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HETEROGENEOUS MULTISCALE METHODS FOR
FOURTH-ORDER SINGULAR PERTURBATIONS*

YULEI LIAOT AND PINGBING MING#

Abstract. We develop a numerical homogenization method for fourth-order singular perturba-
tion problems within the framework of heterogeneous multiscale method. These problems arise from
heterogeneous strain gradient elasticity and elasticity models for architectured materials. We estab-
lish an error estimate for the homogenized solution applicable to general media and derive an explicit
convergence for the locally periodic media with the fine-scale €. For cell problems of size § = Ne, the
classical resonance error O(e/§) can be eliminated due to the dominance of the higher-order operator.
Despite the occurrence of boundary layer effects, discretization errors do not necessarily deteriorate
for general boundary conditions. Numerical simulations corroborate these theoretical findings.

Key words. Heterogeneous multiscale method, Singular perturbation of elliptic homogenization
problem, Resonance error, Boundary condition, Boundary layer effect
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1. Introduction. Consider the singular perturbations of the scalar elliptic ho-
mogenization problem [5]:
L1) CA%E — div(ASVuE) = f in Q,
’ u® = 0pu® =0 on 09,
where Q C R? is a bounded domain, 9, is the normal derivative, 0 < ¢ < 1 is a small
parameter that signifies explicitly the length scale of the heterogeneity, 0 < ¢+ < 1 is
the strength of the singular perturbations, with « — 0 when ¢ — 0, and the coefficient
matrix A° belongs to a set M(A, A; Q) defined by

MO Q) = {A € [L=@)! | )¢ - € > N,
(1.2)
A(x)E- € > %|A(w)§|2 forall z € Q and & € Rd}.

The elements of M(A, A;Q) are not necessarily symmetric. This boundary value
problem represents a possible remedy of the shear bands under severe loading for the
heterogeneous materials [16]. The sequence A° satisfying (1.2) converges to A when
¢ — 0 in the sense of H-convergence [26], i.e., the solution u® of (1.1) satisfies

u® =1 weakly in H3(Q),
tAu® — 0 weakly in L?(Q),
A*Vu® — AVa  weakly in [L?(Q)]%,
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2 Y. L. LIAO, AND P. B. MING

for some @ € H}(Q) the weak solution of the homogenization problem
—div(AVa) = in ,

(1.3) ( )=/
0 on 0f,

where A € [L>°(0)]9*? is the effective matrix. When A® is periodic, we refer to [38,
16, 36] for qualitative results on homogenization of (1.1), and the quantitative ho-
mogenization results can be found in [29, 31, 28].

Computing the full solution of (1.1) is computational intensive because one has
to resolves the fine-scale ¢ with a fourth-order conforming discretization. While a
sparse operator compression method for (1.1) is proposed in [18], the stiffness matrices
quickly become ill-conditioned even for two-dimensional problem. Instead of finding
a fine-scale solution, we seek an approximation of the coarse-scale solution that incurs
reduced computational cost without resolving the full fine-scale €. The coarse-scale
solution corresponds to the H-limit (1.3).

To this end, we shall develop a coarse-scale simulation method within the frame-
work of the heterogeneous multiscale method (HMM) developed by E AND ENGQUIST
in [13] to solve (1.3). A comprehensive review of HMM may be found in [14, 2].
Recently, there have been many interesting works extending HMM to address the
Landau-Lifshitz equation in heterogeneous media [19, 20] and the rough-wall laminar
viscous flow [9], to name just a few. HMM aims to capture the macroscopic behavior
of a system without resolving the microscopic details. HMM consists of two key com-
ponents: the macroscopic solver and the cell problems for retrieving the missing data
of the macroscale solver. We choose the linear Lagrange finite element as the macro-
scopic solver because @ solves a second-order elliptic boundary value problem (1.3).
The missing data in the macroscopic solver is the effective matrix A, which is deter-
mined by solving certain cell problems that typically take the form of (1.1) without
the source term, subject to certain boundary conditions.

The boundary conditions of the cell problems are crucial for the accuracy and
efficiency of the overall method. Careful consideration of these boundary conditions
ensures that the macroscopic solver accurately captures the essential features of the
original problem. Inspired by [17], we propose four different boundary conditions for
the cell problem, allowing for a unified analysis. Numerical findings indicate that all
proposed conditions yield accurate and efficient results, with only marginal difference
among them. It is worth mentioning that the method is general and applicable regard-
less of the explicit formulation of + and A%. However, the effective matrix A depends
on the explicit relationship between ¢ and e, as demonstrated in [16, Theorem 1.3]
and [28].

We complement the method with a comprehensive analysis. Our analysis follows
the framework established by E, MING AND ZHANG in [15]. Since the numerical
effective matrix Ay € M(\, A;Q), we establish the overall accuracy in Lemma 2.5
which consists of the discretization error of the macroscopic solver and the error caused
by the approximation of the effective matrix that

| V(@ —un) |2 < C\ A, 1) (H + e(HMM)),

where e(HMM) refers to the error caused by estimating the effective matrix. Under
the assumption that ¢ = peY with v, > 0 and A°(x) = A(z,x/e) , where A €
[COL(Q; L° (R4 and A(=,-) is Y: = [-1/2,1/2]%-periodic, we analyze e(HMM)
in Theorem 3.14. The analysis is suitable for cell problems with general boundary
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HMMS FOR 4TH-ORDER SINGULAR PERTURBATIONS 3

conditions including the essential boundary condition, the natural boundary condi-
tion, the free boundary condition and the periodic boundary condition. We state the
particular result under certain technical assumptions.

THEOREM 1.1 (Particular result for Theorem 3.14). If « = pe” with v > 0, A% is
periodic, and § is an integer multiple of €, then

g2(t=7) 0<y<1,
e(HMM) < C(p, A) < /5 + h?/e? v =1,
g/ +2071) 1 h2/e? 4> 1,||V,A l|Lo (axy) is bounded.

Compared to the estimates of e(HMM) in [15, Theorem 1.2] and [12, Theorem 3.3]
for the second-order elliptic homogenization problem with locally periodic coefficients,
the theorem above includes three key terms on its right-hand side. The term O(g/6)
represents the resonance error, the term O(h?/c?) denotes the discretization error
caused by numerically solving the cell problems [1]. The term O(e2'=7) captures the
combined effect of homogenization and singular perturbation. Notably, the theorem
highlights that both resonance and discretization errors vanish when 0 < v < 1 and
A® is periodic. Specifically, when v = 1, no interaction term exists. Finally, we
successfully overcome the degeneracy of the discretization error for v > 1, which
is caused by the emergence of the boundary layer effect [32]. These effects lead to
a degeneracy in the discretization error for general singular perturbation problems,
scaling to O(1/h/e) with essential boundary conditions, as detailed in Appendix A.
Building upon insights from [12], we leverage the solution structure of the cell problem
with locally periodic coefficients to demonstrate a discretization error of O(h?/e?).

Our analysis diverges from most previous work by involving different partial dif-
ferential equations on varying scales, necessitating novel techniques to address the
combined effects of singular perturbation and homogenization. To estimate e(HMM),
the key methodology in [15, 11] employs the first-order approximation of the cell
problem (2.3), constructed by the corrector x, and estimates the difference within
this approximation; see §3. The formulation of x has been derived in [16]. Specifi-
cally, x =0 when 0 < v < 1, suggesting that the resonance error may be eliminated
since the first-order approximation adheres to the boundary conditions of the cell
problem. Conversely, when v > 1, the H-limit of (1.1) aligns with the second-order
limit, guiding us to estimate between cell problems of these two types. Our objectives
are twofold: firstly, to propose a unified analytical framework for various boundary
conditions, and secondly, to mitigate the influence of the boundary layer effect. To
this end, we employ the modified corrector proposed by [28]. Different treatment are
applied to different scenarios, ultimately producing refined results.

The outline of the paper is as follows. In section 2, we introduce the theory
of homogenization and the framework of HMM, and show the well-posedness of the
proposed method. In section 3, we derive the error estimate under certain assumptions
on ¢ and A®. In section 4, we employ nonconforming finite elements to solve the
cell problems and report numerical results for the problem with two-scale coefficients,
which are consistent with the theoretical prediction. The potential of HMM for solving
problems without scale separation has been demonstrated in [25]. We conclude the
study in section 5.

Throughout this paper, the constant C' may differ from line to line, while it only
depends on the constant p and properties for A, and it is independent of £, 4§,y and
meshes size h.
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4 Y. L. LIAO, AND P. B. MING

2. Heterogeneous multiscale methods. We firstly fix some notations. The
space L?(2) of the square-integrable functions defined on a bounded and convex
domain €2 is equipped with the inner product (-,-)q and the norm || - [|z2(q), while
L3(92) is the subspace of L?(f2) with vanishing mean. Let H™(f2) be the standard
Sobolev space [3] with the norm || - || gm(q), while Hy" () is the closure in H™(£2)
of C§°(£2). We may drop Q in || - [|gm o) when no confusion may occur. For any
function f that is integrable over domain D, we denote by (f) the mean of f over
domain D.

