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Abstract The authors present a novel deep learning method for computing eigenvalues of the frac-

tional Schrödinger operator. The proposed approach combines a newly developed loss function with

an innovative neural network architecture that incorporates prior knowledge of the problem. These

improvements enable the proposed method to handle both high-dimensional problems and problems

posed on irregular bounded domains. The authors successfully compute up to the first 30 eigenvalues

for various fractional Schrödinger operators. As an application, the authors share a conjecture to the

fractional order isospectral problem that has not yet been studied.
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1 Introduction

Fractional partial differential equations have proven effective in modeling anomalous dif-

fusion phenomena[1], turbulent flows[2], porous media flows[3], and many others. In the field of

quantum mechanics, Laskin introduced the fractional Schrödinger equation[4, 5] by using Levy

flights to replace the classical Brownian motion. This equation has been used to reveal some

novel phenomena[6, 7], which could not be explained by the standard Schrödinger equation.

Because of the non-locality and the singularity, most of the numerical methods for solving

fractional partial differential equations focus on one-dimensional problems. For two-dimensional

problems, the most popular method is an adaptive finite element method proposed by Ainsworth

and Glusa[8, 9], while [10] also presented some modified finite difference methods. In addition,

the authors in [11, 12] studied the spectral methods to solve the fractional partial differential

equations, but applying them in irregular domains presents significant challenges. Another

GUO Yixiao

LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS, Chinese

Academy of Sciences, Beijing 100190, China; Email: guoyixiao@lsec.cc.ac.cn.

MING Pingbing (Corresponding author)

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

Email: mpb@lsec.cc.ac.cn.
∗This work was supported by the National Natural Science Foundation of China under Grant No. 11971467.
⋄This paper was recommended for publication by Editor YAN Zhenya.



2 GUO YIXIAO · MING PINGBING

innovative method is the walk-on-spheres (WOS) method[13, 14] and its extension[15]. Those

methods use the Feynman-Kac formula to calculate the solution at any given point by simulating

a large number of paths of the 2s-stable Lévy process. We refer to [16–18] for a comprehensive

review of the numerical methods for fractional partial differential equations.

In this paper, we study the eigenvalue problem of the fractional Schrödinger operator in a

bounded domain. 



(−∆)su(x) + V (x)u(x) = λu(x), x ∈ Ω ⊂ R
d,

u(x) = 0, x ∈ Ω
c , R

d\Ω .
(1)

Here, V (x) is a real-valued potential energy function. The precise definition of the operator

(−∆)s with s ∈ (0, 1) will be presented in the subsequent section. When V (x) = 0, the problem

simplifies to the eigenvalue problem of the fractional Laplace operator:




(−∆)su(x) = λu(x), x ∈ Ω ,

u(x) = 0, x ∈ Ω
c.

(2)

To the best of our knowledge, the exact eigenvalue for any of the aforementioned problems

is still unknown, and no analytical formulas even exist for calculating them under any specific

circumstance. However, several numerical methods have been developed to tackle this challenge.

In [19, 20], the author presented a spectral method capable of computing very tight bounds

for the eigenvalues of the fractional Laplacian within a unit ball in any dimension. Addition-

ally, [21] introduced a spectral method that approximates the eigenvalues of the one-dimensional

fractional Schrödinger operator. This method employs the same basis functions as [11] and can

be extended to handle problems in hypercubes. Furthermore, a finite element method is dis-

played in [22] for approximating the eigenvalues within arbitrary bounded domains in one and

two dimensions.

The use of neural networks for computing eigenvalues and eigenvectors dates back to the

1990s[23, 24]. While the recent efforts focus on solving the eigenvalue problem of many-body

quantum systems[25–27]. These methods use neural networks to represent the underlying func-

tions and incorporate techniques such as the variational Monte Carlo method and stochastic

optimizers to approach the ground state of the quantum system. [28–33] also exploited neu-

ral networks to solve eigenvalue problems. However, there is little literature on the numerical

analysis of solving eigenvalue problems with neural networks except[34].

In this work, we propose a deep learning method to solve the eigenvalue problem associated

with the fractional Schrödinger operator. We convert the original eigenvalue problem into a

sequence of minimization problems with constraints. By solving these minimization problems

sequentially, we can determine the eigenmodes in ascending order of their eigenvalues. In

addition, we introduce a novel loss function for solving these minimization problems. This loss

function incorporates penalty terms to efficiently handle the orthogonal constraints. Moreover,

we design a new neural network architecture that incorporates various feature functions. These

feature functions are derived from prior knowledge of the underlying problem, particularly

focusing on aspects such as singularity and boundary conditions.
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To evaluate the accuracy of our method, we firstly solve a range of examples that could

be addressed by the spectral methods also. The dimension of these problems varies from 1 to

9 and our network employs approximately 3,500 parameters. The relative error of our method

is less than 0.1% for the first 5 eigenvalues. We further calculate up to 30 eigenvalues while

maintaining an error of less than 1%. Subsequently, we test our method in general domains

where the spectral methods could not be used and compare the results with those obtained by

the finite element method. The results demonstrate that our method produces more accurate

results than the finite element method over the finest mesh.

We also implement our method for a fractional Schrödinger operator with an inverse square

potential function in three dimensions. By computing the first 30 eigenvalues, we observe

that the order of the eigenvalues exchanges as the fractional order varies in this example.

Additionally, we provide our estimations of eigenvalues for problems with different potential

functions that have never been tested and exhibit eigenfunctions for various problems. All

these examples collectively demonstrate the accuracy and efficiency of our method.

As an application, we apply the method to the fractional version of the isospectral problem.

