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Abstract

We propose a class of 12 degrees of freedom triangular plate bending elements with

quadratic rate of convergence. They may be viewed as the second order Specht triangle,

while the Specht triangle is one of the best first order plate bending element. The conver-

gence result is proved under minimal smoothness assumption on the solution. Numerical

results for both the smooth solution and nonsmmoth solution confirm the theoretical pre-

diction.
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1. Introduction

Numerical approximation of the plate bending problem as well as other fourth order elliptic

boundary value problems usually demand certain special devices. C1 finite elements are re-

quired for the conforming finite elements [1,2], which can be quite complicated, in particularly

in three dimension. This stimulates the develop of the nonconforming finite elements. The

Specht triangle [3] is a successful plate bending element, which passes all the patch tests and

performs excellently, and is one of the best thin plate triangles with 9 degrees of freedom that

currently available [2, citation in p. 345]. The Specht triangle employs quadratic polynomial

approximation and hence is a first order plate bending element, which likes many practical

nonconforming plate bending elements such as Zienkwiecz triangle [4], Morley triangle [5], just

name a few of them. There are some second order nonconforming plate bending elements scat-

tered in the literature, such as the one proposed by one of the author in [6] from the notion of

the double set parameter method and the one in [7], both elements have 12 degrees of freedom.

Other quadratic plate bending elements, such as those in [8] and [9], have 16 degrees of freedom.

When we consider the rectangular mesh, the second order plate bending elements include the

famous Adini element [10], the one proposed by one of the author in [11], and the one proposed

in [12], in which a family of rectangular plate bending element is constructed. Compared to

the first order plate bending elements, the choice for the second order plate bending elements is

quite limited. It is worthwhile to mention that there are some higher order finite elements for

* Received September 16, 2018 / Revised version received March 13, 2019 / Accepted May 13, 2019 /

Published online January 2, 2020 /



104 H.L. LI AND P.B. MING AND Z.C. SHI

the biharmonic problem in the framework of mixed finite elements and discontinuous Galerkin

method; see; e.g., [13–16].

Motivated by the bubble function method, we propose a family of second order plate bending

elements with 12 degrees of freedom, which could be regarded as the second order Specht

triangle. The original motivation for the bubble function method is to design the stable finite

element pair for the Stokes problem [17]. The basic idea of this method is to augment the

finite element space by a bubble function space. The augmented bubble function space helps

out in dealing with the extra constraints such as the divergence stability in Stokes problem

and the high order consistency error. Besides being widely used in design stable finite elements

in Stokes problem, the bubble function method has also been used to design efficient mass

lumping method [18], to design robust finite elements for a singularly perturbed fourth order

problem [8, 19], and it has been exploited by the authors to design robust finite elements for

the strain gradient elasticity model [20]. In the context of the plate bending elements, certain

classical elements such as the Zienkiewicz triangle and the Specht triangle can be derived by

the bubble function method.

In the present work, the bubble function method is exploited to improve both the approx-

imating error and the consistency error to the second order, which naturally yields a class of

second order plate bending elements, which recovers the element in [7] as a special case. These

elements are C0 continuous. Therefore, they may be used to approximate the singular per-

turbation problem of fourth order as shown in [19], and to be exploited to construct robust

strain gradient element as shown in [20, 21]. Based on the enriching operator technique in the

discontinuous Galerkin method [22–24], we prove the convergence of the proposed elements

under minimal smoothness assumption of the solution. Optimal rate of convergence is derived

for solution in various Sobolev norms and broken norms. We also derived the optimal rate of

convergence for the problem with Dirac-delta source term, which is particularly important for

plate bending problem, because it corresponds to an idealization of a point load [25]. Numer-

ical results for both the smooth solution and the nonsmooth solution support the theoretical

prediction.

The structure of the paper is as follows. In the next section, we introduce the nonconforming

finite element approximation of the plate bending problem. Detailed derivation of the new

elements is presented in § 3. The error estimates under minimal smoothness assumption are

proved in § 4. The numerical results for both the smooth solution as well as the nonsmooth

solution are reported in the last section.

Throughout this paper, the constant C may differ at different occurrence, while it is inde-

pendent of the mesh size h.

2. Finite Element Approximation of the Plate Bending Problem

To introduce the plate bending problem, we introduce some notations. The space L2(Ω)

of the square-integrable functions defined on a bounded polygon Ω is equipped with the inner

product (·, ·) and the norm ∥ · ∥L2(Ω). Let H
m(Ω) be the standard Sobolev space [26] with the

norm and seminnorm defined as

∥v∥2Hm(Ω) =

m∑
k=0

|v|2Hk(Ω) and |v|2Hk(Ω) =

∫
Ω

∑
|α|=k

|∇αv|2dx,
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where α = (α1, α2) is a multi-index whose components αi are nonnegative integers, |α| = α1+α2

and ∇α = ∂|α|/∂xα1
1 ∂xα2

2 . We may drop Ω in the Sobolev norm ∥ · ∥Hm(Ω) when there is no

confusion may occur. Denote by H−m(Ω) the dual space of Hm
0 (Ω) with the dual pair ⟨ ·, ·⟩.

Define

H1
0 (Ω): = { v ∈ H1(Ω) | v = 0 on ∂Ω },

H2
0 (Ω): = { v ∈ H2(Ω) | v = ∂nv = 0 on ∂Ω },

where ∂nv and ∂tv are the normal derivative of v and the tangential derivative of v, respectively.

We consider the plate bending problem with clamped boundary conditions{
∆2u = f x ∈ Ω,

u = ∂nu = 0 x ∈ ∂Ω,
(2.1)

where Ω ⊂ R2 is a polygon and f is the surface (or body) load. The corresponding variational

problem is to find u ∈ H2
0 (Ω) such that

a(u, v) = (f, v) for all v ∈ H2
0 (Ω), (2.2)

where for w, v ∈ H2
0 (Ω),

a(w, v) =

∫
Ω

(
ν∆w∆v + (1− ν)∇2w : ∇2v

)
dx and (f, v) =

∫
Ω

fvdx,

and 0 < ν < 1
2 is the Poisson’s ratio and the inner product for Hessian matrix is defined as

∇2w : ∇2v =
∑2

i,j=1 ∂
2
xixj

w∂2xixj
v.

