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Abstract. We develop a numerical homogenization method for fourth-order singular perturba-4
tion problems within the framework of heterogeneous multiscale method. These problems arise from5
heterogeneous strain gradient elasticity and elasticity models for architectured materials. We estab-6
lish an error estimate for the homogenized solution applicable to general media and derive an explicit7
convergence for the locally periodic media with the fine-scale ε. For cell problems of size δ = Nε, the8
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1. Introduction. Consider the singular perturbations of the scalar elliptic ho-15

mogenization problem [5]:16

(1.1)

{
ι2∆2uε − div(Aε∇uε) = f in Ω,

uε = ∂nu
ε = 0 on ∂Ω,

17

where Ω ⊂ Rd is a bounded domain, ∂n is the normal derivative, 0 < ε ≪ 1 is a small18

parameter that signifies explicitly the length scale of the heterogeneity, 0 < ι ≪ 1 is19

the strength of the singular perturbations, with ι → 0 when ε → 0, and the coefficient20

matrix Aε belongs to a set M(λ,Λ;Ω) defined by21

(1.2)
M(λ,Λ;Ω): =

{
A ∈ [L∞(Ω)]d×d | A(x)ξ · ξ ≥ λ|ξ|2,

A(x)ξ · ξ ≥ 1

Λ
|A(x)ξ|2 for all x ∈ Ω and ξ ∈ Rd

}
.

22

The elements of M(λ,Λ;Ω) are not necessarily symmetric. This boundary value23

problem represents a possible remedy of the shear bands under severe loading for the24

heterogeneous materials [16]. The sequence Aε satisfying (1.2) converges to Ā when25

ε → 0 in the sense of H-convergence [26], i.e., the solution uε of (1.1) satisfies26 
uε ⇀ ū weakly in H1

0 (Ω),

ι∆uε ⇀ 0 weakly in L2(Ω),

Aε∇uε ⇀ Ā∇ū weakly in [L2(Ω)]d,

27
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2 Y. L. LIAO, AND P. B. MING

for some ū ∈ H1
0 (Ω) the weak solution of the homogenization problem28

(1.3)

{
−div(Ā∇ū) = f in Ω,

ū = 0 on ∂Ω,
29

where Ā ∈ [L∞(Ω)]d×d is the effective matrix. When Aε is periodic, we refer to [38,30

16, 36] for qualitative results on homogenization of (1.1), and the quantitative ho-31

mogenization results can be found in [29, 31, 28].32

Computing the full solution of (1.1) is computational intensive because one has33

to resolves the fine-scale ε with a fourth-order conforming discretization. While a34

sparse operator compression method for (1.1) is proposed in [18], the stiffness matrices35

quickly become ill-conditioned even for two-dimensional problem. Instead of finding36

a fine-scale solution, we seek an approximation of the coarse-scale solution that incurs37

reduced computational cost without resolving the full fine-scale ε. The coarse-scale38

solution corresponds to the H-limit (1.3).39

To this end, we shall develop a coarse-scale simulation method within the frame-40

work of the heterogeneous multiscale method (HMM) developed by E and Engquist41

in [13] to solve (1.3). A comprehensive review of HMM may be found in [14, 2].42

Recently, there have been many interesting works extending HMM to address the43

Landau-Lifshitz equation in heterogeneous media [19, 20] and the rough-wall laminar44

viscous flow [9], to name just a few. HMM aims to capture the macroscopic behavior45

of a system without resolving the microscopic details. HMM consists of two key com-46

ponents: the macroscopic solver and the cell problems for retrieving the missing data47

of the macroscale solver. We choose the linear Lagrange finite element as the macro-48

scopic solver because ū solves a second-order elliptic boundary value problem (1.3).49

The missing data in the macroscopic solver is the effective matrix Ā, which is deter-50

mined by solving certain cell problems that typically take the form of (1.1) without51

the source term, subject to certain boundary conditions.52

The boundary conditions of the cell problems are crucial for the accuracy and53

efficiency of the overall method. Careful consideration of these boundary conditions54

ensures that the macroscopic solver accurately captures the essential features of the55

original problem. Inspired by [17], we propose four different boundary conditions for56

the cell problem, allowing for a unified analysis. Numerical findings indicate that all57

proposed conditions yield accurate and efficient results, with only marginal difference58

among them. It is worth mentioning that the method is general and applicable regard-59

less of the explicit formulation of ι and Aε. However, the effective matrix Ā depends60

on the explicit relationship between ι and ε, as demonstrated in [16, Theorem 1.3]61

and [28].62

We complement the method with a comprehensive analysis. Our analysis follows63

the framework established by E, Ming and Zhang in [15]. Since the numerical64

effective matrix AH ∈ M(λ,Λ;Ω), we establish the overall accuracy in Lemma 2.565

which consists of the discretization error of the macroscopic solver and the error caused66

by the approximation of the effective matrix that67

∥∇(ū− uH) ∥L2(Ω) ≤ C(λ,Λ, ū)
(
H + e(HMM)

)
,68

where e(HMM) refers to the error caused by estimating the effective matrix. Under69

the assumption that ι = µεγ with γ, µ > 0 and Aε(x) = A(x,x/ε) , where A ∈70

[C0,1(Ω;L∞(Rd)]d×d and A(x, ·) is Y : = [−1/2, 1/2]d-periodic, we analyze e(HMM)71

in Theorem 3.14. The analysis is suitable for cell problems with general boundary72
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HMMS FOR 4TH-ORDER SINGULAR PERTURBATIONS 3

conditions including the essential boundary condition, the natural boundary condi-73

tion, the free boundary condition and the periodic boundary condition. We state the74

particular result under certain technical assumptions.75

Theorem 1.1 (Particular result for Theorem 3.14). If ι = µεγ with γ > 0, Aε is76

periodic, and δ is an integer multiple of ε, then77

e(HMM) ≤ C(µ,A)


ε2(1−γ) 0 < γ < 1,

ε/δ + h2/ε2 γ = 1,

ε/δ + ε2(γ−1) + h2/ε2 γ > 1, ∥∇yA ∥L∞(Ω×Y ) is bounded.

78

Compared to the estimates of e(HMM) in [15, Theorem 1.2] and [12, Theorem 3.3]79

for the second-order elliptic homogenization problem with locally periodic coefficients,80

the theorem above includes three key terms on its right-hand side. The term O(ε/δ)81

represents the resonance error, the term O(h2/ε2) denotes the discretization error82

caused by numerically solving the cell problems [1]. The term O(ε2|1−γ|) captures the83

combined effect of homogenization and singular perturbation. Notably, the theorem84

highlights that both resonance and discretization errors vanish when 0 < γ < 1 and85

Aε is periodic. Specifically, when γ = 1, no interaction term exists. Finally, we86

successfully overcome the degeneracy of the discretization error for γ > 1, which87

is caused by the emergence of the boundary layer effect [32]. These effects lead to88

a degeneracy in the discretization error for general singular perturbation problems,89

scaling to O(
√

h/ε) with essential boundary conditions, as detailed in Appendix A.90

Building upon insights from [12], we leverage the solution structure of the cell problem91

with locally periodic coefficients to demonstrate a discretization error of O(h2/ε2).92

Our analysis diverges from most previous work by involving different partial dif-93

ferential equations on varying scales, necessitating novel techniques to address the94

combined effects of singular perturbation and homogenization. To estimate e(HMM),95

the key methodology in [15, 11] employs the first-order approximation of the cell96

problem (2.3), constructed by the corrector χ, and estimates the difference within97

this approximation; see §3. The formulation of χ has been derived in [16]. Specifi-98

cally, χ ≡ 0 when 0 < γ < 1, suggesting that the resonance error may be eliminated99

since the first-order approximation adheres to the boundary conditions of the cell100

problem. Conversely, when γ > 1, the H-limit of (1.1) aligns with the second-order101

limit, guiding us to estimate between cell problems of these two types. Our objectives102

are twofold: firstly, to propose a unified analytical framework for various boundary103

conditions, and secondly, to mitigate the influence of the boundary layer effect. To104

this end, we employ the modified corrector proposed by [28]. Different treatment are105

applied to different scenarios, ultimately producing refined results.106

The outline of the paper is as follows. In section 2, we introduce the theory107

of homogenization and the framework of HMM, and show the well-posedness of the108

proposed method. In section 3, we derive the error estimate under certain assumptions109

on ι and Aε. In section 4, we employ nonconforming finite elements to solve the110

cell problems and report numerical results for the problem with two-scale coefficients,111

which are consistent with the theoretical prediction. The potential of HMM for solving112

problems without scale separation has been demonstrated in [25]. We conclude the113

study in section 5.114

Throughout this paper, the constant C may differ from line to line, while it only115

depends on the constant µ and properties for A, and it is independent of ε, δ, γ and116

meshes size h.117
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4 Y. L. LIAO, AND P. B. MING

2. Heterogeneous multiscale methods. We firstly fix some notations. The118

space L2(Ω) of the square-integrable functions defined on a bounded and convex119

domain Ω is equipped with the inner product (·, ·)Ω and the norm ∥ · ∥L2(Ω), while120

L2
0(Ω) is the subspace of L2(Ω) with vanishing mean. Let Hm(Ω) be the standard121

Sobolev space [3] with the norm ∥ · ∥Hm(Ω), while Hm
0 (Ω) is the closure in Hm(Ω)122

of C∞
0 (Ω). We may drop Ω in ∥ · ∥Hm(Ω) when no confusion may occur. For any123

function f that is integrable over domain D, we denote by ⟨f⟩D the mean of f over124

domain D.125

In this part, we introduce a HMM-FEM to solve (1.1), and we make no assumption126

on the explicit relation between ι and ε, and the coefficient matrix Aε.127

2.1. Framework of HMM-FEM. We employ the linear finite triangular ele-128

ment as the macroscopic solver. Extensions to higher-order finite element macroscopic129

solvers may be found in in [15, 12, 22]. Let XH be the finite element space as130

XH : =
{
ZH ∈ H1

0 (Ω)
∣∣ ZH |K ∈ P1(K) for all K ∈ TH

}
,131

where TH is a triangulation of Ω, which consists of simplices K with hK its diameter132

and H: = maxK∈TH
HK . We assume that TH is shape-regular in the sense of Ciarlet-133

Raviart [10]: there exists a chunkiness parameter C such that hK/ρK ≤ C, where134