Based on our numerical result, we conjecture that even if the spectra of two domains are identical

for the Laplacian, they would not be the same for the fractional Laplacian.

The rest of the paper is as follows. In Section 2, we begin with a discussion about the

fractional operator and present the newly devised loss function. In Section 3, we display a deep

learning scheme for solving the eigenvalue problem with a novel neural network architecture.

We show that the results of numerous numerical experiments in Section 4 and compare them

with other existing methods. We apply our method to the fractional version of the isospectral

problem in Section 5 and draw the conclusions in Section 6.

2 Formulation

The fractional Laplace operator (−∆)s has many different definitions[17, 35] and these def-

initions are not equivalent in all circumstances. In this paper, we adopt the Ritz definition as

follows:

(−∆)su(x) = Cd,s

∫

Rd

u(x) − u(y)

‖y − x‖d+2s
dy, for all x ∈ R

d, (3)

where

Cd,s: =
22ssΓ (s + d/2)

πd/2Γ (1 − s)
(4)

and ‖y−x‖ represents the distance between x and y, i.e., ‖y−x‖ = ‖y−x‖ℓ2. The integral in (3)

should be interpreted in the principal value sense. This definition is also known as the integral

definition in the literature and it is equivalent to the definition via the Fourier transform[36]

(−∆)su(x) = F−1{|ξ|2sF{u}(ξ)}(x), (5)

where F and F−1 represent the Fourier transform and the inverse Fourier transform, respec-

tively.
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To discuss the variational form of the eigenvalue problem (1), we first define the standard

fractional order Sobolev space as

Hs(Rd): =

{
u ∈ L2(Rd) :

∫

Rd

(1 + |ξ|2s)|Fu(ξ)|2dξ < ∞

}
. (6)

With the equivalent definition of the fractional Laplacian, it can be expressed as

Hs(Rd): =
{
u ∈ L2(Rd) : ‖u‖Hs(Rd) < ∞

}
, (7)

where the norm is

‖u‖2
Hs(Rd) = ‖u‖2

L2(Rd) + |u|2Hs(Rd) (8)

with the seminorm is

|u|2Hs(Rd) =

∫

Rd

∫

Rd

[u(y) − u(x)]2

‖x − y‖d+2s
dydx. (9)

For the eigenvalue problem with homogeneous Dirichlet boundary condition, we find a

solution in

Hs
c (Ω): =

{
u ∈ Hs(Rd) : u(x) = 0, for all x ∈ Ω

c
}

. (10)

A bilinear form associated with the fractional Schrödinger operator is derived from the nonlocal

Green’s first identity (see [16, (1.22)])

a(u, v): =

∫

Ω

((−∆)su(x) + V (x)u(x))v(x)dx

=
Cd,s

2

∫

Rd

∫

Rd

(u(x) − u(y))(v(x) − v(y))

‖x − y‖d+2s
dydx +

∫

Ω

V (x)u(x)v(x)dx.

(11)

Using this bilinear form and the variational principle, the kth smallest eigenvalue is given

by

λk = min
E

max
u∈E\{0}

a(u, u)

‖u‖2
L2(Ω)

, (12)

where E is a k-dimensional subspace of Hs
c (Ω). [37–39] displayed some analytical results for

the eigenvalue of the fractional Schrödinger operator.

Numerically solving the min-max problem to derive the eigenvalues is challenging and

requires significant effort. Therefore, we propose a new formulation that provides a more

convenient approach to solve the problem by solely minimizing a loss function. Given the first

k eigenmodes (λ1, u1), · · · , (λk, uk), the subsequent eigenvalue can be characterized as

λk+1 = min
u∈E(k)

a(u, u)

‖u‖2
L2(Ω)

, (13)

where

E(k) = {u ∈ Hs
c (Ω)\{0} : u ⊥ ui, 1 ≤ i ≤ k}. (14)
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We use a neural network to approximate the next eigenfunction and construct a loss function

by incorporating penalty terms to handle the orthogonal constraints. The loss function for

computing the kth eigenvalue is

Lk(u) =
a(u, u)

‖u‖2
L2(Ω)

+ β

k−1∑

j=1

(u, uj)
2

‖u‖2
L2(Ω)‖uj‖2

L2(Ω)

, (15)

where β is a penalty parameter and its value should be greater than λk − λ1. When k = 1, the

loss function reduces to

L1(u) =
a(u, u)

‖u‖2
L2(Ω)

, (16)

and the penalty term becomes unnecessary. We remark that the loss function (15) originates

from the variational principle and does not rely on any specific properties of the fractional

differential operators. Thus, this loss function can be employed for the standard Schrödinger

operator and other ordinary differential operators that admit Dirichlet forms.

We use the deep learning scheme introduced in Section 3 to minimize the loss. After

minimizing the loss, the neural network provides an approximation of the eigenfunction ûk,

while the eigenvalue λk is approximated as

λ̂k =
a(ûk, ûk)

‖ûk‖2
L2(Ω)

. (17)

We iterate this process to obtain the eigenmodes one by one. Since the exact eigenfunction is

unknown, the approximating function ûk will be used as a substitute in (15). Consequently,

any numerical errors from previous calculations can impact the accuracy of eigenmodes with

higher eigenvalues. As the training progresses, the numerical error becomes larger and larger.

However, subsequent experiments demonstrate that our method can calculate the first dozens

of eigenmodes with great precision.

3 Deep Learning Scheme

In this section, we present our deep learning scheme for solving the eigenvalue problem (1).

We introduce a new architecture and describe the Monte Carlo sampling method used to cal-

culate the loss.

When applying deep learning to solve PDE problems, the fully connected neural network

(FCNN) and the residual network (ResNet) are commonly employed to approximate functions.