Let Th be a shape-regular family of triangulations of Ω with h the diameter of the element

and Vh be a finite element space associated with Th. The finite element approximation of (2.2)

is to find uh ∈ Vh such that

ah(uh, v) = (f, v) for all v ∈ Vh, (2.3)

where

ah(v, w) =
∑

K∈Th

∫
K

(
ν∆v∆w + (1− ν)∇2v : ∇2w

)
dx for all v, w ∈ Vh.

By the Second Strang’s lemma [27], we have the error estimate

∥u− uh∥h ≤ inf
v∈Vh

∥u− v∥h + sup
w∈Vh

|Eh(u,w)|
∥w∥h

, (2.4)

where the consistency error functional Eh(u,w) = ah(u,w) − (f, v) and ∥ · ∥h is a broken

seminorm that is defined for any v ∈ Vh as ∥v∥2h: = ah(v, v). To improve the accuracy of the

element, we need to use higher order polynomial and improve the order of the consistency error

simultaneously. The following result gives a sufficient condition for high order consistency error

estimate [6]. We refer to [28] for related discussion.

Lemma 2.1 ([6, Lemma 1]) . Let K be an element and K̂ be its reference. For every K,

there exists an affine mapping from K to K̂. Assume that the following three conditions are

fulfilled.
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1. Function vh ∈ Vh is continuous at vertices of K and vanishing at vertices lying on ∂Ω.

2. For every polynomial p(s) ∈ Pm−1(F ), the integral
∫
F
p(s)vhds is continuous over each

interelement side F and vanishing when F ⊂ ∂Ω, where Pr(F ) is a polynomial of degree

r on the side F .

3. For every p(s) ∈ Pm(F ), the integral
∫
F
p(s)∂vh

∂n ds is continuous over each interelement

side F and vanishing when F ⊂ ∂Ω.

Then if the solution u ∈ Hm+3(Ω) ∩H2
0 (Ω), we have

sup
w∈Vh

|Eh(u,w)|
∥w∥h

≤ Chm+1∥u∥Hm+3(Ω), m ≥ 1.

If Vh has the following aproximating estimate

inf
v∈Vh

∥u− v∥h ≤ Chm+1, (2.5)

then

∥u− uh∥h ≤ Chm+1, m ≥ 1. (2.6)

This means the element is a plate bending element of order m + 1. The above lemma is the

starting point for constructing the new elements.

3. A Family of New Plate Element of Second Order

Given a triangle K with vertices {Ai}3i=1 and coordinates (xi, yi), let λi be the area coor-

dinate associated with the vertices Ai. Define b1 = y2 − y3, c1 = x3 − x2, and b2, b3, c2 and c3
may be defined by cyclic permutation of the indices. Let ℓi = (b2i + c2i )

1/2 be the length of the

edge ei: = AjAk opposite to Ai. Let △ be the area of K. It is clear to see that for i = 1, 2, 3,

∇λi = (bi/(2△), ci/(2△)). We may write the outer normal of the edge ei as ni = −∇λi/|∇λi|,
where |∇λi| is the length of the vector ∇λi. A direct calculation gives

∂λi
∂nj

= −∇λi · ∇λj
|∇λj |

.

In particular,
∂λi
∂ni

= −|∇λi|.

We shall frequently used these two identities later on.

The new element is described by the finite element triple (K, P̂K ,ΣK) [29] with K a triangle

and 
P̂K = ZK + bKP2(K),

ΣK =

{
p(Ai), ∂xp(Ai), ∂yp(Ai),

∫
−

ei

∂np, 1 ≤ i ≤ 3

}
,

where bK = λ1λ2λ3 is the cubic bubble function, and ZK is the Zienkiewicz space [4] that is

defined by

ZK = P2(K) + Span
{
λ21λ2 − λ22λ1, λ

2
2λ3 − λ23λ2, λ

2
3λ1 − λ21λ3

}
.

Note that dimP̂K = 15 > dimΣK = 12. Certain constraints have to be imposed on P̂K to

enforce unisolvability, and we denote the reduced finite element space as PK .
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To ensure second order approximating error, we require that P3(K) ⊂ PK . Since ZK ∩
bKP2(K) = ∅ and ZK + bK = P3(K), then we only need

bK ∈ PK ∩ bKP2(K). (3.1)

It is clear to see that the element is C0-continuous. Therefore, any v ∈ PK satisfies the

hypothesises (1) and (2) of Lemma 2.1. For any v ∈ P3(K), we apply Simpson’s formula to

(λj − 1/2)∂nv and obtain∫
−

ei

(
λj −

1

2

)
∂v

∂n
=

1

12

(
∂v

∂n
(Aj)−

∂v

∂n
(Ak)

)
,

where Aj and Ak are two endpoints of the edge ei in the counterclockwise manner. Here

1 ≤ i, j, k ≤ 3, j ̸= i and k ̸= i, j. Since ZK ⊂ P3(K) and by the condition (3) of Lemma 2.1,

the following identity should be valid for any v ∈ bKP2(K),∫
−

ei

λj
∂v

∂n
=

1

12

(
∂v

∂n
(Aj)−

∂v

∂n
(Ak)

)
+

1

2

∫
−

ei

∂v

∂n
(3.2)

to ensure the second order consistency error.

Remark 3.1. The original derivation of the Specht triangle is carried out by removing the

quadratic part of the normal derivative of the shape function along each edge [3]. It may be

recovered by imposing the constraint∫
−

ei

∂v

∂n
=

1

2

(
∂v

∂n
(Aj) +

∂v

∂n
(Ak)

)
, i = 1, 2, 3.

We refer to [30] for a detailed derivation and the proof for the equivalence between the Specht

triangle and certain elements scattered in the engineering literatures. It is worthwhile to point

out that the new Zienkiewicz type triangle proposed in [31] is just the Specht triangle, and the

authors exploited the above constraints in an essential way.

Denote qi the basis function associated with the degree of freedom
∫
−

ei
∂nv, which is assumed

to be

qi = bK(aλ2i + bλ2j + cλ2k + dλiλj + eλjλk + fλkλi).

It is clear to verify that qi as well as ∇qi vanishes at all the vertices of K. It remains to check∫
−

ej

∂qi
∂n

= δij , j = 1, 2, 3.

