (4.2) fails when α= s+d/p, because for 1≤ p≤2, s=−d/p and α=0,
there holds

B−d/p,p(R
d) →֒ Lp(Rd)=L

p
0 (R

d).

We refer to Remark 4.1 for a further discussion about α= s+d/p 6=0.

Proof of Theorem 4.1. For any f ∈L
p

α (R
d), write f =Sα(g) with g∈Lp(Rd). Recalling the

fact that for any x∈Rd, Ĝα(x)=(1+4π2|x|2)−α/2, we obtain

‖ f ‖υs
=
∫

Rd
‖x‖s

1 |Ĝα(x)||ĝ(x)|dx≤max(1,ds/2)
∫

Rd
|x|s(1+4π2|x|2)−α/2|ĝ(x)|dx.
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A straightforward calculation gives

∫

Rd

|x|sp

(1+4π2|x|2)pα/2
dx=ωd−1

∫ ∞

0

rsp+d−1

(1+4π2r2)pα/2
dr

=
ωd−1

(2π)d+sp

∫ ∞

0

td−1+sp

(1+t2)pα/2
dt.

Let t= tanθ. Rewrite the above integral as

∫

Rd

|x|sp

(1+4π2|x|2)pα/2
dx=

ωd−1

(2π)d+sp

∫ π/2

0
(sinθ)d−1+sp(cosθ)(α−s)p−1−ddθ

=
ωd−1

2(2π)d+sp
B

(
d+sp

2
,
(α−s)p−d

2

)
, (4.3)

where for any z,w>0, B(z,w) is the beta function defined by

B(z,w):=
∫ 1

0
tz−1(1−t)w−1dt.

By Hölder’s inequality, the Hausdorff-Young inequality (2.1) and (4.3), we obtain

‖ f ‖υs
≤max(1,ds/2)

∥∥∥|·|s(1+4π2|·|2)−α/2
∥∥∥

Lp(Rd)
‖ĝ‖Lp′ (Rd)

≤max(1,ds/2)
∥∥∥|·|s(1+4π2|·|2)−α/2

∥∥∥
Lp(Rd)

‖g‖Lp(Rd)

=Cs‖ f ‖
L

p
α (Rd)

with

Cs=
max(1,ds/2)

(2π)s+d/p

(ωd−1

2

)1/p
B1/p

(
d+sp

2
,
(α−s)p−d

2

)
.

The constant Cs is finite provided that α> s+d/p>0.
Next, via Young’s inequality and f (x)=Sα(g)(x), we have

‖ f ‖Lp(Rd)≤‖Gα‖L1(Rd)‖g‖Lp(Rd)=‖g‖Lp(Rd)=‖ f ‖
L

p
α (Rd) .

This gives (4.2).

Now we study the embedding between the Barron spectrum space and the Besov
space, which is defined by

Definition 4.2. [57] Let Φ(Rd) be the set of all systems φ={φj}∞
j=0⊂S (Rd) such that





supp φ0⊂Γ0:=
{

x∈R
d | |x|<2

}
,

supp φj⊂Γj:=
{

x∈R
d | 2j−1≤|x|≤2j+1

}
, j=1,2,3,··· .
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For every multi-index α there exists a positive number cα such that for all j = 0,1,2,··· ,
and for all x∈Rd,

2j|α||∇αφj(x)|≤ cα,

and for every x∈Rd, ∑
∞
j=0φj(x)=1.

Let s∈R and 1≤ p,q≤∞. Let φ={φj}∞
j=0∈Φ(Rd). Define

Bs
p,q(R

d):=
{

f ∈S
′(Rd) | ‖ f ‖Bs

p,q(R
d)<∞

}

with

‖ f ‖Bs
p,q(R

d) :=

(
∞

∑
j=0

2jsq

∥∥∥∥
(

φj f̂
)∨∥∥∥∥

q

Lp(Rd)

)1/q

.

Theorem 4.2. (i) For 1≤ p≤2, and s>−d/p, there holds

B
s+d/p
p,1 (Rd) →֒Bs,p(R

d). (4.4)

(ii) If 1≤ p≤2 and α> s+d/p>0, then for all 1≤q≤∞,

Bα
p,q(R

d) →֒Bs,p(R
d). (4.5)

(iii) For 1≤ p≤2 and s∈R, there holds

Bs,p(R
d) →֒Bs

∞,1(R
d). (4.6)

Taking s= 0 and p= 1 in (4.4), we find that the Bump algebra Bd
1,1(R

d) [40] embeds

into B0,1(R
d). The Bump algebra has been used as the target function space in [17] to

measure the degree of approximation for the neural network.

Proof. (i) For any s>−d/p and for any 1≤p≤2, It follows from the facts [57, Proposition
2 §2.3.2 and Proposition, §2.5.7]

B
s+d/p
p,1 (Rd) →֒B0

p,1(R
d) →֒ Lp(Rd).

This gives that

‖ f ‖Lp(Rd).‖ f ‖
B

s+d/p
p,1 (Rd)

. (4.7)

It remains to bound ‖ f ‖υs
.

By definition,

supp φj∩Γk 6=∅

implies that |j−k|≤1, j,k=0,1,··· .
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A direct calculation gives that for any j=0,1,··· ,
∫

Γj

‖x‖sp
1 dx≤2(j+1)(d+sp)max(1,dsp/2)ωd−1

d+sp
.

By the Hausdorff-Young inequality, we get

∫

Γj

‖x‖s
1 | f̂ (x)|dx=

∫

Γj

∞

∑
k=0

‖x‖s
1 φk(x)| f̂ (x)|dx

=
j+1

∑
k=j−1

∫

Γj

‖x‖s
1 φk(x)| f̂ (x)|dx

≤
j+1

∑
k=j−1

∫

Γj

‖x‖s
1 |φk(x) f̂ (x)|dx

≤
j+1

∑
k=j−1

(∫

Γj

‖x‖sp
1 dx

)1/p(∫

Γj

|φk(x) f̂ (x)|p′ dx

)1/p′

≤
(

2d+spmax(1,dsp/2)ωd−1

d+sp

)1/p

2j(s+d/p)
j+1

∑
k=j−1

∥∥∥(φk f̂ )∨
∥∥∥

Lp(Rd)
.