However, these architectures have some weaknesses. They could not ensure the boundary

conditions, and penalty terms are often added to the loss function to constrain the functions in

general. Moreover, these architectures tend to underperform when the solutions contain singular

terms. According to [40], the solutions of fractional partial differential equations exhibit an s-

order singularity near the boundary, i.e.,

u(x) ≈ dist(x, ∂Ω)s + v(x), x ∈ Ω , (18)
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where v(x) is a smooth function over Ω . Furthermore, [21] also conjectured that the eigenfunc-

tions of the fractional Schrödinger operator exhibit an s-order singularity near the boundary.

To overcome these drawbacks, we design a new architecture that incorporates prior knowledge

about the singular term of the functions and the boundary conditions.

Our architecture is based on FCNN, and a similar one is shown in [41]. It consists of several

hidden layers and an output layer, while we mainly change the formulation of the output layer.

Each hidden layer is a fully connected layer with the same width. We denote the number of

hidden layers as l and the width of each layer as m. The activation function we used is σ = tanh

and we denote the vectorized function of σ(x) as φ(x), i.e.,

φ(x) = (σ(x1), σ(x2), · · · , σ(xm)).

Input x

Output

  u(x)

q(x)

ˆ

r
1

r
2

r
3

Figure 1 The neural network architecuture combined with feature funtcions

The input layer contains a linear transformation that maps input values from R
d to R

m,

followed by an activation introducing non-linearity. The output of the first layer is given by

r1 = φ(W1x + b1), (19)

where W1 ∈ R
m×d and b1 ∈ R

m. The other hidden layers also contain similar transformations,

mapping values from R
m to R

m, and the output of the ith layer is represented as

ri = φ(Wiri−1 + bi), 2 ≤ i ≤ l, (20)

where Wi ∈ R
m×m and bi ∈ R

m. The output layer combines the outputs of the lth layer and a

series of feature functions. The final output of the entire network is given by

û(x) =

m∑

j=1

W
(j)
l+1 · r

(j)
l · qj(x), (21)

娟娟
矩形
请在正文图1前补充图1 的引用。
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where Wl+1 ∈ R
m, W

(j)
l+1 and r

(j)
l is the jth component of Wl+1 and rl, respectively. The

feature functions are the key part of our method and play a critical role in ensuring the boundary

conditions and capturing the singularity of the eigenfunctions. The selection of these functions is

based on prior knowledge and significantly influences the accuracy and efficiency of our method.

We enforce that the feature functions belong to Hs
c (Ω) to ensure the final output resides in the

appropriate function space. The choice of the feature functions for different examples will be

provided in the next section.

The set of all parameters is defined as

θ: = {W1, · · · , Wl+1, b1, · · · , bl}. (22)

During each epoch, we calculate the loss function Lk[u(x; θ)] and employ stochastic optimization

methods, such as the adaptive moment estimation (ADAM) optimizer, to update the parame-

ters. After multiple epochs, the loss function will diminish to a value small enough and we will

derive the approximated eigenmode. To balance accuracy and efficiency, we gradually reduce

the learning rate and increase the number of sampling points as the training progresses.

Next, we present the details of the sampling technique used to estimate the loss function.

The calculation of (u, uj) and ‖u‖2
L2(Ω) is straightforward. We uniformly sample N points

x1, x2, · · · , xN in Ω and calculate these values unbiasedly by

(u, uj) ≈
|Ω |

N

N∑

i=1

u(xi)uj(xi) (23)

and

‖u‖2
L2(Ω) ≈

|Ω |

N

N∑

i=1

u(xi)
2. (24)

However, calculating the quadratic form a(u, u) requires a more sophisticated approach

since it is a double integral over R
d and the denominator becomes extremely small when the

two variables are in close proximity. To address these difficulties, we pick a convex domain D

that contains Ω and separate the integral into two parts.

a(u, u): =
Cd,s

2

∫

Rd

∫

Rd

[u(y) − u(x)]2

‖x − y‖d+2s
dydx

=
Cd,s

2

∫

D

∫

D

[u(y) − u(x)]2

‖x − y‖d+2s
dydx + Cd,s

∫

D

∫

Dc

[u(y) − u(x)]2

‖x − y‖d+2s
dydx

, A1 + A2.

(25)

For the first part A1, the integral domain is bounded, but its value approaches infinity as y

approaches x. We alleviate this by applying a coordinate transformation to change the integral
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formulation

A1 =
Cd,s

2

∫

D

∫

D

[u(y) − u(x)]2

‖x − y‖d+2s
dydx

=
Cd,s

2

∫

D

∫

Sd−1

∫ +∞

0

1x+wξ∈D
[u(x + wξ) − u(x)]2

w1+2s
dwdξdx

=
Cd,s

2

∫

D

∫

Sd−1

∫ w+

0

[
u(x + wξ) − u(x)

w

]2
dw

w2s−1
dξdx.

(26)

Here, Sd−1 is the unit (d − 1)-dimensional sphere and w+ denotes the distance from the point

x to the boundary ∂D along the direction ξ. The shape of D should facilitate this calculation

and its size should be as small as possible to enhance sampling efficiency. It is crucial that D

is a convex domain, which guarantees that any ray starting from x intersects the boundary ∂D

only once. This makes the last equal sign in (26) and simplifies the calculation.