This implies 

b+ c

20
+

e

30
= − 1

|∇λi|
,

c+ a

20
+

f

30
= 0,

a+ b

20
+

d

30
= 0.

Solving the above linear system, we obtain

a =
1

3
(e− d− f) +

10

|∇λi|
,

b =
1

3
(f − d− e)− 10

|∇λi|
,

c =
1

3
(d− e− f)− 10

|∇λi|
.
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Therefore, we rewrite qi as

qi = bK

{(
e

3
+

10

|∇λi|

)
(λ2i − λ2j − λ2k) + eλjλk +

f

3
(λ2j − λ2k − λ2i )

+ fλkλi +
d

3
(λ2k − λ2i − λ2j ) + dλiλj

}
.

By (3.2), we obtain ∫
−

ei

λj
∂qi
∂n

=
1

2
,

∫
−

ej

λk
∂qi
∂n

= 0,

∫
−

ek

λi
∂qi
∂n

= 0.

This immediately implies

d = f, d− e =
30

|∇λi|
, e− f = − 30

|∇λi|
.

We let

d = f = e+
30

|∇λi|
.

Now we reshape qi as

qi = bK

(
−
(

10

|∇λi|
+
e

3

)
(λ21 + λ22 + λ23) + e(λ1λ2 + λ2λ3 + λ3λ1) +

30

|∇λi|
λi(λj + λk)

)
,

which may be rewritten as

qi =
bK

|∇λi|

(
−
(
10 +

αi

3

)
(λ21 + λ22 + λ23) + αi(λ1λ2 + λ2λ3 + λ3λ1) + 30λi(λj + λk)

)
,

where {αi}3i=1 are three parameters, and 1 ≤ i, j, k ≤ 3 with i ̸= j, j ̸= i, k ̸= i. The above form

of qi can be further simplified to

qi =
bK

|∇λi|

((
10 +

αi

3

)
(5(λ1λ2 + λ2λ3 + λ3λ1)− 1)− 30λjλk

)
. (3.3)

It is straightforward to find

3∑
i=1

|∇λi|qi = bK

(
−30− 1

3

3∑
i=1

αi +

(
5

3

3∑
i=1

αi + 120

)
(λ1λ2 + λ2λ3 + λ3λ1)

)
.

If we let
3∑

i=1

αi = −72, (3.4)

then

−1

6

3∑
i=1

|∇λi|qi = bK ,

which immediately implies that the constraint (3.1) is valid.

Next, we derive the basis functions associated with the degrees of freedom v(Ai), ∂xv(Ai)

and ∂yv(Ai), respectively. We start from the basis functions of Zienkiewicz’s element [29, p.

350], which reads as

ζ̃i = λ2i (3− 2λi), θ̃i = λ2i (ckλj − cjλk), ϑ̃i = λ2i (bjλk − bkλj).
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They satisfy 
ζ̃i(Aj) = δij , ∇ζ̃i(Aj) = 0,

θ̃i(Aj) = 0, ∂xθ̃i(Aj) = δij , ∂y θ̃i(Aj) = 0,

ϑ̃i(Aj) = 0, ∂xϑ̃i(Aj) = 0, ∂yϑ̃i(Aj) = δij .

A direct calculation yields∫
−

ej

∂ζ̃i
∂nj

= 6
∇λi · ∇λj
|∇λj |

∫
−

ej

(λ2i − λi) = −∇λi · ∇λj
|∇λj |

(1− δij).

By definition, we have

∂θ̃i
∂nj

= 2λi
∂λi
∂nj

(ckλj − cjλk) + λ2i

(
ck
∂λj
∂nj

− cj
∂λk
∂nj

)
.

Using the fact that ci + cj + ck = 0, we obtain∫
−

ej

∂θ̃i
∂nj

=
1

3

(
−cj

∂λi
∂nj

+ ck
∂λj
∂nj

− cj
∂λk
∂nj

)
=

1

3

(
−cj

∂(λi + λk)

∂nj
+ ck

∂λj
∂nj

)
=
ck + cj

3

∂λj
∂nj

=
ci
3
|∇λj |.

Proceeding along the same line that leads to the above equation, we obtain∫
−

ei

∂θ̃i
∂ni

= 0 and

∫
−

ek

∂θ̃i
∂nk

= −ci|∇λk|
3

.

Similarly, we have∫
−

ei

∂ϑ̃i
∂ni

= 0,

∫
−

ej

∂ϑ̃i
∂nj

= −bi|∇λj |
3

,

∫
−

ek

∂ϑ̃i
∂nk

=
bi|∇λk|

3
.

We are ready to prove the main theorem of this paper.

Theorem 3.1. Let ζi, θi, ϑi and qi be the basis functions associated with the degrees of freedom

v(Ai), ∂xv(Ai), ∂yv(Ai) and
∫
−

ei
∂nv, respectively. Then

ζi = λ2i (3− 2λi) +
∑
j ̸=i

∇λi · ∇λj
|∇λj |2

q̃j ,

θi = λ2i (ckλj − cjλk)−
ci
3
(q̃j − q̃k),

ϑi = λ2i (bjλk − bkλj) +
bi
3
(q̃j − q̃k),

qi =
q̃i

|∇λi|
,

(3.5)

where

q̃i = bK ((αi/3 + 10) (5(λ1λ2 + λ2λ3 + λ3λ1)− 1)− 30λjλk)

with αi satisfying (3.4), i.e.,
∑3

i=1 αi = −72.
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Proof. Since bK and ∇bK vanish at all the vertices of the element, then

ζi(Aj) = ζ̃i(Aj) = δij and ∇ζi(Aj) = ∇ζ̃i(Aj) = 0.

A direct calculation gives∫
−

ej

∂ζi
∂nj

=

∫
−

ej

∂ζ̃i
∂nj

+
∑
l ̸=i

∇λi · ∇λl
|∇λl|

∫
−

ej

∂ql
∂nj

= −∇λi · ∇λj
|∇λj |

+
∑
l ̸=i

∇λi · ∇λl
|∇λl|

δjl = 0.

This implies that ζi is the basis function associate with the degree of freedom v(Ai).

