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Abstract. We present a new numerical method for solving the elliptic homogenization
problem. The main idea is that the missing effective matrix is reconstructed by solving
the local least-squares in an offline stage, which shall be served as the input data for
the online computation. The accuracy of the proposed method are analyzed with the
aid of the refined estimates of the reconstruction operator. Two dimensional and three
dimensional numerical tests confirm the efficiency of the proposed method, and illus-
trate that this online-offline strategy may significantly reduce the cost without loss of
accuracy.
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1 Introduction

We consider a prototypical elliptic boundary value problem{
−div(a ε(x)∇uε(x))= f (x), x∈D⊂Rd,

uε(x)=0, x∈∂D,
(1.1)

where ε is a small parameter that signifies explicitly the multiscale nature of the problem.
We assume that the coefficient a ε, which is not necessarily symmetric, belongs to a set
M(α,β,D) that is defined by

M(α,β,D):={B∈ [L∞(D)]d
2 |(Bξ,ξ)≥α|ξ|2,|B(x)ξ|≤β|ξ|,

for any ξ∈Rd and a.e. x∈D},
(1.2)
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where D is a bounded domain in Rd and (·,·) denotes the inner product on Rd, while |·|
is the corresponding norm.

In the sense of H-convergence [53, 54], for every sequence a ε ∈M(α,β,D) and f ∈
H−1(D), the sequence uε of the solution to (1.1) satisfies{

uε ⇀U0 weakly in H1
0(D),

a ε∇uε ⇀A∇u0 weakly in [L2(D)]d,
as ε→0, (1.3)

where u0 is the solution of the homogenization problem{
−div(A(x)∇u0(x))= f (x), x∈D,

u0(x)=0, x∈∂D,
(1.4)

and A∈M(α,β,D). Here H1
0(D),L2(D) and H−1(D) are standard Sobolev space [4].

The quantities of interest for Problem (1.1) and Problem (1.4) are the homogenized
solution u0 over the whole domain and the solution uε at certain critical local region. The
former stands for the information at the large scale, and the later mimics the informa-
tion at small scale. There are lots of work devoted to efficiently compute such quantities
during the last several decades; see, e.g., [6, 17, 20], among many others. Presently we
are interested in the efficient way to compute u0. A typical way towards this is pro-
vided by the heterogeneous multiscale method (HMM) [3, 18], and the FE2−method [40]
commonly used in the engineering community is also in the same spirit of HMM. The
underlying idea of this approach is to extract A by solving the cell problems posed on
the sampling points of the macoscopic solver. At each point, one needs to solve d cell
problems with d the dimensionality. Therefore, the main computational cost comes from
solving all these cell problems. The number of the cell problems grows rapidly when
higher-order macroscopic solvers are employed. To reduce the cost, certain nonconven-
tional quadrature schemes were proposed in [16] when finite element method is used as
the macroscopic solver. The number of the cell problems reduces to one third compared
to the standard mid-point quadrature scheme when P2 Lagrange element is employed
as the macroscopic solver. Unfortunately, it does not seem easy to extend such idea to
even higher order macroscopic solvers because the quadrature nodes tend to accumulate
in the interior of the element [48, 50, 51].

In [35] the authors presented a local least-squares reconstruction of the effective ma-
trix using the solution of the cell problems posed on the vertices of the triangulation,
which was dubbed as HMM-LS. The total number of the cell problems equals to the to-
tal number of the interior vertices of the triangulation, which is of O(h−d) with h the
mesh size of the macroscopic solver. This method achieves higher-order accuracy with
almost the same cost of HMM with P1 Lagrange element as the macroscopic solver [19].
A drawback of this method is that the number of the cell problems is still quite large
when mesh refinement is necessary. Moreover, if the adaptive strategy is used in the
macroscopic solver, then one has to solve many cell problems around the regions with
mesh refinement.
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In this work, we propose an offline-online method to compute u0 efficiently. The
main idea is to separate the microscopic solver from the macroscopic solver. In the of-
fline stage, we firstly solve the cell problems posed on a sampling point set and obtain
the effective matrix at all these points, then we reconstruct an effective matrix locally by
solving the discrete least-squares. The sampling set is constructed from a triangulation
of domain, which is usually coarser than the online triangulation. In the online stage,
we solve the macroscopic problem with the effective matrix prepared in the offline stage.
Such decoupled strategy brings more flexibilities to reduce the number of the cell prob-
lems, we may either refine the offline triangulation mesh or increase the reconstruction
order, which is guided by the a priori error estimate. The offline computation bears cer-
tain similarity with h-p finite element method [7, 47]. Moreover, the offline computation
is no longer linked to the macroscopic solvers, which is particularly attractive to higher
order macroscopic solver and three dimensional multiscale problems. With the aid of the
theoretical results proved in [35,36], we study the accuracy and the stability of the recon-
struction procedure, which is crucial to prove the optimal error estimate of the proposed
method. As illustrated by the numerical tests in § 4, the offline-online method converges
with optimal order while the cost is smaller than both HMM and the HMM-LS method.