For the numerical implementation, we first uniformly sample x1, x2, · · · , xN in D, and

uniformly sample ξ1, ξ2, · · · , ξN in Sd−1. Then, we calculate w+
i which depends on xi and ξi,

and sample wi with the probability

P (wi = w) = 10<w<w+
i

1

w2s−1

2 − 2s

(w+
i )2−2s

. (27)

To reduce numerical instability caused by dividing a very small amount, we set a minimum

value wc for w. In our numerical experiments, we take wc = 10−4 and

w̃i = max(wi, wc) = max(wi, 10−4). (28)

Through these steps, we derive a practicable and efficient sampling method for calculating A1,

A1 ≈
Cd,s

2N
|D| |Sd−1|

N∑

i=1

[[
u(xi + w̃iξi) − u(xi)

w̃i

]2
(w+

i )2−2s

2 − 2s

]
. (29)

The calculation of A2 is comparatively simpler, as u(y) = 0 when y ∈ Ω
c. We simplify the

equation by calculating part of the integral in advance and this prevents sampling in an infinite

domain.

A2 = Cd,s

∫

D

∫

Dc

[u(y) − u(x)]2

‖x − y‖d+2s
dydx

= Cd,s

∫

D

∫

Sd−1

∫ +∞

w+

u(x)2

w1+2s
dwdξdx

= Cd,s

∫

D

∫

Sd−1

u(x)2
1

(w+)2s

1

2s
dξdx.

(30)

By employing the same method to uniformly sample xi and ξi in D and Sd−1, we can approx-

imate A2 unbiasedly by

A2 ≈
Cd,s

N
|D| |Sd−1|

N∑

i=1

[
u(xi)

2 1

(w+
i )2s

1

2s

]
. (31)
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4 Numerical Results

In this section, we present the numerical results for various problems. Firstly, we intro-

duce the training configuration. We employ the networks introduced in Section 3. Each of

them contains 3 hidden layers with a width of 40, unless otherwise stated. The total number

of parameters is approximately 3, 500. For each eigenvalue, we conduct 120, 000 epochs. Ini-

tially, the learning rate is set to 5 × 10−3, and 1, 000 points are sampled. After every 20, 000

epochs, we reduce the learning rate to one-fourth of its current value, and double the number

of sampling points. To identify the kth eigenvalue (k ≥ 2), we set the penalty parameter β to

4 times the maximum eigenvalue we have found. This selection is sufficiently large to discover

the subsequent correct eigenvalue. Using a too large penalty parameter would cause the loss

function to become sharp, leading to inefficient training. All experiments are conducted on a

single NVIDIA A100 GPU.

We remark that there are several potential enhancements for the aforementioned setup,

such as using larger and deeper networks, training more epochs, and so on. However, im-

plementing these enhancements would require much more effort and resources. The current

configuration is chosen by balancing efficiency and accuracy. Generally, it takes approximately

5 minutes to discover a new eigenvalue in most cases.

4.1 Fractional Laplacian in the d-Dimensional Unit Ball

We first calculate the eigenvalues of the fractional Laplace operator in d-dimensional unit

balls, i.e., Ω = B(0, 1). As we mentioned before, the exact eigenvalues of this problem are

currently unknown. However, Dyda, et al. showed a method to calculate tight lower and upper

bounds of the eigenvalues for this specific case[19]. We reproduce their method and obtain

several bounds. By utilizing these bounds, we can confirm the first few digits of the exact

eigenvalues. These inferred values are then used to test the accuracy of our method. In the

following experiments, we calculate the relative errors by

e: =
|λ̂ − λ∗|

λ∗
,

where λ̂ is our numerical result and λ∗ is the inferred value.

We test our method for d = 1, 3, and 9. For simplicity, we let the sampling domain D = Ω

and define the feature functions as

qj(x): = ReLU
(
1 − ‖x‖2

2

)pj
. (32)

Here, ReLU(x)=max(0, x). These feature functions ensure that the output of the neural net-

works vanishes in Ω
c. The exponents pj are evenly spaced over the interval [s, 3] to capture

both the sharp and the smooth behaviors near the boundary.

For the case d = 1, the numerical results are summarized in Table 1. Our method suc-

cessfully provides accurate values for the first 10 eigenvalues, and their relative error are less

than 0.2%. For larger s, the results can be better, allowing us to calculate more eigenvalues

while maintaining this level of precision. Furthermore, we display the eigenfunctions in Figure 2
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to demonstrate the singularity near the boundary. As s decreases, the eigenfunctions become

sharper near the boundary.

Table 1 Estimates of the eigenvalues of (2) in Ω = (−1, 1)

s k = 1 k = 2 k = 3 k = 4 k = 5 k = 10

Exact 0.97259 1.09219 1.14732 1.18684 1.21655 1.31070

0.05 Our 0.97261 1.09217 1.14735 1.18689 1.21665 1.31325

Rel. error 2.06 × 10−5 1.83×10−5 2.61×10−5 4.38×10−5 8.22×10−5 1.95×10−3

Exact 0.97017 1.60154 2.02882 2.38716 2.69474 3.88845

0.25 Our 0.97020 1.60148 2.02878 2.38761 2.69540 3.89149

Rel. error 3.09×10−5 3.75×10−5 1.97×10−5 1.88×10−4 2.45×10−4 7.82×10−4

Exact 1.15777 2.75476 4.31680 5.89215 7.46018 15.3155

0.5 Our 1.15780 2.75496 4.31666 5.89386 7.46028 15.3224

Rel. error 2.59×10−5 7.26×10−5 3.24×10−5 2.90×10−4 1.34×10−5 4.51×10−4

Exact 1.59750 5.05976 9.59431 15.0188 21.1894 61.0924

0.75 Our 1.59747 5.05971 9.59273 15.0225 21.1944 61.0977

Rel. error 1.88×10−5 9.88×10−6 1.65×10−4 2.46×10−4 2.36×10−4 8.68×10−5

Exact 2.24406 8.59575 18.7168 32.4620 49.7200 186.450

0.95 Our 2.24379 8.59504 18.7175 32.4626 49.7308 186.461

Rel. error 1.20×10−4 8.26×10−5 3.74×10−5 1.94×10−5 2.17×10−4 5.90×10−5

Note: Exact shows the first few digits of the exact eigenvalue.