In this part, we introduce a HMM-FEM to solve (1.1), and we make no assumption
on the explicit relation between ¢ and e, and the coefficient matrix A°.

2.1. Framework of HMM-FEM. We employ the linear finite triangular ele-
ment as the macroscopic solver. Extensions to higher-order finite element macroscopic
solvers may be found in in [15, 12, 22]. Let Xy be the finite element space as

Xy:={Zy € H}(Q) | Zu|x € P1(K) forall K€ Ty },

where Ty is a triangulation of 2, which consists of simplices K with hg its diameter
and H: = maxgeT, Hrx. We assume that Ty is shape-regular in the sense of Ciarlet-
Raviart [10]: there exists a chunkiness parameter C' such that hx/px < C, where
pi is the diameter of the largest ball inscribed into K. We also assume that Ty
satisfies the inverse assumption: there exists C' such that H/Hx < C. For any
Zy € Xy, we define Z; as a linear approximation of Zy at x; € K, ie., Z;(x) =
Zy(x) + (x —x;) - VZy| k. The macroscopic solver aims to find uy € Xg such that

(21) aH(uH,ZH) = (f, ZH)Q for all Zg € Xpgy.

Here ay : Xy x Xy — R is defined by

L
(2.2) ap(Ver, Zu):= Y |K|Y wiVZ - Ap(z)VV,
KeTn =1

where w; and x; are the quadrature weights and the quadrature nodes in K, respec-
tively. The quadrature scheme is assumed to be exact for linear polynomial. See;
e.g., [12].

It remains to compute Ay (x;) € R¥<. To this end, we solve

(2.3) A% —div(ASVe®) =0 in Iy,

where the cell I5: = x; + §Y with § the cell size. To specify the boundary conditions
for (2.3), we constrain the solution as

v® € H*(I;) and (Vof), = V.

In practice, the cell problem has to be solved numerically, and we employ conforming
finite element method to discretize the above cell problems. For the sake of simplicity,
we only consider the lowest order conforming elements such as the reduced Hsieh-
Clough-Tocher element [6] and the reduced Powell-Sabin element [4], among many
others [10, §6]. Let 75, be a triangulation of I5 by the simplices with maximum mesh
size h, which is assumed to be shape-regular and satisfies the inverse assumption. Let
X}, C H?(Is) be one such finite element space associated with the triangulation 7y,
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HMMS FOR 4TH-ORDER SINGULAR PERTURBATIONS 5

and we assume that there exists an interpolation operator Ij, : H%(Is) — X} such
that for any v € H*(Is) with k = 2,3,

(2.4) | VI(I = In)vllp2cy) < CR* || V¥ |2,y 5 =0,1,2.

The existence of such interpolant may be found in [10]. It is worthwhile to mention
that certain nonconforming elements such as Specht triangle [35, 21] and Nilssen-Tai-
Winther element [27], are also suitable candidates to discretize the cell problem. We
refer to section 4 for more discussions on the nonconforming element discretization.
We shall impose four types of boundary conditions on (2.5):

1. Essential boundary condition: Vj, = X, N HZ(Is);

2. Natural boundary condition: V;, = X5, N H} (Is);

3. Free boundary condition: Vj, = { z, € X; N L§(I5) | (Vzn),, =0};

4. Periodic boundary condition: Vi, = X}, N L3(I5) N H2, (I5).

per
The variational formulation for (2.3) reads as: Find v§ — V; € V}, such that

(2.5) a®(vy,,zp) =0 for all z, € V},
where a° : H?(I5) x H*(I5) — R is
a®(v,2): = (A°Vu,V2)1, + 2 (V30,V22);, forall v,z € H?*(Is).
Then Ap is given by
(2.6) An(@) (V07),, = (A°VeR),,

As to (2.3) with the free boundary condition, the constraint is achieved as in [37]
by solving the following variational problem: Find v{ € X, N L3(Is) such that

(2.7) a®(v5, zp) = / n;zpdo(x) for all 2z, € X;, N LE(15),
Ol

and (2.6) is equivalent to
£ £ 5 15 £ 15 -1
Ap(x)): = ((A Voi), ... (A V“d>15) ((Vv1>16 <Vvd>15) )

The equivalence between the above two formulations is proved in

LEMMA 2.1. The matriz Ag obtained by solving the cell problem (2.5) subjects to
free boundary condition are equivalent with solving (2.7).

Proof. Firstly we need to show that the matrix
(<VUT>15 e <VU2>IJ)

is nonsingular, where v§ € X}, N L3(I5) is the solution of (2.7). it suffices to show that
a vector k € R? such that

kv (Vi) + k2 (VU3)f, + -+ ka (Vog) . =0,

gives k = 0.
We set vg, = k1vf + k205 - - - + kqug, then (Vog), = 0 and vj, € Vi By the linear
property of (2.7),

d
a(vg,2n) = Y ki /31 nizpdo(x) = [Islk - (V) forall z, € X, NLY(I5).
=1 5
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6 Y. L. LIAO, AND P. B. MING

Firstly taking 2, = v, we obtain v, = 0. Secondly, taking z, = x; — (z;) , we obtain
k;=0fori=1,. dandhenceka
Next we let vi = k10§ + ka5 - - - + kqvg + (Vi) ;, such that

ka (Vo) + ko (V05), 4 -+ ka (Ve5),, = VVA.

Then k = (k1,-- - , kq) exists and is unique, and v, solves (2.5) and
-1
Ap(x1) (Vop),, = ((@°Vog) ... (a®Vg), )(Vul oo (Vu3)) VY
= k1 (A°VoT) + ke (ATV5) 4 -+ ka (A°Vvg)
= <Avak>Ls .
This gives (2.6) because k is a constant vector. 0

2.2. Well-posedness of HMM-FEM. For any z € H?(Is), we define the
weighted norm
|| z ||L: = || Vz HL2(15) + LH VQZ HLQ(Ia)'
The wellposedness of (2.5) is included in the following lemma.

LEMMA 2.2. The cell problem (2.5) admits a unique solution v satisfying

(2.8) 1o, I < (VA+ VA YVl -

Proof. For any z, € Vj,, by the Poincaré inequality, there exists a constant C,
such that
1zn (a1 (15) < Coll Van |1

Hence,

Iz [l = min(1/Cp, ) 20 |12 (15)-
This means that for any fixed ¢, the weighted norm || - ||, is indeed a norm over V.
Note that a® is bounded and coercive on V;, with norm || - ||,, i.e., for any z, € Vj,

1 .
an(zn, 2n) > 5 min(A, 1) 2 ||7.

Hence, the cell problem (2.5) admits a unique solution by the Lax-Milgram theorem.
Next, we choose z,, = v; —V; € V3 in (2.5) and obtain

a®(vf, v) = (A°Voi, V) < || A°V05 (|2 | VVi Il 22z
< VA(A*V;, Vo) Y2 VYV | ey

This immediately implies
(A5Vvy,, Voi) <A VVi 7207,
and
Pl V205, (1221, < VAATV;, Vo) YV | 2y < A VY %21,

A combination of the above two inequalities implies (2.8). d

In the next lemma, we shall show that (2.6) satisfies the Hill’s condition [17].

This manuscript is for review purposes only.
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LEMMA 2.3. There holds
(2.9) (V) - Am(x) (Vug), = (Vag, - AV )+ (V225 V2vi>lé ,

where z§, is the solution of (2.5) with V; replaced by any linear function Z;.
Proof. It follows from z; — Z; € V}, that

(2.10) (Vap), =VZ,
and using (2.5) , we obtain
a®(vy, zj,) = a"(vy, Z1) = (A°Vp, V)1, = 15|V Z; - (A°NVvg)

which gives (2.9) with (2.6) and (2.10). d

It follows from the Hill’s condition that Ay € M(A, A; Q).

LEMMA 2.4. There holds Ay € M(\ A; Q).

Proof. For any € € R%, let v§ € V}, be the solution of (2.5) with V; = £ - z. By
Hill’s condition (2.9),

A (@)€ - € = (A°Vop - Vo), + 2 (V205 ) > (A°V, - V),
Hence,
Ap(@1)€ - € = M|Vvi) = (Vi) |* = M.

On the other hand,
1

1 € £
Ap(x))€-€ > N (|A Vvh|2>15 2 A

€ € 1 €
ATV, 2 = 1 An (1) (Vo) , P
1
= lAn(z)e.

A combination of the above two inequalities gives Ay € M(X, A; Q). 0

Lemma 2.4 gives the existence and uniqueness of uy by the Lax-Milgram theo-
rem, which immediately implies the error estimate for the homogenized solution.