The reduced basis HMM proposed in [1,2] also employed the offline-online idea. The
difference between reduced basis HMM and our method lies in the following points:
Firstly they employed reduced basis idea in the offline stage while we construct an in-
dependent triangulation upon which the cell problems are solved. Secondly they used
the empirical interpolation method [8] while we resort to a local least-squares to recon-
struct the effective matrix. Finally, a thorough analysis of the least-squares reconstruction
is conducted in our work, which concerns the approximation accuracy and the stability
of the reconstruction, such rigorous theoretical results put the method on a firm foot-
ing. In addition, the analysis of the least-squares reconstruction is of independent in-
terest for other problems such as the construction of the optimal polynomial admissible
meshes [13, 45], the discrete norm for polynomials [46], the approximation of the Fekete
points [11] and the discontinuous Galerkin method based on patch reconstruction [36,37].

The rest of the paper is organized as follows. In § 2, we introduce the offline-online
method that is based on a local discrete least-squares reconstruction. We derive the op-
timal error estimate in § 3, in particular, we prove the discrete least-squares is stable
with respect to small perturbation. In § 4, we report numerical examples in two and
three dimensions, the coefficient a ε may be locally periodic, quasi-periodic and random
checker-board. To demonstrate the efficiency of the offline-online method, we compare it
with HMM and the HMM-LS method. In addition, we solve a problem posed on L-shape
domain with nonsmooth solution. The conclusions are drawn in the last section.

Throughout this paper, we shall use the standard notations for the Sobolev space,
norms and semi-norms, cf., [4], e.g.,

‖v‖H1(D):=‖v‖L2(D)+‖∇v‖L2(D), |v|Wm,p(D):= ∑
|α|=m

‖∇αv‖Lp(D).



4 P.B. Ming et al. / CSIAM Trans. Appl. Math., x (202x), pp. 1-29

For any measurable set E, we define the mean of an integrable function g over E as

〈g〉E :=
1
|E|

∫
E

g(x)dx.

We shall also use the discrete `p norm for any x∈Rd as

‖x‖`p :=


(

∑d
i=1|xi|p

)1/p
1≤ p<∞,

max1≤i≤d|xi| p=∞.

Throughout the paper the generic constant C may be different from line to line, while it
is independent of ε and the mesh size parameters h,H.

2 The Offline-online Method

The macroscopic solver is chosen as the standard Pl Lagrange finite element, which is
defined as the set of polynomials with degree less than l for the sum of all variables [14].
The finite element space is denoted by Vh corresponding to the triangulation τh with
mesh size h that is the maximum of the element size hτ for all elements τ∈ τh, where hτ

is the diameter of τ. We assume that all the elements τ in τh satisfy the shape-regular
condition in the sense of Ciarlet and Raviart [14], i.e., there exists a constant σ0 such that
hτ/ρτ ≤ σ0, where ρτ is the diameter of the smallest ball inscribed into τ, and σ is the
so-called chunkiness parameter [12].

The method consists of offline part and online part. In the offline part, we approxi-
mate the effective matrix A as follows.

Offline We firstly construct a sampling triangulation TH with mesh size H for domain D.
For simplicity, we assume that TH consists of simplices, and TH is assumed to be shape-
regular with the chunkiness parameter σ. On each element K ∈ TH, the approximation
effective matrix AH is reconstructed by solving a least-squares: for i, j=1,··· ,d,

(AH)ij =arg min
p∈Pm(S(K))

∑
xK∈I(K)

∣∣(AH(xK))ij−p(xK)
∣∣2 , (2.1)

Here I(K) is the set of all sampling points that belong to S(K), where S(K) is a patch of
elements around K, which usually includes K. Its precise definition will be given later
on. We refer to Fig. 1 for an example of such S(K).

At each sampling point xK, the effective matrix AH(xK) is defined by averaging the
flux arising from the cell problems:

AH(xK)=
(
〈aε∇vε

1〉Iδ
,··· ,〈aε∇vε

d 〉Iδ

)
, (2.2)



P.B. Ming et al. / CSIAM Trans. Appl. Math., x (202x), pp. 1-29 5

where the cell Iδ(xK):= xK+δY with Y:= (−1/2,1/2)d and δ the cell size. Here for i =
1,··· ,d, vε

i satisfies {
−∇·(a ε∇vε

i )=0 in Iδ(xK),
vε

i = xi on ∂Iδ(xK).
(2.3)

Online Given AH, we find uh∈Vh such that∫
D

AH(x)∇uh ·∇vdx=
∫

D
f (x)v(x)dx for all v∈Vh. (2.4)

(a). Example of S2(K) constructed by
including all the Moore neighbors. (b). Example of S(K) and the set I(K)

consists of the black dots.