Proceeding along the same line that leads to (3.5)1, we may verify the remaining basis

functions. This completes the proof. �
There are infinitely choices of αi that satisfy (3.4). For any α, β ∈ R, if we let

αi = −24 + 3α, αj = −24 + 3β, αk = −24− 3α− 3β,

then 

qi =
bK

|∇λi|
(
(2 + α) (5λi(1− λi)− 1)− 5(4− α)λjλk

)
,

qj =
bK

|∇λj |
(
(2 + β) (5λj(1− λj)− 1)− 5(4− β)λkλi

)
,

qk =
bK

|∇λk|
(
(2− α− β) (5λk(1− λk)− 1)− 5(4 + α+ β)λiλj

)
.

(3.6)

Furthermore, if we let α = β = 0 in the above equations, then

qi =
2bK
|∇λi|

(5λi(1− λi)− 1− 10λjλk) , (3.7)

and qj , qk may be obtained by cyclic permutation of the indices. This is exactly the same

with [7, equation (3.4)1]. We hereby recover the element in [7].

Next if we let α = β = −2 in (3.6), then

qi = − 30bK
|∇λi|

λjλk, qj = − 30bK
|∇λj |

λkλi, qk =
6bK
|∇λk|

(5λk(1− λk)− 1) . (3.8)

It seems that such unsymmetrical choice of the parameters αi leads to a new element with

slightly simpler basis functions compared to the most symmetrical choice of αi; cf., (3.7).

Another unsymmetrical choice of αi would be α = β = 1. In this case,

qi =
3bK
|∇λi|

(5 (λi(1− λi)− λjλk)− 1) ,

qj =
3bK
|∇λj |

(5 (λj(1− λj)− λkλi)− 1) , qk = − 30bK
|∇λk|

λiλj .

(3.9)

The Hermite element space is defined by HK = ZK + bK , with the values of v and ∇v at

the vertices, and the value of v at the barycenter as the degrees of freedom. Define the finite

element space Vh and Wh as

Vh: =
{
v ∈ L2(Ω) | v|K ∈ PK , v,∇v are continuous at each node, vanish at the boundary

nodes,

∫
e

∂nv is continuous across each edge, vanishes at the boundary edge
}
,
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and

Wh: ={v ∈ L2(Ω)v|K ∈ HK , v,∇v are continuous at each node, vanish at the boundary nodes}.

For any v ∈ Vh and w ∈ Wh, the broken seminorms ∥v∥h and ∥w∥h are indeed broken norms

by [32].

The interpolate operator Π and π are defined locally as Π|K = ΠK and π|K = πK respec-

tively for any v ∈ Hs(K) with s > 2 as
ΠKv(a) = v(a), for all vertices a,

∇ΠKv(a) = ∇v(a), for all vertices a,∫
e

∂ΠKv

∂n
=

∫
e

∂v

∂n
, for all edges e,

(3.10)

and {
πKv(a) = v(a), for all vertices and barycentre a,

∇πKv(a) = ∇v(a), for all vertices a.

By the general interpolation theory [33] (see also [34]), we obtain, for any ϕ ∈ H2+s(Ω) with

s ∈ (0, 2], there exists C such that

∥ϕ−Πϕ∥L2 + h2∥ϕ−Πϕ∥h ≤ Ch2+s∥ϕ∥H2+s , (3.11)

∥ϕ− πϕ∥L2 + h2∥ϕ− πϕ∥h ≤ Ch2+s∥ϕ∥H2+s . (3.12)

4. Error Estimate for Nonsmooth Data

It follows from the standard error estimate (2.6) that the new element converges quadrati-

cally in the broken H2 norm provided that u ∈ H4(Ω), which is usually invalid for point load

f or when the domain Ω is a polygon [35]. In this part we revisit the error estimate under

minimal regularity assumption on u.

The oscillation of f is defined as

Osc(f): =

( ∑
K∈Th

h4K inf
f∈P0(K)

∥f − f∥2L2(K)

)1/2

.

4.1. Properties of enriching operator and error estimate for nonsmooth solution

To state the result, we need the following enriching operator, which measures how far

the nonconforming finite element space Vh departs from H2(Ω). Enriching operator was firstly

introduced byBrenner [36,37] to analyze nonconforming elements in the context of fast solvers,

which was exploited recently to study the convergence properties of discontinuous Galerkin

method in [23, 24]. An adaption of this operator has been employed to derive sharp error

estimate of Morley’s triangle [38]. The enriching operator used here is a combination of the

averaging type enriching operator in [22] and the one in [38].

The enriching operator Eh : Vh → H2
0 (Ω) is constructed with the aid of the quintic (P6)

Argyris triangle [1]; See Figure 4.1. Let p be a vertex, we define

(∇αEhv)(p) =
1

|Tp|
∑

K∈Ta

(∇αv|K)(p), |α| = 0, 1, 2, (4.1)
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(a) (b)

Fig. 4.1. (a) The degrees of freedom of quadratic Specht triangle are point evaluations of the function

value and the first derivatives at the vertex, and the moments of the normal derivative along each

edge; and (b) The degrees of freedom of quintic (P6) Argyris triangle are the point evaluations of the

function value, the first derivatives and the second order derivatives at the vertex, and the means of

the function along each edge, and the moments of the normal derivatives against P1 along each edge,

and the mean of the function over the element.

where Tp is the union of triangles that share a common vertex p, and |Tp| is the cardinality of

Tp. Define 

∫
e

Ehvw =

∫
e

vw, for any w ∈ P0(e),∫
e

∂Ehv

∂n
w =

∫
e

∂v

∂n
w for any w ∈ P1(e),∫

K

Ehvw =

∫
K

vw, for any w ∈ P0(K).

(4.2)

If e is on the boundary ∂Ω, or p is both a boundary node and a vertex of Ω, then we set the

corresponding degree of freedom as zero. If p is a vertex of Th interior to an edge of Ω, then we

define

(∂2tEhv)(p) = (∂2tnEhv)(p) = 0,

and (∂2nEhv)(p) is defined as (4.1). We refer to [22] for more details.

The properties of the enriching operator is summarized in the following lemma.