ρK is the diameter of the largest ball inscribed into K. We also assume that TH135

satisfies the inverse assumption: there exists C such that H/HK ≤ C. For any136

ZH ∈ XH , we define Zl as a linear approximation of ZH at xl ∈ K, i.e., Zl(x) =137

ZH(xl) + (x−xl) · ∇ZH |K . The macroscopic solver aims to find uH ∈ XH such that138

(2.1) aH(uH , ZH) = (f, ZH)Ω for all ZH ∈ XH .139

Here aH : XH ×XH → R is defined by140

(2.2) aH(VH , ZH): =
∑

K∈TH

|K|
L∑

l=1

ωl∇Zl ·AH(xl)∇Vl,141

where ωl and xl are the quadrature weights and the quadrature nodes in K, respec-142

tively. The quadrature scheme is assumed to be exact for linear polynomial. See;143

e.g., [12].144

It remains to compute AH(xl) ∈ Rd×d. To this end, we solve145

(2.3) ι2∆2vε − div(Aε∇vε) = 0 in Iδ,146

where the cell Iδ: = xl + δY with δ the cell size. To specify the boundary conditions147

for (2.3), we constrain the solution as148

vε ∈ H2(Iδ) and ⟨∇vε⟩Iδ = ∇Vl.149

In practice, the cell problem has to be solved numerically, and we employ conforming150

finite element method to discretize the above cell problems. For the sake of simplicity,151

we only consider the lowest order conforming elements such as the reduced Hsieh-152

Clough-Tocher element [6] and the reduced Powell-Sabin element [4], among many153

others [10, §6]. Let Th be a triangulation of Iδ by the simplices with maximum mesh154

size h, which is assumed to be shape-regular and satisfies the inverse assumption. Let155

Xh ⊂ H2(Iδ) be one such finite element space associated with the triangulation Th,156
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and we assume that there exists an interpolation operator Ih : H2(Iδ) → Xh such157

that for any v ∈ Hk(Iδ) with k = 2, 3,158

(2.4) ∥∇j(I − Ih)v ∥L2(Iδ) ≤ Chk−j∥∇kv ∥L2(Iδ) j = 0, 1, 2.159

The existence of such interpolant may be found in [10]. It is worthwhile to mention160

that certain nonconforming elements such as Specht triangle [35, 21] and Nilssen-Tai-161

Winther element [27], are also suitable candidates to discretize the cell problem. We162

refer to section 4 for more discussions on the nonconforming element discretization.163

We shall impose four types of boundary conditions on (2.5):164

1. Essential boundary condition: Vh = Xh ∩H2
0 (Iδ);165

2. Natural boundary condition: Vh = Xh ∩H1
0 (Iδ);166

3. Free boundary condition: Vh = { zh ∈ Xh ∩ L2
0(Iδ) | ⟨∇zh⟩Iδ = 0 };167

4. Periodic boundary condition: Vh = Xh ∩ L2
0(Iδ) ∩H2

per(Iδ).168

The variational formulation for (2.3) reads as: Find vεh − Vl ∈ Vh such that169

(2.5) aε(vεh, zh) = 0 for all zh ∈ Vh,170

where aε : H2(Iδ)×H2(Iδ) → R is171

aε(v, z): = (Aε∇v,∇z)Iδ + ι2(∇2v,∇2z)Iδ for all v, z ∈ H2(Iδ).172

Then AH is given by173

(2.6) AH(xl) ⟨∇vεh⟩Iδ : = ⟨Aε∇vεh⟩Iδ .174

As to (2.3) with the free boundary condition, the constraint is achieved as in [37]175

by solving the following variational problem: Find vεi ∈ Xh ∩ L2
0(Iδ) such that176

(2.7) aε(vεi , zh) =

∫
∂Iδ

nizhdσ(x) for all zh ∈ Xh ∩ L2
0(Iδ),177

and (2.6) is equivalent to178

AH(xl): =
(
⟨Aε∇vε1⟩Iδ . . . ⟨Aε∇vεd⟩Iδ

) (
⟨∇vε1⟩Iδ . . . ⟨∇vεd⟩Iδ

)−1
.179

The equivalence between the above two formulations is proved in180

Lemma 2.1. The matrix AH obtained by solving the cell problem (2.5) subjects to181

free boundary condition are equivalent with solving (2.7).182

Proof. Firstly we need to show that the matrix183 (
⟨∇vε1⟩Iδ . . . ⟨∇vεd⟩Iδ

)
184

is nonsingular, where vεi ∈ Xh∩L2
0(Iδ) is the solution of (2.7). it suffices to show that185

a vector k ∈ Rd such that186

k1 ⟨∇vε1⟩Iδ + k2 ⟨∇vε2⟩Iδ + · · ·+ kd ⟨∇vεd⟩Iδ = 0,187

gives k = 0.188

We set vεk = k1v
ε
1 + k2v

ε
2 · · ·+ kdv

ε
d, then ⟨∇vεk⟩Iδ = 0 and vεk ∈ Vh. By the linear189

property of (2.7),190

aε(vεk, zh) =

d∑
i=1

ki

∫
∂Iδ

nizhdσ(x) = |Iδ|k · ⟨∇zh⟩Iδ for all zh ∈ Xh ∩ L2
0(Iδ).191
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6 Y. L. LIAO, AND P. B. MING

Firstly taking zh = vεk, we obtain vεk ≡ 0. Secondly, taking zh = xi−⟨xi⟩Iδ , we obtain192

ki = 0 for i = 1, . . . , d, and hence k = 0.193

Next we let vεk = k1v
ε
1 + k2v

ε
2 · · ·+ kdv

ε
d + ⟨Vl⟩Iδ such that194

k1 ⟨∇vε1⟩Iδ + k2 ⟨∇vε2⟩Iδ + · · ·+ kd ⟨∇vεd⟩Iδ = ∇Vl.195

Then k = (k1, · · · , kd) exists and is unique, and vεk solves (2.5) and196

AH(xl) ⟨∇vεk⟩Iδ =
(
⟨aε∇vε1⟩Iδ . . . ⟨aε∇vεd⟩Iδ

) (
⟨∇vε1⟩Iδ . . . ⟨∇vεd⟩Iδ

)−1 ∇Vl197

= k1 ⟨Aε∇vε1⟩Iδ + k2 ⟨Aε∇vε2⟩Iδ + · · ·+ kd ⟨Aε∇vεd⟩Iδ198

= ⟨Aε∇vεk⟩Iδ .199
200

This gives (2.6) because k is a constant vector.201

2.2. Well-posedness of HMM-FEM. For any z ∈ H2(Iδ), we define the202

weighted norm203

∥ z ∥ι: = ∥∇z ∥L2(Iδ) + ι∥∇2z ∥L2(Iδ).204

The wellposedness of (2.5) is included in the following lemma.205

Lemma 2.2. The cell problem (2.5) admits a unique solution vεh satisfying206

(2.8) ∥ vεh ∥ι ≤ (
√
Λ +

√
Λ/λ)∥∇Vl ∥L2(Iδ).207

Proof. For any zh ∈ Vh, by the Poincaré inequality, there exists a constant Cp208

such that209

∥ zh ∥H1(Iδ) ≤ Cp∥∇zh ∥Iδ .210

Hence,211

∥ zh ∥ι ≥ min(1/Cp, ι)∥ zh ∥H2(Iδ).212

This means that for any fixed ι, the weighted norm ∥ · ∥ι is indeed a norm over Vh.213

Note that aε is bounded and coercive on Vh with norm ∥ · ∥ι, i.e., for any zh ∈ Vh,214

ah(zh, zh) ≥
1

2
min(λ, 1)∥ zh ∥2ι .215

Hence, the cell problem (2.5) admits a unique solution by the Lax-Milgram theorem.216

Next, we choose zh = vεh − Vl ∈ Vh in (2.5) and obtain217

aε(vεh, v
ε
h) = (Aε∇vεh,∇Vl) ≤ ∥Aε∇vεh ∥L2(Iδ)∥∇Vl ∥L2(Iδ)218

≤
√
Λ(Aε∇vεh,∇vεh)

1/2∥∇Vl ∥L2(Iδ).219220

This immediately implies221

(Aε∇vεh,∇vεh) ≤ Λ∥∇Vl ∥2L2(Iδ)
,222

and223

ι2∥∇2vεh ∥2L2(Iδ)
≤

√
Λ(Aε∇vεh,∇vεh)

1/2∥∇Vl ∥L2(Iδ) ≤ Λ∥∇Vl ∥2L2(Iδ)
.224

A combination of the above two inequalities implies (2.8).225

In the next lemma, we shall show that (2.6) satisfies the Hill’s condition [17].226
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Lemma 2.3. There holds227

(2.9) ⟨∇zεh⟩Iδ ·AH(xl) ⟨∇vεh⟩Iδ = ⟨∇zεh ·Aε∇vεh⟩Iδ + ι2 ⟨∇2zεh : ∇2vεh⟩Iδ ,228

where zεh is the solution of (2.5) with Vl replaced by any linear function Zl.229

Proof. It follows from zεh − Zl ∈ Vh that230

(2.10) ⟨∇zεh⟩Iδ = ∇Zl,231

and using (2.5) , we obtain232

aε(vεh, z
ε
h) = aε(vεh, Zl) = (Aε∇vεh,∇Zl)Iδ = |Iδ|∇Zl · ⟨Aε∇vεh⟩Iδ ,233

which gives (2.9) with (2.6) and (2.10).234

It follows from the Hill’s condition that AH ∈ M(λ,Λ;Ω).235

Lemma 2.4. There holds AH ∈ M(λ,Λ;Ω).236

Proof. For any ξ ∈ Rd, let vεh ∈ Vh be the solution of (2.5) with Vl = ξ · x. By237

Hill’s condition (2.9),238

AH(xl)ξ · ξ = ⟨Aε∇vεh · ∇vεh⟩Iδ + ι2 ⟨|∇2vεh|2⟩Iδ ≥ ⟨Aε∇vεh · ∇vεh⟩Iδ .239

Hence,240

AH(xl)ξ · ξ ≥ λ ⟨|∇vεh|2⟩Iδ ≥ λ|⟨∇vεh⟩Iδ |
2 = λ|ξ|2.241

On the other hand,242

AH(xl)ξ · ξ ≥ 1

Λ
⟨|Aε∇vεh|2⟩Iδ ≥ 1

Λ
|⟨Aε∇vεh⟩Iδ |

2 =
1

Λ
|AH(xl) ⟨∇vεh⟩Iδ |

2
243

=
1

Λ
|AH(xl)ξ|2.244

245

A combination of the above two inequalities gives AH ∈ M(λ,Λ;Ω).246

Lemma 2.4 gives the existence and uniqueness of uH by the Lax-Milgram theo-247

rem, which immediately implies the error estimate for the homogenized solution.248