Figure 1: Examples of the element patches and the sample set.

Remark 2.1. The element K ∈ TH may not be a simplex, which may be polygons or
polytopes, the corresponding shape-regular condition and other mesh conditions may
be found in [36]. Under these mesh conditions, the properties of the reconstruction are
still valid.

In what follows, we supplement some details in the algorithm. The first thing is the
construction of the element patch S(K) for any element K∈TH. We start from assigning a
threshold value Nlowest that is used to control the size of S(K). There are several different
ways to find S(K). One way is to define S(K) in an recursive way as in [35]: For any t∈N,
we let

S0(K):=K, St(K)={K∈TH |K∩St−1(K) 6=∅}. (2.5)

Once #St(K)≥Nlowest, we stop the construction and let S(K)=St(K). This means that we
add the Moore neighbors [52] to S(K) in a recursive way. Another way is using the Von



6 P.B. Ming et al. / CSIAM Trans. Appl. Math., x (202x), pp. 1-29

Neumann neighbor [52], i.e., we include the adjacent edge-neighboring elements into the
element patch instead of the Moore neighbor. We refer to [36] and [37, Appendix A] for
a detailed description for such construction, while S(K) in all the tests in § 4 are defined
as in (2.5). We denote by It(K) the set containing all the sampling points that belong to
St(K). In all the tests in § 4, we use the barycentric of each element K as the sampling
point. There are also other choices for construction It(K). However, the vertices are not
preferred because the communication cost is quite high for three dimensional problems,
though this is a good choice for two dimensional problems; cf., [35]. In what follows, we
may drop the subscripts t in St(K) and It(K) when there is no confusion may occur.

We remark that there are many other variants for the definitions of the cell problems
and the effective matrix in the literatures; see e.g., [24, 59]. The periodic cell problem will
be discussed in § 4. As illustrated by the examples in § 4, the overhead caused by the local
least-squares is small compared to the computational cost of solving all the cell problems,
though the number of the local least-squares is also the same with the cell problems.

3 Convergence of the Method

To study the convergence of the method, we define

e(MOD):=max
x∈D
‖A(x)−AH(x)‖F,

where ‖B‖F is the Frobenius norm of a d−by−d matrix B.
Similar to [35, Lemma 3.1, Lemma 3.2], the following lemma gives the error estimates

of the proposed method.

Lemma 3.1. Let u0 be the homogenized solution with the homogenized matrix inM(α,β,D). If
e(MOD)<α, then there exists a unique solution uh satisfying (2.4).

If e(MOD)<να/(1+ν) for any ν>0, then

‖∇(u0−uh)‖L2(D)≤
β

α
inf

v∈Vh
‖∇(u0−v)‖L2(D)+

(1+ν)Cp

α2 ‖ f ‖H−1(D)e(MOD), (3.1)

where Cp appears in the discrete Poincaré inequality that only dependends on D:

‖v‖H1(D)≤Cp‖∇v‖L2(D) for all v∈Vh.

Moreover, there exists C depending only on α,β,ν,Cp and ‖ f ‖H−1(D) such that

‖u0−uh‖L2(D)≤C

 inf
v∈Vh
‖∇(u0−v)‖L2(D) sup

‖g‖L2(D)=1
inf

χ∈Vh
‖∇(φg−χ)‖L2(D)+e(MOD)

,

where φg∈H1
0(D) is the unique solution of the problem:∫

D
A(x)∇v·∇φg dx=

∫
D

g(x)v(x)dx for all v∈H1
0(D). (3.2)
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The proof of the above lemma follows the same line of [19, Theorem 1.1] except the
explicit constants in (3.1), we omit the proof.

To further elucidate the error structure of the method, we define the reconstruction
operator for any piecewise constant function v defined on TH as follows. Let RKv be the
solution of the least-squares

RKv=arg min
p∈Pm(S(K))

∑
xK∈I(K)

|v(xK)−p(xK)|2 . (3.3)

We imbedRK into a global operator asR|K =RK.
Given the reconstruction operatorR, we decompose e(MOD) as

A(x)−AH(x)=A(x)−RA(x)+RA(x)−AH(x)

=A(x)−RA(x)+R
(
A(x)−AH

)
,

(3.4)

where AH(x) is a piecewise matrix posed on TH that is defined by

AH |K :=AH(xK)

with AH(xK) given by (2.2) and (2.3).
The first term in the right-hand side of (3.4) is the reconstruction error while the sec-

ond one is the so-called estimation error. To quantify these two terms, we need some
properties of the reconstruction operator, which is by now well-understood by virtue
of [35] and [36]. To state such properties, we make two assumptions on S(K) and I(K).

