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Abstract
We establish a new H2-Korn’s inequality and its discrete analog, which greatly simplify the
construction of nonconforming elements for a linear strain gradient elastic model. The Specht
triangle (Specht in Int J Numer Methods Eng 28:705–715, 1988) and the NZT tetrahedron
(Wang et al. in Numer Math 106:335–347, 2007) are analyzed as two typical representatives
for robust nonconforming elements in the sense that the rate of convergence is independent
of the small material parameter. We construct the regularized interpolation operators and
the enriching operators for both elements, and prove the error estimates under minimal
smoothness assumption on the solution. Numerical results for the smooth solution, and the
solution with boundary layer are consistent with the corresponding theoretical prediction.

Keywords Strain gradient elasticity · H2-Korn’s inequality · Robust finite elements

1 Introduction

Let u be the solution of the following boundary value problem{
(ι2� − I ) (μ�u + (λ + μ)∇∇ · u) = f in Ω,

u = ∂nu = 0 on ∂Ω,
(1)
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where λ and μ are the Lamé constants, and ι is the material parameter satisfying 0 < ι ≤ 1.
In particular, we are interested in the regime when ι is close to zero. This boundary value
problem arises from a linear strain gradient elastic model proposed by Aifantis et al [4,44],
and the unknown u is the displacement. This model may be regarded as a simplification
of the more general strain gradient elasticity models in [39] because it contains only one
extra material parameter ι besides the Lamé constants λ and μ. This strain gradient model
successfully eliminated the strain singularity of the brittle crack tip field [22], and we refer
to [21] and [24] for other strain gradient models.

Problem (1) is essentially a singularly perturbed elliptic system of fourth order due to
the strain gradient ∇ε(u). C1-conforming finite element such as Argyris triangle [5] seems
a natural choice for approximation (1). The performance of Argyris triangle and several
other C1-conforming finite elements has been carefully studied in [23] for a nonlinear strain
gradient elastic model. A drawback of the C1-conforming elements is that the number of
the degrees of freedom (dofs) is large and high order polynomial has to be used in the
shape functions, which is more pronounced for three dimensional problems; See, e.g., the
finite element for a three-dimensional strain gradient model proposed in [43] locally has 192
dofs. We aim to develop some simple and robust nonconforming elements for (1), where
the robustness is understood in the sense that the elements converge uniformly in the energy
norm with respect to parameter ι.

To this end, we firstly prove a new H2-Korn’s inequality and its discrete analog in any
dimension. ThisH2-Korn’s inequalitymay be viewed as a quantitative version of the so-called
vector version of J.L. Lions lemma [19, Theorem 6.19-1] (cf. the statement (13)), while our
proof is constructive and may be adapted to prove a Korn’s inequality for the piecewise H2

vector fields (broken H2-Korn’s inequality for short), which may be viewed as a higher-
order counterpart of Brenner’s seminal Korn’s inequality [13] for the piecewise H1 vector
fields. Compared to the broken H2-inequality proved in [32], the jump term associated with
the gradient tensor of the piecewise vector field may be dropped. Therefore, the degrees of
freedom associated with the gradient tensor along each face or edge may be dropped, which
simplify the construction of the elements. Based on this observation, all H1 conforming
but H2 nonconforming elements are suitable candidates to approximate (1). We choose the
Specht triangle [49] and the NZT tetrahedron [53] as two typical representatives. The Specht
triangle is simpler than those in [32], because the elements therein locally belong to a 21
dimensional subspace of quintic polynomials, while the tensor products of the Specht triangle
locally belong to an 18 dimensional subspace of quartic polynomials. It is worth mentioning
that the broken H2-Korn’s inequality may also be exploited to develop C0 interior penalty
method [16,20] for the strain gradient elastic model.

To prove the robustness of both elements, we construct a regularized interpolation operator
and an enriching operator. The regularized interpolation operator may be viewed as a combi-
nation of the interpolation operator defined in [28] and the enriching operator defined in [41].
The enriching operator satisfies certain interpolation estimates and a kind of Petrov-Galerkin
orthogonality, the latter differs from the standard enriching operator (cf. [11]), while its is
ubiquitous for deriving error estimate for rough solution.

The remaining part of the paper is organized as follows. We prove the continuous and
the broken H2-Korn’s inequalities in Sect. 2. The Specht triangle and the NTZ tetrahedron
are introduced in Sect. 3 and the corresponding regularized interpolant are constructed and
analyzed therein. We introduce enriching operators for both elements in Sect. 4, and derive
the error bounds uniformly with respect to ι in the same part. The numerical tests of both
elements are reported in the last section, which confirm the theoretical prediction in Sect. 4.
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Throughout this paper, the constant C may differ from line to line, while it is independent
of the mesh size h and the materials parameter ι.

2 H2-Korn’s Inequality and the Broken H2-Korn’s Inequality

In this part we prove the H2-Korn’s inequalities and the broken H2-Korn’s inequalities. Let
us fix some notations firstly.

2.1 Notations

LetΩ ⊂ R
d(d = 2, 3) be a bounded convex polytope.We shall use the standard notations for

Sobolev spaces, norms and semi-norms [2]. The function space L2(Ω) consists of functions
that are square integrable over Ω , which is equipped with norm ‖ · ‖L2(Ω) and the inner
product (·, ·). Let Hm(Ω) be the Sobolev space of square integrable functions whose weak
derivatives up to order m are also square integrable, the corresponding norm ‖ v ‖2Hm (Ω): =∑m

k=0|v|2
Hk (Ω)

with the semi-norm |v|2
Hk (Ω)

: = ∑
|α|=k ‖ ∂αv ‖2

L2(Ω)
for all v ∈ Hm(Ω).

For a positive number s that is not an integer, Hs(Ω) is the fractional order Sobolev space.
Let m = � s	 be the largest integer less than s and � = s − m. The sem-inorm |v|Hs (Ω) and
the norm ‖ v ‖Hs (Ω) are respectively given by

|v|2Hs (Ω) =
∑

|α|=m

∫
Ω

∫
Ω

|(∂α)v(x) − (∂α)v(y)|2
|x − y|2+2� dx dy,

‖ v ‖2Hs (Ω) = ‖ v ‖2Hm (Ω) + |v|2Hs (Ω).

By [2, §7], the above definition for the fractional order Sobolev space Hs(Ω) is equivalent
to the one obtained by interpolation, i.e.,

Hs(Ω) = [
Hm+1(Ω), Hm(Ω)

]
θ

with θ = m + 1 − s.

In particular, there exists C that depends on Ω and s such that

‖ v ‖Hs (Ω) ≤ C‖ v ‖1−θ

Hm+1(Ω)
‖ v ‖θ

Hm (Ω). (2)

For s ≥ 0, Hs
0 (Ω) is the closure in Hs(Ω) of the space of C∞(Ω) functions with compact

supports in Ω .
For any vector-valued function v, its gradient ∇v is a matrix-valued function given by

(∇v)i j = ∂iv j for i, j = 1, · · · , d . The strain tensor ε(v) is given by ε(v) = 1
2 (∇v+[∇v]T )

with εi j = 1
2

(
∂iv j + ∂ jvi

)
. The divergence operator is defined by ∇ · v = ∑d

i=1 ∂ivi . The
vector-valued spaces are given by [Hm(Ω)]d , [Hm

0 (Ω)]d and [L2(Ω)]d . Without abuse of
notation, we employ |·| to denote the abstract value of a scalar, the 
2 norm of a vector, and the
Euclidean norm of a matrix. Throughout this paper, we may drop the subscript Ω whenever
no confusion occurs.