Lemma 4.1. The enriching operator Eh defined above has the following properties:

1. Galerkin orthogonality: For any v ∈ Vh,

ah(v − Ehv, w) = 0 for all w ∈Wh. (4.3)

2. Eh is stable in the sense that

∥Ehv∥h ≤ α∥v∥h for all v ∈ Vh. (4.4)

3. For any v ∈ Vh, we have

∥v − Ehv∥L2 ≤ βh2∥v∥h, (4.5)
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and for any s ∈ ( 12 , 2], there holds

∥v − Ehv∥H2−s ≤ βhs∥v∥h,
∥v − Ehv∥H2−s ≤ βhs

(
∥u− v∥h +Osc(f)

)
.

(4.6)

4. For any interpolate operator Π, Eh ◦Π is a quasi-interpolant in the sense that

∥ϕ− EhΠϕ∥L2 + h2∥ϕ− EhΠϕ∥h ≤ Ch2+s∥ϕ∥H2+s (4.7)

for any ϕ ∈ H2+s(Ω) with s = 1, 2.

The stability estimate (4.4) and the interpolate estimates (4.5) and (4.7) may be readily

proved by adopting the argument in [22, Lemma 3 and Lemma 4]. We omit the details. The

Galerkin orthoganality (4.3) differs from the one for the Morley’s triangle because the test

function lies inWh instead of Vh. This seems the trouble brings in by the higher order degree of

the element. It remains to prove (4.6), which seems new. A similar inequality for the Morley’s

triangle has appeared in [39]. The proof combines the techniques in [22] and the efficiency

estimate in the a posteriori error estimate.

Proof. Due to the construction of the enriching operator, the Galerkin orthogonality (4.3)

may be obtained by an integration by parts.

ah(v − Ehv, w)

=
∑

K∈Th

∫
K

(v − Ehv)∆
2w −

∑
K∈Th

∫
∂K

(v − Ehv) (ν∂n∆w + (1− ν)∂tMtn(w))

+
∑

K∈Th

∫
∂K

∂n(v − Ehv) (ν∆w + (1− ν)Mnn(w)) ,

where Mnn = nT · ∇2w · n and Mtn = tT · ∇2w · n. Since

∆2w = 0 and ∂n∆w, ∂tMtn(w) ∈ P0,

by (4.2)1, we obtain

ah(v − Ehv, w) =
∑
e∈Eh

∫
e

[[∂n(v − Ehv)]]{{Mnn(w)}}+ {{∂n(v − Ehv)}}[[Mnn(w)]].

Since Mnn(w) ∈ P1, and employing the fact

[[∂n(v − Ehv)]] = [[∂nv]] and {{∂n(v − Ehv)}} = {{∂nv}} − ∂nEhv,

and by the constraint (3.2) and (4.2)2, we obtain (4.3).

For any element K ∈ Th, we let N (K), E(K) and V(K) be the set of the nodal variables,

edge variables, and the set of the volume variables of the P6 Argyris triangle, respectively. For

any v ∈ Vh, v − Ehv ∈ P6, and it follows from the scaling argument that

∥v − Ehv∥2L2(K) ≤ C
∑

N∈N (K)

h
2(1+order(N))
K (N(v − Ehv))

2

+ C
∑

E∈E(K)

h
2(1+order(E))
K (E(v − Ehv))

2

+ C
∑

V ∈V(K)

h
2(1+order(V ))
K (V (v − Ehv))

2
.
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Using the facts that N(v) = N(Eh(v)) if order(N) = 0 and 1, E(v) = E(Eh(v)) if order(E) =

0 and 1, and V (v) = V (Eh(v)), which is a direct consequence of the construction of Eh, we

obtain

∥v − Ehv∥2L2(K) ≤ Ch6K
∑

N∈N (K),order(N)=2

(N(v − Ehv))
2
.

Let N be a second order node variable at a vertex p of K. It follows from an inverse estimate

that

(N(v − Ehv))
2 ≤ |∇2(v − Ehv)(p)|2

≤ C
∑

K′∈Tp

|∇2v|K′(p)|2 ≤ C
∑

K′∈Tp

h−2
K′ |v|2H2(K′).

Then we obtain

∥v − Ehv∥2L2(K) ≤ C
∑

K′∈Tp

h4K′ |v|2H2(K′), (4.8)

which immediately implies (4.5).

When s ∈ ( 12 , 2), we note an inverse estimate (cf. [40]):

∥v − Ehv∥2H2−s(Ω) ≤ C
∑

K∈Th

h2s−4
K ∥v − Ehv∥2L2(K), (4.9)

which together with (4.5) implies (4.6)1.

By the inverse inequality and the continuity of v and Ehv, we have, for N a second order

node variable at a vertex p of K, there holds

(N(v − Ehv))
2 ≤ C

∑
e∈EV(p)

|e|−1
(
∥[[∂2nv]]∥2L2(e) + ∥[[∂2tnv]]∥2L2(e)

)
,

where EV(p) is the set of edges of Th emanating from the vertex p. Then we obtain

∥v − Ehv∥2L2(K) ≤ C
∑

e∈EV(K)

h5K

(
∥[[∂2nv]]∥2L2(e) + ∥[[∂2tnv]]∥2L2(e)

)
, (4.10)

where EV(K) is the set of edges of Th emanating from the vertices of K. By [23, Eq. (5.27)], we

obtain ∑
e∈Ei

h

h5K∥[[∂2nv]]∥2L2(e) ≤ Ch4
(
∥u− v∥2h + [Osc(f)]2

)
.

By [39, Proposition 2.3], we obtain∑
e∈Ei

h

h5K∥[[∂2tnv]]∥2L2(e) ≤ Ch4∥u− v∥2h.

Substituting the above two estimates into (4.10) and (4.9), we obtain (4.6). This completes the

proof. �

Theorem 4.1. Let u and uh be the solutions of Problem (2.2) and Problem (2.3), respectively.

Then

∥u− uh∥h ≤ (1 + α)

(
2 inf
v∈Vh

∥u− v∥h + inf
w∈Wh

∥u− w∥h
)
+ βOsc(f). (4.11)
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Note that if u ∈ H4(Ω) and f ∈ L2(Ω), then

∥u− uh∥h ≤ Ch2 (∥u∥H4 + ∥f∥L2) .

This indicates that the proposed element converges quadratically for smooth solution, and it is

natural to dub the element as the quadratic Specht triangle.