LEMMA 2.5. There exists C' independent of €,1,6 and H such that

(2.11) 198 = wm) 2y < C(Hl a2y + MM £ -3y,
where
HMM): = A—A
CHMM): = max_ |4~ (@),

and |-| denotes the £?-norm of matrices and vectors.
Proof. This is a direct consequence of [15, Theorem 1.1] and Lemma 2.4. O
For general coefficients, it has been shown in [11, Lemma 2.2] that if all the

quadrature nodes x; are Lebesgue points of A, then

lim lim e(HMM) = 0.

6—0e—0

In the next section, we will derive how e(HMM) relies on ¢ and e for locally periodic
coefficients.
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8 Y. L. LIAO, AND P. B. MING

3. Error estimates for e(HMM) with locally periodic media. In this
part, we estimate e(HMM) for the locally periodical coefficients A°. We assume
that ¢ = pe” with v > 0 and a positive constant p and A°(x) = A(z,x/c) where
A € [0%1(Q; L>(R%))]¥*? and A(=z,-) is Y-periodic. By [5, Theorem 6.3, Theorem
14.5] and [16, Theorem 1.3], the effective matrix A in (1.3) is given by

Alz) = /Y (A+ AV] ) (., y)dy,

where the corrector x = 0 when 0 < v < 1. When v = 1, the corrector x €
[L>°(Q; H2(Y))]? satisfies
xj(x, ") is Y-periodic  (x;)y =0,

where a; is the j-th column of A with A = [a1,a2...,a4].
When 7 > 1, the corrector x € [L°°(£; H(Y))]? satisfies

—divy (AVyx;) = divya; inY,
Xj(x,-) is Y-periodic  (x;)y = 0.

3.1. Preliminary. Denote by vj the solution of (2.5) with A® replaced by Aj: =
A% (xy,-/¢); i.e., find v — V; € V}, such that

(3.1) aj(vi,zr) =0 for all zp € Vp,

where aj is the same with a® provided that A® replaced by Aj. The first order
approximation of v is

Ve (@): = Vi) + X (@i, /e) - YV,

where x7: = x =0 when 0 <y < 1, and x” € [L>=(; H%(Y))]¢ is the solution of

52) { pPe?0TDAZNT — divy (AVyX)) = divya; in'y,

X; (,-) is Y-periodic (X;’>Y =0,

when v > 1. This corrector is a modification of that defined in [28, §3]. Moreover,
there exists C' independent of £ such that

X7 e mr vy + €7 Vax " o @iz (v

(3.3) .
+ 207V V3T || L s22(vy) < C

If Aj is smoother, then (3.3) may be improved and x” — x when 7 — oo as
shown below.

LEMMA 3.1. If v > 1 and || VyA | L~(axy) is bounded, then

(3.4) [ Vy(xX” = X) || L=(ur2(vy) < Ce7 1,
and
(3.5) X7 Lo @smzovy) + €I VX e @irzry) < C.
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Proof. 1f v > 1 and || VyA|[z@xy) is bounded, then || x |[ze(q;m2(y)) is also
bounded. We rewrite (3.2) as

36) /«LQEQ(W?I)AZX; = divy(AVy(X; —X4)) inY,
X; () is Y-periodic <X}>y =0.

Multiplying both sides of (3.6) by z = x; — Xj, integration by parts, we obtain
I Vy(X] = x5) ||2L°°(Q;L2(Y)) +e207) V?,X} H%OO(Q;LZ(Y))
< CE2O VN AYXT @iz | Ayx; = sz2(v))-

This gives (3.4) and the H2-estimate in (3.5).
Finally, by the H3-estimate of (3.6) and (1.2),

x5 Lo @ma vy < C207 | divy (AVy(X] = X5)) |z @1 (v))
< 27 Vy(X] = X5) Lo (@s22(v))s

which together with (3.4) gives the H3-estimate in (3.5). d
Next, we define

(3.7) fl”’(m)::/Y(A—l—AV;—xy)(:c,y)dy.

If 0 <y <1, then AY = A.
If v > 1 and || VyA||p~(axy) is bounded, invoking [28, Lemma 3.2}, then we get

(3.8) | A7 — Al| ooy < CE207.
Let k: = |d/¢]. By (3.2) and (3.7), a direct calculation gives
(3.9 (VVE);..=VV and (A]VVf), = A (x)VV.
Define a cut-off function p® € C§°(I5) satisfying 0 < p® < 1 and
(3.10) p°=1inIs 9., p°=0inlI§, |Vp°|<Ce™ fori=1,2,3,

where I5: = I;\I5_..
Using the identity (3.9), we decompose e(HMM) into
(A A)(@)VVi = (A~ A7) (@) VVi + ((AFVVE), | — (45 VV7),,)

(3.11) £ ) £ 15 € &
+ (A7), + ((A7Vy; )i, — (A VUh)g) )

where the corrector 0;: = V)° —v;.
We shall bound the terms in the right-hand side of (3.11) in a series of lemmas.
The first lemma compares the average of the flux over cells of different sizes.

LEMMA 3.2.

£ £ € £ 3
(ATVVE) . — (AIVVE) Ll < CS|VV1|.

This manuscript is for review purposes only.
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318 Proof. If 0 < v < 1, then
319 IVVE gy = | VVillzeas) = 51|V
320 If v > 1, then we use (3.3) and obtain
321 IVVE ll2ag) = 11+ Vyx (@1, /2) |20 [V Vil < CII5[V? IV VL.

322 A direct calculation gives

I

A, v < (1 ) (1 vve, L 1L )

Ig], - V5
324 < 151 |A7 (2,)VV| + A EH I VVi© L2 ()

|15 |15

€

325 < C=|VV.
Eéu - 5|V i
327 This finishes the proof. O
328 We shall frequently used the following perturbation estimates.
329 LEMMA 3.3. If A € [C%1(Q; L°°(RY))]4*4, then
330 (3.12) | vf =i, [l < CO|VVi |21y,
331 and
332 (3.13) (AT V), — (AVop) 1 | < CS|IVV].
333 Proof. Let z = vj — v}, € Vj, in (3.1), we obtain
334 af (v —vi,vf — i) = ((A° — A])Vu;, V(v] — vi))1,-

335 The estimate (3.12) follows from the above identity and the fact |A® — A7| < C§.
336 Using (2.8) and (3.12), we obtain

337 ATV 1, = (AT | = [{ATV (o = 03)) g, + (A7 = AT)Vog) |
C

338 < (vr = v L+l vi [l.)

ar
349 < 05Vl
341 This gives (3.13). o
342 To estimate the corrector, we define w; as the adjoint of v;: Find wj — W; € V},
343 such that
344 (3.14) aj(zp,w;) =0 for all z;, € Vp,

345 and W[ is defined the same with V,° except that at the moment x” is the solution
346 of (3.2) with A replacing by AT.
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3.2. Estimate of the corrector when 0 < v < 1. In what follows, we estimate
the corrector (A7V67) 1,» and we start with a trace inequality.

LEMMA 3.4. If z € H(Is) and (2)7, =0, then

(3.15) 2 leqs) < CVED] V2.

Proof. We apply the scaling &: = x/d to I so that the rescaled cell has diameter
1. Moreover, denote by é: = ¢/0 and 2(z): = 2(x), it is clear (2); = 0. Using the
trace inequality [30, Lemma 1.5] and the Poincaré inequality, we obtain

~ ~1 a2 nl/2 ~nl/2 ~ ~
1212y < CVEN 2N a1 2 2,y < CVEIVEILa),
and
2 llz2rg) < C8U2) 2 | pagrsy < CVESY?|| V2 |21y < CVES| V2|2

This gives (3.15). d
If0<~vy<1,then V=V, and 0] =V, —v; € V).
LEMMA 3.5. If v = pe” with 0 < v < 1, then there exists C' such that

(3.16) 167 1l < Ce NV V2 (ry)-

Proof. Choosing z = 6f € Vj in (3.1) and using (V67); = 0 and the fact that
A(x;)VV] is a constant vector, we obtain

af (07, 07) = af (Vi 07) = (4] — Al@) VWi, V6;)

(3.17) = ((4] - fl(:cl))VVl,psVGf)I&
+ ((A] — A(x)))VV;, (1 — pE)VelE)16 .
Let A € [L=(Q; H'(Y))]**? be the solution of
{—AyA =A-A inv,
A(z,-) is Y-periodic  (A), = 0.
Since (A(z,-) — A(zx))y = 0, there exists a unique solution A such that
I AllLeum2(vy) < CIlA = Allp~@iz2(vy) < C.
Define Af: = A(xy,-/¢) and it satisfies
SPAMS = Ay Al o) = AF — Ala).
Integration by part, we write
—e2(AAVV,, p°V65) 1, = 2(V(ASVV), VO @ Vp© + p°V265) 1.