Let Th be a simplicial triangulation of Ω with maximum mesh size h. We assume all
elements in Th are shape-regular in the sense of Ciarlet and Raviart [18], i.e., there exists a
constant γ such that hK /ρK ≤ γ , where hK is the diameter of the element K , and ρK is the
diameter of the largest ball inscribed into K , and γ is the so-called chunkiness parameter
[17]. We denote by Fh , Eh and Vh the sets of (d − 1)-dimensional faces, edges and vertices,
respectively. Let F B

h = { f ∈ Fh | f ⊂ ∂Ω } be the set of boundary faces. We denote by
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F I
h = Fh \F B

h the set of interior faces. Similar notations apply to Eh and Vh . We denote by
Vh(K ) (resp. Fh(K ), resp. Eh(K )) the four vertices of K (resp. four faces, resp. six edges).
Define byω(a) (resp.ω(e)) the set of elements that have a (resp. e) as a common vetex (resp.
edge), and ω(K ) = ∪a∈Vh(K )ω(a) is the local element star of K .

Following [41], we classify the boundary vertices as follows. We say that a node a ∈ VB
h

is a flat node if the normal vectors of all the faces in F B
h (a) are parallel. Otherwise, such

vertex a is a sharp node. We let VB
h = V �

h ∪V #
h , where V �

h and V #
h denote the sets of the flat

node and sharp node, respectively. By [41, Remark 3], for any a ∈ V #
h , and let {t1,i }d−1

i=1 and
{t2,i }d−1

i=1 span the tangential space of some f1, f2 ∈ F B
h (a) with non-parallel unit normal

vectors, then there exists j such that {t1, j , t2,1, · · · , t2,i−1} forms a basis of Rd .

2.2 H2-Korn’s Inequality

We write the boundary value problem (1) into the following variational problem: Find u ∈
[H2

0 (Ω)]d such that
a(u, v) = ( f , v) for all v ∈ [H2

0 (Ω)]d , (3)

where the bilinear form a is defined for any v,w ∈ [H2
0 (Ω)]d as

a(v,w): = (Cε(v), ε(w)) + ι2(D∇ε(v),∇ε(w)),

and the fourth-order tensors C and the sixth-order tensor D are defined by

Ci jkl = λδi jδkl + 2μδikδ jl and Di jklmn = λδilδ jkδmn + 2μδilδ jmδkn,

respectively. Here δi j is the Kronecker delta function. The strain gradient ∇ε(v) is a third-
order tensor defined by (∇ε(v))i jk = ε jk,i .

The wellposedness of problem (3) depends on the coercivity of the bilinear form a over
[H2

0 (Ω)]d , which is a direct consequence of the following H2-Korn’s inequality

‖ ε(v) ‖2L2 + ‖ ∇ε(v) ‖2L2 ≥ C(Ω)‖ ∇v ‖2H1 for all v ∈ [H2
0 (Ω)]d . (4)

This inequality was proved in [32, Theorem 1] for d = 2 withC(Ω) = 1/2 by exploiting the
community property of the strain operator ε and the partial derivative operator ∂ . The proof
therein easily carries over to d > 2. Such idea has been implicitly used in [1]1 to prove an
inequality similar to (4) with an unknown constant C(Ω).

In Theorem 1, we shall prove that (4) remains valid for a vector field v belonging to
[H2(Ω) ∩ H1

0 (Ω)]d with C(Ω) = 1 − 1/
√
2. The proof relies on the fact that the strain

gradient field fully controls the Hessian of the displacement algebraically (cf. (6)). This fact
will be further exploited to prove a discrete analog of (5) for a piecewise vector field (cf.
Theorem 2).

Theorem 1 For any v ∈ [H1
0 (Ω)]d and ∇ε(v) ∈ [L2(Ω)]d×d×d , there holds ∇v ∈

[H1(Ω)]d×d and

‖ ε(v) ‖2L2 + ‖ ∇ε(v) ‖2L2 ≥ (1 − 1/
√
2)

(‖ ∇v ‖2L2 + ‖ ∇2v ‖2L2

)
. (5)

Proof The core of the proof is the following algebraic inequality

|∇ε(v)|2 ≥ (1 − 1/
√
2)|∇2v|2. (6)

1 The inequality below (3.15), which is exactly (7) for a vector filed satisfying periodic boundary condition
over a thin domain.
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Integrating (6) over Ω , we obtain

‖ ∇ε(v) ‖2L2 ≥ (1 − 1/
√
2)‖ ∇2v ‖2L2 , (7)

which together with the first Korn’s inequality [30,31]

2‖ ε(v) ‖2L2 ≥ ‖ ∇v ‖2L2 for all v ∈ [H1
0 (Ω)]d (8)

implies (5).
To prove (6), we start with the identity

|∇ε(v)|2 =
∑

1≤i, j,k≤d

|∂iε jk |2

=
d∑

i=1

|∂iεi i |2 +
∑

1≤i< j≤d

(|∂iε j j |2 + 2|∂ jεi j |2
) + (|∂ jεi i |2 + 2|∂iεi j |2

)

+
∑

i �=, j �=k,i �=k

|∂iε jk |2 = :I1 + I2 + I3,

(9)

where I3 vanishes for d = 2.
Employing the elementary algebraic inequality

a2 + 1

2
(a + b)2 ≥ (1 − 1/

√
2)(a2 + b2), a, b ∈ R,

we obtain { |∂ jεi i |2 + 2|∂iεi j |2 ≥ (1 − 1/
√
2)

(|∂i jvi |2 + |∂i iv j |2
)
,

|∂iε j j |2 + 2|∂ jεi j |2 ≥ (1 − 1/
√
2)

(|∂i jv j |2 + |∂ j jvi |2
)
.

(10)

A direct calculation gives∑
i �= j, j �=k,i �=k

|∂iε jk |2

= 1

2

∑
1 ≤ i < j ≤ d

1 ≤ k ≤ d, k �= i, k �= j

|∂i jvk |2 + 1

2

⎛
⎜⎜⎜⎜⎜⎝

∑
1 ≤ i < j ≤ d

1 ≤ k ≤ d, k �= i, k �= j

∂i jvk

⎞
⎟⎟⎟⎟⎟⎠

2

. (11)

Combining (9), (10) and (11), we obtain (6) immediately. ��
A direct consequence of Theorem 1 is the following full H2-Korn’s inequality.