-1.00      -0.75     -0.50     -0.25      0.00      0.25      0.50       0.75      1.00 

1.0

0.8

0.6

0.4

0.2

0.0

x

y

s=0.05
s=0.25
s=0.5
s=0.75
s=0.95

-1.00      -0.75     -0.50     -0.25      0.00      0.25      0.50       0.75      1.00 

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

x

y

s=0.05
s=0.25
s=0.5
s=0.75
s=0.95

Figure 2 The first and the fourth eigenfunction of (2) in Ω = (−1, 1)

When d = 3, we calculate the first 30 eigenvalues. The relative error is less than 0.2% for

s ≥ 0.25. However, the accuracy for s = 0.05 is not so satisfactory, compared to the higher order

cases. Their errors grow faster so that the results become unreliable earlier. The numerical

results are displayed in Table 2. We also calculate the result for s = 0.9999. Our numerical
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result is very close to the exact value while the eigenvalue of the fractional Laplacian converges

to the eigenvalue of the common Laplacian as s approaches 1.

Table 2 Estimates of the eigenvalues of (2) in the unit ball (d = 3)

s k = 1 k = 2 k = 3 k = 5 k = 10 k = 15 k = 30

Exact 1.092197 1.14300 1.14300 1.17687 1.18684 1.20274 1.23712

0.05 Our 1.092194 1.14303 1.14304 1.17757 1.18714 1.20518 1.26123*

Rel. error 2.75×10−6 2.62×10−5 3.50×10−5 5.95×10−4 2.53×10−4 2.03×10−3 1.95e-02

Exact 1.601538 1.98571 1.98571 2.28647 2.38716 2.54207 2.92181

0.25 Our 1.601535 1.98569 1.98580 2.28750 2.38852 2.54400 2.92759

Rel. error 1.87×10−6 1.01×10−5 4.53×10−5 4.50×10−4 5.70×10−4 7.59×10−4 1.98×10−3

Exact 2.75476 4.12130 4.12130 5.40002 5.89215 6.63029 8.71829

0.5 Our 2.75498 4.12087 4.12114 5.40141 5.89405 6.63462 8.72610

Rel. error 7.99×10−5 1.04×10−4 3.88×10−5 2.57×10−4 3.22×10−4 6.53×10−4 8.96×10−4

Exact 5.05976 8.93319 8.93319 13.1781 15.0187 17.7566 26.5730

0.75 Our 5.06078 8.93035 8.93205 13.1780 15.0284 17.7742 26.5872

Rel. error 2.02×10−4 3.18×10−4 1.28×10−4 3.04×10−6 6.40×10−4 9.91×10−4 5.33×10−4

Exact 8.59575 17.0965 17.0965 27.5394 32.4619 39.8028 65.8034

0.95 Our 8.59548 17.0967 17.1011 27.5366 32.4666 39.8463 65.8256

Rel. error 3.14×10−5 1.05×10−5 2.67×10−4 1.01×10−4 1.44×10−4 1.09×10−3 3.37×10−4

Exact 9.86685 20.1840 20.1840 33.2050 39.4629 48.8111 82.6813

0.9999 Our 9.86767 20.1819 20.1830 33.2124 39.4798 48.8591 82.7274

Rel. error 8.26×10−5 1.02×10−4 4.73×10−5 2.23×10−4 4.17×10−4 9.82×10−4 5.57×10−4

1 Exact 9.86960 20.1907 20.1907 33.2175 39.4784 48.8312 82.7192

Note: Exact show the first few digits of the exact eigenvalue. * represents the error of this solution

is too large and it should not be convinced.

In this example, some eigenvalues have a multiplicity greater than 1. For these repeated

eigenvalues, our method can identify all the mutually orthogonal eigenfunctions. However, it

is inefficient to find the next new eigenvalue with a different value if the multiplicity is too

large. For example, in the case of the 9-dimensional ball, the smallest eigenvalue is simple.

From the second to the tenth eigenvalue, they share the same value, while the next eigenvalue

has a multiplicity of 44. Consequently, it is very time-consuming for our method to find a new

eigenvalue beyond these three eigenvalues. The numerical results for the 9-dimensional ball can

be found in Table 3.

All these results indicate that solving the eigenvalue problem with a small fractional order is

more challenging and the accuracy of the solution becomes worse earlier than the large fractional

order cases. Additionally, it should be noted that the standard error of calculating (17) caused

by using the Monte Carlo method varies from 3 × 10−5 to 3 × 10−4 in all our experiments,

depending on the complexity of the eigenmodes. Hence, the accuracy of these results has

approached the limit of our method with the current configuration.
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Table 3 Estimates of the eigenvalues of (2) in the 9-dimensional unit ball