Therefore, summing over j, we obtain

‖ f ‖υs
≤

∞

∑
j=0

∫

Γj

‖x‖s
1 | f̂ (x)|dx

≤3

(
2d+spmax(1,dsp/2)ωd−1

d+sp

)1/p ∞

∑
j=0

2j(s+d/p)
∥∥∥(φj f̂ )∨

∥∥∥
Lp(Rd)

.‖ f ‖
B

s+d/p
p,1 (Rd)

, (4.8)

which together with (4.7) leads to

‖ f ‖Bs,p(Rd).‖ f ‖
B

s+d/p
p,1 (Rd)

.

This gives (4.4).
(ii) For any α> s+d/p>0, 1≤ p≤2 and 1≤q≤∞, we rewrite (4.8) as

‖ f ‖υs
.

∞

∑
j=0

2j(s+d/p)
∥∥∥(φj f̂ )∨

∥∥∥
Lp(Rd)

≤
(

∞

∑
j=0

2qjα
∥∥∥(φj f̂ )∨

∥∥∥
q

Lp(Rd)

)1/q(
∞

∑
j=0

2q′ j(s+d/p−α)

)1/q′

.‖ f ‖Bα
p,q(R

d) .
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Moreover,
Bα

p,q(R
d) →֒B0

p,1(R
d) →֒ Lp(Rd).

This gives
‖ f ‖Lp(Rd).‖ f ‖Bα

p,q(R
d) .

A combination of the above two inequalities leads to (4.5).
(iii) For any f ∈Bs,p with 1≤ p≤2, by Corollary 2.2, there holds

‖ f ‖Bs
∞,1(R

d)=
∞

∑
j=0

2js

∥∥∥∥
(

φj f̂
)∨∥∥∥∥

L∞(Rd)

≤
∞

∑
j=0

2js
∥∥∥φj f̂

∥∥∥
L1(Rd)

≤
∥∥∥φ0 f̂

∥∥∥
L1(Rd)

+
∞

∑
j=1

2js
∥∥∥φj f̂

∥∥∥
L1(Rd)

.
∥∥∥ f̂
∥∥∥

L1(Rd)
+

∞

∑
j=0

∫

Γj

‖x‖s
1 | f̂ (x)|dx

.‖ f ‖Bs,p
+
∫

Rd
‖x‖s

1 | f̂ (x)|dx.‖ f ‖Bs,p
.

This gives (4.6).

The endpoint s=−d/p in Theorem 4.2 is subtle. We have the following result.

Corollary 4.1. (i) There holds
B0

1,1(R
d) →֒B−d,1(R

d). (4.9)

(ii) For 1≤ r< p≤2, there holds

B0
p,1(R

d)∩Lr(Rd) →֒B−d/p,p(R
d). (4.10)

Proof. (i) The first embedding (4.9) is a combination of the following well-known fact [57,
Remark 2 in §2.5.8]

B0
1,1(R

d) →֒ Ḟ0
1,2(R

d)=H1(Rd)

and the embedding H1(Rd) →֒B−d,1(R
d) proved in Theorem 2.3.

(ii) To prove (4.10), we firstly claim

∫

Rd
(1+|x|)−d/p| f̂ (x)|dx≤3

(
2dωd−1

d

)1/p

‖ f ‖B0
p,1(R

d) . (4.11)

Given the above inequality, using the Hausdorff-Young inequality, we have

‖ f ‖υ−d/p
≤
∫

|x|≤1
|x|−d/p| f̂ (x)|dx+

∫

|x|>1
|x|−d/p| f̂ (x)|dx

≤
(∫

|x|≤1
|x|−dr/pdx

)1/r∥∥∥ f̂
∥∥∥

Lr′ (Rd)
+2d/p

∫

Rd
(1+|x|)−d/p| f̂ (x)|dx

≤
(

pωd−1

d(p−r)

)1/r

‖ f ‖Lr(Rd)+3

(
4dωd−1

d

)1/p

‖ f ‖B0
p,1(R

d) ,
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which together with (4.7) gives (4.10).
It remains to prove (4.11). We follow the line that leads to (4.8). A direct calculation

gives
∫

Γ0

(1+|x|)−d dx≤ωd−1

∫ 2

0
rd−1dr=

ωd−12d

d
,

and for j∈N, there holds

∫

Γj

(1+|x|)−d dx=ωd−1

∫ 2j+1

2j−1

rd−1

(1+r)d
dr≤ωd−1

∫ 2j+1

2j−1
r−1dr=2ωd−1 ln2.

For j=0,1,··· , using the Hausdorff-Young inequality, we obtain

∫

Γj

(1+|x|)−d/p| f̂ (x)|dx=
j+1

∑
k=j−1

∫

Γj

(1+|x|)−d/pφk(x)| f̂ (x)|dx

≤
j+1

∑
k=j−1

∫

Γj

(1+|x|)−d/p|φk(x) f̂ (x)|dx

≤
j+1

∑
k=j−1

(∫

Γj

(1+|x|)−d dx

)1/p(∫

Γj

|φk(x) f̂ (x)|p′ dx

)1/p′

≤
(

2dωd−1

d

)1/p j+1

∑
k=j−1

∥∥∥(φk f̂ )∨
∥∥∥

Lp(Rd)
.

Therefore, summing over j, we obtain

∫

Rd
(1+|x|)−d/p| f̂ (x)|dx≤

∞

∑
j=0

∫

Γj

(1+|x|)−d/p| f̂ (x)|dx

≤3

(
2dωd−1

d

)1/p ∞

∑
j=0

∥∥∥(φj f̂ )∨
∥∥∥

Lp(Rd)

≤3

(
2dωd−1

d

)1/p

‖ f ‖B0
p,1(R

d) .

This yields (4.11) and finishes the proof.

A combination of Theorem 4.2, Corollary 4.1 and embedding (4.6) yields the following
chains of embedding.

Corollary 4.2. For 1≤ p≤2 and s>−d/p,

B
s+d/p
p,1 (Rd) →֒Bs,p(R

d) →֒Bs
∞,1(R

d),
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and

B0
1,1(R

d) →֒B−d,1(R
d) →֒B−d

∞,1(R
d),

B0
p,1(R

d)∩Lr(Rd) →֒B−d/p,p(R
d) →֒B

−d/p
∞,1 (Rd), 1≤ r< p≤2.

As a consequence of Theorem 4.2, we establish the relationship between the Sobolev
space and the Barron spectrum space.