Corollary 1 Let Ω ⊂ R
d be a domain such that the following Korn’s inequality is valid for

any vector field v ∈ [L2(Ω)]d and ε(v) ∈ [L2(Ω)]d×d ,

‖ v ‖L2 + ‖ ε(v) ‖L2 ≥ C(Ω)‖ v ‖H1 .

If v ∈ [L2(Ω)]d , ε(v) ∈ [L2(Ω)]d×d and ∇ε(v) ∈ [L2(Ω)]d×d×d , then v ∈ [H2(Ω)]d and

‖ v ‖L2 + ‖ ε(v) ‖L2 + ‖ ∇ε(v) ‖L2 ≥ min

(
C(Ω),

√
1 − 1/

√
2

)
‖ v ‖H2 . (12)
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The following vector version of J.L. Lions Lemma is proved in [19, Theorem 6.19-1]: For
any domain D in R

d and m ∈ Z, then

v ∈ [Hm(D)]d and ε(v) ∈ [Hm(D)]d×d implies v ∈ [Hm+1(D)]d . (13)

The full H2-Korn’s inequality (12) may be viewed as a quantitative version of (13) with
m = 1, while the proof in [19, Theorem 6.19-1] is nonconstructive and does not seem easy
to be extended to prove the broken H2-Korn’s inequality for a piecewise vector filed.

The regularity of problem (3) is essential to prove a uniform error estimate. Unfortunately,
it does not seem easy to identify such estimates in the literature, and we give a proof for the
readers’ convenience. We firstly assume the following regularity estimate.

Hypothesis 1 Let u be the solution of{
�(

Lu
) = f in Ω,

u = ∂nu = 0 on ∂Ω,

where Lu: = μ�u + (λ + μ)∇∇ · u. Then for any f ∈ H−1(Ω), there holds

‖ u ‖H3 ≤ C‖ f ‖H−1 . (14)

IfΩ is a smooth domain, then the regularity property (14) is standard; See e.g., [3]. While
it is unclear whether (14) is true for a convex polytope. Nevertheless, if L is replaced by the
Laplacian operator �, then (14) was proved in [38, Chapter 4, Theorem 4.3.10].

Lemma 1 Assume Hypothesis 1 is valid and let u be the solution of (3), then there exists C
that may depend on Ω but independent of ι such that

‖ ∇k(u − u0) ‖L2 ≤ Cι3/2−k‖ f ‖L2 for k = 1, 2, (15)

where u0 ∈ [H1
0 (Ω)]d satisfies

(Cε(u0), ε(v)) = ( f , v) for all v ∈ [H1
0 (Ω)]d . (16)

Moreover, we have
‖ u ‖H3/2 ≤ C‖ f ‖L2 , (17)

and
‖ u ‖H5/2 ≤ Cι−1‖ f ‖L2 . (18)

Under Hypothesis 1, we may prove the above estimates by following essentially the same
line that leads to [42, Lemma 5.1].

Proof Denoting φ = u − u0, using (1) and (16), we have

�L(u) = ι−2L(u − u0) = ι−2L(φ).

Using the regularity hypothesis (14), we obtain

‖ u ‖H3 ≤ Cι−2‖L(φ) ‖−1 ≤ Cι−2(
Cε(φ), ε(φ)

) 1
2 . (19)

By the regularity estimate for (16) [38, Theorem 4.3.3], there exists C depends on Ω,λ and
μ such that

‖ u0 ‖H2 ≤ C‖ f ‖L2 . (20)
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Integration by parts, we have

a(φ, φ) = −ι2
(
D∇ε(u0),∇ε(φ)

) + ι2
∫

∂Ω

Mnn(u)∂nu0 dσ(x),

where Mnn(u) = nT · D∇ε(u) · n.
Using (20), we bound there exists C such that

ι2|(D∇ε(u0),∇ε(φ)
)| ≤ ι2

2

(
D∇ε(φ),∇ε(φ)

) + ι2

2

(
D∇ε(u0),∇ε(u0)

)
≤ ι2

2

(
D∇ε(φ),∇ε(φ)

) + (μ + dλ/2)ι2‖ ∇ε(u0) ‖L2

≤ ι2

2

(
D∇ε(φ),∇ε(φ)

) + Cι2‖ f ‖2L2 ,

where C depends on Ω,λ and μ.
Using the trace inequality (25), we obtain, for δ > 0 to be chosen later,

ι2
∣∣∣∣
∫

∂Ω

Mnn(u)∂nu0dσ(x)

∣∣∣∣ ≤ ι3δ‖ Mnn(u) ‖2L2(∂Ω)
+ ι

4δ
‖ ∂nu0 ‖2L2(∂Ω)

≤ Cδ
(
ι4‖ ∇2u ‖2H1 + ι2‖ ∇2u ‖2L2

) + C
ι

δ
‖ u0 ‖2H2 .

Using (7), we obtain

‖ ∇2u ‖2L2 ≤ 2‖ ∇2φ ‖2L2 + 2‖ ∇2u0 ‖2L2 ≤ 4

μ

(
D∇ε(φ),∇ε(φ)

) + 2‖ ∇2u0 ‖2L2 .

Using the regularity estimates (19) and (20), we bound the right-hand side of the above
inequality as

ι2
∣∣∣∣
∫

∂Ω

Mnn(u)∂nu0dσ(x)

∣∣∣∣ ≤ Cδa(φ, φ) + Cι

(
δι + 1

δ

)
‖ f ‖2L2 .

Combining the above inequalities, we obtain

a(φ, φ) ≤ Cδa(φ, φ) + ι2

2

(
D∇ε(φ),∇ε(φ)

) + Cι2(1 + δ)‖ f ‖2L2 + Cι

δ
‖ f ‖2L2 ,

which immediately implies

1

2
a(φ, φ) ≤ Cδa(φ, φ) + Cι2(1 + δ)‖ f ‖2L2 + Cι

δ
‖ f ‖2L2 .

Choosing δ properly and using (5), we obtain (15).
Using (15) and the Poincaré inequality, and noting that ι < 1, we obtain

‖ u − u0 ‖H2 ≤ C
(
ι1/2 + ι−1/2) ‖ f ‖L2 ≤ Cι−1/2‖ f ‖L2 , (21)

and
‖ u ‖H2 ≤ ‖ u − u0 ‖H2 + ‖ u0 ‖H2 ≤ Cι−1/2‖ f ‖L2 . (22)

Interpolating (21) and (15) with k = 1, and using the interpolation inequality (2), we obtain

‖ u − u0 ‖H3/2 ≤ C‖ f ‖L2 .

Invoking the interpolation inequality (2) again, we obtain

‖ u0 ‖H3/2 ≤ C‖ u0 ‖1/2
H1 ‖ u0 ‖1/2

H2 ≤ C‖ f ‖L2 .
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A combination of the above two inequalities yields (17).
Combining (19) and (15), we obtain

‖ u ‖H3 ≤ Cι−2‖ ∇(u − u0) ‖L2 ≤ Cι−3/2‖ f ‖L2 .