Assumption A For every K∈TH, there exist constants R and r that are independent of K
such that Br⊂ S(K)⊂ BR with R≥ 2r, and S(K) is star-shaped with respect to Br, where
Bρ is a disk with radius ρ.

This assumption concerns the geometry of S(K), which is crucial for the uniform
boundedness of R. The motivation for this assumption lies in the following Markov
inequality [38]:

‖∇g‖L∞(S(K))≤
4m2R

r2 ‖g‖L∞(S(K)) for all g∈Pm(S(K)). (3.5)

Here ‖∇g‖L∞(S(K)):=maxx∈S(K)‖∇g(x)‖`2 . This inequality is proved in [36, Lemma 5],
which is a combination of [57, Proposition 11.6] and the fact that S(K) satisfies the uni-
form interior cone condition [4], which is a direct consequence of Assumption A.

In [35], the authors make the following assumption on S(K).

Assumption A’ S(K) is a bounded convex domain and there exists R such that S(K)⊂BR.
By [26, Lemma 1.2.2.2 and Corollary 1.2.2.3], Assumption A’ implies Assumption A.

Under Assumption A’, WILHELMSEN [58] proved the following Markov inequality:

‖∇g‖L∞(S(K))≤
4m2

w(K)
‖g‖L∞(S(K)) for all g∈Pm(S(K)), (3.6)
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where w(K) is the width of S(K), which is the minimum distance between parallel sup-
porting hyperplanes of S(K).

The above Markov inequalities may be viewed as a type of inverse inequality. By the
classical inverse inequality for p-finite element method [47, Theorem 4.76] and a simple
scaling argument, we may conclude that there exists C independent of the diameter of
S(K) but depends on the shape of S(K) such that for all g∈Pm(S(K)),

‖∇g‖L∞(S(K))≤
Cm2

diamS(K)
‖g‖L∞(S(K)). (3.7)

The index 2 is sharp if S(K) is a locally Lipschitz domain. However, for a cuspidal do-
main, KROÓ AND SZABODOS [34] proved that if S(K) is a Lipγ-domain with 0<γ< 1†,
then there exists C depends on the shape of S(K) such that

‖∇g‖L∞(S(K))≤
Cm2/γ

diamS(K)
‖g‖L∞(S(K)), (3.8)

where the index 2/γ is sharp. This would require a larger patch to ensure the recon-
struction accuracy, and the reconstruction is less stable than the patch satisfying either
Assumption A or Assumption A’. Moreover, the constant C in (3.7) is only known for
S(K) with special shape in the literature, e.g., S(K) is an interval [46], and S(K) is a sim-
plex [33, 56]. All the prefactors are important for us to derive the realistic conditions that
ensure the uniform boundedness of Λ(m,I(K)); cf., Lemma 3.3.

On the other hand, The authors in [35] derived an explicit expression of C that de-
pends on the recursion depth t and the chunkiness parameter σ under Assumption A’. It
seems that the convexity of the patch is rather restrictive in implementation, particularly
for an L-shape domain. Assumption A is less restrictive and is easy to check in practice.

Assumption B For any K∈TH and p∈Pm(S(K)),

p|I(K)=0 implies p|S(K)≡0.

This assumption concerns the cardinality of the sampling set I(K), which gives the
uniqueness and hereby the existence of the solution of the discrete least-squares (2.1).
Assumption B requires that the cardinality of I(K) is at least (m+d

d ) to ensure the unisol-
vence of the discrete least-squares. A quantitative version of this assumption is

Λ(m,I(K))<∞

with

Λ(m,I(K)):= max
p∈Pm(S(K))

‖p‖L∞(S(K))

‖p|I(K)‖`∞

.

†A typical Lipγ-domain is an `γ−ball, i.e.,{x∈Rd | |x1|γ+···+|xd|γ≤1} with 0<γ<1.
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In practical implementation, the positions of the sampling nodes may be slightly per-
turbed due to the measure error or certain uncertainties [15]. A natural question arises
whether the reconstruction is robust with respect to the uncertainties. We shall prove that
the the reconstruction is stable with respect to small perturbation.

Next we prove some properties of the reconstruction operatorRK.

Lemma 3.2. If Assumption B holds, then there exists a unique solution of (3.3) for any K∈TH.
MoreoverRK satisfies

RKg= g for all g∈Pm(S(K)).