Using the trace inequality (3.15) with z = VO} and (z); = 0, we bound the first term
in (3.17) as

=2 (AATVVE 0967 1,] < CIVVAI (I VA, /2) L2 | 965 gy

+el| VyA(i,/€) 20y | V265 lzacr,))
< Cel| VVi llz2ay) | 9265 122y

This manuscript is for review purposes only.
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Proceeding along the same line, we bound the second term in (3.17) as
=2 (AAFVVL, (1= pF)VO))1,| < CIVVIII Ay Al 2z || VOF N2
< Ce|| VVi L2101 V267 |l 22(15)-

Substituting the above two inequalities into (3.17), and using ¢|| V265 || L2(1,) < || 65 [|.,
we obtain (3.16).

We are ready to estimate (A7V67), with a dual argument.
LEMMA 3.6. If v = pe” with 0 < v < 1, then

(3.18) (AFVO5) | < C2U VY.
Proof. For any constant vector VIV, we get
[ IsIV Wi - ATV ), = ai (07, W) = ai (0], Wi — wi) < [| 607 (L[| Wi — wy ||,
< CeU YV 2y | VWi |2y,

where we have used (3.14) for w§ with z = 6 in the second step, and (3.16) for both
vj and wi in the last step. This gives (3.18). d

Remark 3.7. Tt is worth mentioning that the estimate (3.18) is independent of
0 and h when ¢+ = pe” with 0 < v < 1, which stands in striking contrast to the
corresponding estimate for the second-order homogenization problem; cf. [15, 11].

3.3. Estimate of the corrector when « > 1. It is clear that V|® satisfies
(3.19) af(VE,2) =0 for any z € H3(I5).
The following estimates for V7 hang on the a priori estimate (3.3).

LEMMA 3.8. If v = pe” with v > 1, then
(3.20) (1= ) = Vi)l < CVETBI YVl
and
(3:21) ([ VVE llesy + el VAVE lleasy + 2N VPVE L2 as) < CVe/8l YV L2y
Proof. A direct calculation gives
V(11 )V~ V) = Vi (e )V — ) — X (@, /2) - VYV,
and
eV2 (1= p)(VE = Vi) = V2(x" - VVi) (@1, /e) (1 = p°)
— eV X (@1,-/e)VVI@ Vp* —eVp® @ Vyx(z1,-/e)VVi
+ 2x(xy, - J€) - VVIV?pF,
which together with (3.3) and (3.10) leads to
(L= p*)(VE = Vi) [l < CIVVIII (x| + (Vx| + €7 VXD (1, -/2) [l 2 s
< CVedd-1|vV|
< CVe/| YV ey

This gives (3.20).
The proof for (3.21) may be proceeded in the same way. We omit the details. O
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The next lemma concerns the error caused by the cell discretization.

LEMMA 3.9. If v = peY with vy = 1, or v > 1 and || VyA||L~(axy) is bounded,
then

£ € h
(3.22) 1T = Tl (VF = Vil < €21 VWi llzagry.

Proof. For k = 2,3, a direct calculation gives

k
UV (Vi =Wl = DIV IV X (@, 2) [V VA
j=0

k
< CIVV| D IV X (@1, -/2)].

7=0
Using (3.3) when v = 1 and using (3.5) when v > 1 and || Vy A | L= xy) is bounded,
we obtain

2

| V1o (Vi = VL < CIVVil (™ 2 99 @1, /2) laqra)
7=0

3
+ 2T @1, /2) e )
j=0
< Ce™H Vi llea(ay)-
For any z € H3(Is), it follows from the interpolation error estimate (2.4) that
(I = 1)zl < Chl[Vz]..

Choosing z = p*(VF—V;) and combining the above two inequalities, we obtain (3.22).0

Remark 3.10. If x € [L>=(Q; H3(Y))]¢ holds, then the estimate (3.5) may be
improved to || X" ||z (o;m3(v)) < C, and the interpolation error (3.22) changes to
O(h?/e?) when v — oco. However, this would require extra smoothness assumption
on A.

We are ready to prove the estimate of the corrector.

LEMMA 3.11. If v = pe” with v =1, or v > 1 and || VyA||p~axy) s bounded,
then

(3.23) 165 1l < CVT8 + /)| VWil ey,
Proof. A direct calculation gives

aj (07,07) = aj (Vi°, 07) — ai (v, 07)
= A(VAVE,V200) 1, + (ATVVE — AV () VVL, V),
+ (A7 (@) VVi, VO )1, — ai (o, Vi7) + af (o7, 7).

Using the Hill’s condition (2.10) and the definition (3.1) for vf, we substitute
(VO7);, = (V(VF — V1)), into the third term, and employ af (vf,vf) = aj(vf,V}) in

This manuscript is for review purposes only.
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the last term. Then the above identity is reshaped into

ai (05,07) = *(V2VE, V2071, + B (VAVE, Vo7 )1,
+ (A]VVE — AV () VV, — PV AVE, V65,
+ (A (@) VL, (VVE = Vi), — af (V7. Vi = V)
+ap (07, V7 = V).

(3.24)

Integration by parts, we obtain
(VAWE7 pevale)fa = _(pEVQVlgv v29f)15 - (Vpgv vzwsveﬂkv
from which we write the first line in (3.24) as
LZ(V2 lEv v2015)15 + LZ(VAVlEa V@?)Ié
= 52(V2 laﬂ VQQlE)Ls + L2(VAVZE7 pgvela)fa + LQ((l - pE)VAVlEv vele)ls
= LQ((l - pe)vzvfa Vzels)fa - Lz(VpE7 vzvaels)fa + LQ((l - pE)VAViEa Vale)fé
< 07 111 VPVE L2y + el VPVE (L2 zy)
1 5
< 10712+ C5IVVillZe sy
where we have used the Young’s inequality and (3.21) in the last step.
Fori,j=1,---,d, define the tensor
Bij (:I}, y) = (AU + Aikaykx’} - MQEQ(,Y?l)ayika’jy - A;/])(w’ y)
By the definitions (3.2) and (3.7),
Oy, Bij =0, (Bij), =0.
By [33, Theorem 3.1.1], there exists an anti-symmetric tensor
B e [L70(6 H (v))] X

such that
Byij = —Bikj, Dy, Brij = Bij,

and by (3.3),
[ BllLe(@imr(v)) < Cll Bl @iz2(v))
<C (1 + | Vyx o=@z vy + €20V Vix? ||L°°(Q;L2(Y)))
<C.
Define Bf := B(xy,-/¢), and Bf := B(xy, /<), we obtain
ASVVE — AV (2)VV, — >°VAVF = BfVV,
and using the anti-symmetry of B, we write

(V0; - p°BiVVi),, = & (000555 1,50, V0) .
2 <8i9168k(PsBls,kij)ajW>Ia —¢€ <ai9168l67kij8/€psajw>16
 (DOFBF g Oup 0 Vi) . — & o Ot 5 05 VE),
(

£ (VO - Bi (V" © VWD),
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Therefore, the second line of (3.24) is bounded by

(BiVVi, VO )1, = (1 = p°) B/ VV,, VO[ )1, + e(B[ (Vp" ® VVi), VO],
< CIVVIIVO; (L2 (| B Nlp2(rsy + 187 L2 crs))

1 €
< i” o7 |17 + Cg” VVillZ2 (1,9

15

Next, we turn to the third line of (3.24). Since V|7 — V] is periodic, it is straight-
forward to verify

(AFVVE,V(VE = V)1, + E(VVE, VAV ), =0

for the second term. Similarly, we use (3.9) for the first term. Using (3.21), we get

(A (@) VV,(VVE = V)1, — af (VE,VE = V)
< C(IVVilaqrg) + 19V ey + 2 V2VE 1))

€
< CEHVVZ 1Z2(15)-

Finally, we estimate the last line in (3.24). Choosing

2=V =V) = (Vf = Vi) (1 = p°) — (I = In)[p° (Vi = V)] € Vi N H (1)

in (3.1) and (3.19), we obtain

aj

(67, Vi* = Vi) = af (6, (Vi¥ = Vi)(1 = p°) + (T = I) " (Vi* = VA)])
< O 67 (I (V= V)@= p) [l + 11 (= )" (VE = WL I,

1 9 e h? 9
< 16712+ C(5+ 5 ) I VYl

where we have used (3.20) and (3.22) in the last step.
Substituting all the above inequalities into (3.24), we obtain (3.23).

d

Remark 3.12. When v > 1, the sequence A H-converges to the second-order
homogenization limit as ¢ — 0. However, as shown in [27, 21], boundary layer degen-
erates the convergence rate of the discretization for general singular perturbations.
This implies that for v — oo, || v® — Iv¢ ||, is only O(y/h/€), without any smoothness
assumption on v¢; see Appendix A. While the discretization error of the corrector
given by (3.23) is O(h/e).

We are ready to estimate (A7VOf); .
LEMMA 3.13. If v = pe” with vy =1, or v > 1 and || VyA ||~ @xy) is bounded,

then

(3.25)

o ne e h?
5w, < ¢ (5+ 5 ) 19l

Proof. For any constant vector VW, using the fact that the homogenized effective
matrix for the dual problem of (1.1) is AT as shown in [33, Lemma 2.2.5], we write

(3.26)

[Ls| VW - (A0 ) = af (07, Wi) = a7 (07, W)) — a7 (07, Wi — W)
= 2 (V20;, VWP, + (VO] (AF) T VWS — (A7) () VIV))
+ (A (2,)VO; , YWy 1, — aj (07, W) — W)).