Interpolating the above inequality and (22), we obtain (18). ��

2.3 The Broken H2-Korn’s Inequality

For any m ∈ N, the space of piecewise vector fields is defined by

[Hm(Ω, Th)]d : = { v ∈ [L2(Ω)]d | v|K ∈ [Hm(K )]d for all K ∈ Th },
which is equipped with the broken norm

‖ v ‖Hk
h
: = ‖ v ‖L2 +

m∑
k=1

‖ ∇k
hv ‖L2 ,

where ‖ ∇k
hv ‖2

L2 = ∑
K∈Th

‖ ∇kv ‖2
L2(K )

with (∇k
hv)|K = ∇k(v|K ). Moreover, εh(v) =

(∇hv + [∇hv]T )/2. For any v ∈ Hm(Ω, Th), we denote by [[v]] and {{v}} the jump and the
average of v across the face or the edge, respectively; See, e.g., [6] for the definitions.

The main result of this part is the following broken H2-Korn’s inequality.

Theorem 2 For any v ∈ [H2(Ω, Th)]d , there exits C that depends on Ω and γ but indepen-
dent of h such that

‖ v ‖2
H2
h

≤ C

(
‖ ∇hεh(v) ‖2L2 + ‖ εh(v) ‖2L2 + ‖ v ‖2L2

+
∑
f ∈Fh

h−1
f ‖ [[Π f v]] ‖2L2( f )

)
,

(23)

where Π f : [L2( f )]d �→ [P1,−( f )]d is the L2 projection and

[P1,−( f )]d : = { v ∈ [P1( f )]d | vt ∈ RM( f ) },
where vt = v − (v · n)n is the tangential components of v, and n is the normal vector of the
face f (or edge for d = 2), and RM( f ) is the infinitesimal rigid motion on f .

For a piecewise vector field v, the inequality (23) improves the one proved in [32, Theorem
2] by removing the jump term

2∑
i=1

∑
f ∈Fh

h−1
f ‖ [[Π f (v,i )]] ‖2L2( f ).

This term stands for the jump of ∇v across the element boundary. This would simplify the
construction of the strain gradient elements as shown in below.

Proof of Theorem 2 Integrating (6) over element K ∈ Th , we obtain,

‖ ∇ε(v) ‖2L2(K )
≥ (1 − 1/

√
2)‖ ∇2v ‖2L2(K )

.

Summing up all K ∈ Th , we get

‖ ∇hεh(v) ‖L2 ≥ (1 − 1/
√
2)‖ ∇2

hv ‖2L2 , (24)
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which together with the following Korn’s inequality for a piecewise H1 vector field proved
by Mardal and Winther [37]

‖ v ‖2
H1
h

≤ C

⎛
⎝‖εh(v)‖2L2 + ‖ v ‖2L2 +

∑
f ∈Fh

h−1
f ‖ [[Π f v]] ‖2L2( f )

⎞
⎠

implies (23). ��
We shall frequently use the following trace inequalities.

Lemma 2 For any Lipschitz domain D, there exists C depending on D such that

‖ v ‖L2(∂D) ≤ C‖ v ‖1/2
L2(D)

‖ v ‖1/2
H1(D)

. (25)

For an element K , there exists C independent of hK , but depends on γ such that

‖ v ‖L2(∂K ) ≤ C
(
h−1/2
K ‖ v ‖L2(K ) + h1/2K ‖ ∇v ‖L2(K )

)
. (26)

If v ∈ Pm(K ), then there exists C independent of v, but depends on γ and m such that

‖ v ‖L2(∂K ) ≤ Ch−1/2
K ‖ v ‖L2(K ). (27)

The multiplicative type trace inequality (25) may be found in [27, Theorem 1.5.1.10],
while (26) is a direct consequence of (25). The inequality (27) is a combination of (26) and
the inverse inequality for any polynomial v ∈ Pm(K ).

3 Interpolation for Nonsmooth Data

Motivated by the broken H2-Korn’s inequality (23), we conclude that the H1-conforming
but H2-nonconforming finite elements are natural choices to approximate (1). A family of
rectangular elements in this vein may be found in [35], and two nonconforming tetrahedron
elements were constructed and analyzed in [52]. Note that the tensor product of certain
finite elements for the singular perturbation problem of fourth order may also be used to
approximate (1), we refer to [28,42,46,47,50] and references therein for such elements.
In what follows, we select the Specht triangle [49] and the NZT tetrahedron [53] as the
representatives. TheSpecht triangle is a successful plate bending element,which passes all the
patch tests and performs excellently, and is one of the best thin plate triangles with 9 degrees
of freedom that currently available [57, Quatation in p. 345]. The NZT tetrahedron may be
regarded as a three-dimensional extensionof theSpecht triangle.Onemaywonderwhether the
tensor product of certain non H1-conforming elements for the singular perturbation problem
of fourth order can be used to approximate (1). This is indeed the case for the Morley triangle
with a modified strain energy; See, e.g., [33] for details. More non H1-conforming elements
[54] have to be carefully studied to approximate (1).

The Specht triangle and the NZT tetrahedron may be defined by the finite element triple
(K , PK ,ΣK ) [18] in a unifying way as follows. Let K be a simplex, and{

PK = ZK + bKP1(K ),

ΣK = {p(ai ), (ei j · ∇ p)(ai ), 1 ≤ i �= j ≤ d + 1}
with extra constraints

1

| fi |
∫
fi

∂n p = 1

d

∑
1≤k≤d+1,k �=i

∂n p(ak), i = 1, · · · , d + 1, (28)
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where fi is a (d − 1)-simplex opposite to the vertex ai , and ei j is the edge vector from ai to
a j . Here ZK is the Zienkiewicz space defined by

ZK = P2(K ) + Span{ λ2i λ j − λiλ
2
j | 1 ≤ i �= j ≤ d + 1 },

where λi is the barycentric coordinate with respect to the vertex ai .
The finite element space is defined by

Xh : = { v ∈ H1(Ω) | v|K ∈ PK , K ∈ Th; v(a),∇v(a) are continuous for a ∈ Vh }.
The corresponding homogenous finite element space is given by

X 0
h : = { v ∈ Xh | v(a),∇v(a) vanish for a ∈ VB

h }.
It is clear that X 0

h ⊂ H1
0 (Ω). We denote Vh = [X 0

h ]d , and the approximating problem reads
as: Find uh ∈ Vh such that

ah(uh, v) = ( f , v) for all v ∈ Vh, (29)

where ah is defined for any v,w ∈ Vh as

ah(v,w): = (Cε(v), ε(w)) + ι2(D∇hε(v),∇hε(w))

with

(D∇hε(v),∇hε(w)): =
∑
K∈Th

∫
K
D∇ε(v)∇ε(w) dx .

The energy norm is defined by |||v|||ι,h : =
(
‖ v ‖2

H1 + ι2‖ ∇2
hv ‖2

L2

)1/2
. The bilinear form is

coercive in this energy norm as shown in the next lemma.

Lemma 3 For any v ∈ Vh,
ah(v, v) ≥ C�|||v|||2ι,h, (30)

where C� = μ/(2 + 2C2
p) with Cp appears in the Poincaré inequality

‖ v ‖L2 ≤ Cp‖ ∇v ‖L2 , for all v ∈ [H1
0 (Ω)]d . (31)

The estimate (30) immediately implies the wellposedness of problem (29) for any fixed ι.