The stability result is valid for any K∈TH and g∈C0(S(K)), and

‖RKg‖L∞(K)≤Λ(m,I(K))
√

#I(K)‖g|I(K)‖`∞ . (3.9)

The quasi-optimality approximation property is valid in the sense that

‖g−RKg‖L∞(K)≤ (1+Λ(m,I(K)))
√

#I(K) inf
p∈Pm(S(K))

‖g−p‖L∞(S(K)). (3.10)

If Assumption A and Assumption B are valid, then for any δ∈ (0,1), there exists

ε=
δr2

4Λ(m,I(K))m2R
(3.11)

such that for the perturbed sampling set Ĩ(K) ⊂ I(K)+Bε(0), there exists a unique R̃Kg ∈
Pm(S(K)) satisfying

‖ R̃Kg‖L∞(K)≤
Λ(m,I(K))

1−δ

√
# Ĩ(K)‖g| Ĩ(K)‖`∞ , (3.12)

where Bε(0) is a ball centered at 0 with radius ε.
If Assumption A’ and Assumption B are valid, then the perturbation result (3.12) remains

true with

ε=
δw(K)

4Λ(m,I(K))m2 .

The above lemma except the perturbation estimate (3.12) is proved in [35, Theorem
3.3], which is crucial for the accuracy of the reconstruction operator R, more refined
estimates on the accuracy of R may be found in [36, Lemma 4]. The perturbation esti-
mate (3.12) shows that the set of the sampling nodes I(K) perturbed a little bit remains a
norming set with a slightly bigger upper bound, i.e., for all δ∈ (0,1),

Λ(m, Ĩ(K))=
Λ(m,I(K))

1−δ
.

This perturbation estimate has been encapsulated in an abstract form in [36, Lemma 2],
while there is no proof for the perturbed reconstruction operator R̃.
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Proof. For any p∈Pm(S(K)), we let |p(x∗)|= ‖p|I(K)‖`∞ , then for any y∈ Ĩ(K)⊂I(K)+
Bε(0) with ε given by (3.11), by Taylor’s expansion, we obtain

|p(x∗)|≤ |p(y)|+ε‖∇p‖L∞(S(K)).

By Assumption A, the Markov inequality (3.5) is valid, and we obtain

|p(x∗)|≤ |p(y)|+ 4m2Rε

r2 ‖p‖L∞(S(K)).

Using Assumption B and the above two inequalities, we obtain

‖p‖L∞(S(K))≤Λ(m,I(K))‖p|I(K)‖`∞ =Λ(m,I(K))|p(x∗)|

≤Λ(m,I(K))|p(y)|+Λ(m,I(K))4m2R
r2 ε‖p‖L∞(S(K))

≤Λ(m,I(K))‖p| Ĩ(K)‖`∞ +δ‖p‖L∞(S(K)),

which immediately implies

‖p‖L∞(S(K))≤
Λ(m,I(K))

1−δ
‖p| Ĩ(K)‖`∞ for all δ∈ (0,1). (3.13)

Applying the above perturbation estimate to R̃Kg, we obtain

‖ R̃Kg‖L∞(S(K))≤
Λ(m,I(K))

1−δ
‖ R̃Kg| Ĩ(K)‖`∞ .

This also gives the existence and uniqueness of R̃Kg.
By the definition of R̃Kg, we obtain

‖ R̃Kg| Ĩ(K)‖
2
`∞
≤‖ R̃Kg| Ĩ(K)‖

2
`2
≤‖g| Ĩ(K)‖

2
`2
≤# Ĩ(K)‖g| Ĩ(K)‖

2
`∞

.

A combination of the above two inequalities and the fact that # Ĩ(K)=#I(K) give (3.12).
If Assumption A’ and Assumption B are valid, then we follow exactly the same line

that leads to (3.12) except that we use the Markov inequality (3.6) for a convex patch
S(K).

The following lemma ensures the uniform boundedness of Λ(m,I(K)).

Lemma 3.3. If Assumption A holds, then for any ε>0, if r>m
√

2RHK(1+1/ε), then we may
take

Λ(m,I(K))=1+ε. (3.14)

Moreover, if r>2m
√

RHK, then we may take Λ(m,I(K))=2.
If Assumption A’ holds, then for any ε>0, if w(K)>2m2HK(1+1/ε), then we may take

Λ(m,I(K))=1+ε. (3.15)
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The first statement is proved in [36, Lemma 5], we only prove the second state-
ment (3.15), which improves [35, Lemma 3.5].