Lemma 2.5. There exists C independent of ε, ι, δ and H such that249

(2.11) ∥∇(ū− uH) ∥L2(Ω) ≤ C
(
H∥ ū ∥H2(Ω) + e(HMM)∥ f ∥H−1(Ω)

)
,250

where251

e(HMM): = max
K∈TH ,xl∈K

|(Ā−AH)(xl)|,252

and |·| denotes the ℓ2-norm of matrices and vectors.253

Proof. This is a direct consequence of [15, Theorem 1.1] and Lemma 2.4.254

For general coefficients, it has been shown in [11, Lemma 2.2] that if all the255

quadrature nodes xl are Lebesgue points of Ā, then256

lim
δ→0

lim
ε→0

e(HMM) = 0.257

In the next section, we will derive how e(HMM) relies on δ and ε for locally periodic258

coefficients.259
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8 Y. L. LIAO, AND P. B. MING

3. Error estimates for e(HMM) with locally periodic media. In this260

part, we estimate e(HMM) for the locally periodical coefficients Aε. We assume261

that ι = µεγ with γ > 0 and a positive constant µ and Aε(x) = A(x,x/ε) where262

A ∈ [C0,1(Ω;L∞(Rd))]d×d and A(x, ·) is Y -periodic. By [5, Theorem 6.3, Theorem263

14.5] and [16, Theorem 1.3], the effective matrix Ā in (1.3) is given by264

Ā(x) =

∫
Y

(A+A∇⊤
yχ)(x,y)dy,265

where the corrector χ = 0 when 0 < γ < 1. When γ = 1, the corrector χ ∈266

[L∞(Ω;H2(Y ))]d satisfies267 {
µ2∆2

yχj − divy(A∇yχj) = divyaj in Y,

χj(x, ·) is Y -periodic ⟨χj⟩Y = 0,
268

where aj is the j-th column of A with A = [a1,a2 . . . ,ad].269

When γ > 1, the corrector χ ∈ [L∞(Ω;H1(Y ))]d satisfies270 {
−divy(A∇yχj) = divyaj in Y,

χj(x, ·) is Y -periodic ⟨χj⟩Y = 0.
271

3.1. Preliminary. Denote by vεl the solution of (2.5) with Aε replaced by Aε
l : =272

Aε(xl, ·/ε); i.e., find vεl − Vl ∈ Vh such that273

(3.1) aεl (v
ε
l , zh) = 0 for all zh ∈ Vh,274

where aεl is the same with aε provided that Aε replaced by Aε
l . The first order275

approximation of vεl is276

V ε
l (x): = Vl(x) + εχγ(xl,x/ε) · ∇Vl,277

where χγ : = χ = 0 when 0 < γ < 1, and χγ ∈ [L∞(Ω;H2(Y ))]d is the solution of278

(3.2)

{
µ2ε2(γ−1)∆2

yχ
γ
j − divy(A∇yχ

γ
j ) = divyaj in Y,

χγ
j (x, ·) is Y -periodic ⟨χγ

j ⟩Y = 0,
279

when γ ≥ 1. This corrector is a modification of that defined in [28, §3]. Moreover,280

there exists C independent of ε such that281

(3.3)
∥χγ ∥L∞(Ω;H1(Y )) + εγ−1∥∇2

yχ
γ ∥L∞(Ω;L2(Y ))

+ ε2(γ−1)∥∇3
yχ

γ ∥L∞(Ω;L2(Y )) ≤ C.
282

If Aε
l is smoother, then (3.3) may be improved and χγ → χ when γ → ∞ as283

shown below.284

Lemma 3.1. If γ > 1 and ∥∇yA ∥L∞(Ω×Y ) is bounded, then285

(3.4) ∥∇y(χ
γ − χ) ∥L∞(Ω;L2(Y )) ≤ Cεγ−1,286

and287

(3.5) ∥χγ ∥L∞(Ω;H2(Y )) + εγ−1∥∇3
yχ

γ ∥L∞(Ω;L2(Y )) ≤ C.288
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Proof. If γ > 1 and ∥∇yA ∥L∞(Ω×Y ) is bounded, then ∥χ ∥L∞(Ω;H2(Y )) is also289

bounded. We rewrite (3.2) as290

(3.6)

{
µ2ε2(γ−1)∆2

yχ
γ
j = divy(A∇y(χ

γ
j − χj)) in Y,

χγ
j (x, ·) is Y -periodic ⟨χγ

j ⟩Y = 0.
291

Multiplying both sides of (3.6) by z = χγ
j − χj , integration by parts, we obtain292

∥∇y(χ
γ
j − χj) ∥2L∞(Ω;L2(Y )) + ε2(γ−1)∥∇2

yχ
γ
j ∥

2
L∞(Ω;L2(Y ))293

≤ Cε2(γ−1)∥∆yχ
γ
j ∥L∞(Ω;L2(Y ))∥∆yχj ∥L∞(Ω;L2(Y )).294

295

This gives (3.4) and the H2-estimate in (3.5).296

Finally, by the H3-estimate of (3.6) and (1.2),297

∥χj ∥L∞(Ω;H3(Y )) ≤ Cε2(1−γ)∥ divy(A∇y(χ
γ
j − χj)) ∥L∞(Ω;H−1(Y ))298

≤ Cε2(1−γ)∥∇y(χ
γ
j − χj) ∥L∞(Ω;L2(Y )),299

300

which together with (3.4) gives the H3-estimate in (3.5).301

Next, we define302

(3.7) Āγ(x): =

∫
Y

(A+A∇⊤
yχ

γ)(x,y)dy.303

If 0 < γ ≤ 1, then Āγ = Ā.304

If γ > 1 and ∥∇yA ∥L∞(Ω×Y ) is bounded, invoking [28, Lemma 3.2], then we get305

(3.8) ∥ Āγ − Ā ∥L∞(Ω) ≤ Cε2(γ−1).306

Let κ: = ⌊δ/ε⌋. By (3.2) and (3.7), a direct calculation gives307

(3.9) ⟨∇V ε
l ⟩Iκε

= ∇Vl and ⟨Aε
l∇V ε

l ⟩Iκε
= Āγ(xl)∇Vl.308

Define a cut-off function ρε ∈ C∞
0 (Iδ) satisfying 0 ≤ ρε ≤ 1 and309

(3.10) ρε = 1 in Iδ−2ε, ρε = 0 in Iεδ , |∇iρε| ≤ Cε−i for i = 1, 2, 3,310

where Iεδ : = Iδ\Iδ−ε.311

Using the identity (3.9), we decompose e(HMM) into312

(3.11)
(Ā−AH)(xl)∇Vl = (Ā− Āγ)(xl)∇Vl +

(
⟨Aε

l∇V ε
l ⟩Iκε

− ⟨Aε
l∇V ε

l ⟩Iδ
)

+ ⟨Aε
l∇θεl ⟩Iδ +

(
⟨Aε

l∇vεl ⟩Iδ − ⟨Aε∇vεh⟩Iδ
)
,

313

where the corrector θεl : = V ε
l − vεl .314

We shall bound the terms in the right-hand side of (3.11) in a series of lemmas.315

The first lemma compares the average of the flux over cells of different sizes.316

Lemma 3.2.

|⟨Aε
l∇V ε

l ⟩Iκε
− ⟨Aε

l∇V ε
l ⟩Iδ | ≤ C

ε

δ
|∇Vl|.317
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Proof. If 0 < γ < 1, then318

∥∇V ε
l ∥L2(Iε

δ )
= ∥∇Vl ∥L2(Iε

δ )
= |Iεδ |1/2|∇Vl|.319

If γ ≥ 1, then we use (3.3) and obtain320

∥∇V ε
l ∥L2(Iε

δ )
= ∥ I +∇yχ

γ(xl, ·/ε) ∥L2(Iε
δ )
|∇Vl| ≤ C|Iεδ |1/2|∇Vl|.321

A direct calculation gives322

|⟨Aε
l∇V ε

l ⟩Iκε
− ⟨Aε

l∇V ε
l ⟩Iδ | ≤

(
1− |Iκε|

|Iδ|

)(
|⟨Aε

l∇V ε
l ⟩Iκε

|+ |⟨Aε
l∇V ε

l ⟩Iδ\Iκε
|
)

323

≤ |Iεδ |
|Iδ|

|Āγ(xl)∇Vl|+ Λ

√
|Iεδ |
|Iδ|

∥∇V ε
l ∥L2(Iε

δ )
324

≤ C
ε

δ
|∇Vl|.325

326

This finishes the proof.327

We shall frequently used the following perturbation estimates.328

Lemma 3.3. If A ∈ [C0,1(Ω;L∞(Rd))]d×d, then329

(3.12) ∥ vεl − vεh ∥ι ≤ Cδ∥∇Vl ∥L2(Iδ),330

and331

(3.13) |⟨Aε
l∇vεl ⟩Iδ − ⟨Aε∇vεh⟩Iδ | ≤ Cδ|∇Vl|.332

Proof. Let z = vεl − vεh ∈ Vh in (3.1), we obtain333

aεl (v
ε
l − vεh, v

ε
l − vεh) = ((Aε −Aε

l )∇vεh,∇(vεl − vεh))Iδ .334

The estimate (3.12) follows from the above identity and the fact |Aε −Aε
l | ≤ Cδ.335