Proof For any v ∈ Vh , there holds

ah(v, v) ≥ 2μ
(‖ ε(v) ‖2L2 + ι2‖ ∇hε(v) ‖2L2

)
.

Using the first Korn’s inequality (8) and the estimate (24), we obtain

ah(v, v) ≥ μ

2

(‖ ∇v ‖2L2 + ι2‖ ∇2
hv ‖2L2

)
,

which together with the Poincare inequality (31) implies (30) . ��
The degrees of freedom of Xh involve the first order derivatives at the vertices and the

mean of the normal derivatives at each face (resp. edge when d = 2), the associated canonical
interpolant is not well-defined on H1. In what follows we construct a regularized interpolant
that is H1 bounded. The construction is a combination of a regularized interpolant in [28] and
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an enriching operator in [41]. The regularized interpolant Ih = Πh ◦ ΠC : H1
0 (Ω) → Xh .

For any v ∈ H2
0 (Ω), we define I 0h : H2

0 (Ω) → X 0
h with

I 0h v(a) = Ihv(a), ∇ I 0h v(a) = ∇ Ihv(a) for all a ∈ V I
h ,

I 0h v(a) = 0, ∇ I 0h v(a) = 0 for all a ∈ VB
h .

Here we denote by ΠC : H1
0 (Ω) → Lh the Scott-Zhang interpolant [45] , where Lh is

the quadratic Lagrangian finite element space with vanishing trace. The auxiliary operator
Πh : Lh → Xh is locally defined as follows.

1. If a ∈ V I
h is an interior vertex, then we fix an element K ′ from ω(a),

Πhw(a): = w(a) and ∇Πhw(a): = ∇wK ′(a).

2. If a ∈ V �
h is a flat node, then we fix an element K ′ from ω(a),

Πhw(a): = 0 and ∇Πhw(a): = ∇wK ′(a).

3. If a ∈ V #
h is a sharp node, then

Πhw(a): = 0 and ∇Πhw(a): = 0.

The properties for the regularized interpolants Ih and I 0h are as follows.

Theorem 3 There exists an operator Ih : H1
0 (Ω) → Xh such that for any v ∈ Hm(Ω) with

1 ≤ m ≤ 3, there holds

‖ v − Ihv ‖Hk
h

≤ Chm−k |v|Hm , 0 ≤ k ≤ m. (32)

Moreover, there exists I 0h : H2
0 (Ω) → X 0

h such that for any v ∈ Hm(Ω) ∩ H2
0 (Ω) with

1 ≤ m ≤ 3, there holds

‖ v − I 0h v ‖Hk
h

≤ Chm−k |v|Hm , 0 ≤ k ≤ m. (33)

The interpolant I 0h v is enough to our ends, while Ihv is a useful tool for the strain gradient
elastic model with other boundary conditions (cf. [7]).

Proof For any φ ∈ PK , a standard scaling argument yields that

‖ φ ‖2L2(K )
≤ ChdK

∑
a∈Vh(K )

(|φ(a)|2 + h2K |∇φ(a)|2) .

Let φ = w − Πhw with w = ΠCv. Noting φ(a) = 0, we obtain

‖ φ ‖2L2(K )
≤ Chd+2

K

∑
a∈Vh(K )

| ∇φ(a) |2 . (34)

If a ∈ V I
h or a ∈ V �

h , then ∇Πhw(a) = ∇wK (a). We may select a sequence of elements
{K1, · · · , KJ } ⊂ ω(a) such that K1 = K , KJ = K ′, and f j = ∂K j ∩ ∂K j+1 is a common
face of K j and K j+1. We write the right-hand side of (34) as the telescopic sum

|∇φ(a)|2 ≤
J−1∑
j=1

∣∣ ∇wK j (a) − ∇wK j+1(a)
∣∣2 .
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It follows from the inverse inequality that

|∇φ(a)|2 ≤
J−1∑
j=1

‖ ∇wK j − ∇wK j+1 ‖2L∞( fi ) ≤ C
J−1∑
j=1

h1−d
fi

‖ ∇wKi − ∇wki+1 ‖2L2( fi )

≤ C
J−1∑
j=1

h1−d
fi

‖ [[∇w]] ‖2L2( fi )
,

where the jump of ∇w across f j is defined as [[∇w]]| f j : = ∇wK j | f j −∇wK j+1 | f j . Note
that w is continuous across f j , we rewrite the above inequality as

|∇φ(a)|2 ≤ C
∑

K , K ′ ∈ ω(a)

∂K ∩ ∂K ′ = f �= ∅

h1−d
f ‖ [[∂n f w]] ‖2L2( f ). (35)

At the sharp node a ∈ V#
h , wewrite∇φ(a) = ∇wK (a). Since a is a sharp node, there exists

two simplexes K1, K2 ∈ ω(a), and boundary faces f1 ∈ ∂K1∩∂Ω and f2 ∈ ∂K2∩∂Ω , and
f1, f2 do not have a common normal vector. Hence, there exists a tangential vector t1,i of f1
and d − 1 tangential vector {t2,1, · · · , t2,d−1} of f2, such that these d vectors form a basis of
R
d . Proceeding along the same line that leads to (35) and using the fact that the tangential

derivatives of v vanishes on ∂Ω , we have

∣∣∣∣ ∂wK

∂t1,i
(a)

∣∣∣∣
2

≤ C

⎛
⎜⎜⎜⎜⎜⎝

∑
K , K ′ ∈ ω(a)

∂K ∩ ∂K ′ = f �= ∅

h1−d
f ‖ [[∂t1,i w]] ‖2L2( f ) + h−2

f1
‖ ∂t1,i wK1 ‖2L2( f )

⎞
⎟⎟⎟⎟⎟⎠

≤ C
∑

K , K ′ ∈ ω(a)

∂K ∩ ∂K ′ = f �= ∅

h1−d
f ‖ [[∂n f w]] ‖2L2( f ).

Proceeding along the same line that leads to the above inequality, we obtain, for j =
1, · · · , d − 1, ∣∣∣∣ ∂wK

∂t2, j
(a)

∣∣∣∣
2

≤ C
∑

K , K ′ ∈ ω(a)

∂K ∩ ∂K ′ = f �= ∅

h1−d
f ‖ [[∂n f w]] ‖2L2( f ).

Therefore, for a ∈ V#
h ,

|∇φ(a)|2 ≤ C
∑

K , K ′ ∈ ω(a)

∂K ∩ ∂K ′ = f �= ∅

h1−d
f ‖ [[∂n f w]] ‖2L2( f ). (36)

Substituting (35) and (36) into (34), we obtain

‖ φ ‖L2(K ) ≤ Ch3/2K

∑
K , K ′ ∈ ω(a)

∂K ∩ ∂K ′ = f �= ∅

‖ [[∂nw]] ‖L2( f ),
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where we have used the fact that hK � h f because Th is locally quasi-uniform. Using the
above inequality, the estimate for the Scott-Zhang interpolant, the inverse inequality and the
trace inequality (26), we obtain

‖ ΠCv − ΠhΠCv ‖Hk (K ) ≤ Ch−k
K ‖ ΠCv − ΠhΠCv ‖L2(K )

≤ Ch3/2−k
K

∑
K , K ′ ∈ ω(a)

∂K ∩ ∂K ′ = f �= ∅

‖ [[∂nΠCv]] ‖L2( f )

≤ Chm−k
K ‖ v ‖Hm (ω(K )).