s k = 1 k = 2 k = 3 k = 5 k = 10 k = 11 k = 15

Exact 1.20274 1.22386 1.22386 1.22386 1.22386 1.24179 1.24179

0.05 Our 1.20275 1.22392 1.22393 1.22395 1.22475 1.24361 1.24411

Rel. error 8.31×10−6 4.90×10−5 5.72×10−5 7.35×10−5 7.27×10−4 1.47×10−3 1.87×10−3

Exact 2.54207 2.76833 2.76833 2.76833 2.76833 2.97357 2.97357

0.25 Our 2.54212 2.76834 2.76855 2.76884 2.78037 2.98222 2.98411

Rel. error 1.97×10−5 3.61×10−6 7.95×10−5 1.84×10−4 4.35×10−3 2.91×10−3 3.54×10−3

Exact 6.63029 7.82911 7.82911 7.82911 7.82911 9.00556 9.00556

0.5 Our 6.62929 7.82897 7.82986 7.83152 7.87850 9.02421 9.03107

Rel. error 1.51×10−4 1.79×10−5 9.58×10−5 3.08×10−4 6.31×10−3 2.07×10−3 2.83×10−3

Exact 17.7566 22.6391 22.6391 22.6391 22.6391 27.8025 27.8025

0.75 Our 17.7617 22.6390 22.6414 22.6581 22.7577 27.8484 27.9111

Rel. error 2.87×10−4 4.42×10−6 9.81×10−5 8.39×10−4 5.24×10−3 1.65×10−3 3.91×10−3

Exact 39.8028 53.8038 53.8039 53.8038 53.8038 69.4807 69.4807

0.95 Our 39.8146 53.8138 53.8427 53.8439 54.0359 69.6889 69.7573

Rel. error 2.96×10−4 1.86×10−4 7.22×10−4 7.45×10−4 4.31×10−3 3.00×10−3 3.98×10−3

Note: Exact shows the first few digits of the exact eigenvalue.

4.2 Fractional Schrödinger Operator

Next, we solve the eigenvalue problem of the fractional Schrödinger operator with a po-

tential function V (x). To demonstrate the effectiveness of our method, we conduct two tests in

one-dimensional intervals and solve a three-dimensional problem with an inverse square poten-

tial in a unit ball.

The problem domains for the first two examples are Ω = (−1, 1). We also let D = Ω and

define the feature functions as

qj(x): = ReLU
(
1 − x2

1

)pj
. (33)

The exponents pj are also evenly spaced over the interval [s, 3]. In the first example, the

potential function we employed is V (x) = x2/2. We test our method for different s and the

numerical results are presented in Table 4. By comparing our results with those obtained

from [21], we observe that they are very close to each other. The relative differences are less

than 0.06% for the first 10 eigenvalues in all circumstances.

The second example involves a distinct potential function V (x) = 50x2 + sin(2πx). We

calculate the first few eigenvalues and show our estimates in Table 5. Additionally, we plot the

first six eigenfunctions in Figure 3, revealing that the shapes and singularity of the eigenfunc-

tions of the fractional Schrödinger operator differ from those of the fractional Laplacian. It is

clear that some eigenfunctions do not exhibit singularity near the boundary with this potential.

But, our method still successfully identifies them.
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Table 4 Estimates of the eigenvalues of (1) with V (x) = x2/2 in Ω = (−1, 1)

s k = 1 k = 2 k = 3 k = 4 k = 5 k = 10

Our 1.05992 1.76847 2.19033 2.55183 2.85805 4.05264

0.25 Ref. 1.05995 1.76850 2.19047 2.55226 2.85848 4.05477

Diff. 2.83×10−5 1.70×10−5 6.39×10−5 1.69×10−4 1.50×10−4 5.26×10−4

Our 1.24024 2.91807 4.48137 6.05866 7.62650 15.4822

0.5 Ref. 1.24036 2.91792 4.48124 6.05836 7.62828 15.4813

Diff. 9.68×10−5 5.14×10−5 2.90×10−5 4.95×10−5 2.33×10−4 5.81×10−5

Our 1.67073 5.21206 9.75501 15.1826 21.3543 61.2587

0.75 Ref. 1.67054 5.21184 9.75495 15.1818 21.3573 61.2629

Diff. 1.14×10−4 4.22×10−5 6.15×10−6 5.27×10−5 1.40×10−4 6.86×10−5

Our 2.31064 8.73900 18.8735 32.6231 49.8832 186.616

0.95 Ref. 2.31063 8.73878 18.8749 32.6228 49.8845 186.667

Diff. 4.33×10−6 2.52×10−5 7.42×10−5 9.20×10−6 2.61×10−5 2.74×10−4

Note: Ref. represents the reference values given by [21]. Diff. represents the relative

difference between these two results.

Table 5 Estimates of the eigenvalues of (1) with V (x) = 50x2 + sin(2πx) in Ω = (−1, 1)

s k = 1 k = 2 k = 3 k = 4 k = 5 k = 10

0.25 2.17977 3.90875 4.74208 5.50170 6.06804 -*

0.5 3.67234 8.61490 11.9706 15.0614 17.7531 29.2724

0.75 5.31594 14.5127 22.3722 30.0024 37.4224 78.2848

0.95 6.71889 20.0334 33.6763 48.9012 66.5992 203.348

Note: * represents it fails to generate a solution due to the accumulation of the

compuataional error.
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Figure 3 The first six eigenfunctions of (1) with V (x) = 50x2 + sin(2πx) in Ω = (−1, 1)
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Last, we solve the problem (1) in the unit ball with an inverse square potential

V (x) =
1

2(x2
1 + x2

2 + x2
3)

.

The feature functions we used are the same as those in V (x) = 0. Figure 4 shows the eigenvalues

with these two different potential functions. In all other cases, the order of the eigenvalues is

independent of s, i.e., they would not exchange for different s. However, in this case, the order

of the eigenvalues changes. As s decreases, the value of the first 7-fold eigenvalue is no longer

greater than the value of the second single eigenvalue, and the value of the first 9-fold eigenvalue

is no longer greater than the value of the second triple eigenvalue.