This manuscript is for review purposes only.
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Proceeding along the same line that leads to the first line and the second line in (3.24),
we obtain

(V207 VEWE) 1,+(VOF, (A7) TVWE — (AM)T (1) VW)
< COVe/oll 67 1T VWi |2y
e h?
< O(5 + 5 ) IVVilloao | TW e,
where we have used (3.23) in the last step.
By (2.10) and (3.9), using (3.21), we bound the second to last term in (3.26) by
(A'Y(wl)veli VVVZ)IJ = (Av(ml)v(‘/ls - ‘/l)? VVVI)I&
< CIVVE = V) lezas I VWil L2z
5
< Cg” VVillLza) | VWil L2 15)-

Choosing
2= WP = Wi— (WF = Wi)(1 = p°) = (I = I)[p°(Wf — Wi)] € Viy 0 H (L)
in (3.1) and (3.19), we estimate the last term in (3.26) as
—aj (07, Wi = W) = —aj (67, (Wi = Wi)(1 = p%) + (I — In)[p" (W = W1)])
< 167 11.(Il (W7 = W) (1= p%) e+ 1T = L) [of (W7 = Wi )

e h?
<05+ 5) 1 Vil VWi llz2ra),
where we have used an analogy of (3.20) and (3.22) for W} and (3.23) in the last step.
Substituting the above inequalities into (3.26), we obtain
C (5 h?

VW (A7), < o (5 5 ) IOVl VR

e h?
<c(=+% ) \vv|Ivl.
<o (545 ) v

This leads to (3.25). d
Summing up all the estimates in this part, we are ready to bound e(HMM).
THEOREM 3.14. If 1 = pe” with v > 0 and A € [C%(Q; L= (R?))]4*4, then

§+¢e/6+e20-7 0<y<1,

(3.27) e(HMM) < CK 6 +¢/d+ h%/e? v=1,

§4¢e/0+e2 07D 4 h2/e? 4> 1| Vyd| L=(axy) < 00.

Moreover, if A® is periodic, i.e., A(x,y) is independent of x, and § is an integer

multiple of €, then

g2(=7) 0<~vy<1,

(3.28) e(HMM) < C'{ &/ + h?/e? v =1,

e/6 +e20=D 1 h2 /2 4 > L || Vy Al Lo axy) < 00.
Proof. Substituting (3.8) and Lemma 3.2, Lemma 3.3, Lemma 3.6, Lemma 3.13
into (3.11), we obtain (3.27).

If A7 = A° and §/e is a positive integer, then error bounds in Lemma 3.2
and Lemma 3.3 vanish, the estimate (3.27) changes to (3.28). d
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4. Numerical experiments. In this part, we report numerical examples to
validate the accuracy of the proposed method. We shall employ the Specht element to
solve the cell problems because it is one of the best thin plate triangles with 9 degrees
of freedom that currently available [39, citation in p. 345]. Theorem 3.14 may be
extended to the nonconforming microscale discretization with the aid of the enriching
operator [8, 21]. We refer to [23] for more details.

We define a piecewise space as

HY (Is): = {zn € L*(Is) | 2n|x € H™(K) forall K € Ty },

which is equipped with the broken norm

m
[l 2n ||%{ﬁ(15)1 = [l zn \\%2(15) + Z | Vizn H2L2(15)a
i=1

where

|| V;LZ}L H%2(Ia) = Z || Vizh ||%2(K)
KeT

Let Vj be set of the interior vertices of T, and V? be the set of the vertices on the
boundary, and & be the interior edges of 7,. The Specht element introduced in [35]
is an H'-conforming but H?-nonconforming element, which is defined as

Xp: = {zh € H'(I5) | 21| € Py for all K € Ty,
Vzn(a) are continuous for all a € V;il},

where Px D P is the local space on K. According to [34, § 3.8],
([Onzn]), =0  forall z,€X,, eccé&

The interpolation operator (2.4) is defined in [21, Theorem 3.
The bilinear form a in (2.5) is replaced by a5 : H7. (I5) x H%. (I5) — R given by

ag,(vn, z1): = (AN, Vap)1, + 2 (Vion, Vizn),  for any vg, 2, € H7. (1),

and the four type boundary conditions are defined by
1. Essential boundary condition:

Vi={zn € X, NH}(I;) | Vzp(a) =0 for all a € V! };

2. Natural boundary condition: V;, = X5, N H} (Is);
3. Free boundary condition: Vj, = { z, € X; N L§(15) | (Vzn),, =0};
4. Periodic boundary condition: V;, = X N L§(Is) N H}..(Is).

The weighted norm over V}, is defined by

Hence aj, is bounded and covercive over V}, with respect to || - ||,,». By Lax-Milgram
theorem, the above cell problem has a unique solution vj.

We select V; = 27 and x2 in (2.5), and calculate the solution v§ and v§, respec-
tively. The effect matrix is computed by (2.6). Motivated by [37, § 2.4], we use the
weighted averaging methods to improve the accuracy:

o = IV - ey +dl Vi - lzeas).

Ap(m): = (WAVYE),, (WA VS), ) (WV);, (wVes),)
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where the weighted function

(4.1) w(x) = (1 + cos(2m(z1 — xl’l)/é)) (1 + cos(2m(xe — ml,g)/é)).

O

(d k1

K|

= =

F1a. 1. Left: macroscopic meshes Ty on domain €; Right: microscopic meshes Ty, on the cell Is.

Let © = (0,1)% and p = 1, we divide  into non-uniform meshes, solve the cell
problems on all vertices a in parallel, and w; = 1/3; See Figure 1.

4.1. Accuracy of the effective matrix. In the first example, we test a layered
material, i.e., the coefficient A depends only on x1,

A% ()

T o cos(2mxy [€)

1 50 + 472 cos(2mz1/e) (472 + 25/7) sin(27mz1 [€)
0 472 — 1 +sin(2rxy/fe) )

A direct computation gives the analytical expression of the effective matrix

with

A= All 0
A0 V4Ar2 -1

(50 4 873) /V/4mr2 — 1 — 47? 0<vy<1,
Allz 25/71' ’y:].,
47T2/[(25+47T3)/\/625—47T4—1] v>1,

We are interested in whether the resonance error and the discretization error are
optimal. Hence, we solely contemplate on the scenario that A° is periodic, and do
not pay attention to the error caused by the local periodicity.

We report the relative error

[ (An — A)(a) I
HMM): = -
er(HMM): = X i A e
where || - || represents the Frobenius norm of the matrix. Note that ep(HMM) is

equivalent to e(HMM), while it is simpler for implementation.
Without employing the weighted average, it follows from Table 1 that ex(HMM)
are O(1) when v < 1 and O(6~!) when « > 1, which are aligning perfectly with The-

orem 3.14.
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TABLE 1

ep (HMM) w.r.t. the cell size § for the 1st example, with and without weighted averaging,
e=2"5%and h=279.

Y\& 2-5 2—4 273 272 2~ 1T
Essential boundaries without weighted average
0.25 | 9.8755e-05 2.3796e-04 3.1778e-04  3.5597e-04  3.7392e-04
rate -1.27 -0.42 -0.16 -0.07
1.00 | 4.7228e-02  2.7798e-02  1.4240e-02  7.1454e-03  3.6163e-03
rate 0.76 0.97 0.99 0.98
4.00 | 2.3679e-01  1.1183e-01  5.0872e-02  2.3541e-02  1.1154e-02
rate 1.08 1.14 1.11 1.08
Natural boundaries without weighted average
0.25 | 3.6687e-01 4.1168e-04  4.9067e-04  5.1721e-04  5.0822e-04
rate 9.80 -0.25 -0.08 0.03
1.00 | 2.7187e-02  1.3792e-02  6.9795e-03  3.7269e-03  2.2220e-03
rate 0.98 0.98 0.91 0.75
4.00 | 2.2666e-01  1.0711e-01  4.8668e-02  2.2475e-02  1.0629e-02
rate 1.08 1.14 1.11 1.08
Free boundaries without weighted average
0.25 | 9.7224e-04  9.6194e-04  9.3580e-04  8.5284e-04  6.9166e-04
rate 0.02 0.04 0.13 0.30
1.00 | 5.3796e-02  3.0771e-02  1.5599e-02  7.7678e-03  3.8279e-03
rate 0.81 0.98 1.01 1.02
4.00 | 9.2755e-03  3.1555e-03  1.4309e-03  6.5085e-04  3.0399e-04
rate 1.56 1.14 1.14 1.10
Essential boundaries with weighted average (4.1)
0.25 | 3.6681e-01  3.7678e-04 3.8763e-04  3.8998e-04  3.9050e-04
rate 9.93 -0.04 -0.01 -0.00
1.00 | 4.2970e-01  4.1742e-03  8.3335e-04  2.4794e-04  1.7062e-04
rate 6.69 2.32 1.75 0.54
4.00 | 7.7975e-01  1.2809e-02  1.8316e-03  2.9735e-04  6.6755e-05
rate 5.93 2.81 2.62 2.16
611 We observe that the cell problems with free boundary conditions perform slightly

612  better when v > 1, which seems caused by the boundary layer effects. Moreover, the
613  weighted average may lead to a remarkable reduction in errors for large ~.