Finally, using the triangle inequality, we obtain

‖ v − Ihv ‖Hk (K ) ≤ ‖ v − ΠCv ‖Hk (K ) + ‖ ΠCv − ΠhΠCv ‖Hk (K )

≤ Chm−k
K ‖ v ‖Hm (ω(K )).

Summing up the above inequalities for K ∈ Th , we obtain (32).
For any v ∈ H2

0 (Ω) ∩ Hm(Ω), the estimate (33) may be proceeded along the same line
that leads to (32), we omit the details. ��

4 Error Estimate for Less Smooth Solution

The standard error estimate argument holds true if u ∈ Hs(Ω) with s ≥ 3, while such
assumption is usually invalid for the point load or nonconvex domain [9], even for the
biharmonic problems. In this part we shall exploit an enriching operator to derive a new
error estimate for problem (1) with less smooth solution. The enriching operator measures
the distance between Vh and H2(Ω), which was firstly introduced by Brenner [11,12] to
analyze nonconforming elements in the context of fast solvers. It also plays an important
role in deriving a priori and a posteriori error estimates for the fourth order problems [14,
25,26,34,51]. A recent application of the enriching operator to Hamilton-Jacobi-Bellman
equation may be found in [41]. The construction of these enriching operators are mainly
based on the averaging of the degrees of freedom. Two enriching operators constructed with
different ways have appeared in [15] and [48] recently. Besides the standard interpolation
error estimates, the enriching operator should satisfy a kind of Petrov-Galerkin orthogonality,
which is key to derive the error estimates for rough solution as demonstrated in [34, Lemma
4.1], in which the authors have constructed an enriching operator for the quadratic Specht
triangle and have obtained optimal error estimate for approximating the biharmonc problems
with rough solution. The construction and the proof therein equally applies to the Specht
triangle.

We shall construct an enriching operator for the NZT tetrahedron with the aid of the
tenth polynomialC1-conforming element introduced by Zhang [56]. The enriching operator
Eh :X 0

h → H2
0 (Ω) is defined as follows.

1. For any a ∈ V I
h , we fix an element Ka from the element star ω(a),(∇αEhv

)
(a): = (∇αv|Ka

)
(a) |α| ≤ 4.

2. For any edge e ∈ E I
h , we choose two unit vectors s1, s2 orthogonal to the edge e. We fix

an element Ke from the element star ω(e).
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(a) For a the middle point of the edge e,

Ehv(a): = v|Ke (a).

(b) For a the 2 equally-distributed interior points of the edge e,

∂si Ehv(a): = (
∂si v|Ke

)
(a) i = 1, 2. (37)

(c) For a the 3 equally-distributed interior points of the edge e,

∂2Ehv

∂si∂s j
(a): = ∂2v|Ke

∂si∂s j
(a) i, j = 1, 2. (38)

3. For any f ∈ F I
h , and for any w ∈ P1( f ),∫

f
Ehvw dσ(x): =

∫
f
vw dσ(x), (39)

and for any w ∈ P3( f ),∫
f
∂n

(
Ehv

)
w dσ(x): =

∫
f
{{∂nv}}w dσ(x). (40)

4. For any K ∈ Th , and for w ∈ P2(K ),∫
K
Ehvw dx : =

∫
K

vw dx .

5. All the degrees of freedom of Ehv vanish on ∂Ω .

We summarize the properties of Eh in the following lemma.

Lemma 4 The enriching operator Eh has the following properties:

1. Petrov-Galerkin orthogonality:

ah(v − Ehv,w) = 0 for all v ∈ Vh, w ∈ Wh, (41)

where Wh = [Lh]3 is the tensorized quadratic Lagrangian finite element space with
vanishing trace.

2. Eh is stable in the sense that

|||Ehv|||ι,h ≤ (1 + β)|||v|||ι,h for all v ∈ Vh . (42)

3. For any v ∈ Vh, we have

‖ ∇k
h (v − Ehv) ‖L2 ≤ βh j−k‖ ∇ j

h v ‖L2 , 0 ≤ k ≤ j ≤ 2. (43)

The stability estimate (42) is a direct consequence of (43). We only prove (41) and (43).

Proof For any v ∈ Vh and w ∈ Wh , integration by parts, we obtain

ah(v − Ehv,w) =
∑
K∈Th

∫
∂K

(
ι2∂n(v − Ehv) · Mnn(w) + (v − Ehv) · σn(w)

)
dσ(x),
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where σn(w) = nT · (
Cε(w)

)
. Using the magic formula [6], we write

ah(v − Ehv,w)

= ι2
∑
f ∈F I

h

∫
f

([[∂n(v − Ehv)]] · {{Mnn(w)}} + {{∂n(v − Ehv)}} · [[Mnn(w)]])dσ(x)

+
∑
f ∈F I

h

∫
f

([[v − Ehv]] · {{σn(w)}} + {{v − Ehv}} · [[σn(w)]])dσ(x),

Using the facts that Mnn(w) ∈ [P0(K )]3 and σn(w) ∈ [P1(K )]3,
[[∂n(v − Ehv)]] = [[∂nv]] and {{∂n(v − Ehv)}} = {{∂nv}} − ∂n Ehv,

[[v − Ehv]] = 0 and {{v − Ehv}} = v − Ehv,

and using (39) and (40), we obtain the identity (41).
For any K ∈ Th , we let N (K ), E(K ),F(K ) and V(K ) be the set of the nodal variables

N , the set of the edge variables E , the set of the face variable F , and the set of the volume
variables V of P10 conforming element, respectively. For any v ∈ Vh , v − Ehv ∈ P10, and
it follows from the scaling argument that

‖ v − Ehv ‖2L2(K )
≤ C

∑
N∈N (K )

h3+2order(N )
K (N (v − Ehv))2

+ C
∑

E∈E(K )

h3+2order(E)
K (E(v − Ehv))2

+ C
∑

F∈F(K )

h3+2order(F)
K (F(v − Ehv))2

+ C
∑

V∈V(K )

h3+2order(V )
K (V (v − Ehv))2

= :I1 + · · · + I4,

where order(N ) is the order of the differentiation in the definition of N , and the same rule
applies to order(E), order(F) and order(V ). It is clear that I4 = 0 because V (v) = V (Ehv).