Proof. Let x∗∈S(K) such that |p(x∗)|=maxx∈S(K)|p(x)|, and x`∈I(K) such that |x`−x∗|=
miny∈I(K)|y−x∗|. Then

|x`−x∗|≤HK/2.

By Taylor’s expansion, we have

p(x`)= p(x∗)+(x`−x∗)·∇p(ξx),

where ξx lies on the line with endpoints x∗ and x`. This gives

|p(x`)|≤ |p(x∗)|+ HK

2
‖∇p‖L∞(S(K)),

Using the Markov inequality (3.6), we immediately have

‖p‖L∞(S(K))≤‖p|I(K)‖`∞ +
2m2HK

w(K)
‖p‖L∞(S(K)).

This implies (3.15).

If Assumption A holds, then we usually have R' tHK, the estimate (3.14) suggests
that r'm

√
tHK implies the uniform boundedness of Λ(m,I(K)). This means that S(K)

cannot be too narrow in certain directions. If Assumption A’ holds, then the estimate (3.15)
shows that w(K)'m2HK, which immediately implies t'm2. Both conditions show that a
relative large patch is required for the reconstruction. Furthermore, if S(K) is a cuspidal
domain, then we may use (3.8) to prove that if

diamS(K)
HK

≥ c0mγ(1+1/ε)

with a constant c0 depending on the shape of S(K), then the bound (3.14) is also valid.
This condition indicates that S(K) has a recursive depth t'mγ with γ>2. An even larger
patch is required to ensure the stability. This may occur for domain D with complicated
boundary or rough boundary.

It remains to find an upper bound for #I(K). This is a direct consequence of Assump-
tion A or Assumption A’ and the shape regularity of TH.

Lemma 3.4. If TH is shape-regular and Assumption A or Assumption A’ is valid, then

#I(K)≤ (σR/HK)
d . (3.16)
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Proof. For any element K ∈ TH, using Assumption A or Assumption A’ and note that
there is only one sample point inside each element K, we obtain

#I(K)|K|≤Vol Bd(R),

where Vol Bd(R) stands for the volume of a d-dimensional ball with radius R.
Using the shape regularity of TH, we obtain

|K|≥Vol Bd(ρK)≥σ−dVol Bd(hK).

A combination of the above two inequalities yields (3.16).

It is clear that the upper bound (3.16) is independent of the way for construction
S(K). For the two ways based on either the Moore neighbor or the von Neumann neigh-
bor, we have #I(K)' td with t the recursion depth, which is consistent with the cor-
responding upper bound proved in [35, Lemma 3.4] and [36, Lemma 6], in which the
two-dimensional problem has been dealt with. Both Lemma 3.3 and Lemma 3.4 require
that #I(K) should be quite large, equivalently, S(K) is large, so that the uniform bound-
edness of Λ(m,I(K)) is valid. In numerical tests below, we observe that the method still
works quite well even when #I(K) is far less than the theoretical threshold. We refer
to [35] for a list of the size of S(K) and the upper bound of maxK∈TH Λ(m,I(K)).

Based on the above three lemmas, we are ready to estimate (3.4).

Lemma 3.5. If Assumption A or Assumption A’ and Assumption B are valid and the effective
matrix Aij ∈ Cm+1(D), then there exists C that depends on ‖Aij‖Cm+1(D),m,R,r,γ and t but
independent of H.

e(MOD)≤C
(

Hm+1+e1(MOD)
)

, (3.17)

where e1(MOD):=maxx∈I(K),K∈TH
‖(A−AH)(x)‖F.

It is worthwhile to mention that e1(MOD) is the so-called estimating error in HMM [18].
There are many works devoted to bounding e1(MOD) and developing new algorithms
to improve the estimates; see; e.g., [5, 10, 19, 23, 24, 43, 59] and the references therein.

Proof. We start from the decomposition (3.4). For each K∈TH, using Assumption A and
Assumption B or Assumption A’ and Assumption B, Lemma 3.3, Lemma 3.4 and (3.10),
we obtain, on each element K∈TH, there exists C depends on t,σ,r,R,d and ‖Aij‖Cm+1(D)

such that

‖Aij−(RKA)ij‖L∞(K)≤C inf
p∈Pm(S(K))

‖Aij(x)−p‖L∞(S(K))≤CHm+1.

Summing up all i, j=1,··· ,d and K∈TH we obtain

max
x∈D
‖A(x)−RA(x)‖F≤CHm+1. (3.18)
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Using (3.9), we obtain, for each K∈TH,

‖RK
(
Aij−(AH)ij

)
‖L∞(K)≤Λ(m,I(K))

√
#I(K)‖

(
Aij−(AH)ij

)
|I(K)‖`∞ .