TABLE 2

er (HMM) w.r.t. the multiscale € for the 1st example, essential boundary conditions without
weighted average, 6 = 2~ and h = 279.

e 2~ 1 272 273 2% 27°
0.25 | 6.6896e-03  5.5478e-03  2.5850e-03  1.0149e-03  3.7392e-04
rate 0.27 1.10 1.35 1.44
0.50 | 9.2802e-03  1.0819e-02  7.1842e-03  4.0175e-03  2.1022¢-03
rate -0.22 0.59 0.84 0.93
0.75 | 1.2781e-02 2.0616e-02  1.9371e-02  1.5433e-02  1.1503e-02
rate -0.69 0.09 0.33 0.42
1.00 | 4.5901e-02  2.7590e-02  1.4062e-02 7.0174e-03  3.6163e-03
rate 0.73 0.97 1.00 0.96
1.50 | 4.9019e-01 4.0570e-01  2.9837e-01  2.0229e-01  1.3040e-01
rate 0.27 0.44 0.56 0.63
2.00 | 4.6424e-01  2.8744e-01  1.3023e-01  5.2731e-02  2.0802e-02
rate 0.69 1.14 1.30 1.34
4.00 | 3.1211e-01  1.0780e-01  4.8341e-02  2.3041e-02  1.1154e-02
rate 1.53 1.16 1.07 1.05
614 Theorem 3.14 illustrates how the combined effect of the singular perturbation and

615 the homogenization when ¢ — 0 in different regimes. It follows from Table 2, Table 3
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TABLE 3
er (HMM) w.r.t. the multiscale £ for the 1st example, natural boundary conditions without
weighted average, 6 =271 and h = 279.

Y\e 21 272 273 27 277
0.25 | 1.4923e-02 9.5660e-03  4.2174e-03  1.5986e-03  5.0822e-04
rate 0.64 1.18 1.40 1.65
0.50 | 2.0190e-02 1.7877e-02  1.0954e-02  5.7296e-03  2.5736e-03
rate 0.18 0.71 0.93 1.15
0.75 | 2.6924e-02  3.1982e-02  2.6782e-02 1.9528e-02  1.2810e-02
rate -0.25 0.26 0.46 0.61
1.00 | 2.7033e-02  1.3621e-02  6.8198e-03  3.6600e-03  2.2220e-03
rate 0.99 1.00 0.90 0.72
1.50 | 4.4854e-01  3.6039e-01  2.6744e-01  1.8583e-01  1.2302e-01
rate 0.32 0.43 0.53 0.60
2.00 | 4.1122e-01  2.4308e-01  1.1438e-01  4.7150e-02  1.8190e-02
rate 0.76 1.09 1.28 1.37
4.00 | 2.7173e-01  1.0308e-01  4.7668e-02  2.2546e-02  1.0629e-02
rate 1.40 1.11 1.08 1.08
TABLE 4

er (HMM) w.r.t. the multiscale € for the 1st example, free boundary conditions without weighted
average, 6 = 271 and h = 279.

Y\e 2~ 1 272 273 2% 27°
0.25 | 5.6414e-02  2.0473e-02  7.2856e-03  2.4598e-03  6.9166e-04
rate 1.46 1.49 1.57 1.83
0.50 | 7.2549e-02  3.4936e-02  1.6430e-02  7.3286e-03  2.9035e-03
rate 1.05 1.09 1.16 1.34
0.75 | 9.1062e-02  5.6303e-02  3.5530e-02  2.2386e-02  1.3497e-02
rate 0.69 0.66 0.67 0.73
1.00 | 5.7404e-02  3.1341e-02  1.7122e-02  9.1322e-03  3.8279e-03
rate 0.87 0.87 0.91 1.25
1.50 | 3.9104e-01  3.1895e-01 2.4111e-01  1.7063e-01  1.1453e-01
rate 0.29 0.40 0.50 0.58
2.00 | 3.1896e-01 1.7056e-01  7.2766e-02 2.5657e-02  7.7513e-03
rate 0.90 1.23 1.50 1.73
4.00 | 7.3885e-02 6.9724e-03  2.5177e-03  9.4015e-04  3.0399e-04
rate 3.41 1.47 1.42 1.63
TABLE 5

er (HMM) w.r.t. the multiscale € for the 1st example, periodic boundary conditions without
weighted average, 6 = ¢ and h = 2~ 8¢.

Y\e 2-5 26 2=7 2-8 279
0.25 | 3.9187e-04 1.3874e-04 4.9131e-05 1.8237¢-05 6.4369¢-06
rate 1.50 1.50 1.43 1.50
0.50 | 2.2037e-03  1.1058e-03  5.5410e-04  2.7795e-04  1.3983e-04
rate 0.99 1.00 1.00 0.99
0.75 | 1.2068e-02  8.6315e-03  6.1534e-03  4.3773e-03  3.1074e-03
rate 0.48 0.49 0.49 0.49
1.00 | 7.9881e-07 6.5756e-07  6.7266e-07  1.1896e-06  1.6055e-06
rate 0.28 -0.03 -0.82 -0.43
1.50 | 1.1418e-01  7.2736e-02  4.4160e-02  2.5597e-02  1.4225e-02
rate 0.65 0.72 0.79 0.85
2.00 | 7.6310e-03  2.0436e-03  5.2185e-04 1.3121e-04  3.2850e-05
rate 1.90 1.97 1.99 2.00
2.50 | 2.6191e-04 3.2850e-05 4.1084e-06 5.1389e-07  6.4574e-08
rate 3.00 3.00 3.00 2.99
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and Table 4 that the convergence rates of ex (HMM) are nearly O(¢2('=")) when
v < 1. Due to the influence of the resonance error, it reduces the convergence rate
when v > 1.

To eliminate the effect of resonance error, we tested the periodic boundary con-
ditions as presented in Table tab:epsPeriodic. The table shows that ex(HMM) are
O(2'=71). When ~ = 1, relative errors are small and the rates of convergence are
independent of €.

TABLE 6
ep (HMM) w.r.t. the microscopic mesh size h for the 1st example, with weighted average,
e=2"5%and s =2"1.

Y\h 25 2-6 27 2-8 29
Essential boundary condition
0.25 | 1.6364e-04  3.0990e-04  3.7226e-04  3.8698e-04  3.9050e-04

rate -0.92 -0.26 -0.06 -0.01
1.00 | 4.6743e-02  1.1214e-02  2.5144e-03  6.1601e-04  1.7062e-04
rate 2.06 2.16 2.03 1.85
4.00 | 3.4707e-01  7.4217e-02  6.0430e-03  3.5164e-04  6.6755e-05
rate 2.23 3.62 4.10 2.40

Natural boundary condition
0.25 | 1.6295e-04  3.0940e-04  3.7225e-04  3.8701le-04  3.9053e-04

rate -0.93 -0.27 -0.06 -0.01
1.00 | 4.6750e-02 1.1218e-02  2.5145e-03  6.1755e-04  1.7228e-04
rate 2.06 2.16 2.03 1.84
4.00 | 3.4660e-01  7.4208e-02  6.0320e-03  3.4621e-04  6.4786e-05
rate 2.22 3.62 4.12 2.42

Free boundary condition
0.25 | 1.6314e-04  3.0936e-04  3.7236e-04  3.8710e-04  3.9060e-04

rate -0.92 -0.27 -0.06 -0.01
1.00 | 4.6683e-02  1.1185e-02  2.5002e-03  6.0859e-04  1.6431e-04
rate 2.06 2.16 2.04 1.89
4.00 | 3.4655e-01  7.4172e-02  6.0132e-03  3.1711e-04  3.1241e-05
rate 2.22 3.62 4.25 3.34

Periodic boundary condition
0.25 | 1.6411e-04 3.1017e-04 3.7241e-04  3.8710e-04  3.9061e-04

rate -0.92 -0.26 -0.06 -0.01
1.00 | 4.6695e-02  1.1188e-02  2.5004e-03  6.0227e-04  1.5809e-04
rate 2.06 2.16 2.05 1.93
4.00 | 3.4656e-01  7.4172e-02  6.0110e-03  3.1725e-04  2.0052e-05
rate 2.22 3.63 4.24 3.98

Finally, we employ the weighted average to mitigate the resonance errors, primar-
ily focusing on the error caused by the cell discretization. It followed from Table 6 that
er(HMM) are O(1) when v < 1 and at least O(h?) when v > 1, which is consistent
with Theorem 3.14. Despite the stronger boundary layer effect, the performance of
the essential boundary conditions are comparable with the performance of the natural
boundary condition. It seems to achieve nearly O(h*) when v > 1 since the corrector
x are smoother than we have expected; See Remarkrmk:smooth.