Using (2.8) and (3.12), we obtain336

|⟨Aε
l∇vεl ⟩Iδ − ⟨Aε∇vεh⟩Iδ | = |⟨Aε

l∇(vεl − vεh)⟩Iδ + ⟨(Aε
l −Aε)∇vεh⟩Iδ |337

≤ C√
|Iδ|

(∥ vεl − vεh ∥ι + δ∥ vεh ∥ι)338

≤ Cδ|∇Vl|.339340

This gives (3.13).341

To estimate the corrector, we define wε
l as the adjoint of vεl : Find wε

l −Wl ∈ Vh342

such that343

(3.14) aεl (zh, w
ε
l ) = 0 for all zh ∈ Vh,344

and W ε
l is defined the same with V ε

l except that at the moment χγ is the solution345

of (3.2) with A replacing by A⊤.346
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3.2. Estimate of the corrector when 0 < γ < 1. In what follows, we estimate347

the corrector ⟨Aε
l∇θεl ⟩Iδ , and we start with a trace inequality.348

Lemma 3.4. If z ∈ H1(Iδ) and ⟨z⟩Iδ = 0, then349

(3.15) ∥ z ∥L2(Iε
δ )

≤ C
√
εδ∥∇z ∥L2(Iδ).350

Proof. We apply the scaling x̂: = x/δ to Iδ so that the rescaled cell has diameter351

1. Moreover, denote by ε̂: = ε/δ and ẑ(x̂): = z(x), it is clear ⟨ẑ⟩I1 = 0. Using the352

trace inequality [30, Lemma 1.5] and the Poincaré inequality, we obtain353

∥ ẑ ∥L2(I ε̂
1 )

≤ C
√
ε̂∥ ẑ ∥1/2L2(I1)

∥ ẑ ∥1/2H1(I1)
≤ C

√
ε̂∥∇ẑ ∥L2(I1),354

and355

∥ z ∥L2(Iε
δ )

≤ Cδd/2∥ ẑ ∥L2(I ε̂
1 )

≤ C
√
ε̂δd/2∥∇ẑ ∥L2(I1) ≤ C

√
ε̂δ∥∇z ∥L2(Iδ).356

This gives (3.15).357

If 0 < γ < 1, then V ε
l = Vl and θεl = Vl − vεl ∈ Vh.358

Lemma 3.5. If ι = µεγ with 0 < γ < 1, then there exists C such that359

(3.16) ∥ θεl ∥ι ≤ Cε1−γ∥∇Vl ∥L2(Iδ).360

Proof. Choosing z = θεl ∈ Vh in (3.1) and using ⟨∇θεl ⟩Iδ = 0 and the fact that361

Ā(xl)∇Vl is a constant vector, we obtain362

(3.17)

aεl (θ
ε
l , θ

ε
l ) = aεl (Vl, θ

ε
l ) =

(
(Aε

l − Ā(xl))∇Vl,∇θεl
)
Iδ

=
(
(Aε

l − Ā(xl))∇Vl, ρ
ε∇θεl

)
Iδ

+
(
(Aε

l − Ā(xl))∇Vl, (1− ρε)∇θεl
)
Iδ
.

363

Let A ∈ [L∞(Ω;H1(Y ))]d×d be the solution of364 {
−∆yA = A− Ā in Y,

A(x, ·) is Y -periodic ⟨A⟩Y = 0.
365

Since ⟨A(x, ·)− Ā(x)⟩Y = 0, there exists a unique solution A such that366

∥A∥L∞(Ω;(H2(Y )) ≤ C∥A− Ā ∥L∞(Ω;L2(Y )) ≤ C.367

Define Aε
l : = A(xl, ·/ε) and it satisfies368

−ε2∆Aε
l = −∆yA(xl, ·/ε) = Aε

l − Ā(xl).369

Integration by part, we write370

−ε2(∆Aε
l∇Vl, ρ

ε∇θεl )Iδ = ε2(∇(Aε
l∇Vl),∇θεl ⊗∇ρε + ρε∇2θεl )Iδ .371

Using the trace inequality (3.15) with z = ∇θεl and ⟨z⟩Iδ = 0, we bound the first term372

in (3.17) as373

|−ε2(∆Aε
l∇Vl, ρ

ε∇θεl )Iδ | ≤ C|∇Vl|
(
∥∇yA(xl, ·/ε) ∥L2(Iε

δ )
∥∇θεl ∥L2(Iε

δ )
374

+ ε∥∇yA(xl, ·/ε) ∥L2(Iδ)∥∇
2θεl ∥L2(Iδ)

)
375

≤ Cε∥∇Vl ∥L2(Iδ)∥∇
2θεl ∥L2(Iδ).376377
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Proceeding along the same line, we bound the second term in (3.17) as378

|−ε2(∆Aε
l∇Vl, (1− ρε)∇θεl )Iδ | ≤ C|∇Vl|∥∆yA∥L2(Iε

δ )
∥∇θεl ∥L2(Iε

δ )
379

≤ Cε∥∇Vl ∥L2(Iδ)∥∇
2θεl ∥L2(Iδ).380381

Substituting the above two inequalities into (3.17), and using ι∥∇2θεl ∥L2(Iδ) ≤ ∥ θεl ∥ι,382

we obtain (3.16).383

We are ready to estimate ⟨Aε
l∇θεl ⟩Iδ with a dual argument.384

Lemma 3.6. If ι = µεγ with 0 < γ < 1, then385

(3.18) |⟨Aε
l∇θεl ⟩Iδ | ≤ Cε2(1−γ)|∇Vl|.386

Proof. For any constant vector ∇Wl, we get387

|Iδ|∇Wl · ⟨Aε
l∇θεl ⟩Iδ = aεl (θ

ε
l ,Wl) = aεl (θ

ε
l ,Wl − wε

l ) ≤ ∥ θεl ∥ι∥Wl − wε
l ∥ι388

≤ Cε2(1−γ)∥∇Vl ∥L2(Iδ)∥∇Wl ∥L2(Iδ),389390

where we have used (3.14) for wε
l with z = θεl in the second step, and (3.16) for both391

vεl and wε
l in the last step. This gives (3.18).392

Remark 3.7. It is worth mentioning that the estimate (3.18) is independent of393

δ and h when ι = µεγ with 0 < γ < 1, which stands in striking contrast to the394

corresponding estimate for the second-order homogenization problem; cf. [15, 11].395

3.3. Estimate of the corrector when γ ≥ 1. It is clear that V ε
l satisfies396

(3.19) aεl (V
ε
l , z) = 0 for any z ∈ H2

0 (Iδ).397

The following estimates for V ε
l hang on the a priori estimate (3.3).398

Lemma 3.8. If ι = µεγ with γ ≥ 1, then399

(3.20) ∥ (1− ρε)(V ε
l − Vl) ∥ι ≤ C

√
ε/δ∥∇Vl ∥L2(Iδ),400

and401

(3.21) ∥∇V ε
l ∥L2(Iε

δ )
+ ι∥∇2V ε

l ∥L2(Iε
δ )

+ ι2∥∇3V ε
l ∥L2(Iε

δ )
≤ C

√
ε/δ∥∇Vl ∥L2(Iδ).402

Proof. A direct calculation gives403

∇
(
(1− ρε)(V ε

l − Vl)
)
= ∇⊤

yχ
γ(xl, ·/ε)∇Vl(1− ρε)− εχγ(xl, ·/ε) · ∇Vl∇ρε,404

and405

ε∇2
(
(1− ρε)(V ε

l − Vl)
)
= ∇2

y(χ
γ · ∇Vl)(xl, ·/ε)(1− ρε)406

− ε∇⊤
yχ

γ(xl, ·/ε)∇Vl ⊗∇ρε − ε∇ρε ⊗∇⊤
yχ

γ(xl, ·/ε)∇Vl407

+ ε2χ(xl, ·/ε) · ∇Vl∇2ρε,408409

which together with (3.3) and (3.10) leads to410

∥ (1− ρε)(V ε
l − Vl) ∥ι ≤ C|∇Vl|∥ (|χ|+ |∇yχ|+ εγ−1|∇2

yχ|)(xl, ·/ε) ∥L2(Iε
δ )

411

≤ C
√
εδd−1|∇Vl|412

≤ C
√
ε/δ∥∇Vl ∥L2(Iδ).413414

This gives (3.20).415

The proof for (3.21) may be proceeded in the same way. We omit the details.416
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The next lemma concerns the error caused by the cell discretization.417

Lemma 3.9. If ι = µεγ with γ = 1, or γ > 1 and ∥∇yA ∥L∞(Ω×Y ) is bounded,418

then419

(3.22) ∥ (I − Ih)[ρ
ε(V ε

l − Vl)] ∥ι ≤ C
h

ε
∥∇Vl ∥L2(Iδ).420

Proof. For k = 2, 3, a direct calculation gives421

εk−1|∇k[ρε(V ε
l − Vl)]| =

k∑
j=0

εj |∇jρε||∇k−j
y χγ(xl, ·/ε)||∇Vl|422

≤ C|∇Vl|
k∑

j=0

|∇k−j
y χγ(xl, ·/ε)|.423

424

Using (3.3) when γ = 1 and using (3.5) when γ > 1 and ∥∇yA ∥L∞(Ω×Y ) is bounded,425

we obtain426

∥∇[ρε(V ε
l − Vl)] ∥ι ≤ C|∇Vl|

(
ε−1

2∑
j=0

∥∇j
yχ

γ(xl, ·/ε) ∥L2(Iδ)427

+ εγ−2
3∑

j=0

∥∇j
yχ

γ(xl, ·/ε) ∥L2(Iδ)

)
428

≤ Cε−1∥∇Vl ∥L2(Iδ).429430

For any z ∈ H3(Iδ), it follows from the interpolation error estimate (2.4) that431

∥ (I − Ih)z ∥ι ≤ Ch∥∇z ∥ι.432

Choosing z = ρε(V ε
l −Vl) and combining the above two inequalities, we obtain (3.22).433

Remark 3.10. If χ ∈ [L∞(Ω;H3(Y ))]d holds, then the estimate (3.5) may be434

improved to ∥χγ ∥L∞(Ω;H3(Y )) ≤ C, and the interpolation error (3.22) changes to435

O(h2/ε2) when γ → ∞. However, this would require extra smoothness assumption436

on A.437

We are ready to prove the estimate of the corrector.438

Lemma 3.11. If ι = µεγ with γ = 1, or γ > 1 and ∥∇yA ∥L∞(Ω×Y ) is bounded,439

then440

(3.23) ∥ θεl ∥ι ≤ C(
√

ε/δ + h/ε)∥∇Vl ∥L2(Iδ).441

Proof. A direct calculation gives442

aεl (θ
ε
l , θ

ε
l ) = aεl (V

ε
l , θ

ε
l )− aεl (v

ε
l , θ

ε
l )443

= ι2(∇2V ε
l ,∇2θεl )Iδ + (Aε

l∇V ε
l − Āγ(xl)∇Vl,∇θεl )Iδ444

+ (Āγ(xl)∇Vl,∇θεl )Iδ − aεl (v
ε
l , V

ε
l ) + aεl (v

ε
l , v

ε
l ).445446

Using the Hill’s condition (2.10) and the definition (3.1) for vεl , we substitute447

⟨∇θεl ⟩Iδ = ⟨∇(V ε
l − Vl)⟩Iδ into the third term, and employ aεl (v

ε
l , v

ε
l ) = aεl (v

ε
l , Vl) in448
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the last term. Then the above identity is reshaped into449

(3.24)

aεl (θ
ε
l , θ

ε
l ) = ι2(∇2V ε

l ,∇2θεl )Iδ + ι2(∇∆V ε
l ,∇θεl )Iδ

+ (Aε
l∇V ε

l − Āγ(xl)∇Vl − ι2∇∆V ε
l ,∇θεl )Iδ

+ (Āγ(xl)∇Vl, (∇V ε
l − Vl))Iδ − aεl (V

ε
l , V

ε
l − Vl)

+ aεl (θ
ε
l , V

ε
l − Vl).