Summing up all i, j=1,··· ,d, we obtain

max
x∈K
‖RK(A−AH)(x)‖2

F≤Λ2(m,I(K))#I(K) max
x∈I(K)

‖A(x)−AH(x)‖2
F.

Using Assumption A and Assumption B or Assumption A’ and Assumption B, Lemma 3.3
and Lemma 3.4, there exists C depends on R,r,t and σ such that

max
x∈D
‖R(A−AH)‖F≤Ce1(MOD),

which together with (3.18) gives (3.17) and finishes the proof.

Substituting the estimate (3.17) into Lemma 3.1, we obtain the main result of this part.

Theorem 3.1. Let u0 be the homogenized solution with ‖u0‖Hl+1(D) < ∞. If Assumption A
or Assumption A’ and Assumption B hold, and e1(MOD)< α/4, then there exists a unique
solution uh of Problem (2.4) that satisfying

‖∇(u0−uh)‖L2(D)≤C
(

hl+Hm+1+e1(MOD)
)

. (3.19)

Moreover, if the solution of the auxiliary problem (3.2) admits a unique solution φg satisfying
the regularity estimate ‖φg‖H2(D)≤C‖g‖L2(D), then

‖u0−uh‖L2(D)≤C
(

hl+1+Hm+1+e1(MOD)
)

. (3.20)

In view of the above error estimates (3.19) and (3.20), we may have H' hl/(m+1) or
H'h(l+1)/(m+1). For a fixed h, one may increase m to decrease the cost in the offline stage.
This suggests that higher order reconstruction is preferred to save cost while without loss
of accuracy, which is confirmed by the tests in the next section.

The error estimate for the HMM-LS method in [35] reads as‖∇(u0−ũh)‖L2(D)≤C
(

hl+hm+1+e1(MOD)
)

,

‖u0−ũh‖L2(D)≤C
(

hl+1+hm+1+e1(MOD)
)

,
(3.21)

where ũh is the solution of HMM-LS method. For a fixed h, the above error estimate
indicates that m' l to balance the error provided that e1(MOD) is sufficiently small, the
number of the cell problem in this case is the total number of the vertices of the online
triangulation τh. We shall compare these two methods in the next part.
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4 Numerical Results

In this section, we report a few numerical examples to test the accuracy and efficiency
of the proposed offline-online method. The examples include the problems with locally
periodic coefficients, with quasi-periodic coefficients and with random coefficients. We
also test problems posed on L-shape domain in two dimension and three dimension for
which the solutions are usually nonsmooth.

In all the tests, the offline triangulations TH are uniform partitions of D, and we list
the threshold number (Nlowest is defined in § 2) of the sampling points for different orders
of reconstruction in Table 1, the number #I(K) should be slightly larger than the number
list in the table when K abut the boundary of the domain. For d = 3, we only report
m= 3 because this is the only case we test in this part, the examples for the lower order
reconstruction may be found in [28].

Table 1: The number of the threshold number for the sampling point in reconstruction.

m=1 m=2 m=3
d=2 5 7 13
d=3 NONE NONE 27

Noted that the theory covers the case when S(K) consists of polygons or polytopes,
we refer to [36] for the demonstration of such patches. It is worth pointing out that the
nonuniform TH is useful when the shape of D is very complicate. In that case, the sam-
pling points near the boundary has to be dense to ensure the accuracy of the reconstruc-
tion. We refer to [28] for the examples of nonuniform patch, which may further reduce
the number of the cell problems and makes e(MOD) more evenly distributed over the
whole domain, which is useful for adaptivity.

The finite element solvers except Example 4.3 are carried on FreeFem++ toolbox [27]‡,
and the test for Example 4.3 is performed in a parallel hierarchical grid platform (PHG) [60]§.
The error of the method is calculated by the relative error measured in H1 norm and L2

norm:
‖∇(u0−uh)‖L2(D)

‖∇u0‖L2(D)
and

‖u0−uh‖L2(D)

‖u0‖L2(D)
.

The exact homogenized solution u0 is generated by discretization (1.4) with P2 Lagrange
element over a very refined 500×500 mesh in most cases unless otherwise stated. In all
the tests we set ε=10−6.

4.1 Problems with local periodic coefficient in two dimension

We consider an example with locally periodical coefficient in d=2, which is taken from [41].