λ
1,1

λ
3,1

λ
5,1

λ
7,1

λ
9,1

λ
1,2

λ
3,2

s

(a) Potential V (x) = 1
2(x2

1+x2
2+x2

3)

λ
1,1

λ
3,1

λ
5,1

λ
7,1

λ
9,1

λ
1,2

λ
3,2

s

(b) Potential V (x) = 0

Figure 4 Eigenvalues of (1) in the 3-dimensional unit ball with different potentials,

λa,1 represents the value of the first eigenvalue which has a multiplicity

of a while λa,2 represents the value of the second eigenvalue which has a

multiplicity of a

4.3 Fractional Laplacian in General Domains

In this subsection, we focus on calculating the eigenvalues of the fractional Laplace operator

over general domains. To validate our method, we compare the results with those computed

by the finite element method in [22].

Firstly, we consider the problem in Ω = [−1, 1]2 and let the sampling domain D = Ω . The

feature function is defined as

qj(x): =

[
ReLU

(
1 − x2

1

)
· ReLU

(
1 − x2

2

)]pj

. (34)

Here, pj are also evenly spaced over the interval [s, 3]. We calculate the first eigenvalue for

different s and the outcomes are summarized in Table 6. The results demonstrate that our

method outperforms the finite element method over the finest grid, and these values are very

close to the extrapolated values obtained through Richardson extrapolation using the finite

element method’s results. It is worth noting that our approach enables us to obtain the cor-

responding eigenfunctions, which are not provided by the extrapolation method. Table 6 also
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demonstrates the efficiency of our method, as it only takes around 5 minutes to calculate a new

eigenmode. We further compute more eigenvalues, and the results are presented in Table 7.

The multiplicity of each computed eigenvalue is the same as that of the Laplacian, which is

well-known (see, for example, [42]).

Table 6 Estimates of the first eigenvalue of (2) in the square [−1, 1]2

s Our Extrapolated FEM Our Time (s)

0.05 1.04054 1.0405 1.0412 290.2

0.25 1.28129 1.2813 1.2844 292.4

0.5 1.83440 1.8344 1.8395 291.8

0.75 2.88721 2.8872 2.8921 290.6

0.95 4.40568 4.4062 4.4083 296.5

Note: Extrapolated indicates the extrapolated values with FEM re-

sults in [22], FEM represents the eigenvalues calculated by the

Finite Element Method over the finest mesh in [22].

Table 7 Estimates of the eigenvalues of (2) in the square [−1, 1]2

s k = 1 k = 2, 3 k = 4 k = 5, 6 k = 7, 8 k = 9, 10 k = 11

0.05 1.04054 1.10942 1.14281 1.15823 1.17429 1.19215 1.19685

0.25 1.28129 1.72109 1.97902 2.09892 2.26684 2.43361 2.48065

0.5 1.83440 3.14066 4.08501 4.59306 5.30757 6.09787 6.31421

0.75 2.88721 6.06243 8.79700 10.4447 12.8430 15.7654 16.5448

0.95 4.40568 10.6589 16.7414 20.7257 26.6512 34.4497 36.4295

Next, we turn to the problem in an L-shaped domain Ω = [−1, 1]2\[0, 1]2. Since Ω is not

convex, we let the sampling domain D = [−1, 1]2. We employ two types of feature functions.

The first-type function is

q1,j(x): = max

{
ReLU

(
−x1(x1+1)

)
ReLU

(
1−x2

1

)
, ReLU

(
−x2(x2+1)

)
ReLU

(
1−x2

2

)}pj

. (35)

Similar to the previous case, the exponents pj are evenly spaced over the interval [s, 3]. It is well

known that the solution of Laplace’s equation over the L−shaped domain exhibits a singularity

of type r2/3f(θ) at the corner. We suspect that certain eigenfunctions may also display a corner

singularity. To capture this singularity, we use another type of feature function:

q2,j(x): = B
(
2r(x)

)
sin

(
2

3
ReLU

(
θ(x) −

π

2

))
r(x)tj . (36)

Here, r(x) represents the distance between the point x and the corner, while the angle θ(x) is

defined as the angle between the positive x-axis and the line connecting the point x and the
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corner in a counterclockwise direction. The exponents tj are evenly spaced over the interval

[2/3, 3/2]. B(·) is a bump function defined as

B(x) =





exp

(
−

1

1 − x2

)
, x ∈ (−1, 1),

0, otherwise.

(37)

In this example, we let the width of the network be 60 and compare two different numerical

schemes to demonstrate that incorporating the knowledge about the singularity near the corner

can further enhance accuracy for s > 2/3. The first scheme we used, denoted as Scheme A

in the following paragraphs, utilizes 40 first-type feature functions and 20 second-type feature

functions, while the second scheme, referred to as Scheme B, only employs the first-type feature

functions. All other settings for these two schemes remain the same.

According to Table 8, Scheme A provides lower estimates than Scheme B when s = 0.7

and s = 0.9. This can be attributed to the fact that Scheme A incorporates more knowledge

about the singularity. However, the results of these two schemes are similar when s ≤ 0.6, and

both schemes outperform the results in [22].

Table 8 Estimates of the first eigenvalue of (2) in the L-shaped domain [−1, 1]2\[0, 1]2

s Our - A Our - B Extrapolate FEM Time(s) - A Time(s) - B

0.1 1.14145 1.14145 1.1413 1.1434 397.7 319.9

0.3 1.59621 1.59609 1.5956 1.6025 398.1 322.1

0.5 2.43299 2.43316 2.4322 2.4440 399.1 323.5

0.6 3.09453 3.09478 3.0936 3.1072 397.4 325.4

0.7 4.00864 4.00952 4.0069 4.0228 398.1 324.1

0.9 7.08512 7.09517 7.0790 7.0975 399.5 322.3

Note: Extrapolated indicates the extrapolated values with FEM results in [22], FEM repre-

sents the eigenvalues calculated by the Finite Element Method over the finest mesh

in [22].