Remark 4.1. Error estimate similar to (4.11) has been proved in [41, Theorem 3.3] for the

element in [7] (cf. [41, Example 5.2.3]) except an extra term ∥∇2u−Π0∇2u∥L2 appears in the

right-hand side of (4.11), where Π0 is the L2 projection operator to piecewise constant space.

We do not know whether this term can be dropped by the techniques therein.

Proof. For any v ∈ Vh, we denote w = v−uh. By the Galerkin orthogonality of the enriching

operator (4.3), we obtain, for any z ∈Wh,

∥w∥2h = ah(v, w)− ah(uh, w) = ah(v, w − Ehw) + ah(v,Ehw)− (f, w)

= ah(v − z, w − Ehw) + ah(v − u,Ehw) + (f,Ehw − w)

= ah(v − z, w − Ehw) + ah(v − u,Ehw) + (f − f,Ehw − w), (4.12)

where we have used (4.2)3 in the last step. The energy estimate (4.11) follows from (4.4), (4.5)

and the triangle inequality and the estimate

|ah(v − z, w − Ehw)| ≤ (1 + α)
(
∥u− v∥h + ∥u− z∥h

)
∥w∥h. �

The only information of the solution we used in the proof of the energy estimate (4.11) is

that u ∈ H2
0 (Ω) satisfies the variational problem, by contrast to the classical analysis of the

nonconforming finite elements [34], which requires that u ∈ Hs(Ω) ∩ H2
0 (Ω) with s > 5

2 for

justifying the integration by parts, which is key to estimate the consistency error functional

Eh(u,w).

The next theorem gives the error bounds in the H1 norm and L2 norm under the regularity

assumption u ∈ H2+s(Ω) with s ∈ (0, 2]. This contrasts the classical results established in [34],

which are valid for smooth solution u ∈ H3(Ω), such smoothness assumption is not fullfilled

in general [35]. The new property (4.6) for the enriching operator allows for the proof of the

theorem below.

Theorem 4.2. If we assume the regularity estimate

∥u∥H2+s ≤ Creg∥f∥Hs−2 s ∈ (0, 2], (4.13)

then

∥∇(u− uh)∥L2 ≤ Chs∧1

(
inf
v∈Vh

∥u− v∥h + inf
w∈Wh

∥u− w∥h +Osc(f)

)
, (4.14a)

∥u− uh∥L2 ≤ Chs∧2

(
inf
v∈Vh

∥u− v∥h + inf
w∈Wh

∥u− w∥h +Osc(f)

)
. (4.14b)

Proof. We only prove this theorem for 0 < s < 1. The case 1 ≤ s ≤ 2 may be proceeded by

the standard dual estimate as in [34]. An integration by parts gives

∥∇(u− uh)∥2L2 = ⟨−∆(u− uh), u− uh⟩
= ⟨−∆(u− uh), u− Ehuh⟩+ ⟨−∆(u− uh), Ehuh − uh⟩ ,
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where ∆(u − uh) ∈ H−1(Ω) and u − uh ∈ H1
0 (Ω), and we write ⟨ ·, ·⟩ to denote the pairing

between H1
0 (Ω) and H

−1(Ω).

Let g: = −∆(u− uh), and we find ϕ ∈ H2
0 (Ω) such that

a(ϕ, v) = ⟨ g, v⟩ for all v ∈ H2
0 (Ω). (4.15)

Using the Galerkin orthogonality of Eh, we obtain

⟨ g, u− Ehuh⟩ = a(ϕ, u− Ehuh) = ah(ϕ−Πϕ, u− Ehuh) + ah(Πϕ, u− Ehuh)

= ah(ϕ−Πϕ, u− Ehuh) + ah(Πϕ, u− uh) + ah(Πϕ− πϕ, uh − Ehuh).

Proceeding along the same line that leads to (4.12), we obtain that for any w ∈Wh,

ah(Πϕ, u− uh) = ah(u− w,Πϕ− EhΠϕ) + (f − f,EhΠϕ−Πϕ).

Combining the above two equations, we obtain

⟨ g, u− Ehuh⟩ = ah(u− Ehuh, ϕ−Πϕ) + ah(uh − Ehuh, ϕ− πϕ)

+ ah(u− w,Πϕ− EhΠϕ) + (f − f,EhΠϕ−Πϕ).

Using (4.6)2 with s = 1 and the inverse inequality, we obtain

∥uh − Ehuh∥h ≤ Ch−1∥uh − Ehuh∥H1 ≤ C (∥u− uh∥h +Osc(f)) ,

which together with (4.7) and (4.11) yields

| ⟨ g, u− Ehuh⟩ |

≤Chs∥ϕ∥H2+s

(
inf
v∈Vh

∥u− v∥h + inf
w∈Wh

∥u− w∥h + ∥u− uh∥h +Osc(f)

)
.

Using (4.13), we obtain

∥ϕ∥H2+s ≤ Creg∥g∥Hs−2 ≤ C∥u− Ehuh∥Hs ≤ C∥∇(u− Ehuh)∥L2 ,

where we have used the Poincaré inequality in the last step.

Using (4.6), we bound

| ⟨∆(u− uh), Ehuh − uh⟩ |
≤∥u− uh∥h∥uh − Ehuh∥L2 ≤ Ch2∥u− uh∥h (∥u− uh∥h +Osc(f)) .

A combination of the above two inequalities and the energy estimate (4.11) yield (4.14a).

Proceeding along the same line that leads to (4.14a), we obtain (4.14b). �

4.2. Error estimate for nonsmooth source term

In this part, we consider the error estimate for the nonsmooth source term f . The first

one is f is a Dirac-delta function at certain point x0 ∈ Ω, i.e., f = δx0 corresponds to an

idealization of a point load at x0, which is common for the plate bending problem, while it

is not so well understood, by contrast to the vast work devoted to the Poisson problem with

Dirac-delta source term. We refer to [42] and the references therein for a review.
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We assume that the regularity estimate (4.13) is valid for s = 2 in this part.