Definition 4.3. Let s>0 and 1≤ p<∞. The Sobolev space Ws,p(Rd) is defined as a class
of functions that together with all the distributional derivatives of order less than s are in
Lp(Rd) with finite norm

‖ f ‖Ws,p(Rd) := ∑
‖β‖1≤k

∥∥∥∇β f
∥∥∥

Lp(Rd)
+

(∫

Rd

∫

Rd

|∇k f (x)−∇k f (y)|p
|x−y|d+(s−k)p

dxdy

)1/p

,

where k=⌊s⌋ is the integer part of s. The double integral is dropped when s is an integer,
and we make the obvious modification when p=∞.

Theorem 4.3. (i) If 1≤ p≤2 and α> s+d/p>0, then

Wα,p(Rd) →֒Bs,p(R
d). (4.12)

(ii) If s>−d is not an integer or if s>−d is an integer and d≥2, then

Ws+d,1(Rd) →֒Bs,1(R
d). (4.13)

The inclusion (4.12) essentially fails for α= s+d/p with 1< p≤2; see Remark 4.1.
To prove Theorem 4.3, we need the following Hardy type inequality proved in [32].

Lemma 4.1. Let k∈N and d≥2. There exists C such that for any f ∈Wk,1(Rd),

∫

Rd
|x|k−d| f̂ (x)|dx≤C

∥∥∥∇k f
∥∥∥

L1(Rd)
.

Proof of Theorem 4.3. (i) To prove (4.12), we distinguish the following two cases.
Case a). If α is not an integer and α>s+d/p with 1≤ p≤2, then the embedding (4.12)

follows from (4.5) with q = p and the equivalence between the Sobolev space and the
Besov space, i.e.,

Wα,p(Rd)=Bα
p,p(R

d) →֒Bs,p(R
d).

Case b). If α is an integer and α> s+d/p with 1≤ p≤2, then (4.12) follows from (4.5)
with q=∞ and the embedding Wα,p(Rd) →֒Bα

p,∞(R
d), i.e.,

Wα,p(Rd) →֒Bα
p,∞(R

d) →֒Bs,p(R
d).
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(ii) When s+d is not an integer, we obtain (4.13) by taking p=1 in (4.4) and the equiv-
alence Bs+d

1,1 (Rd)=Ws+d,1(Rd).
If s+d is an integer, then we take k= s+d>0 in Lemma 4.1 and obtain

‖ f ‖υs
.
∥∥∥∇s+d f

∥∥∥
L1(Rd)

.

This immediately implies

‖ f ‖Bs,1(Rd).‖ f ‖Ws+d,1(Rd) .

Hence (4.13) is valid.

We also study the relationship between the Barron spectrum space and the Sobolev
space in another direction. The starting point is Corollary 2.2, which shows that Fourier
inversion theorem is valid for any f∈Bs,p(Rd) with s≥0, and we may study the derivative

of f . We firstly introduce the Hölder space Cs(Rd); see [57].

Definition 4.4. Let s>0, k=⌊s⌋ and γ= s−⌊s⌋. The space Cs(Rd) is defined as a class of
k−th order differentiable functions f with finite norm

‖ f ‖Cs(Rd) := sup
x∈Rd

| f (x)|+ max
‖α‖1=k

sup
x∈Rd

|∇α f (x)|

+ max
‖α‖1=k

sup
x,y∈Rd,x 6=y

|∇α f (x)−∇α f (y)|
|x−y|γ .

Theorem 4.4. Let 1≤ p≤2 and s≥0. Then

Bs,p(R
d) →֒Cs(Rd) (4.14)

with

‖∇s f ‖C0(Rd)≤ (2π)s‖ f ‖υs
when s∈N∪{0}. (4.15)

and

|∇k f (x)−∇k f (y)|≤2(2π)s(1+dγ/2)‖ f ‖υs
|x−y|γ a.e. x,y∈R

d and k=⌊s⌋. (4.16)

Theorem 4.4 shows that any function in Bs,p(Rd) with a nonnegative index s is a

smooth function. In particular, any function in Bs,p(Rd) with s∈(0,1) is a Hölder function

with a Hölder constant 2(2π)s(1+ds/2)‖ f ‖υs
.

Proof of Theorem 4.4. (i) By Corollary 2.2, we obtain f̂ ∈L1(Rd) for any f ∈B1,p(R
d). There-

fore, the Fourier inversion holds true: For a.e. x∈Rd,

f (x)=
∫

Rd
f̂ (ξ)ei2πx·ξ dξ.
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This implies that f is a bounded and continuous function and

‖ f ‖C0(Rd).‖ f ‖B1,p(Rd) .

Next, for any j∈{1,··· ,d} and −∞<h<∞, we write, for a.e. x∈Rd,

f (x+hej)− f (x)

h
=
∫

Rd
f̂ (ξ)ei2πx·ξ ei2πhξ j −1

h
dξ.

By the fact that ‖ f ‖υ1
<∞, we conclude that for any j∈{1, ··· ,d},

∂ f

∂xj
(x)=2πi

∫

Rd
ξ j f̂ (ξ)ei2πx·ξ dξ a.e. x∈R

d, (4.17)

and hence ∇ f is continuous and

‖∇ f ‖C0(Rd)≤2π‖ f ‖υ1
.

This immediately implies the embedding (4.14) with s=1.
Suppose (4.14) holds true with s=k. This means that for any f ∈Bk,p(R

d), f ∈Ck(Rd).
We are ready to prove that (4.14) is also valid for s=k+1. By Theorem 2.2, we obtain that
for any f ∈Bk+1,p(R

d), f ∈Bk,p(R
d) and then

∂α f (x)=(2πi)k
∫

Rd
ξα f̂ (ξ)ei2πx·ξ dξ a.e. x∈R

d,

where ξα = ξα1
1 ···ξαd

d with nonnegative integers αi and ‖α‖1 = ‖(α1,··· ,αd)‖1 = k. By the
inductive hypothesis, we have

∥∥∥∇k f
∥∥∥

C0(Rd)
≤ (2π)k‖ f ‖Bk,p(Rd) . (4.18)

Proceeding along the same line that leads to (4.17), we write that for any j∈{1,··· ,d}, h∈R

and ‖α‖1= k,

∂α f (x+hej)−∂α f (x)

h
=(2πi)k

∫

Rd
ξα f̂ (ξ)ei2πx·ξ ei2πhξ j −1

h
dξ a.e. x∈R

d.

From the fact that ‖ f ‖υk+1
<∞, it follows that for any j∈{1, ··· ,d},

∂(∂α) f

∂xj
(x)=(2πi)k+1

∫

Rd
ξαξ j f̂ (ξ)ei2πx·ξ dξ, a.e. x∈R

d.