450

Integration by parts, we obtain451

(∇∆V ε
l , ρ

ε∇θεl )Iδ = −(ρε∇2V ε
l ,∇2θεl )Iδ − (∇ρε,∇2V ε

l ∇θεl )Iδ ,452

from which we write the first line in (3.24) as453

ι2(∇2V ε
l ,∇2θεl )Iδ + ι2(∇∆V ε

l ,∇θεl )Iδ454

= ι2(∇2V ε
l ,∇2θεl )Iδ + ι2(∇∆V ε

l , ρ
ε∇θεl )Iδ + ι2((1− ρε)∇∆V ε

l ,∇θεl )Iδ455

= ι2((1− ρε)∇2V ε
l ,∇2θεl )Iδ − ι2(∇ρε,∇2V ε

l ∇θεl )Iδ + ι2((1− ρε)∇∆V ε
l ,∇θεl )Iδ456

≤ Cι∥ θεl ∥ι(∥∇2V ε
l ∥L2(Iε

δ )
+ ι∥∇3V ε

l ∥L2(Iε
δ )
)457

≤ 1

4
∥ θεl ∥2ι + C

ε

δ
∥∇Vl ∥2L2(Iδ)

,458459

where we have used the Young’s inequality and (3.21) in the last step.460

For i, j = 1, · · · , d, define the tensor461

Bij(x,y) = (Aij +Aik∂yk
χγ
j − µ2ε2(γ−1)∂yikk

χγ
j − Āγ

ij)(x,y).462

By the definitions (3.2) and (3.7),463

∂yi
Bij = 0, ⟨Bij⟩Y = 0.464

By [33, Theorem 3.1.1], there exists an anti-symmetric tensor465

B ∈ [L∞(Ω;H1(Y ))]d×d×d
466

such that467

Bkij = −Bikj , ∂yk
Bkij = Bij ,468

and by (3.3),469

∥B ∥L∞(Ω;H1(Y )) ≤ C∥B ∥L∞(Ω;L2(Y ))470

≤ C
(
1 + ∥∇yχ

γ ∥L∞(Ω;L2(Y )) + ε2(γ−1)∥∇3
yχ

γ ∥L∞(Ω;L2(Y ))

)
471

≤ C.472473

Define Bε
l := B(xl, ·/ε), and Bε

l := B(xl, ·/ε), we obtain474

Aε
l∇V ε

l − Āγ(xl)∇Vl − ι2∇∆V ε
l = Bε

l ∇Vl,475

and using the anti-symmetry of B, we write476

⟨∇θεl · ρεBε
l ∇Vl⟩Iδ = ε ⟨ρε∂iθεl ∂kBε

l,kij∂jVl⟩Iδ477

= ε ⟨∂iθεl ∂k(ρεBε
l,kij)∂jVl⟩Iδ − ε ⟨∂iθεl Bε

l,kij∂kρ
ε∂jVl⟩Iδ478

= ε ⟨∂iθεl Bε
l,ikj∂kρ

ε∂jVl⟩Iδ − ε ⟨ρε∂ikθεl Bε
l,kij∂jVl⟩Iδ479

= ε ⟨∇θεl · Bε
l (∇ρε ⊗∇Vl)⟩Iδ .480

481

This manuscript is for review purposes only.



HMMS FOR 4TH-ORDER SINGULAR PERTURBATIONS 15

Therefore, the second line of (3.24) is bounded by482

(Bε
l ∇Vl,∇θεl )Iδ = ((1− ρε)Bε

l ∇Vl,∇θεl )Iδ + ε(Bε
l (∇ρε ⊗∇Vl),∇θεl )Iδ483

≤ C|∇Vl|∥∇θεl ∥L2(Iδ)(∥B
ε
l ∥L2(Iε

δ )
+ ∥Bε

l ∥L2(Iε
δ )
)484

≤ 1

4
∥ θεl ∥2ι + C

ε

δ
∥∇Vl ∥2L2(Iδ)

.485
486

Next, we turn to the third line of (3.24). Since V ε
l − Vl is periodic, it is straight-487

forward to verify488

(Aε
l∇V ε

l ,∇(V ε
l − Vl))Iκε

+ ι2(∇2V ε
l ,∇2V ε

l )Iκε
= 0489

for the second term. Similarly, we use (3.9) for the first term. Using (3.21), we get490

(Āγ(xl)∇Vl,(∇V ε
l − Vl))Iδ − aεl (V

ε
l , V

ε
l − Vl)491

≤ C
(
∥∇Vl ∥2L2(Iε

δ )
+ ∥∇V ε

l ∥2L2(Iε
δ )

+ ι2∥∇2V ε
l ∥2L2(Iε

δ )

)
492

≤ C
ε

δ
∥∇Vl ∥2L2(Iδ)

.493
494

Finally, we estimate the last line in (3.24). Choosing495

z = (V ε
l − Vl)− (V ε

l − Vl)(1− ρε)− (I − Ih)[ρ
ε(V ε

l − Vl)] ∈ Vh ∩H2
0 (Iδ)496

in (3.1) and (3.19), we obtain497

aεl (θ
ε
l , V

ε
l − Vl) = aεl (θ

ε
l , (V

ε
l − Vl)(1− ρε) + (I − Ih)[ρ

ε(V ε
l − Vl)])498

≤ C∥ θεl ∥ι
(
∥ (V ε

l − V )(1− ρε) ∥ι + ∥ (I − Ih)[ρ
ε(V ε

l − Vl)] ∥ι
)

499

≤ 1

4
∥ θεl ∥2ι + C

(ε
δ
+

h2

ε2

)
∥∇Vl ∥2L2(Iδ)

,500
501

where we have used (3.20) and (3.22) in the last step.502

Substituting all the above inequalities into (3.24), we obtain (3.23).503

Remark 3.12. When γ > 1, the sequence Aε H-converges to the second-order504

homogenization limit as ε → 0. However, as shown in [27, 21], boundary layer degen-505

erates the convergence rate of the discretization for general singular perturbations.506

This implies that for γ → ∞, ∥ vε−Ihv
ε ∥ι is only O(

√
h/ε), without any smoothness507

assumption on vε; see Appendix A. While the discretization error of the corrector508

given by (3.23) is O(h/ε).509

We are ready to estimate ⟨Aε
l∇θεl ⟩Iδ .510

Lemma 3.13. If ι = µεγ with γ = 1, or γ > 1 and ∥∇yA ∥L∞(Ω×Y ) is bounded,511

then512

(3.25) |⟨Aε
l∇θεl ⟩Iδ | ≤ C

(
ε

δ
+

h2

ε2

)
|∇Vl|.513

Proof. For any constant vector∇Wl, using the fact that the homogenized effective514

matrix for the dual problem of (1.1) is Ā⊤ as shown in [33, Lemma 2.2.5], we write515

(3.26)

|Iδ|∇Wl · ⟨Aε
l∇θεl ⟩Iδ = aεl (θ

ε
l ,Wl) = aεl (θ

ε
l ,W

ε
l )− aεl (θ

ε
l ,W

ε
l −Wl)

= ι2(∇2θεl ,∇2W ε
l )Iδ + (∇θεl , (A

ε
l )

⊤∇W ε
l − (Āγ)⊤(xl)∇Wl)

+ (Āγ(xl)∇θεl ,∇Wl)Iδ − aεl (θ
ε
l ,W

ε
l −Wl).

516
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Proceeding along the same line that leads to the first line and the second line in (3.24),517

we obtain518

ι2(∇2θεl ,∇2W ε
l )Iδ+(∇θεl , (A

ε
l )

⊤∇W ε
l − (Āγ)⊤(xl)∇Wl)519

≤ C
√
ε/δ∥ θεl ∥ι∥∇Wl ∥L2(Iδ)520

≤ C
(ε
δ
+

h2

ε2

)
∥∇Vl ∥L2(Iδ)∥∇Wl ∥L2(Iδ),521

522

where we have used (3.23) in the last step.523

By (2.10) and (3.9), using (3.21), we bound the second to last term in (3.26) by524

(Āγ(xl)∇θεl ,∇Wl)Iδ = (Āγ(xl)∇(V ε
l − Vl),∇Wl)Iδ525

≤ C∥∇(V ε
l − Vl) ∥L2(Iε

δ )
∥∇Wl ∥L2(Iε

δ )
526

≤ C
ε

δ
∥∇Vl ∥L2(Iδ)∥∇Wl ∥L2(Iδ).527

528

Choosing529

z = W ε
l −Wl − (W ε

l −Wl)(1− ρε)− (I − Ih)[ρ
ε(W ε

l −Wl)] ∈ Vh ∩H2
0 (Iδ)530

in (3.1) and (3.19), we estimate the last term in (3.26) as531

−aεl (θ
ε
l ,W

ε
l −Wl) = −aεl (θ

ε
l , (W

ε
l −Wl)(1− ρε) + (I − Ih)[ρ

ε(W ε
l −Wl)])532

≤ C∥ θεl ∥ι
(
∥ (W ε

l −Wl)(1− ρε) ∥ι + ∥ (I − Ih)[ρ
ε(W ε

l −Wl)] ∥ι
)

533

≤ C
(ε
δ
+

h2

ε2

)
∥∇Vl ∥L2(Iδ)∥∇Wl ∥L2(Iδ),534

535

where we have used an analogy of (3.20) and (3.22) for W ε
l and (3.23) in the last step.536

Substituting the above inequalities into (3.26), we obtain537

|∇Wl · ⟨Aε
l∇θεl ⟩Iδ | ≤

C

|Iδ|

(
ε

δ
+

h2

ε2

)
∥∇Vl ∥L2(Iδ)∥∇Wl ∥L2(Iδ)538

≤ C

(
ε

δ
+

h2

ε2

)
|∇Vl||∇Wl|.539

540

This leads to (3.25).541

Summing up all the estimates in this part, we are ready to bound e(HMM).542

Theorem 3.14. If ι = µεγ with γ > 0 and A ∈ [C0,1(Ω;L∞(Rd))]d×d, then543

(3.27) e(HMM) ≤ C


δ + ε/δ + ε2(1−γ) 0 < γ < 1,

δ + ε/δ + h2/ε2 γ = 1,

δ + ε/δ + ε2(γ−1) + h2/ε2 γ > 1, ∥∇yA ∥L∞(Ω×Y ) < ∞.