For delta source term f , the variational problem (2.2) is still well-defined because ofH2(Ω) ↪→
C0(Ω). The discrete approximation problem is also well-defined because Xh ⊂ C0(Ω). The ex-

istence and uniqueness of the solutions u and uh are a direct consequence of the Lax-Milgram

theorem and the weak continuity of Xh. By the standard regularity theorem for elliptic prob-

lem, we obtain that u ∈ H3−ϵ(Ω) for ϵ > 0. By standard error estimate in [34], we obtain the

following sub-optimal error estimate

∥u− uh∥L2 + h∥∇(u− uh)∥L2 + h2∥u− uh∥h ≤ Ch3−ϵ

for ϵ > 0. The following theorem shows that the ϵ in the above estimate may be removed. Our

proof is a combination of the regularized Green’s function due to Scott [43] and a clever dual

argument belongs to Casas [44].

Theorem 4.3. Let u and uh be the solutions of Problem (2.2) and Problem (2.3) with f = δx0 ,

respectively. If the regularity assumption (4.13) is valid for s = 2, and if the mesh is quasi-

uniform in the sense that there exists σ such that h/hK ≤ σ for all K ∈ Th, then there exists

an C such that

∥u− uh∥L2 + h∥∇(u− uh)∥L2 + h2∥u− uh∥h ≤ Ch3. (4.16)

Proof. We define a regularized Green’s function δh ∈ Vh that approximate δx0 and satisfies

1. (δ, v) = (δh, v) for all v ∈ Vh;

2. ∥δh∥L2 = O(h−1);

3. ∥δ − δh∥H−2 = O(h).

The construction of δh may be proceeded along the same line in [43]. We omit the details. Let

û ∈ H2
0 (Ω) be the solution of

a(û, v) = (δh, v) for all v ∈ H2
0 (Ω).

Let ûh ∈ Vh be the finite element approximation of the above variational problem. By the

uniqueness of uh and the first property of δh, we conclude ûh = uh. Using (4.11) and the

second property of δh, we obtain

∥û− uh∥h = ∥û− ûh∥h ≤ Ch2 (∥û∥H4 + ∥δh∥L2) ≤ Ch2∥δh∥L2 ≤ Ch. (4.17)

Note that

a(u− û, v) = (δ − δh, v) for all v ∈ H2
0 (Ω).

By the standard a-priori estimate for (2.2), we obtain

∥u− û∥H2 ≤ C∥δ − δh∥H−2 ≤ Ch,

where we have used the third property of δh.

A combination of the above two inequalities gives

∥u− uh∥h ≤ ∥u− û∥h + ∥û− uh∥h ≤ ∥u− û∥H2 + ∥û− uh∥h ≤ Ch.
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To obtain the error estimate in the lower order norm, we resort to the auxiliary prob-

lem (4.15). Let ϕ̃ ∈ Vh be the Galerkin projection of ϕ with ϕ the solution of (4.15), i.e.,

ah(ϕ̃, ψ) = a(ϕ, ψ) for all ψ ∈ Vh.

Standard error estimate [34] implies that for s = 1, 2, there holds

∥ϕ− ϕ̃∥L2 + h∥∇(ϕ− ϕ̃)∥L2 + h2∥ϕ− ϕ̃∥h ≤ Ch2+s∥ϕ∥H2+s .

An application of the inverse estimate and the above error estimate implies that

∥ϕ− ϕ̃∥L∞ ≤ ∥ϕ−Πϕ∥L∞ + ∥Πϕ− ϕ̃∥L∞

≤ Chs+1∥ϕ∥H2+s + Ch−1∥Πϕ− ϕ̃∥L2

≤ Chs+1∥ϕ∥H2+s + Ch−1
(
∥ϕ−Πϕ∥L2 + ∥ϕ− ϕ̃∥L2

)
≤ Chs+1∥ϕ∥H2+s . (4.18)

It is clear that

⟨ g, u− uh⟩ = ah(ϕ, u− uh) = a(ϕ, u)− ah(ϕ, uh) = a(ϕ, u)− ah(ϕ̃, uh) = (δ, ϕ− ϕ̃).

Combining the above two equations, we obtain, for s = 1, 2,

| ⟨ g, u− uh⟩ | ≤ ∥ϕ− ϕ̃∥L∞ ≤ Chs+1∥ϕ∥H2+s ≤ Chs+1∥g∥Hs−2 .

This gives

∥u− uh∥L2 + h∥∇(u− uh)∥L2 ≤ Ch3.

This completes the proof. �

If the solution u is less smooth, e.g., u ∈ H2+s(Ω) for s > 0, we conclude from Theorem 4.1

that

∥u− uh∥h ≤ C
(
hs∥u∥H2+s + h2∥f∥L2

)
.

By the regularity result (4.13), we may further rewrite the above estimate as

∥u− uh∥h ≤ C
(
hs∥f∥Hs−2 + h2∥f∥L2

)
≤ Chs∥f∥L2 .

This estimate is not optimal with respect to the smoothness assumption on the load. In fact,

the above estimate may be improved for s ∈ ( 12 , 2] as follows.

Corollary 4.1. Let u and uh be the solutions of Problem (2.2) and Problem (2.3), respectively.

If we assume that

∥u∥Hs+2 ≤ C∥f∥Hs−2 s ∈ ( 12 , 2],

then

∥u− uh∥h ≤ Chs∥f∥Hs−2 . (4.19)

The regularity assumption is true for the hard clamped problem posed on polygon, while

it may be false for variational problem with other boundary conditions [35]. The proof follows

essentially the same line that leads to (4.11) with minor modification.
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Proof. For any v ∈ Vh, we denote w = v − uh. By (4.12), we obtain, for any z ∈ Wh, there

holds

∥w∥2h = ah(v − z, w − Ehw) + ah(v − u,Ehw) + (f,Ehw − w).

For any s ∈ (1/2, 2], using (4.6)1, we obtain

∥w∥2h ≤ ∥v − z∥h∥w − Ehw∥h + ∥u− v∥h∥Ehw∥h + ∥f∥Hs−2∥w − Ehw∥H2−s

≤ (1 + α)∥v − z∥h∥w∥h + α∥u− v∥h∥w∥h + β hs∥f∥Hs−2∥w∥h.