In particular, we obtain that for any multi-index α with ‖α‖1= k+1,

∂α f (x)=(2πi)k+1
∫

Rd
ξα f̂ (ξ)ei2πx·ξ dξ, a.e. x∈R

d. (4.19)
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This immediately gives us that for α=(α1,··· ,αd) with ‖α‖1= k+1,

‖∇α f ‖C0(Rd)≤ (2π)k+1‖ f ‖υk+1
,

which together with (4.18) gives that the embedding (4.14) is valid with s=k+1. By induc-
tion, the embedding (4.14) is valid for any s∈N. The estimate (4.15) follows from (4.19).

(ii) Recall that Bs,p(Rd) →֒Bk,p(R
d) by Theorem 2.2. Then for any s> 0 with k= ⌊s⌋

and f ∈Bs,p(Rd), we conclude f ∈Bk,p(R
d). Hence the identity (4.19) is true with ‖α‖1=k.

Thus, for any a.e. x,y∈Rd,

∂α f (x)−∂α f (y)=(2πı)k
∫

Rd
ξα f̂ (ξ)

(
ei2πx·ξ−ei2πy·ξ

)
dξ.

By the inequality that for any x,y,ξ∈Rd,

∣∣∣ei2πx·ξ−ei2πy·ξ
∣∣∣≤min(2,2π|x−y||ξ|),

we write, for any a.e. x,y∈Rd,

|∂α f (x)−∂α f (y)|≤ (2π)k
∫

Rd
|ξ|k | f̂ (ξ)|

∣∣∣ei2πx·ξ−ei2πy·ξ
∣∣∣dξ

≤ (2π)k
∫

Rd
‖ξ‖k

1 | f̂ (ξ)|min(2,2π|x−y||ξ|)dξ

≤ (2π)k+1|x−y|
∫

|ξ|≤π−1|x−y|−1
‖ξ‖k

1 |ξ|| f̂ (ξ)|dξ

+2(2π)k
∫

|ξ|>π−1|x−y|−1
‖ξ‖k

1 | f̂ (ξ)|dξ.

A direct calculation gives us that

∫

|ξ|≤π−1|x−y|−1
‖ξ‖k

1 |ξ|| f̂ (ξ)|dξ ≤
∫

|ξ|≤π−1|x−y|−1
‖ξ‖s

1 |ξ|1−γ | f̂ (ξ)|dξ

≤πγ−1|x−y|γ−1
∫

|ξ|≤π−1|x−y|−1
‖ξ‖s

1 | f̂ (ξ)|dξ

≤πγ−1|x−y|γ−1‖ f ‖υs
,

and
∫

|ξ|>π−1|x−y|−1
‖ξ‖k

1 | f̂ (ξ)|dξ =
∫

|ξ|>π−1|x−y|−1
‖ξ‖s

1‖ξ‖−γ
1 | f̂ (ξ)|dξ

≤ (π
√

d)γ|x−y|γ‖ f ‖υs
.

Combining the above three inequalities, we conclude that for any a.e. x,y∈Rd,

|∂α f (x)−∂α f (y)|≤2k+1πs(1+dγ/2)‖ f ‖υs
|x−y|γ . (4.20)
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This together with (4.18) immediately implies

‖ f ‖Cs(Rd).‖ f ‖Bs,p(Rd) .

Hence the embedding (4.14) holds true when s is positive but it is not an integer.

The estimate (4.16) follows from (4.20).

The proof of Theorem 4.4 is elementary and it yields the precise estimates (4.15)
and (4.16). If we give up these two estimates, then the relation (4.14) may be proved
in a much simpler way. Resorting to the relation (4.6), and using Bs

∞,1(R
d) →֒Bs

∞,∞(R
d),

we get Bs,p(Rd) →֒Bs
∞,∞(R

d). This immediately implies (4.14).

Remark 4.1. It follows from Corollary 4.2, Theorem 4.3 and Theorem 4.4 that the Barron
spectrum space is an intermediate space among certain Besov spaces and certain Sobolev
spaces. We may also exploit these results to show that the embedding (4.12) is sharp.

(i) If s is a non negative integer and α> s+d/p with 1≤ p≤2, then

Wα,p(Rd) →֒Bs,p(R
d) →֒Cs(Rd) →֒Ws,∞(Rd). (4.21)

(ii) The embedding Ws+d/p,p(Rd) →֒Bs,p(Rd) fails when s≥0 and 1< p≤2. Otherwise,
we would have

Ws+d/p,p(Rd) →֒Bs,p(R
d) →֒Cs(Rd).

Hence Ws+d/p,p(Rd) →֒Cs(Rd) for 1< p≤2. This is absurd.

The exceptional case is p=1, i.e.,

Ws+d,1(Rd) →֒Bs,1(R
d) →֒Cs(Rd) →֒Ws,∞(Rd) s∈N∪{0},d≥2,

Ws+d,1(Rd) →֒Bs,1(R
d) →֒Cs(Rd) s≥0,s /∈N∪{0}.

(iii) The inclusion L
p

s+d/p(R
d) →֒ Bs,p(Rd) essentially fails for 1 < p ≤ 2 because

L
p

s+d/p(R
d)=Ws+d/p,p(Rd) when s+d/p is a positive integer.

5 The radial functions in Bs,p(Rd)

The functions with rotation symmetry in Bs,p(Rd) frequently appear in the radial basis

functions neural network; see [23, 41]. Denote by Brad
s,p (R

d) the set consisting of radial

functions in Bs,p(Rd). The theorem below shows that the functions in Brad
s,p (R

d) with
certain p are smooth, and they become smoother as increasing of the dimension, while at
a cost of an exponentially large embedding constant with respect to the dimension.
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Theorem 5.1. Let d>1,1≤ p<2d/(d+1) and s≥0. Then

Brad
s,p (R

d) →֒W
1
2 (s+d/p′),2(Rd) (5.1)

with

‖ f ‖
W

1
2 (s+d/p′),2(Rd)

≤
(√

Ad

2
+C(p;0,s)1−p/2

)
‖ f ‖Bs,p(Rd) ,

where for d≥3,

Ad=5

(
(d−1)p

2d−(d+1)p

)1/p′

(Γ(d/2))
d+1

(d−1)p′ π
− d

2p′ ,

and for d=2,

A2=

(
p

π2(4−3p)

)1/p′

.