Note that N (v−Ehv) = 0 when order(N ) = 0, 1. To estimate the terms with order(N ) =
2, 3, 4. Using the inverse inequality, we obtain

I1 ≤ C
4∑

l=2

∑
a∈Vh(K )

h3+2l
K ′

∑
K ′∈ω(a)

‖ ∇lv ‖2L∞(K ′)

≤ C
4∑

l=2

∑
a∈Vh(K )

h3+2l
K ′

∑
K ′∈ω(a)

h1−2l
K ′ ‖ ∇2v ‖2L2(K ′)

≤ C
∑

K ′∈ω(K )

h4K ′ ‖ ∇2
hv ‖2L2(K ′),

Next, we note E(v − Ehv) = 0 when order(E) = 0. We denote I 12 (resp. I 22 ) for the term
in I2 with order(E) = 1 (resp. order(E) = 2). For order(E) = 1 and for any a ∈ e with
e ∈ Eh(K ), using (37), we have

|E(v − Ehv)|2 ≤ |(∇v|K
)
(a) − (∇v|Ke

)
(a)|2.
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Proceeding along the same line that leads to (35), we obtain∣∣ (∇v|K )(a) − (∇v|Ke )(a)
∣∣2 ≤ C

∑
K , K ′ ∈ ω(e)

∂K ∩ ∂K ′ = f �= ∅

| f |−1‖ [[∂nv]] ‖2L2( f ).

Note that
∫
f [[∂nv]] dσ(x) = 0, it follows from the Poincaré inequality and the trace inequal-

ity (27) that

I 12 ≤ C
∑

e∈Eh(K )

∑
K , K ′ ∈ ω(e)

∂K ∩ ∂K ′ = f �= ∅

h5K | f |−1‖ [[∂nv]] ‖2L2( f )

≤ C
∑

e∈Eh(K )

∑
K , K ′ ∈ ω(e)

∂K ∩ ∂K ′ = f �= ∅

h5K | f |−1h2f ‖ ∇[[∂nv]] ‖2L2( f )

≤ C
∑

K ′∈ω(K )

h4K ‖ ∇2v ‖2L2(K ′).

Using (38) and the inverse inequality, we obtain

I 22 ≤ C
∑

e∈Eh(K )

∑
K ′∈ω(e)

h7K ′ ‖ ∇2v ‖2L∞(K ′) ≤ C
∑

K ′∈ω(K )

h4K ′ ‖ ∇2v ‖2L2(K ′).

Lastly, we have F(v − Ehv) = 0 when order(F) = 0. It follows from a standard scaling
argument and (40) that

I3 ≤ C
∑

f ∈Fh(K )

h5F

∣∣∣∣
∫
−

f
[[∂nv]]dσ(x)

∣∣∣∣
2

≤ C
∑

f ∈Fh(K )

h5f | f |−1‖ [[∂nv]] ‖2L2( f ).

Note that
∫
f [[∂nv]]dσ(x) = 0 for any face f ∈ Fh , using the Poincaré inequality and the

trace inequality again, we obtain

I3 ≤ C
∑

K ′∈ω(K )

h4K ′ ‖ ∇2v ‖2L2(K ′).

Summing up the estimates for I1, · · · , I4, we obtain, for j = 0, 1, 2,

‖ v − Ehv ‖2L2(K )
≤ C

∑
K ′∈ω(K )

h4K ′ ‖ ∇2v ‖2L2(K ′) ≤ C
∑

K ′∈ω(K )

h2 jK ′ ‖ ∇ jv ‖2L2(K ′).

For 0 ≤ k ≤ j , it follows from the inverse inequality that

‖ ∇k(v − Ehv) ‖2L2(K )
≤ Ch−2k

K ‖ v − Ehv ‖2L2(K )
≤ C

∑
K ′∈ω(K )

h2( j−k)
K ′ ‖ ∇ jv ‖2L2(K ′).

Summing up all the elements K ∈ Th , we obtain (43). ��
Based on Lemmas 3 and 4, we derive the error estimate without the regularity assumption

on the solution u.
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Theorem 4 Let u and uh be the solutions of problem (3) and problem (29), respectively. Then
there exists C depends on β

|||u − uh |||ι,h ≤
(
1 + 2(2μ + dλ)β

C�

)
inf

v∈Vh
|||u − v|||ι,h

+ (2μ + dλ)β

C�

inf
w∈Wh

|||u − w|||ι,h + β

C�

Osc( f ),
(44)

where the oscillation of f is defined as

Osc( f ): =
⎛
⎝ ∑

K∈Th

h2K inf
f ∈P2(K )

‖ f − f ‖2L2(K )

⎞
⎠

1/2

.

Remark 1 The estimate (44)maybeviewed as the generation ofCéa lemma for approximating
the strain gradient elastic model. We refer to [36] for the similar estimate for second order
elliptic problem and [29] and [34] for similar estimates for the fourth order problems.

It is worthwhile tomention that the smoothness assumption on f may be further weakened
if we change the definition of Osc( f ) to

Osc( f ): =
⎛
⎝ ∑

K∈Th

inf
f ∈P2(K )

‖ f − f ‖2H−1(K )

⎞
⎠

1/2

.

Such estimate may be useful for dealing with the cracked problem (cf. [4,34]).

Proof For any v ∈ Vh , we denote w = v − uh and Ehw = (Ehw1, · · · , Ehwd). By the
Petrov-Galerkin orthogonality (41) of the enriching operator, we obtain, for any z ∈ Wh ,

ah(w,w) = ah(v,w) − ah(uh, w) = ah(v,w − Ehw) + ah(v, Ehw) − ( f , w)

= ah(v − z, w − Ehw) + ah(v − u, Ehw) + ( f , Ehw − w)

= ah(v − z, w − Ehw) + ah(v − u, Ehw) + ( f − f , Ehw − w),

(45)

where we have used (40)3 in the last step for any f |K ∈ P2(K ). The energy estimate (44)
follows from (42) and (43) with k = 0, j = 1 and the triangle inequality and the estimate

|ah(v − z, w − Ehw)| ≤ (2 + β)(2μ + dλ)
(|||u − v|||ι,h + |||u − z|||ι,h

)|||w|||ι,h .
��

We are ready to derive the rates of convergence for the Specht triangle and the NZT
tetrahedron.

Theorem 5 Let u and uh be the solutions of problem (3) and problem (29), if the hypothesis
1 is true, then

|||u − uh |||ι,h ≤ Ch1/2‖ f ‖L2 . (46)

If u ∈ H3(Ω), then
|||u − uh |||ι,h ≤ C(h2 + ιh)‖ u ‖H3 . (47)

Proof Using (33), the regularity estimates (17) and (18), we obtain

inf
v∈Vh

|||u − v|||ι,h ≤ ι‖ ∇2
h (u − I 0h u) ‖L2 + ‖ ∇(u − I 0h u) ‖L2 ≤ Ch1/2‖ f ‖L2 .
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Using the interpolation estimate of Scott- Zhang interpolant [45], we obtain

inf
v∈Wh

|||u − v|||ι,h ≤ ι‖ ∇2
h (u − ΠCu) ‖L2 + ‖ ∇(u − ΠCu) ‖L2 ≤ Ch1/2‖ f ‖L2 .