544

Moreover, if Aε is periodic, i.e., A(x,y) is independent of x, and δ is an integer545

multiple of ε, then546

(3.28) e(HMM) ≤ C


ε2(1−γ) 0 < γ < 1,

ε/δ + h2/ε2 γ = 1,

ε/δ + ε2(γ−1) + h2/ε2 γ > 1, ∥∇yA ∥L∞(Ω×Y ) < ∞.

547

Proof. Substituting (3.8) and Lemma 3.2, Lemma 3.3, Lemma 3.6, Lemma 3.13548

into (3.11), we obtain (3.27).549

If Aε
l = Aε and δ/ε is a positive integer, then error bounds in Lemma 3.2550

and Lemma 3.3 vanish, the estimate (3.27) changes to (3.28).551
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4. Numerical experiments. In this part, we report numerical examples to552

validate the accuracy of the proposed method. We shall employ the Specht element to553

solve the cell problems because it is one of the best thin plate triangles with 9 degrees554

of freedom that currently available [39, citation in p. 345]. Theorem 3.14 may be555

extended to the nonconforming microscale discretization with the aid of the enriching556

operator [8, 21]. We refer to [23] for more details.557

We define a piecewise space as558

Hm
Th
(Iδ): = { zh ∈ L2(Iδ) | zh|K ∈ Hm(K) for all K ∈ Th } ,559

which is equipped with the broken norm560

∥ zh ∥2Hm
Th

(Iδ)
: = ∥ zh ∥2L2(Iδ)

+

m∑
i=1

∥∇i
hzh ∥2L2(Iδ)

,561

where562

∥∇i
hzh ∥2L2(Iδ)

=
∑

K∈Th

∥∇izh ∥2L2(K).563

Let Vi
h be set of the interior vertices of Th, and Vb

h be the set of the vertices on the564

boundary, and E i
h be the interior edges of Th. The Specht element introduced in [35]565

is an H1-conforming but H2-nonconforming element, which is defined as566

Xh: =
{
zh ∈ H1(Iδ) | zh|K ∈ PK for all K ∈ Th,567

∇zh(a) are continuous for all a ∈ Vi
h

}
,568

569

where PK ⊃ P2 is the local space on K. According to [34, § 3.8],570

⟨[[∂nzh]]⟩e = 0 for all zh ∈ Xh, e ∈ E i
h.571

The interpolation operator (2.4) is defined in [21, Theorem 3].572

The bilinear form aε in (2.5) is replaced by aεh : H2
Th
(Iδ)×H2

Th
(Iδ) → R given by573

aεh(vh, zh): = (Aε∇vh,∇zh)Iδ + ι2(∇2
hvh,∇2

hzh)Iδ for any vh, zh ∈ H2
Th
(Iδ),574

and the four type boundary conditions are defined by575

1. Essential boundary condition:576

Vh = { zh ∈ Xh ∩H1
0 (Iδ) | ∇zh(a) = 0 for all a ∈ Vb

h } ;577

2. Natural boundary condition: Vh = Xh ∩H1
0 (Iδ);578

3. Free boundary condition: Vh = { zh ∈ Xh ∩ L2
0(Iδ) | ⟨∇zh⟩Iδ = 0 };579

4. Periodic boundary condition: Vh = Xh ∩ L2
0(Iδ) ∩H1

per(Iδ).580

The weighted norm over Vh is defined by581

∥ · ∥ι,h: = ∥∇ · ∥L2(Iδ) + ι∥∇2
h · ∥L2(Iδ).582

Hence aεh is bounded and covercive over Vh with respect to ∥ · ∥ι,h. By Lax-Milgram583

theorem, the above cell problem has a unique solution vεh.584

We select Vl = x1 and x2 in (2.5), and calculate the solution vε1 and vε2, respec-585

tively. The effect matrix is computed by (2.6). Motivated by [37, § 2.4], we use the586

weighted averaging methods to improve the accuracy:587

AH(xl): =
(
⟨ωAε∇vε1⟩Iδ ⟨ωAε∇vε2⟩Iδ

) (
⟨ω∇vε1⟩Iδ ⟨ω∇vε2⟩Iδ

)−1
,588
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18 Y. L. LIAO, AND P. B. MING

where the weighted function589

(4.1) ω(x) =
(
1 + cos(2π(x1 − xl,1)/δ)

)(
1 + cos(2π(x2 − xl,2)/δ)

)
.590

Fig. 1. Left: macroscopic meshes TH on domain Ω; Right: microscopic meshes Th on the cell Iδ.

591

Let Ω = (0, 1)2 and µ = 1, we divide Ω into non-uniform meshes, solve the cell592

problems on all vertices a in parallel, and ωl = 1/3; See Figure 1.593

4.1. Accuracy of the effective matrix. In the first example, we test a layered594

material, i.e., the coefficient Aε depends only on x1,595

Aε(x) =
1

2π − cos(2πx1/ε)

(
50 + 4π2 cos(2πx1/ε) (4π2 + 25/π) sin(2πx1/ε)

0 4π2 − 1 + sin(2πx1/ε)

)
.596

A direct computation gives the analytical expression of the effective matrix597

Ā =

(
Ā11 0

0
√
4π2 − 1

)
598

with599

Ā11 =


(50 + 8π3)/

√
4π2 − 1− 4π2 0 < γ < 1,

25/π γ = 1,

4π2/[(25 + 4π3)/
√
625− 4π4 − 1] γ > 1,

600

We are interested in whether the resonance error and the discretization error are601

optimal. Hence, we solely contemplate on the scenario that Aε is periodic, and do602

not pay attention to the error caused by the local periodicity.603

We report the relative error604

eF (HMM): = max
a the vertices of TH

∥ (AH − Ā)(a) ∥F
∥ Ā(a) ∥F

,605

where ∥ · ∥F represents the Frobenius norm of the matrix. Note that eF (HMM) is606

equivalent to e(HMM), while it is simpler for implementation.607

Without employing the weighted average, it follows from Table 1 that eF (HMM)608

are O(1) when γ < 1 and O(δ−1) when γ ≥ 1, which are aligning perfectly with The-609

orem 3.14.610
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Table 1
eF (HMM) w.r.t. the cell size δ for the 1st example, with and without weighted averaging,

ε = 2−5 and h = 2−9.

γ\δ 2−5 2−4 2−3 2−2 2−1

Essential boundaries without weighted average
0.25 9.8755e-05 2.3796e-04 3.1778e-04 3.5597e-04 3.7392e-04
rate -1.27 -0.42 -0.16 -0.07
1.00 4.7228e-02 2.7798e-02 1.4240e-02 7.1454e-03 3.6163e-03
rate 0.76 0.97 0.99 0.98
4.00 2.3679e-01 1.1183e-01 5.0872e-02 2.3541e-02 1.1154e-02
rate 1.08 1.14 1.11 1.08

Natural boundaries without weighted average
0.25 3.6687e-01 4.1168e-04 4.9067e-04 5.1721e-04 5.0822e-04
rate 9.80 -0.25 -0.08 0.03
1.00 2.7187e-02 1.3792e-02 6.9795e-03 3.7269e-03 2.2220e-03
rate 0.98 0.98 0.91 0.75
4.00 2.2666e-01 1.0711e-01 4.8668e-02 2.2475e-02 1.0629e-02
rate 1.08 1.14 1.11 1.08

Free boundaries without weighted average
0.25 9.7224e-04 9.6194e-04 9.3580e-04 8.5284e-04 6.9166e-04
rate 0.02 0.04 0.13 0.30
1.00 5.3796e-02 3.0771e-02 1.5599e-02 7.7678e-03 3.8279e-03
rate 0.81 0.98 1.01 1.02
4.00 9.2755e-03 3.1555e-03 1.4309e-03 6.5085e-04 3.0399e-04
rate 1.56 1.14 1.14 1.10

Essential boundaries with weighted average (4.1)
0.25 3.6681e-01 3.7678e-04 3.8763e-04 3.8998e-04 3.9050e-04
rate 9.93 -0.04 -0.01 -0.00
1.00 4.2970e-01 4.1742e-03 8.3335e-04 2.4794e-04 1.7062e-04
rate 6.69 2.32 1.75 0.54
4.00 7.7975e-01 1.2809e-02 1.8316e-03 2.9735e-04 6.6755e-05
rate 5.93 2.81 2.62 2.16

We observe that the cell problems with free boundary conditions perform slightly611

better when γ > 1, which seems caused by the boundary layer effects. Moreover, the612

weighted average may lead to a remarkable reduction in errors for large γ.613

Table 2
eF (HMM) w.r.t. the multiscale ε for the 1st example, essential boundary conditions without

weighted average, δ = 2−1 and h = 2−9.