Remark 5.1. The remarkable point of this theorem is that the smoothness index of the
functions in Brad

s,p (R
d) may exceed s when 1<p<2d/(d+1) and d is sufficiently large, i.e.,

d>sp′. Tracking the constant in (5.1), we find it is exponential large with respect to d, i.e.,

Imbedding constant∼
(

d

2πe

)d/(4p′)

d1/[4p′] as d→∞.

It follows from (5.1) that Brad
s,1 (R

d) →֒Ws/2,2(Rd). This means that the radial functions

in Bs,1(R
d) do not become smoother in high dimension. This may be due to the fact that

the Fourier transform of the radial function in L1(Rd) does not have a uniform decaying
rate at infinity; see [52].

To prove Theorem 5.1, we recall the following representation formula for the Fourier
transform acting on the radial function, which may be found in [52, Theorem 3.3 in
Chapter IV and p. 155, footnote 8].

Lemma 5.1. Let d≥2 and Bessel function J(d−2)/2 be as in (3.3). Suppose f is a radial function

in Lp(Rd) with 1≤ p≤ 2, thus f (x)= f0(|x|) for a.e.x∈Rd. Then the Fourier transform f̂ is

also radial and has the form f̂ (x)=F0(|x|) for all x∈Rd, where

F0(|x|)=F0(r)=
2π

r[(d−2)/2]

∫ ∞

0
f0(s)J(d−2)/2(2πrs)sd/2ds.

We also need a pointwise estimate for the spherical Bessel function.

Lemma 5.2. Let jν be the spherical Bessel function as in (3.2).

(i) If ν≥1/2, then for any x>0,

|jν(x)|≤5ν1/62νΓ(ν+1)|x|−1/2−ν. (5.2)
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(ii) There holds

sup
x>0

|x1/2 j0(x)|≤
√

2

π
. (5.3)

The estimate (5.2) may be proved by checking the constant in [43, Theorem 2.1],
and (5.3) may be found in [55, Theorem 7.31.2].

Proof of Theorem 5.1. We prove p=1 firstly. Using Hölder’s inequality and the Hausdorff-
Young inequality, we obtain

∫

Rd
‖x‖s

1 | f̂ (x)|2 dx≤‖ f ‖υs

∥∥∥ f̂
∥∥∥

L∞(Rd)
≤‖ f ‖υs

‖ f ‖L1(Rd)≤
1

4
‖ f ‖2

Bs,1
.

It follows from (2.7) that
‖ f ‖2

L2(Rd)≤C(1;0,s)‖ f ‖2
Bs,1

.

A combination of the above two inequalities gives (5.1) with p=1.
It remains to consider 1< p<2d/(d+1). For any f ∈Brad

s,p (R
d), let f (x)= f0(|x|). By

Lemma 5.1, we have

f̂ (x)=ωd−1

∫ ∞

0
jd/2−1(2πr|x|) f0(r)r

d−1dr. (5.4)

We firstly assume d≥3. It follows from Hölder’s inequality that

∣∣∣∣
∫ ∞

0
jd/2−1(2πr|x|) f0(r)r

d−1dr

∣∣∣∣

≤
(∫ ∞

0
| f0(r)|prd−1dr

)1/p(∫ ∞

0
|jd/2−1(2πr|x|)|p′ rd−1dr

)1/p′

=
1

ω
1/p
d−1(2π|x|)d/p′

‖ f ‖Lp(Rd)

(∫ ∞

0
|jd/2−1(s)|p

′
sd−1ds

)1/p′

.

Note that for ν≥0,

jν(x)=
Γ(ν+1)

Γ(ν+1/2)Γ(1/2)

∫ π

0
eixcosθ sin2ν θdθ,

which immediately implies

|jν(x)|≤ Γ(ν+1)

Γ(ν+1/2)Γ(1/2)

∫ π

0
sin2ν θdθ=1. (5.5)

Let K>0 be a constant to be determined later on. By (5.5), we get

∫ K

0
|jd/2−1(s)|p

′
sd−1ds≤

∫ K

0
sd−1ds=

Kd

d
.
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Using (5.2) and noting 1< p<2d/(d+1), we obtain

∫ ∞

K
|jd/2−1(s)|p

′
sd−1ds≤ [5(d/2−1)1/62d/2−1Γ(d/2)]p

′
∫ ∞

K
sd−1−(d−1)p′/2ds

≤ [5d1/62d/2−7/6Γ(d/2)]p
′ Kd−(d−1)p′/2

[(d−1)p′/2]−d
.

The above two estimates give us that

∫ ∞

0
|jd/2−1(s)|p

′
sd−1ds≤ Kd

d
+[5d1/62d/2−7/6Γ(d/2)]p

′ Kd−(d−1)p′/2

[(d−1)p′/2]−d
.

Optimizing with respect to K, choosing

K=
(

5d1/62d/2−7/6Γ(d/2)
)2d/[d−1]

,

and noting 1< p<2d/(d+1), we obtain

sup
|x|>0

|x|d/p′ | f̂ (x)|≤ 52d/[(d−1)p′]2
− d+3

3(d−1)p′

(1−2d/[(d−1)p′ ])1/p′ [Γ(d/2)]
d+1

(d−1)p′ π
− d

2p′ ‖ f ‖Lp(Rd)

≤Ad‖ f ‖Lp(Rd) .

Using the above inequality, we obtain, for s≥0, there holds
∫

Rd
|x|s+d/p′ | f̂ (x)|2dx≤ sup

|ξ|>0

|x|d/p′ | f̂ (x)|
∫

Rd
‖x‖s

1 | f̂ (x)|2dx

≤Ad‖ f ‖Lp(Rd)‖ f ‖υs
≤ Ad

4
‖ f ‖2

Bs,p(Rd) .

Proceeding along the same line that leads to (2.7), we obtain

‖ f ‖2
L2(Rd)≤C(p;0,s)2−p‖ f ‖2

Bs,p(Rd) .

A combination of the above two inequalities gives that f ∈Ws/2+d/(2p′),2(Rd).
The proof for d=2 is the same provided that we use (5.3) in lieu of (5.2).

In what follows, we study the decaying behavior of the functions in Brad
s,p (R

d). The
decaying behavior of the radial function in various function spaces dates back to the so-
called Strauss’ inequality [53]; see also [36].