It is clear that

Osc( f ) ≤ Ch‖ f ‖L2 .

Substituting all the above inequalities into (44), we obtain (46).
The estimate (47) may be proved in a standard manner as that leads to [32, Theorem 4].

By the theorem of Berger, Scott and Strang [8], we have

|||u − uh |||ι,h ≤ C

(
inf

v∈Vh
|||u − v|||ι,h + sup

w∈Vh
Eh(u, w)

|||w|||ι,h

)
,

where Eh(u, w) = ah(u, w) − ( f , w).
Using the interpolation estimate (33), we obtain

inf
v∈Vh

|||u − v|||ι,h ≤ |||u − I 0h u|||ι,h ≤ C(h2 + ιh)‖ u ‖H3 .

Integration by parts and using the continuity of w, we write Eh as

Eh(u, w) = ι2
∑
f ∈Fh

∫
f
Mnn(u)[[∂nw]]dσ(x).

Employing the trace inequalities (26) and (27), we obtain

|Eh(u, w)| ≤ Cι2h‖ u ‖H3‖ ∇2
hw ‖L2 ≤ Cιh‖ u ‖H3 |||w|||ι,h .

Combining all the above estimates, we obtain (47). ��

5 Numerical Experiments

In this part, we test the accuracy of the Specht triangle and the NZT tetrahedron for a smooth
solution and the numerical pollution effect for a solution with strong boundary layers. In all
the examples, we let Ω = (0, 1)d and set λ = 10, μ = 1. For d = 2, the initial unstructured
mesh consists of 220 triangles and 127 vertices, and the maximum mesh size is h = 1/8;
See Fig. 1a . For d = 3, we construct an initial mesh by splitting origin cube into 512 small
cubes, and each small cube is divided into 6 tetrahedrons; See Fig. 1b.

Throughout the simulation,we employ the analytical basis functions for theSpecht triangle
[49,57] and the NZT tetrahedron [53]. The computation for the NZT tetrahedron is performed
in a parallel hierarchical grid platform (PHG) [55].2 For all the tests, we measure the rates
of convergence in the relative energy norm |||u − uh |||ι,h/|||u|||ι,h for different ι and h.

2 http://lsec.cc.ac.cn/phg.
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(a) (b)

Fig. 1 Plots of meshes: a d = 2; b d = 3

Table 1 Rate of convergence of the Specht triangle

ι\h 1/8 1/16 1/32 1/64 1/128 1/256

1e+0 1.99e−01 9.87e−02 4.80e−02 2.36e−02 1.17e−02 5.85e−03

rate 1.01 1.04 1.02 1.01 1.00

1e−2 3.16e−02 1.21e−02 5.30e−03 2.53e−03 1.25e−03 6.21e−04

rate 1.39 1.19 1.07 1.02 1.01

1e−4 2.20e−02 5.57e−03 1.39e−03 3.48e−04 8.75e−05 2.26e−05

rate 1.98 2.00 2.00 1.99 1.95

1e−6 2.20e−02 5.57e−03 1.39e−03 3.47e−04 8.65e−05 2.16e−05

rate 1.98 2.00 2.00 2.00 2.00

5.1 Example for Smooth Solution

This example is to test the accuracy of the elements for the smooth solution, which is given
by u = (u1, u2, u3) with

u1 =
d∏

i=1

(
exp(cos 2πxi ) − exp(1)

)
, u2 =

d∏
i=1

(cos 2πxi − 1),

u3 =
d∏

i=1

x2i (xi − 1)2.

The source term f is computed by (1)1. For d = 2, we drop the third component u3. We
report the rates of convergence for the Specht triangle and the NZT tetrahedorn in Tables 1
and 2, respectively. We observe that the rates of convergence appear to be linear when ι is
large, while it turns out to be quadratic when ι is close to zero, which is consistent with the
theoretical predication (47).
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Table 2 Rates of convergence of the NZT tetrahedron

ι\h 1/8 1/16 1/32 1/64 1/128

1e+0 1.02e−01 7.54e−01 5.05e−01 2.84e−01 1.47e−01

rate 0.43 0.58 0.83 0.95

1e−2 5.12e−01 2.28e−01 8.99e−02 3.57e−02 1.55e−02

rate 1.17 1.34 1.33 1.20

1e−4 3.03e−01 7.14e−02 1.79e−02 4.66e−03 1.27e−03

rate 2.08 1.99 1.94 1.89

1e−6 3.01e−01 6.98e−02 1.71e−02 4.26e−03 1.07e−03

rate 2.11 2.03 2.00 1.99

Table 3 Rates of convergence for ι = 10−6

h 1/8 1/16 1/32 1/64 1/128 1/256

NZT 2.74e−01 1.73e−02 1.18e−01 8.24e−02 5.80e−02 4.10e−2

rate 0.66 0.56 0.52 0.51 0.50

Specht 1.57e−01 1.10e−01 7.70e−02 5.42e−02 3.82e−02 2.70e−02

rate 0.51 0.51 0.51 0.50 0.50

5.2 Example with Boundary Layer

In this example, we test the performance of both elements for a solution with a boundary
layer, such boundary layer is one of the main difficulties for the strain gradient elastic model,
and we refer to [20] for a one dimensional example with analytical expression. Based on this
example, we construct a displacement field u = (u1, u2, u3) as

u1 =
d∏

i=1

(exp(sin πxi ) − 1 − ϕ(xi )), u2 =
d∏

i=1

(sin πxi − ϕ(xi )),

u3 =
d∏

i=1

(
πxi (1 − xi ) − ϕ(xi )

)

with

ϕ(x) = πι
cosh[1/2ι] − cosh[(2x − 1)/2ι]

sinh[1/2ι] .

A direct calculation gives

lim
ι→0

u = u0 =
(

d∏
i=1

exp(sin πxi ) − 1,
d∏

i=1

sin πxi ,
d∏

i=1

πxi (1 − xi )

)
,

with u0|∂Ω = 0 and ∂nu0|∂Ω �= 0. It is clear that ∂nu has boundary layers. The source term f
is also computed from (1)1. We report the rates of convergence for both elements in Table 3.
The half order rates of convergence are observed for both elements, which is consistent with
the theoretical prediction (46).
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6 Conclusion

We prove a new H2-Korn’s inequality and a new broken H2-Korn’s inequality. The former is
crucial for the well-posedness of a strain gradient elasticity model, while the latter motivates
us to construct robust nonconforming elements for this model, and the elements are simpler
than the known elements in the literature; See, e.g., [32]. With the aid of the new regularized
interpolant and the enriching operator, we proved that the tensor product of the Specht triangle
and the NZT tetrahedron converges uniformly with respect to the small materials parameter
under the minimal smoothness assumption on the solution. Moreover, the technicalities may
also be used to derive shaper error bounds for the elements in [28,42,50]. Guided by the
broken H2-Korn’s inequality, we can design robust elements for the nonlinear strain gradient
elastic models, thin beam and thin plate with strain gradient effect in [20,23] by combining
the tricks in [10,40] and the machinery developed in the present work, which will be left for
further pursuit.
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