γ\ε 2−1 2−2 2−3 2−4 2−5

0.25 6.6896e-03 5.5478e-03 2.5850e-03 1.0149e-03 3.7392e-04
rate 0.27 1.10 1.35 1.44
0.50 9.2802e-03 1.0819e-02 7.1842e-03 4.0175e-03 2.1022e-03
rate -0.22 0.59 0.84 0.93
0.75 1.2781e-02 2.0616e-02 1.9371e-02 1.5433e-02 1.1503e-02
rate -0.69 0.09 0.33 0.42
1.00 4.5901e-02 2.7590e-02 1.4062e-02 7.0174e-03 3.6163e-03
rate 0.73 0.97 1.00 0.96
1.50 4.9019e-01 4.0570e-01 2.9837e-01 2.0229e-01 1.3040e-01
rate 0.27 0.44 0.56 0.63
2.00 4.6424e-01 2.8744e-01 1.3023e-01 5.2731e-02 2.0802e-02
rate 0.69 1.14 1.30 1.34
4.00 3.1211e-01 1.0780e-01 4.8341e-02 2.3041e-02 1.1154e-02
rate 1.53 1.16 1.07 1.05

Theorem 3.14 illustrates how the combined effect of the singular perturbation and614

the homogenization when ι → 0 in different regimes. It follows from Table 2, Table 3615
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Table 3
eF (HMM) w.r.t. the multiscale ε for the 1st example, natural boundary conditions without

weighted average, δ = 2−1 and h = 2−9.

γ\ε 2−1 2−2 2−3 2−4 2−5

0.25 1.4923e-02 9.5660e-03 4.2174e-03 1.5986e-03 5.0822e-04
rate 0.64 1.18 1.40 1.65
0.50 2.0190e-02 1.7877e-02 1.0954e-02 5.7296e-03 2.5736e-03
rate 0.18 0.71 0.93 1.15
0.75 2.6924e-02 3.1982e-02 2.6782e-02 1.9528e-02 1.2810e-02
rate -0.25 0.26 0.46 0.61
1.00 2.7033e-02 1.3621e-02 6.8198e-03 3.6600e-03 2.2220e-03
rate 0.99 1.00 0.90 0.72
1.50 4.4854e-01 3.6039e-01 2.6744e-01 1.8583e-01 1.2302e-01
rate 0.32 0.43 0.53 0.60
2.00 4.1122e-01 2.4308e-01 1.1438e-01 4.7150e-02 1.8190e-02
rate 0.76 1.09 1.28 1.37
4.00 2.7173e-01 1.0308e-01 4.7668e-02 2.2546e-02 1.0629e-02
rate 1.40 1.11 1.08 1.08

Table 4
eF (HMM) w.r.t. the multiscale ε for the 1st example, free boundary conditions without weighted

average, δ = 2−1 and h = 2−9.

γ\ε 2−1 2−2 2−3 2−4 2−5

0.25 5.6414e-02 2.0473e-02 7.2856e-03 2.4598e-03 6.9166e-04
rate 1.46 1.49 1.57 1.83
0.50 7.2549e-02 3.4936e-02 1.6430e-02 7.3286e-03 2.9035e-03
rate 1.05 1.09 1.16 1.34
0.75 9.1062e-02 5.6303e-02 3.5530e-02 2.2386e-02 1.3497e-02
rate 0.69 0.66 0.67 0.73
1.00 5.7404e-02 3.1341e-02 1.7122e-02 9.1322e-03 3.8279e-03
rate 0.87 0.87 0.91 1.25
1.50 3.9104e-01 3.1895e-01 2.4111e-01 1.7063e-01 1.1453e-01
rate 0.29 0.40 0.50 0.58
2.00 3.1896e-01 1.7056e-01 7.2766e-02 2.5657e-02 7.7513e-03
rate 0.90 1.23 1.50 1.73
4.00 7.3885e-02 6.9724e-03 2.5177e-03 9.4015e-04 3.0399e-04
rate 3.41 1.47 1.42 1.63

Table 5
eF (HMM) w.r.t. the multiscale ε for the 1st example, periodic boundary conditions without

weighted average, δ = ε and h = 2−8ε.

γ\ε 2−5 2−6 2−7 2−8 2−9

0.25 3.9187e-04 1.3874e-04 4.9131e-05 1.8237e-05 6.4369e-06
rate 1.50 1.50 1.43 1.50
0.50 2.2037e-03 1.1058e-03 5.5410e-04 2.7795e-04 1.3983e-04
rate 0.99 1.00 1.00 0.99
0.75 1.2068e-02 8.6315e-03 6.1534e-03 4.3773e-03 3.1074e-03
rate 0.48 0.49 0.49 0.49
1.00 7.9881e-07 6.5756e-07 6.7266e-07 1.1896e-06 1.6055e-06
rate 0.28 -0.03 -0.82 -0.43
1.50 1.1418e-01 7.2736e-02 4.4160e-02 2.5597e-02 1.4225e-02
rate 0.65 0.72 0.79 0.85
2.00 7.6310e-03 2.0436e-03 5.2185e-04 1.3121e-04 3.2850e-05
rate 1.90 1.97 1.99 2.00
2.50 2.6191e-04 3.2850e-05 4.1084e-06 5.1389e-07 6.4574e-08
rate 3.00 3.00 3.00 2.99
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and Table 4 that the convergence rates of eF (HMM) are nearly O(ε2(1−γ)) when616

γ < 1. Due to the influence of the resonance error, it reduces the convergence rate617

when γ > 1.618

To eliminate the effect of resonance error, we tested the periodic boundary con-619

ditions as presented in Table tab:epsPeriodic. The table shows that eF (HMM) are620

O(ε2|1−γ|). When γ = 1, relative errors are small and the rates of convergence are621

independent of ε.

Table 6
eF (HMM) w.r.t. the microscopic mesh size h for the 1st example, with weighted average,

ε = 2−5 and δ = 2−1.

γ\h 2−5 2−6 2−7 2−8 2−9

Essential boundary condition
0.25 1.6364e-04 3.0990e-04 3.7226e-04 3.8698e-04 3.9050e-04
rate -0.92 -0.26 -0.06 -0.01
1.00 4.6743e-02 1.1214e-02 2.5144e-03 6.1601e-04 1.7062e-04
rate 2.06 2.16 2.03 1.85
4.00 3.4707e-01 7.4217e-02 6.0430e-03 3.5164e-04 6.6755e-05
rate 2.23 3.62 4.10 2.40

Natural boundary condition
0.25 1.6295e-04 3.0940e-04 3.7225e-04 3.8701e-04 3.9053e-04
rate -0.93 -0.27 -0.06 -0.01
1.00 4.6750e-02 1.1218e-02 2.5145e-03 6.1755e-04 1.7228e-04
rate 2.06 2.16 2.03 1.84
4.00 3.4660e-01 7.4208e-02 6.0320e-03 3.4621e-04 6.4786e-05
rate 2.22 3.62 4.12 2.42

Free boundary condition
0.25 1.6314e-04 3.0936e-04 3.7236e-04 3.8710e-04 3.9060e-04
rate -0.92 -0.27 -0.06 -0.01
1.00 4.6683e-02 1.1185e-02 2.5002e-03 6.0859e-04 1.6431e-04
rate 2.06 2.16 2.04 1.89
4.00 3.4655e-01 7.4172e-02 6.0132e-03 3.1711e-04 3.1241e-05
rate 2.22 3.62 4.25 3.34

Periodic boundary condition
0.25 1.6411e-04 3.1017e-04 3.7241e-04 3.8710e-04 3.9061e-04
rate -0.92 -0.26 -0.06 -0.01
1.00 4.6695e-02 1.1188e-02 2.5004e-03 6.0227e-04 1.5809e-04
rate 2.06 2.16 2.05 1.93
4.00 3.4656e-01 7.4172e-02 6.0110e-03 3.1725e-04 2.0052e-05
rate 2.22 3.63 4.24 3.98

622

Finally, we employ the weighted average to mitigate the resonance errors, primar-623

ily focusing on the error caused by the cell discretization. It followed from Table 6 that624

eF (HMM) are O(1) when γ < 1 and at least O(h2) when γ ≥ 1, which is consistent625

with Theorem 3.14. Despite the stronger boundary layer effect, the performance of626

the essential boundary conditions are comparable with the performance of the natural627

boundary condition. It seems to achieve nearly O(h4) when γ > 1 since the corrector628

χ are smoother than we have expected; See Remarkrmk:smooth.629

4.2. Accuracy of the homogenized solution. In the second example, we test630

the accuracy of HMM for singular perturbation homogenization problems with the631

locally periodic coefficient632

Aε(x) =


20π + 4π2 cos(2πx1/ε)

2π − cos(2πx1/ε)
2 + sin(2πx1) + cos(2πx2/ε)

3 + cos(2πx2) + sin(2πx1/ε)
22π + 4π2 sin(2πx2/ε)

2π − sin(2πx2/ε)

 .633
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A direct calculation gives the effective matrix634

Ā(x) =

(
Ā11 2 + sin(2πx1)

3 + cos(2πx2) Ā22

)
635

with636

Ā11 =


4π(2π2 + 5)/

√
4π2 − 1− 4π2 0 < γ < 1,

10 γ = 1,

4π2/[(5 + 2π2)/
√
25− π2 − 1] γ > 1,

637

and638

Ā22 =


2π(4π2 + 11)/

√
4π2 − 1− 4π2 0 < γ < 1,

11 γ = 1,

4π2/[(11 + 4π2)/
√
121− 4π2 − 1] γ > 1.

.639

Let the solution of the homogenization problem ū(x) = sin(πx1) sin(πx2), and we640

compute the source term f by (1.3).641

We solve the microscopic cell problems (2.5) on cells posed over all vertices of TH642

and the macroscopic problem (2.1) by the vertices based integration scheme [11, eq.643

(2.7)] with xl the vertices of K and ωl = 1/3 for l = 1, 2, 3. We report the relative644

H1-error ∥∇(ū− uH) ∥L2(Ω)/∥∇ū ∥L2(Ω) in Table 7.

Table 7
Relative H1-errors w.r.t. the macroscopic mesh size H for the 2nd example, without weighted

average, ε = 2−5, δ = 2−2 and h = 2−8.