4.2. Accuracy of the homogenized solution. In the second example, we test
the accuracy of HMM for singular perturbation homogenization problems with the
locally periodic coefficient

20 + 47% cos(2mxy [€)
A(z) = 21 — cos(2mxy /€)
3+ cos(2mx2) + sin(27zy /)

2 + sin(27xy) + cos(2mza /)

227 + 4m? sin(2mw2 /)
27 — sin(2mxy /€)
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A direct calculation gives the effective matrix

- A 2 + sin(2
Ax) = (3 + Cos1(127rx2) i SAQ(Q 7T$1)>
with
Am(2n? +5)/VAr2 —1 —4n? 0 <y <1,
A =410 =1
ar?/[(5+272)/V25 —m2 —1] v > 1,
and

2m(4m? +11) /472 — 1 — 472 0<vy<1,
Ay =< 11 y=1,
472 /[(11 + 4n%) V121 — 472 — 1] v > 1.

Let the solution of the homogenization problem @(x) = sin(wa;) sin(rzs), and we
compute the source term f by (1.3).

We solve the microscopic cell problems (2.5) on cells posed over all vertices of Ty
and the macroscopic problem (2.1) by the vertices based integration scheme [11, eq.
(2.7)] with x; the vertices of K and w; = 1/3 for [ = 1,2,3. We report the relative
H'-error || V(@ — ug)||20)/|| Vi || 2(q) in Table 7.

TABLE 7
Relative H'-errors w.r.t. the macroscopic mesh size H for the 2nd example, without weighted
average, e =27% 6 =272 and h =278,

Y\H 2~ 1 272 273 2% 277
Essential boundary condition
0.25 | 8.2439e-01  4.7977e-01  2.4203e-01  1.2392e-01  6.1370e-02

rate 0.78 0.99 0.97 1.01
1.00 | 8.2026e-01  4.7772e-01  2.4103e-01  1.2357e-01  6.1434e-02
rate 0.78 0.99 0.96 1.01
4.00 | 8.1222e-01  4.7459e-01  2.3968e-01  1.2412e-01  6.3624e-02
rate 0.78 0.99 0.95 0.96

Natural boundary condition
0.25 | 8.2447e-01  4.7982e-01  2.4206e-01  1.2393e-01  6.1377e-02

rate 0.78 0.99 0.97 1.01
1.00 | 8.2326e-01  4.7941e-01  2.4177e-01  1.2381e-01  6.1348e-02
rate 0.78 0.99 0.97 1.01
4.00 | 8.1382e-01  4.7545e-01  2.3992e-01  1.2390e-01  6.2933e-02
rate 0.78 0.99 0.95 0.98

Free boundary condition
0.25 8.2459e-01  4.7989e-01  2.4209e-01 1.2396e-01  6.1389e-02

rate 0.78 0.99 0.97 1.01
1.00 | 8.2586e-01  4.8089e-01  2.4256e-01  1.2423e-01  6.1639e-02
rate 0.78 0.99 0.97 1.01
4.00 | 8.2430e-01  4.8134e-01  2.4248e-01  1.2415e-01  6.1602e-02
rate 0.78 0.99 0.97 1.01

Periodic boundary condition
0.25 | 8.2441e-01  4.7978e-01  2.4204e-01  1.2393e-01  6.1372e-02

rate 0.78 0.99 0.97 1.01
1.00 | 8.2364e-01  4.7960e-01  2.4191e-01  1.2387e-01  6.1350e-02
rate 0.78 0.99 0.97 1.01
4.00 | 8.2340e-01  4.8078e-01  2.4222e-01  1.2403e-01  6.1508e-02
rate 0.78 0.99 0.97 1.01

Even though we do not employ the weighted average, it is accurate enough to
achieve the precision we desire. Meanwhile the first order rate of convergences of the
relative H!-error has been achieved for || @ — ug || 51, as predicted in (2.11).
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5. Conclusion. We introduce a HMM-FEM for solving a singular perturbation
homogenization problem. Our method is robust, as it does not rely on the relation
between ¢ and ¢, and explicit form of A%, thereby guaranteeing convergence. Unlike
the classical second-order elliptic homogenization problem, our analysis reveals that,
in certain scenarios, the resonance error and discretization error depend solely on
e. Additionally, we have observed boundary layer effects which, importantly, do not
affect the convergence rate, even when essential boundary conditions are imposed on
the cell problems.

Appendix A. Estimates for the solution of the cell problems. In this
appendix, we discuss the discretization error of the cell problem, which is generally
dominated by the interpolation error of the cell solution, which, unfortunately, may
not be entirely reasonable. On the one hand, the regularity of the solution to Prob-
lem (2.3) depends on the smoothness of the domain. For general boundary value
problems on convex polygonal domains, the solution v¢ ¢ H3(Is); see [7, Theorem
2]. Conversely, the cell is usually a cube. On the other hand, what exacerbates the
situation is that, even if v® € H3(Is) can be guaranteed for essential boundary value
problems when d = 2,3, the interpolation error is only O(1/h/e) as v — oo due to
the boundary layer effect. We shall elaborate on this issue.

As e — 0, Problem (2.3) with the essential boundary condition tends to

{div(AEva) =0 inlj,

Al
(A1) vg ="V, on 0ls.

The following lemma regarding the symmetrical matrix A has been provided
in [12, Appendix A], and we extend it to non-symmetrical matrix A.

LEMMA A1, If | Vy Al L~ (axy)is bounded, then
(A.2) V05 122 (15) + €l V205 I L2 (1) < Ol VYV llz215)-

Proof. Multiplying both sides of (A.2) by z = v§ — V}, integration by parts and
using (1.2), we obtain

(A.3) V05 [[L2(15) < ClIVVE L2 2y)-

A direct calculation gives

div(A°Vv5) = div((A%)T) - Vo§ + A° : V205 = div((A°%)T) - Vo§ + A% - V205,

1
where the symmetric part is defined as A%: = 3 (A5 + (A= )T> Therefore,
AG(@)§ - &= A%()€ - € > M|
We rewrite (A.1) as
— AL V(s — Vi) = div((4%) ) - Vi in I,
vg—Vi=0 on JIs.
According to [12, Appendix A] for the symmetric matrix Ag,
19265 ey < O (1 VAG o 1 905 = i) lzacay + 1 div((49)T) - 95 lzaqry))
< Ce I VVilla (),

where we have used (A.3) in the last step. This gives (A.2). d
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Next we estimate v® — vg.

LEMMA A.2. Let v = pe” with v > 1 and || VyAl| L= @xy) is bounded, and v* is
the solution of (2.3) with the essential boundary conditions for d = 2,3, then

(A.4) | V(v® —v5) |2 (15) < Cel=h2 vy, |2 (15)
and
(A.5) | Vof ||, < Ce™ 2| UV || 2(ry).-

Proof. Using (A.1), we rewrite (2.3) with the essential boundary conditions as
A?(v° = V) = 0 3div(AV (v® —0f))  in Is,
V' =V =0, —=V) =0 on Ols.

Scaling by é: = £/8,i: = /6, &: = x/§ and with the notation o°(&): = v°(z), Vi(&): =
Vi(x), v5(x): = v§(x), we rewrite the above equation as the boundary value problems

A%(0° — V) = i 2div(A°(6-)V (05 — ©5)) in Iy,
0=V =0p(0° V) =0 on 1.

By [24, Theorem 4.3.10], we get

195 = Vi llms () < 72| div(A%(8)V (67 = 85)) |l a-1(r,) < Ci7 2| V(0 = 85) l|2(r,)-

Rescaling back to Ty, we obtain

(A6) V205 L2 (1y) < C8V273| VP07 || 21,y < COY27172 V(8 = 95) [l 21

< G2V (07 = v5) 22 (15)-

Proceeding along the same line of [27, Theorem 5.2], using the definitions of (2.3)
and (A.1), for any 2z € H}(I5) N H?(15), we write

AV, V22) 1, + (AV(0° —05), V2, = 0 D20 Opzdo ().
Ol

Choosing z = v® — v in the above identity, we obtain
ety ||%2(15) + || V(v® —v5) H%z(ls) < A(V2E, V205, — 2 /61 20 Opvsda(x).
5

The first term may be bounded by (A.2), it remains to estimate the boundary
term. According to the trace inequality and (A.6),

2| 020 12 ony) < C2 (072 020% L2y + 11 050 13500, | V907 I75,))
< O V20 ey + 1 V0 = 05) a2y,

where we have used the relation + < € < 4.
Invoking the trace inequality again and using (A.2), we obtain

_ 1/2 1/2
2| O ons) < C2 (072 0 ey + 11 9ns 1350, | V205 1755,))