Theorem 5.2. Let d≥2, 1≤ p≤2 and s≥0. Every function f ∈Brad
s,p (R

d) is almost everywhere
equal to a function f0, which is a continuous function except x 6=0 such that

sup
x∈Rd\{0}

|x|(d−1)/2| f0(x)|≤C‖ f ‖γ

Lp(Rd)
‖ f ‖1−γ

υs
, (5.6)
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where C>0 is a constant depending on d,p and s, and

γ=
s+(d−1)/2

s+d/p
.

Proof. It follows from Corollary 2.2 that Fourier inversion theorem is valid for any f ∈
Bs,p(Rd) with s≥0. Denote f0(r)= f (|x|). The representation formula (5.4) is also valid
by exchanging the role of f and its Fourier transform, i.e., for any r>0,

f0(r)=ωd−1

∫ ∞

0
jd/2−1(2πrρ) f̂0(ρ)ρ

d−1dρ.

We firstly consider d≥3. By (5.2), we have that for any r>0,

| f0(r)|≤5
√

2π(d/2−1)1/6r(1−d)/2
∫ ∞

0
| f̂0(ρ)|ρ(d−1)/2dρ.

Let K>0 be a constant to be specified later on. By Hölder’s inequality and the Hausdorff-
Young inequality, we obtain

∫ K

0
| f̂0(ρ)|ρ(d−1)/2dρ≤

(∫ K

0
ρ(d−1)(p/2−p/p′)dρ

)1/p(∫ K

0
| f̂0(ρ)|p

′
ρd−1dρ

)1/p′

≤ω
−1/p′

d−1

(∫ K

0
ρ(d−1)(p/2−p/p′)dρ

)1/p∥∥∥ f̂
∥∥∥

Lp′ (Rd)

≤ K[d/p−(d−1)/2]

ω
1/p′

d−1 (d−(d−1)p/2)1/p
‖ f ‖Lp(Rd) .

It follows from (5.2) and s≥0 that
∫ ∞

K
| f̂0(ρ)|ρ(d−1)/2dρ≤ω−1

d−1K(1−d)/2−s‖ f ‖υs
.

Combining the above two inequalities and optimize with respect to K, i.e.,

K=

(
‖ f ‖υs

‖ f ‖Lp(Rd)

)1/(s+d/p)(
2s+d−1

2(d/p−(d−1)/2)1/p′

)1/(s+d/p)( p

ωd−1

)1/(d+sp)

,

we obtain (5.6).
The proof for d=2 is the same provided that we replace (5.3) by (5.2).

6 Application to neural network approximation

As an application of Bs,p(Rd), we prove Lq approximation rate for two-layer neural net-

work (NN) with Bs,p(Rd) as the target function space. We shall not give a literature
review on the approximation of NN, and refer to [45] and [14] for surveys.
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Let σ be an activation function on R and a two-layer neural network is defined as

Mn(σ):=

{
h(x)=

n

∑
i=1

ciσ(ai ·x+bi) | bi, ci∈R, ai, x∈R
d

}
.

We consider the approximation over the hypercube D:=(−1/2,1/2)d , and define γ(q)=
min(1−1/q,1/2) for any 1≤q<∞. The main result reads

Theorem 6.1. For any 1≤ q<∞ and 1≤ p≤ 2, suppose that f ∈B1−1/q,p(R
d). If there exist

α>q/(q−1) and A>0 such that

|σ(t)|≤A(1+|t|)−α , (6.1)

then there exists fn ∈Mn(σ) such that

‖ f − fn‖Lq(D)≤C
√

q d1/[2q]n−γ(q)
(
‖ f ‖υ1−1/q

+‖ f ‖υ−1/q

)
, (6.2)

where C depends on σ,x0,A and α, while is independent of q,d and n.
If f ∈Bs,p(Rd) with s≥1−1/q, then (6.2) changes to

‖ f − fn‖Lq(D)≤C
√

q d1−1/[2q]−sn−γ(q)‖ f ‖Bs,p(Rd) . (6.3)

The above theorem proves Lq approximation bound for the target function belonging
to the Barron spectrum space for commonly used activation functions. The rate γ(q) is
the same with [15], which may be improved when 1≤q<2; cf., Corollary 6.1.

MAKOVOZ [38, Theorem 3] proved Lq−error when σ is a sigmoid with the rate γ(q)=
1/2+1/[q∗d], where q∗ is the smallest even integer satisfying q∗≥q, the extra term 1/[q∗d]
is significant for small d while vanishes when d→∞. This rate is better than γ(q) in (6.2),
while the finiteness of ‖ f ‖υ1

has been assumed, and the dependence of the error bound
on d and q is unclear.

Taking s=1/2 and q=2 in (6.3), we obtain

‖ f − fn‖L2(D)≤Cd1/4n−1/2‖ f ‖B1/2,p(Rd) .

This recovers [48, m=0 in Theorem 2], in which the authors have assumed that ‖ f ‖υ0
+

‖ f ‖υ1
is finite. Recently, the same authors improved this result in [49, Theorem 5] when

σ is a sigmoid under weaker regularity on f , i.e., a finite ‖ f ‖υ0
+‖ f ‖υ1/2

suffices for the

above error bound, while this improvement is achieved at the cost of a constant that
depends on the dimension exponentially. We proved the algebraical dependence of the
error on the dimension, which has been ignored in [48].

If the activation function is ReLU, i.e., σ(x)=max(x,0), then Breiman [9] proved

‖ f − fn‖L2(D)≤Cn−1/2‖ f ‖υ2
,
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where the dependence of the error bound on d is unknown. We may infer Lq-estimate
from the uniform approximation result in [31, Theorem 2]: there exists a universal con-
stant C such that

‖ f − fn‖Lq(D)≤‖ f − fn‖L∞(D)≤Cmax
(√

logn,
√

d
)

n−1/2−1/d‖ f ‖υ2
.

If we take s=1 and p=2 in (6.3), then

‖ f − fn‖Lq(D)≤C
√

qd−1/[2q]n−1/2‖ f ‖B1,2(Rd) .

The convergence rate is less sharp than that in [31, Theorem 2], while our result requires
a smaller index on the spectrum norm with an algebraic decay on the dimension.

The estimate (6.2) is invalid for q=∞, while we believe similar estimate remains true
if we exploit the deep sampling theorem of Dudley as in [38, 39] and [31], which will be
left for further pursuit.