We plot some eigenfunctions of Scheme A in Figure 5, which indicates that the eigenfunc-

tions exhibit similar shapes. But, the eigenfunctions with smaller fractional orders change more

sharply near the boundary. Consequently, the absolute value of these functions tends to ap-

proach zero in a more narrow region. These behaviors are consistent with the previous example

of the fractional Laplacian. In Table 9, we present our estimates for the first few eigenvalues

using Scheme A. It shows that the multiplicities of these eigenvalues are consistent with those

of the Laplacian[43].
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Figure 5 The eigenfunctions of (2) in the L-shaped domain [−1, 1]2\[0, 1]2. Each eigenfunction

is normalized to let the maximum absolute value equal 1. The first column shows

the 1st eigenfunctions for different fractional orders s while the second, third and

fourth columns show the 5th, 6th and 10th eigenfunctions, respectively. The first

five rows show the eigenfunctions corresponding to s = 0.05, 0.25, 0.5, 0.75, and 0.95,

respectively. The last row shows eigenfunctions at x2 = −0.5
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Table 9 Estimates of the eigenvalues of (2) in the L-shaped domain [−1, 1]2\[0, 1]2

s k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8, 9

0.05 1.06508 1.11541 1.13495 1.16620 1.16646 1.18297 1.18921 1.20039

0.25 1.45545 1.77523 1.92973 2.19286 2.20084 2.35759 2.41845 2.52001

0.5 2.43299 3.38167 3.95538 5.00859 5.10676 5.84385 6.12008 6.56155

0.75 4.59315 6.91928 8.59204 11.9203 12.4673 15.2133 16.2296 17.6734

0.95 8.25174 12.9116 16.6466 24.5501 26.3578 33.8279 36.5487 40.0902

5 Isospectral Problem

In this section, we explore the fractional order isospectral problem. In 1966, Kac posed

the famous isospectral problem[44], “Can one hear the shape of a drum”, which asks whether

the Laplace operator with Dirichlet boundary conditions on two different domains can have

the same spectrum? In 1992, Gordan, et al. gave a negative answer to this question with a

counterexample[45, 46], proving that it is possible for two domains to have the same spectrum.

Figure 6 represents their counterexample. Since then, researchers have discovered numerous

pairs of domains with identical spectra, and the eigenvalues of many of them are calculated by

some numerical works[47–49].

x
1

x
2

D

Ω

(a) Drum A

x
1

x
2

D

Ω

(b) Drum B

Figure 6 Shape of the problem domain Ω and the sampling domain D of the drum-shaped problem

Now, we wonder whether two different domains that have the same spectrum for the

Laplace operator will also have the same spectrum for the fractional Laplace operator. We

solve the eigenvalue problem of the fractional Laplace operator in these two domains to draw a

conjecture to this question. The relative differences between two eigenvalues are calculated by

R
(s)
k =

λ
(s)
B,k − λ

(s)
A,k(

λ
(s)
A,k + λ

(s)
B,k

)
/2

. (38)
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Here, λ
(s)
A,k and λ

(s)
B,k are the kth eigenvalues for the fractional Laplacian with order s in the

domains of drum A and drum B, respectively. The previous conclusion stated that

R
(1)
k = 0, for any k. (39)

But based on the following experiments, we speculate that when 0 < s < 1,

R
(s)
k 6= 0, for some k. (40)

Since these two domains are not convex, we select a convex domain D for sampling and

the shape of the domain D is plotted in Figure 6 also. We construct two types of feature

functions similar to the previous example. The first-type feature functions are used to capture

the singularity near the boundary while the second-type captures the singularity at the corners.

The network has a width of 60 and consists of 40 first-type feature functions and 20 second-type

feature functions. All other settings remain the same as the previous examples.

Table 10 reports the first two eigenvalues in these two domains. It is evident that the

first eigenvalue in the domain of drum A is smaller than that in drum B, whereas the second

eigenvalue in drum A is greater than that in drum B.

Table 10 Estimates of the first two eigenvalues of (2) in two drum-shaped domains

s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k = 1
drum A 1.1429 1.3406 1.6114 1.9815 2.4887 3.1880 4.1578 5.5182 7.4383

drum B 1.1438 1.3437 1.6172 1.9921 2.5054 3.2131 4.1913 5.5537 7.4694

k = 2
drum A 1.2258 1.5244 1.9237 2.4663 3.2077 4.2342 5.6653 7.6851 10.566

drum B 1.2222 1.5152 1.9056 2.4335 3.1559 4.1591 5.5648 7.5679 10.450

We further compute more eigenvalues and calculate the relative difference between them.

The results for different k and s are shown in Figure 7. The value R
(s)
k for these k and s

we calculated are significantly different from 0 and the maximum relative difference reaches

1.8%. These discrepancies cannot be explained solely by the sampling error of the Monte Carlo

method. Therefore, we conjecture that even if the spectra of two domains are identical when

s = 1, they would not be the same for 0 < s < 1.

s
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Figure 7 The relative difference R
(s)
k for difference k and s
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6 Conclusion

Based on a new loss function and a knowledge-based neural network architecture, we

propose a novel deep learning method for computing eigenvalues of the fractional Schrödinger

operator. We apply the method to problems in high-dimensional space and irregular domains

in low dimensions. The numerical results demonstrate that the accuracy of our method in

calculating the first few dozen eigenvalues of various problems, and this method outperforms

the finite element method[22]. We also draw a new conjecture to the fractional order isospectral

problem for exhibiting the capability of the method.
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