< CVi/el VVillza(ry)
< CeO V2 VV |l p2ry)s
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where we have used the fact ¢ < §. Summing up all the above estimates, we get
IV ey + 1V (0° = 0§) lz2qzy) < OOV VWi |y,

This gives (A.4) and the H?-estimate of (A.5).
Substituting (A.4) into (A.6) we obtain the H?3—estimate of (A.5). O

Interpolate (A.4) and (A.5) with (A.2), we get
|0 gsr2y) + Ll v lgsrz gy < Ce 2| VW lz2(15)-

By [21, Theorem 3], there exists a regularized interpolation operator Iy, : H*(Is) — Xp
such that for any v € H*(I5),1 < s < 3,

H VJ(I - Ih)’U ”L?(I(;) S Chsin Vv HL2(15)a 0 S j S S,
where j is a non-negative integer, which implies

0% = Inv o < CRY2 (0% | gasary) + el 0 srzy)) < CV/BIEN VYV llL2(15)-

REFERENCES

[1] A. ABDULLE, On a-priori error analysis of fully discrete heterogeneous multiscale FEM, STAM
Multiscale Model. Simul., 4 (2005), pp. 447-459.
[2] A. ABDULLE, W. E, B. EncQuisT, AND E. VANDEN-ELINDEN, The heterogeneous multiscale
method, Acta Numer., 21 (2012), pp. 1-87.
[3] R. A. ApMmAs AND J. J. F. FOURNIER, Sobolev Spaces, vol. 140 of Pure and Applied Mathemat-
ics, Academic Press, 2nd ed., 2003.
[4] P. ALFELD, L. L. SCHUMAKER, AND T. SOROKINA, Two condensed macro-elements with full
approzimation power, Adv. Comput. Math., 32 (2010), pp. 381-391.
[5] A. BENSOUSSAN, J.-L. L1oNs, AND G. PAPANICOLAOU, Asymptotic Analysis for Periodic Struc-
tures, vol. 374 of AMS Chelsea Publishing, American Mathematical Society, 2nd ed., 2011.
[6] M. BERNADOU AND K. HASSAN, Basis functions for general Hsieh-Clough-Tocher triangles,
complete or reduced, Internat. J. Numer. Methods Engrg., 17 (1981), pp. 784-789.
[7] H. BLuM AND R. RANNACHER, On the boundary value problem of the biharmonic operator on
domains with angular corners, Math. Methods Appl. Sci., 2 (1980), pp. 556-581.
[8] S. C. BRENNER AND L.-Y. SUNG, OO interior penalty methods for fourth order elliptic boundary
value problems on polygonal domains, J. Sci. Comput., 22/23 (2005), pp. 83-118.
[9] S. P. CARNEY AND B. ENGQUIST, Heterogeneous multiscale methods for rough-wall laminar
viscous flow, Commun. Math. Sci., 20 (2022), pp. 2069-2106.
[10] P. G. CIARLET, The Finite Element Method for Elliptic Problems, vol. 40 of Classics in Applied
Mathematics, Society for Industrial and Applied Mathematics, reprint of the 1978 ed., 2002.
[11] R. Du anp P. B. MING, Convergence of the heterogeneous multiscale finite element method
for elliptic problems with nonsmooth microstructures, Multiscale Model. Simul., 8 (2010),
pp. 1770-1783.
[12] R. Du aND P. B. MING, Heterogeneous multiscale finite element method with novel numerical
integration schemes, Commun. Math. Sci., 8 (2010), pp. 863-885.
[13] W. E AND B. ENGQUIST, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003),
pp. 87-132.
[14] W. E, B. EncquisT, X. T. L1, W. Q. REN, AND E. VANDEN-ELINDEN, Heterogeneous multiscale
methods: A review, Commun. Comput. Phys., 2 (2007), pp. 367-450.
[15] W. E, P. B. MiNG, AND P. W. ZHANG, Analysis of the heterogeneous multiscale method for
elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), pp. 121-156.
[16] G. A. FRANCFORT AND S. MULLER, Combined effects of homogenization and singular pertur-
bations in elasticity, J. Reine Angew. Math., 454 (1994), pp. 1-35.
[17] R. HILL, Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys.
Solids, 11 (1963), pp. 357-372.
[18] T. Y. Hou AND P. C. ZHANG, Sparse operator compression of higher-order elliptic operators
with rough coefficients, Res. Math. Sci., 4 (2017), 24 (49 pages).

This manuscript is for review purposes only.



-3 3 ~7 ~J ~J ~ 1
o e B A B e o B BN |
T O ©C 0O Ut W

I~

39]

Y. L. LIAO, AND P. B. MING

jul

. LEITENMAIER AND O. RUNBORG, Heterogeneous multiscale methods for the Landau-Lifshitz
equation, J. Sci. Comput., 93 (2022), 76 (33 pages).

. LEITENMAIER AND O. RUNBORG, Upscaling errors in heterogeneous multiscale methods for
the Landau-Lifshitz equation, Multiscale Model. Simul., 20 (2022), pp. 1-35.

. L. L1, P. B. MING, AND H. Y. WANG, H?-Korn’s inequality and the nonconforming elements
for the strain gradient elastic model, J. Sci. Comput., 88 (2021), 78 (23 pages).

. L1, P. B. MING, AND F. Y. TANG, An efficient high order heterogeneous multiscale method
for elliptic problems, Multiscale Model. Simul., 10 (2012), pp. 259-283.

. L. L1ao, Robust Finite Elements and Numerical Homogenization for Strain Gradient Elas-
ticity, PhD thesis, University of Chinese Academy of Sciences, 2024.

. MAz’yA AND J. ROSSMANN, Elliptic Equations in Polyhedral Domains, vol. 162 of Mathe-
matical Surveys and Monographs, American Mathematical Society, 2010.

P. B. MiNG AND X. Y. YUE, Numerical methods for multiscale elliptic problems, J. Comput.
Phys., 214 (2006), pp. 421-445.

. MURAT AND L. TARTAR, H -convergence, in Topics in the Mathematical Modelling of Compos-
ite Materials, A. V. Cherkaev and R. Kohn, eds., Modern Birkh&user Classics, Birkh&user,
reprint of the 1997 ed., 2018, pp. 21-433.

T. K. NiLsseN, X.-C. Ta1, AND R. WINTHER, A robust nonconforming HZ?-element, Math.

Comp., 70 (2001), pp. 489-505.

W. S. N1u AND Z. W. SHEN, Combined effects of homogenization and singular perturbations:
Quantitative estimates, Asymptot. Anal., 128 (2022), pp. 351-384.

W. S. N1u AND Y. YUAN, Convergence rate in homogenization of elliptic systems with singular
perturbations, J. Math. Phys., 60 (2019), 111509 (7 pages).

O. A. OLEINIK, A. S. SHAMAEV, AND G. A. YOSIFIAN, Mathematical problems in elasticity and
homogenization, vol. 26 of Studies in Mathematics and Its Applications, Elsevier, 1992.

S. E. PASTUKHOVA, Homogenization estimates for singularly perturbed operators, J. Math. Sci.
(N.Y.), 251 (2020), pp. 724-747.

B. SEMPER, Conforming finite element approzimations for a fourth-order singular perturbation
problem, STAM J. Numer. Anal., 29 (1992), pp. 1043-1058.

Z. W. SHEN, Periodic Homogenization of Elliptic Systems, vol. 269 of Operator Theory: Ad-
vances and Applications, Birkhauser, 2018.

Z.-C. SH1, The F-E-M test for convergence of nonconforming finite elements, Math. Comp.,
49 (1987), pp. 391-405.

B. SPECHT, Modified shape functions for the three-node plate bending element passing the patch
test, Int. J. Numer. Methods Eng., 26 (1988), pp. 705-715.

V. TEWARY, Combined effects of homogenization and singular perturbations: A Bloch wave
approach, Netw. Heterog. Media, 16 (2021), pp. 427-458.

X. Y. YUE AND W. E, The local microscale problem in the multiscale modeling of strongly
heterogeneous media: Effects of boundary conditions and cell size, J. Comput. Phys., 222
(2007), pp. 556-572.

V. V. ZHiKOV AND E. V. KRIVENKO, Averaging of singularly perturbed elliptic operators, Mat.
Zametki, 33 (1983), pp. 571-582.

O. C. ZIENKIEWICZ AND R. L. TAYLOR, The Finite Element Method for Solid and Structural

Mechanics, Elsevier, 6th ed., 2005.

< < ®© @m =

&s!

This manuscript is for review purposes only.



	Introduction
	Heterogeneous multiscale methods
	Framework of HMM-FEM
	Well-posedness of HMM-FEM

	Error estimates for e(HMM) with locally periodic media
	Preliminary
	Estimate of the corrector when 0<<1
	Estimate of the corrector when 1

	Numerical experiments
	Accuracy of the effective matrix
	Accuracy of the homogenized solution

	Conclusion
	Appendix A. Estimates for the solution of the cell problems
	References