γ\H 2−1 2−2 2−3 2−4 2−5

Essential boundary condition
0.25 8.2439e-01 4.7977e-01 2.4203e-01 1.2392e-01 6.1370e-02
rate 0.78 0.99 0.97 1.01
1.00 8.2026e-01 4.7772e-01 2.4103e-01 1.2357e-01 6.1434e-02
rate 0.78 0.99 0.96 1.01
4.00 8.1222e-01 4.7459e-01 2.3968e-01 1.2412e-01 6.3624e-02
rate 0.78 0.99 0.95 0.96

Natural boundary condition
0.25 8.2447e-01 4.7982e-01 2.4206e-01 1.2393e-01 6.1377e-02
rate 0.78 0.99 0.97 1.01
1.00 8.2326e-01 4.7941e-01 2.4177e-01 1.2381e-01 6.1348e-02
rate 0.78 0.99 0.97 1.01
4.00 8.1382e-01 4.7545e-01 2.3992e-01 1.2390e-01 6.2933e-02
rate 0.78 0.99 0.95 0.98

Free boundary condition
0.25 8.2459e-01 4.7989e-01 2.4209e-01 1.2396e-01 6.1389e-02
rate 0.78 0.99 0.97 1.01
1.00 8.2586e-01 4.8089e-01 2.4256e-01 1.2423e-01 6.1639e-02
rate 0.78 0.99 0.97 1.01
4.00 8.2430e-01 4.8134e-01 2.4248e-01 1.2415e-01 6.1602e-02
rate 0.78 0.99 0.97 1.01

Periodic boundary condition
0.25 8.2441e-01 4.7978e-01 2.4204e-01 1.2393e-01 6.1372e-02
rate 0.78 0.99 0.97 1.01
1.00 8.2364e-01 4.7960e-01 2.4191e-01 1.2387e-01 6.1350e-02
rate 0.78 0.99 0.97 1.01
4.00 8.2340e-01 4.8078e-01 2.4222e-01 1.2403e-01 6.1508e-02
rate 0.78 0.99 0.97 1.01

645
Even though we do not employ the weighted average, it is accurate enough to646

achieve the precision we desire. Meanwhile the first order rate of convergences of the647

relative H1-error has been achieved for ∥ ū− uH ∥H1 , as predicted in (2.11).648
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5. Conclusion. We introduce a HMM-FEM for solving a singular perturbation649

homogenization problem. Our method is robust, as it does not rely on the relation650

between ι and ε, and explicit form of Aε, thereby guaranteeing convergence. Unlike651

the classical second-order elliptic homogenization problem, our analysis reveals that,652

in certain scenarios, the resonance error and discretization error depend solely on653

ε. Additionally, we have observed boundary layer effects which, importantly, do not654

affect the convergence rate, even when essential boundary conditions are imposed on655

the cell problems.656

Appendix A. Estimates for the solution of the cell problems. In this657

appendix, we discuss the discretization error of the cell problem, which is generally658

dominated by the interpolation error of the cell solution, which, unfortunately, may659

not be entirely reasonable. On the one hand, the regularity of the solution to Prob-660

lem (2.3) depends on the smoothness of the domain. For general boundary value661

problems on convex polygonal domains, the solution vε ̸∈ H3(Iδ); see [7, Theorem662

2]. Conversely, the cell is usually a cube. On the other hand, what exacerbates the663

situation is that, even if vε ∈ H3(Iδ) can be guaranteed for essential boundary value664

problems when d = 2, 3, the interpolation error is only O(
√
h/ε) as γ → ∞ due to665

the boundary layer effect. We shall elaborate on this issue.666

As ε → 0, Problem (2.3) with the essential boundary condition tends to667

(A.1)

{
−div(Aε∇vε0) = 0 in Iδ,

vε0 = Vl on ∂Iδ.
668

The following lemma regarding the symmetrical matrix A has been provided669

in [12, Appendix A], and we extend it to non-symmetrical matrix A.670

Lemma A.1. If ∥∇yA ∥L∞(Ω×Y )is bounded, then671

(A.2) ∥∇vε0 ∥L2(Iδ) + ε∥∇2vε0 ∥L2(Iδ) ≤ C∥∇Vl ∥L2(Iδ).672

Proof. Multiplying both sides of (A.2) by z = vε0 − Vl, integration by parts and673

using (1.2), we obtain674

(A.3) ∥∇vε0 ∥L2(Iδ) ≤ C∥∇Vl ∥L2(Iδ).675

A direct calculation gives676

div(Aε∇vε0) = div((Aε)⊤) · ∇vε0 +Aε : ∇2vε0 = div((Aε)⊤) · ∇vε0 +Aε
S : ∇2vε0,677

where the symmetric part is defined as Aε
S : =

1

2

(
Aε + (Aε)⊤

)
. Therefore,678

Aε
S(x)ξ · ξ = Aε(x)ξ · ξ ≥ λ|ξ|2.679

We rewrite (A.1) as680 {
−Aε

S : ∇2(vε0 − Vl) = div((Aε)⊤) · ∇vε0 in Iδ,

vε0 − Vl = 0 on ∂Iδ.
681

According to [12, Appendix A] for the symmetric matrix Aε
S ,682

∥∇2vε0 ∥L2(Iδ) ≤ C
(
∥∇Aε

S ∥L∞(Iδ)∥∇(vε0 − Vl) ∥L2(Iδ) + ∥ div((Aε)⊤) · ∇vε0 ∥L2(Iδ)

)
683

≤ Cε−1∥∇Vl ∥L2(Iδ),684685

where we have used (A.3) in the last step. This gives (A.2).686
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Next we estimate vε − vε0.687

Lemma A.2. Let ι = µεγ with γ > 1 and ∥∇yA ∥L∞(Ω×Y ) is bounded, and vε is688

the solution of (2.3) with the essential boundary conditions for d = 2, 3, then689

(A.4) ∥∇(vε − vε0) ∥L2(Iδ) ≤ Cε(γ−1)/2∥∇Vl ∥L2(Iδ),690

and691

(A.5) ∥∇vε ∥ι ≤ Cε−(1+γ)/2∥∇Vl ∥L2(Iδ).692

Proof. Using (A.1), we rewrite (2.3) with the essential boundary conditions as693 {
∆2(vε − Vl) = ι−2div(Aε∇(vε − vε0)) in Iδ,

vε − Vl = ∂n(v
ε − Vl) = 0 on ∂Iδ.

694

Scaling by ε̂: = ε/δ, ι̂: = ι/δ, x̂: = x/δ and with the notation v̂ε(x̂): = vε(x), V̂l(x̂): =695

Vl(x), v̂
ε
0(x̂): = vε0(x), we rewrite the above equation as the boundary value problems696 {

∆2(v̂ε − V̂l) = ι̂−2div(Aε(δ·)∇(v̂ε − v̂ε0)) in I1,

v̂ε − V̂l = ∂n(v̂
ε − V̂l) = 0 on ∂I1.

697

By [24, Theorem 4.3.10], we get698

∥ v̂ε − V̂l ∥H3(I1) ≤ Cι̂−2∥ div(Aε(δ·)∇(v̂ε − v̂ε0)) ∥H−1(I1) ≤ Cι̂−2∥∇(v̂ε − v̂ε0) ∥L2(I1).699

Rescaling back to Tδ, we obtain700

(A.6)
∥∇3vε ∥L2(Iδ) ≤ Cδd/2−3∥∇3v̂ε ∥L2(I1) ≤ Cδd/2−1ι−2∥∇(v̂ε − v̂ε0) ∥L2(I1)

≤ Cι−2∥∇(vε − vε0) ∥L2(Iδ).
701

Proceeding along the same line of [27, Theorem 5.2], using the definitions of (2.3)702

and (A.1), for any z ∈ H1
0 (Iδ) ∩H2(Iδ), we write703

ι2(∇2vε,∇2z)Iδ + (Aε∇(vε − vε0),∇z)Iδ = ι2
∫
∂Iδ

∂2
nv

ε∂nzdσ(x).704

Choosing z = vε − vε0 in the above identity, we obtain705

ι2∥∇2vε ∥2L2(Iδ)
+ ∥∇(vε − vε0) ∥2L2(Iδ)

≤ ι2(∇2vε,∇2vε0)Iδ − ι2
∫
∂Iδ

∂2
nv

ε∂nv
ε
0dσ(x).706

The first term may be bounded by (A.2), it remains to estimate the boundary707

term. According to the trace inequality and (A.6),708

ι3/2∥ ∂2
nv

ε ∥L2(∂Iδ) ≤ Cι3/2
(
δ−1/2∥ ∂2

nv
ε ∥L2(Iδ) + ∥ ∂2

nv
ε ∥1/2L2(Iδ)

∥∇3vε ∥1/2L2(Iδ)

)
709

≤ C(ι∥∇2vε ∥L2(Iδ) + ∥∇(vε − vε0) ∥L2(Iδ)),710711

where we have used the relation ι ≪ ε ≪ δ.712

Invoking the trace inequality again and using (A.2), we obtain713

ι1/2∥ ∂nvε0 ∥L2(∂Iδ) ≤ Cι1/2
(
δ−1/2∥ ∂nvε0 ∥L2(Iδ) + ∥ ∂nvε0 ∥

1/2
L2(Iδ)

∥∇2vε0 ∥
1/2
L2(Iδ)

)
714

≤ C
√
ι/ε∥∇Vl ∥L2(Iδ)715

≤ Cε(γ−1)/2∥∇Vl ∥L2(Iδ),716717

This manuscript is for review purposes only.



HMMS FOR 4TH-ORDER SINGULAR PERTURBATIONS 25

where we have used the fact ε ≪ δ. Summing up all the above estimates, we get718

ι∥∇2vε ∥L2(Iδ) + ∥∇(vε − vε0) ∥L2(Iδ) ≤ Cε(γ−1)/2∥∇Vl ∥L2(Iδ),719

This gives (A.4) and the H2-estimate of (A.5).720

Substituting (A.4) into (A.6) we obtain the H3−estimate of (A.5).721

Interpolate (A.4) and (A.5) with (A.2), we get722

∥ vε ∥H3/2(Iδ) + ι∥ vε ∥H5/2(Iδ) ≤ Cε−1/2∥∇Vl ∥L2(Iδ).723

By [21, Theorem 3], there exists a regularized interpolation operator Ih : H1(Iδ) → Xh724

such that for any v ∈ Hs(Iδ), 1 ≤ s ≤ 3,725

∥∇j(I − Ih)v ∥L2(Iδ) ≤ Chs−j∥∇sv ∥L2(Iδ), 0 ≤ j ≤ s,726

where j is a non-negative integer, which implies727

∥ vε − Ihv
ε ∥ι,h ≤ Ch1/2(∥ vε ∥H3/2(Iδ) + ι∥ vε ∥H5/2(Iδ)) ≤ C

√
h/ε∥∇Vl ∥L2(Iδ).728
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