Remark 6.1. As observed in [48, Corollary 1], the decaying condition (6.1) need not be
satisfied by σ per se, a finite translation of σ suffices. Moreover, this condition is stronger
than the one in [48], i.e., they have assumed α=1. Nevertheless, this condition is satisfied
by a finite shift of the commonly used activation functions such as sigmoid, arctan, hy-
perbolic tangent, ReLU, and k−th power of ReLU for k=0,1,2,··· ; We refer to [48, Table
1] for an elaboration on this point.

Our proof is based on the representation (6.4), which has been assumed in the proof
of several approximation results for NN; see, e.g., [30]. While this formula is valid for
functions in Bs,p(Rd) with s ≥ 0 as proved in Corollary 2.2. Another tool in proving
Theorem 6.1 is the cube slicing theorem of Ball [1, Theorem 4], which helps us to clarify
the dependence of the estimate on the dimension.

Lemma 6.1. Define the hyperplane

Ht :=
{

x∈R
d |ω ·x= t, |ω|=1

}

for any t∈R. Then

|Ht∩D|≤
√

2,

where D=(−1/2,1/2)d is the hypercube.

Proof of Theorem 6.1. By the growth condition on σ, we conclude that σ∈ L1(R), and
there exists x0 6= 0 such that σ̂(x0) 6= 0. For any f ∈ B1−1/q,p(R

d) with 1 ≤ q < ∞, using

Corollary 2.2, we have f̂ ∈L1(Rd), hence Fourier inversion theorem is true. Invoking the
fact that σ∈L1(R) again, using Fubini’s theorem and changing of variables, we obtain

f (x)=
∫

Rd

∫

R

σ((ξ/x0)·x+s)

σ̂(x0)
f̂ (ξ)e−i2πsx0 dsdξ. (6.4)
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We rewrite the above representation as an expectation as [2]. Let z=(ξ,s)∈Z with Z :=
Rd×R. For any 1<q≤1/(1−s) when 0< s<1 and 1<q<∞ for s≥1, we define

F(x;z):=

(‖ξ‖1

|x0|

)1/q
σ((ξ/x0)·x+s)

σ̂(x0)
cos[2π(sx0+θ(ξ)]h̃−1(z),

h(z):=

( |x0|
‖ξ‖1

)1/q

| f̂ (ξ)|h̃(z) with h̃(z):=

(
1+max

(
0,|s|− ‖ξ‖1

2|x0|

))−α(1−1/q)

,

w(z):=
h(z)

Q
with Q:=

∫

Z
h(z)dz.

Hence, we write f as

f =QEw[F(x;z)] with EwF(x;z):=
∫

Z
F(x;z)w(z)dz.

The neural network approximation may be viewed as

fn(x;z)=
Q

n

n

∑
i=1

F(x;zi),

where z=(z1,··· ,zn), and it is clear that fn ∈Mn(σ).
Let

w=w⊗···⊗w︸ ︷︷ ︸
n

and Z=Z⊗···⊗Z︸ ︷︷ ︸
n

,

and denote w(z)=∏
n
i=1w(zi). For any measurable function G defined over Z , we define

the expectation of G with respect to w as

Ew(G):=
∫

Z
G(z)w(z)dz.

Using Fubini’s theorem again, we obtain

Ew

(
‖ f − fn(·;z)‖q

Lq(D)

)
=
∫

D
Ew| f (x)− fn(x;z)|q dx.

By definition, we write

f (x)− fn(x;z)=
Q

n

n

∑
i=1

(EwF(x;z)−F(x;zi)).

For i=1,··· ,n, we denote Xi(x)=EwF(x;z)−F(x;zi), which is independent and EwXi(x)=
0 for all x ∈ D. By the Marcinkiewicz-Zygmund inequality [13, Theorem 2, p. 386], for
any 1≤q<∞,

Ew

[∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣

q]
≤Cq(q)Ew



(

n

∑
i=1

X2
i

)q/2

, (6.5)
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where

C(q)=





1, 1≤q≤2,

√
2

(
Γ((q+1)/2)√

π

)1/q

, 2<q<∞.

The constant C(q) is optimal; see e.g., [21, 25].
Hence, there holds

Ew

(
‖ f − fn(·;z)‖q

Lq(D)

)
≤
(

QC(q)

n

)q∫

D
Ew



(

n

∑
i=1

X2
i (x)

)q/2

dx.

By Hölder’s inequality, for any a∈Rn and 1<q<∞, there holds

‖a‖2≤n(1/2−1/q)+‖a‖q ,

where (1/2−1/q)+=1/2−1/q if q≥2, and 0 otherwise.
Note the elementary inequality:

(a+b)q ≤2q−1(aq+bq) a,b≥0, 1<q<∞.

Combining the above three inequalities, we obtain

Ew

(
‖ f − fn(·;z)‖q

Lq(D)

)
≤
(

2QC(q)

n

)q

n1+q(1/2−1/q)+
∫

D
Ew|F(x;z)|q dx. (6.6)

It remains to bound Q and Ew|F|q. A direct calculation gives that for any ξ∈Rd,

∫

R

h̃(ξ,s)ds=
∫

|s|≤‖ξ‖1/[2|x0|]
ds+

∫

|s|>‖ξ‖1/[2|x0|]
(1+|s|−‖ξ‖1/[2|x0|])−α(1−1/q)ds

=
‖ξ‖1

|x0|
+

2q

α(q−1)−q

≤max(2q/[α(q−1)−q],1/|x0 |)(1+‖ξ‖1).

This immediately implies

Q≤max(2q/(α(q−1)−q),1/|x0 |)|x0|1/q
(
‖ f ‖υ−1/q

+‖ f ‖υ1−1/q

)
.

For any x∈D,

|s+ξ ·x/x0 |≥max(0,|s|−|ξ ·x|/|x0 |)≥max(0,|s|−‖ξ‖1 /[2|x0|]),

which immediately implies

|σ|q−1h̃−q(z)≤Aq−1(1+|s+ξ ·x/x0 |)−α(q−1)(1+max(0,|s|−‖ξ‖1/[2|x0|]))α(q−1)≤Aq−1.
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Using Fubini’s theorem and the above inequality, we write

∫

D
Ew|F(x;z)|q dx≤

∫

Z

‖ξ‖1

|σ̂(x0)h̃(z)|q|x0|

∫

D
|σ((ξ/x0)·x+s)|q dx w(z)dz

≤ Aq−1
√

d

|σ̂(x0)|q
∫

Z

|ξ|
|x0|

∫

D
|σ((ξ/x0)·x+s)|dxw(z)dz.