This gives

∥w∥h ≤ (1 + α)∥u− z∥h + (1 + 2α)∥u− v∥h + βhs∥f∥Hs−2 ,

which together with the triangle inequality implies

∥u− uh∥h ≤ 2(1 + α) inf
v∈Vh

∥u− v∥h + (1 + α) inf
z∈Wh

∥u− z∥h + βhs∥f∥Hs−2 . (4.20)

Using the interpolate estimate and the regularity estimate, we obtain (4.19). �

The discrete variational problem (2.3) is not well-defined for f ∈ Hs−2(Ω) with s ∈ [0, 1/2]

because Vh ⊂ H3/2−ϵ(Ω) for ϵ > 0. The Spehct triangle can be equally applied to problem

with rough load if we modify the source term in (2.3) by exploiting the enriching operator as

follows. Find ũh ∈ Vh such that

ah(ũh, v) = (f,Ehv) for all v ∈ Vh. (4.21)

The following result can be obtained in exactly the same way as that for Theorem 4.1.

Corollary 4.2. Let u and ũh be the solutions of Problem (2.2) and Problem (4.21), respectively.

Then

∥u− ũh∥h ≤ (1 + α)

(
2 inf
v∈Vh

∥u− v∥h + inf
w∈Wh

∥u− w∥h
)
. (4.22)

If the regularity estimate (4.13) is valid, then

∥∇(u− ũh)∥L2 ≤ Chs∧1

(
inf
v∈Vh

∥u− v∥h + inf
w∈Wh

∥u− w∥h
)
, (4.23a)

∥u− ũh∥L2 ≤ Chs∧2

(
inf
v∈Vh

∥u− v∥h + inf
w∈Wh

∥u− w∥h
)
. (4.23b)

The above error estimates in H1 and L2 norms can be obtained in a similar way; See [22]. We

omit the details and leave it to the interested readers. Such modification may be traced back

to [45] for Morley’s triangle.

5. Numerical Examples

In this part, we test the proposed elements for problems with smooth solution and non-

smooth solution. We assume that Ω = (0, 1)2. The initial mesh is generated by the function

“initmesh” of the partial differential equation toolbox of MATLAB. The initial mesh consists

of 872 triangles and 469 vertices, and the maximum mesh size is h = 1/16; see Fig. 5.1.
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Fig. 5.1. Plots of the unstructured mesh.

5.1. Example with clamped boundary condition and full regularity

We consider the clamped boundary condition and assume the Poisson ratio ν = 1/2 and

the solution is given by u = 4 sin2(2πx) sin2(2πy). The surface load f is computed from the

equation (2.1)1. It is clear that u is smooth and satisfies the clamped boundary condition.

We test the performance of the elements with different choice of parameters αi, i = 1, 2, 3 that

satisfies the constraint (3.4). Besides the elements (3.7) and (3.8), we also test another element

by setting α1 = 18, α2 = α3 = −45. In this case,
q̃1 = bK (80λ1(1− λ1)− 16 + 50λ2λ3) ,

q̃2 = bK (5− 25λ2(1− λ2) + 55λ3λ1) ,

q̃3 = bK (5− 25λ3(1− λ3) + 55λ1λ2) .
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Fig. 5.2. Plots of the convergence rate for smooth solution. The subfigures (a), (b) and (c) show the

rates of convergence in broken H2 norm, H1-norm and L2-norm, respectively.

In Fig. 5.2, we report the convergence rate of the above elements measured in the relative

Sobolev broken norm and Sobolev norms:

∥u− uh∥h
∥u∥H2

,
∥u− uh∥H1

∥u∥H1

,
∥u− uh∥L2

∥u∥L2

.
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The numerical results indicate that the rate of convergence tends to be quadratic, cubic and

quartic with respect toH2 broken norm, H1 norm and L2 norm, respectively, which is consistent

with the theoretical prediction (4.14). The performance of the elements for different choices of

the parameters αi are almost the same.

5.2. Simply supported boundary value problem without full regularity

In the second example, we consider a plate which is simply supported and subjected to a

point load at the center, i.e., u = △u = 0 on the boundary. The problem is posed on the same

domain, and with the same materials parameter as the previous example. The exact solution

can be written as an infinite sum

u(x, y) =

∞∑
m=1

∞∑
n=1

umn sin(mπx) sin(nπy)

with

umn =
4 sin(mπ/2) sin(nπ/2)

π4(m2 + n2)2
.

This example is taken from [25]. Due to the point load, we cannot expect the full H4 regularity

for the solution; See [35]. In fact, we have u ∈ H3−ϵ(Ω) for any ϵ > 0. In Figure 5.3, we report

the convergence rate of the elements (3.7) and (3.8) in the relative broken H2 norm, H1-norm

and L2-norm. The exact solution is taken from the above series solution by truncating the

infinite sum by m = n = 1000. In view of Fig. 5.3, the second order Specht triangle converges

linearly in the broken H2 norm, quadratically in H1 norm, and cubically in L2 norm, which is

consistent with the error estimate in Theorem 4.3. For the sake of comparison, we also report

the numerical results for the Specht triangle [3].

1/h
101 102

H
2
-n

o
rm

 r
e
la

ti
v
e
 e

rr
o
r

10-3

10-2

10-1

α
i
=-24

α
1
=-12,α

2
=α

3
=-30

Specht Element

1

1

(a)

1/h
101 102

H
1
-n

o
rm

 r
e
la

ti
v
e
 e

rr
o
r

10-6

10-5

10-4

10-3

10-2

α
i
=-24

α
1
=-12,α

2
=α

3
=-30

Specht Element

1

2

(b)

1/h
101 102

L
2
-n

o
rm

 r
e
la

ti
v
e
 e

rr
o
r

10-8

10-6

10-4

10-2

α
i
=-24

α
1
=-12,α

2
=α

3
=-30

Specht Element
2

3

1

1

(c)

Fig. 5.3. Plots of the rate of convergence without full regularity. The subfigure (a), (b) and (c) show

the rates of convergence in H2-norm, H1-norm and L2-norm, respectively.

6. Conclusion

We derive a class of quadratic Specht triangle, which is not unique because there are infinitely

possibilities for the choices of the parameters αi that satisfy the constraint (3.4), and each choice

gives one quadratic Specht triangle. It seems that the numerical performance of the element

corresponding to certain typical choices of αi are almost the same. It would be interesting to
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extend this element to higher order to see whether they come in a natural hierarchy, which is

desirable because most existing nonconforimg plate bending elements are invented in an ad hoc

manner and lack a natural hierarchy, as opposed to the discontinuous Galerkin method [23]. The

method may also be extended to three-dimensional problem, which is our ongoing work [46].
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