Using the cube slicing Lemma 6.1, we get

∫

D
|σ((ξ/x0)·x+s)|dx≤

∫ √
d/2

−
√

d/2

∫

Ht∩D
|σ((|ξ|/x0)t+s)|dxdt

=
∫ √

d/2

−
√

d/2
|σ((|ξ|/x0)t+s)||Ht∩D|dt

≤
√

2
∫ √

d/2

−
√

d/2
|σ((|ξ|/x0)t+s)|dt

≤
√

2
|x0|
|ξ|

∫

R

|σ(t)|dt

≤ 2
√

2A|x0|
|ξ|(α−1)

.

A combination of the above two inequalities gives

∫

D
Ew|F(x;z)|q dx≤ 2

√
2dAq

|σ̂(x0)|q(α−1)
≤ 2

√
2dqAq

|σ̂(x0)|q
.

Substituting the bounds for Q and Ew|F|q into (6.6), we get

‖ f − fn‖Lq(D)≤Cn−γ(q)
(
‖ f ‖υ−1/q

+‖ f ‖υ1−1/q

)
,

with C=C1(x0)C(q)d1/[2q] and

C1=16A(|x0|q)1/q max(q/[α(q−1)−q],1/|x0 |)|σ̂(x0)|−1.

Using the fact C(q)≃√
q for large q, we obtain (6.2).

Using the interpolation inequality in Lemma 2.1, the above estimate changes to

‖ f − fn‖Lq(D)≤Cn−γ(q)
(
C(p;1−1/q,s)+C(p;−1/q,s)

)
‖ f ‖Bs,p(Rd) .

Noting that

C(p,1−1/q,s)≃d1−1/q−s and C(p,−1/q,s)≃d−1/q−s

for large d. This gives (6.3) and completes the proof.
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Theorem 6.1 may be extended to domain DR: = [−R/2,R/2]d. The estimate (6.2)
changes to

‖ f − fn‖Lq(DR)
≤CR1+(d−1)/q√qd1/[2q]n−γ(q)

(
‖ f ‖υ1−1/q

+‖ f ‖υ−1/q

)
, (6.7)

where C depends on σ,x0,A and α while independent of q,d,R and n. The proof is the
same with that leads to (6.2) except that the constant in the cube slicing Lemma 6.1 is
replaced by

√
2Rd−1.

For 1≤q<2, the rate γ(q) in (6.7) may be slightly improved at a cost of a lager prefactor
concerning R,d and a smaller target function space.

Corollary 6.1. Under the same condition of Theorem 6.1, for 1≤q<2, there holds

‖ f − fn‖Lq(DR)
≤CRd/q+1/2d1/4n−1/2‖ f ‖B1/2,p(Rd) , (6.8)

where C depends on σ,x0,A,p and α while independent of q,d,R and n.

Proof. For 1≤q<2, one use Hölder’s inequality to obtain

‖ f − fn‖Lq(DR)
≤mes (DR)

1/q−1/2‖ f − fn‖L2(DR)
.

Taking q=2 in (6.7), we obtain

‖ f − fn‖L2(DR)
≤CR(d+1)/2d1/4n−1/2

(
‖ f ‖υ1/2

+‖ f ‖υ−1/2

)
.

A combination of the above two inequalities and Lemma 2.1 give (6.8).

7 Conclusion

We introduce a new function space Bs,p that may be viewed as a classical realization of
the Barron function class. The embedding between Barron spectrum space and the Besov
space has been established, which leads to the embedding among Barron spectrum space,
the Sobolev space and the Bessel potential space. These embeddings also show that Bs,p

is smooth with a non-negative index s. The dimension independent approximation rate
has been proved for two-layer neural network with Bs,p as a target space. The connection
among this space and other Baron type spaces will be discussed in a forthcoming work,
partial results in this direction may be found in [11]. The fine properties of the Barron
spectrum space and other Barron type spaces may be useful for study the approximation
and the estimation of the neural network models [47] as well as the convergence behavior
of certain NN based methods for partial differential equations; see; e.g., [18, 28, 35].
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[40] Y. Meyer, Ondeletts et Opérateurs, Hermann, Paris, 1990, English translation: ”Wavelets and

Operators”, Cambridge University Press, Cambridge, UK, 1992.
[41] H.N. Mhaskar and C.A. Micchelli, Approximation by superposition of sigmoidal and radial basis

functions, Adv. Appl. Math. 13 (1992), 350–373.



40 Y. Meng and P. B. Ming / Commun. Comput. Phys., x (202x), pp. 1-40

[42] P. Niyogi and F. Girosi, Generalization bounds for function approximation from scattered noisy
data, Adv. Comput. Math. 10 (1999), 51–80.

[43] A.Y. Olenko, Upper bound on
√

xJν(x) and its applications, Integral Transforms and Special
Functions 17 (2006), 455–467.

[44] P.P. Petrushev, Approximation by ridge functions and neural networks, SIAM J. Math. Anal. 30
(1998), 155–189.

[45] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numer. 8 (1999),
143–198.

[46] U. Sgaham, A. Cloninger, and R.R. Coifman, Provable approximation properties for deep neural
networks, Appl. Comput. Harmon. Anal. 44 (2018), 537–557.

[47] Z.W. Shen, H.Z. Yang, and S.J. Zhang, Deep network approximation characterized by number of
neurons, Commun. Comput. Phys. 28 (2020), 1768–1811.

[48] J. Siegel and J. Xu, Approximation rates for neural networks with general activation functions,
Neural Networks 128 (2020), 313–321.

[49] , High-order approximation rates for shallow neural networks with cosine and ReLUk activa-
tion functions, Appl. Comput. Harmon. Anal. 58 (2022), 1–26.

[50] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University
Press, 1970.

[51] , Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals,
Princeton University Press, 1993.

[52] E.M. Stein and W. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Uni-
versity Press, Princeton N.J., 1971.

[53] W.A. Strauss, Existence of solitary waves in high dimensions, Commun. Math. Phys. 55 (1977),
149–165.

[54] T. Suzuki, Adaptivity of deep ReLu network for learning in Besov and mixed smooth Besov spaces:
Optimal rate and curse of dimensionality, ICLR (2019).

[55] G. Szego, Orthogonal Polynomials, American Mathematical Society, Providence, Rhode Is-
land, 4th eds., 1975.

[56] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford at the Clarendon Press,
2nd eds., 1948.

[57] H. Triebel, Theory of Function Spaces, Birkhäuser/Springer Basel AG, Basel, 2010, Reprint of
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