‡https://freefem.org/
§http://lsec.cc.ac.cn/phg/
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Example 4.1. {
−div(a ε∇uε(x))= f (x), in D,

uε(x)=0, on ∂D,

where D=(0,1)2, f (x)=1 and

a ε(x)=
(2.5+1.5sin(2πx1))(2.5+1.5cos(2πx2))

(2.5+1.5sin(2πx1/ε))(2.5+1.5sin(2πx2/ε))
12×2.

where 12×2 denotes the 2−by−2 identity matrix. The homogenization problem is{
−div(A(x)∇u0(x))= f (x), in D,

u0(x)=0, on ∂D.
(4.1)

A direct calculation gives the following analytical expression of A:

A(x1,x2)=
1
5
(2.5+1.5sin(2πx1))(2.5+1.5cos(2πx2))12×2. (4.2)

The offline triangulation TH consists of a uniform Q×Q squares. To obtain the online
triangulation τh, we firstly triangulate D into a uniform N×N squares and secondly di-
vide each square into two sub-triangles along its diagonal with positive slope. To study
the effect of the reconstruction, we use the analytical expression (4.2) ofA for reconstruc-
tion so that e1(MOD)= 0. We denote this numerical solution by u0

h. Fig. 2 presents the
accuracy of the offline computation, which corroborates the estimate (3.17).
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Figure 2: e(MOD) for different reconstruction orders.

To study the convergence rate of the method, it is more convenient to reshape the
error estimates in Theorem 3.1 in terms of N and Q as follows.{

‖∇(u0−uh)‖L2(D)≤C(N−l+Q−(m+1)),

‖u0−uh‖L2(D)≤C(N−(l+1)+Q−(m+1)).
(4.3)
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Balancing the discretization error and the reconstruction error, we set Q as

Q=

{
O(N

l
m+1 ), H1 error,

O(N
l+1
m+1 ), L2 error.

Following this refinement strategy, we plot the relative H1 error and L2 error in Fig. 3,
which is consistent with the estimates (4.3).

100 200 300 400 500 600

N

10-3

10-2

10-1

R
e

la
ti
v
e

 H
1
 e

rr
o

r

l=1,m=2,Q=N
1/3

l=2,m=3,Q=N
1/2

slope=-1

slope=-2

(a). Rate of convergence in H1.

102

N

10-5

10-4

10-3

10-2

R
e

la
ti
v
e

 L
2
 e

rr
o

r

l=1,m=2,Q=N
2/3

l=2,m=3,Q=N
3/4

slope-2

slope-3

(b). Rate of convergence in L2.

Figure 3: Rates of convergence for Example 4.1.

We may also fix the accuracy of the online solver and compare the effect of the re-
construction with different orders in the offline computation. Particularly we choose the
online solver as P2 Lagrange element with the meshsize parameter N=100. Fig. 4 clearly
shows that the higher-order reconstruction is more accurate with less cost.

Next, we also fix the accuracy of the online solver and compare the number of the
cell problems and the running time with reconstructions of different orders. The online
solver is still P2 Lagrange element with the meshsize parameter N=100. Instead of using
the analytical expression of A for reconstruction, we solve the periodic cell problems{

−div(a ε∇vε
i (x))=0 in Iε,

vε
i−xi is periodic on ∂Iε,

(4.4)

with P2 Lagrange element, and employ (2.2) to obtain AH. We denote the reconstructed
solution as u1

h, which is very close to u0
h in the sense

‖u1
h−u0

h‖L2(D)

‖u0
h‖L2(D)

≤10−8.
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Figure 4: The effect of Q and the reconstruction orders in Example 4.1; Online solver is P2 FEM and N=100.

This means that the e1(MOD) is very small, though nonzero. Table 2 shows that the
main cost comes from solving the cell problems, and higher-order reconstruction is more
efficient in terms of both accuracy and efficiency.

Table 2: Comparison among reconstruction of different orders with the same online solver (N=100, P2 FEM).

Q ] cell problems Relative H1 error
Time

(cell problems)
Total Time

m=1 45 2025 6.03e-4 348.65s 363.27s
m=2 25 625 5.92e-4 106.97s 110.76s
m=3 18 324 5.92e-4 54.5s 58.23

In the last test, we compare the offline-online method with the HMM-LS method
in [35]. The H1 error bound in (3.21) may be rewritten as

‖∇(u0−ũh)‖L2(D)≤C(N−l+N−(m+1)+e1(MOD)).

We follow the setup in the last test to solve the cell problems so that e1(MOD) is negligible
in the above estimate. We take l=2 and m=1 to balance the error so that

‖∇(u0−ũh)‖L2(D)≤C N−2.

In the offline-online method, we use P2 Lagrange element as the macroscopic solver and
choose the reconstruction order m= 2 and m= 3. To balance the error of (4.3), we take
Q=2N2/3 for m=2 and Q=2.5N1/2 for m=3 and we obtain ‖∇(u0−uh)‖L2(D)≤C N−2.
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It seems that the relative H1 errors for both methods reported in Fig. 5 are comparable,
which is consist with the theoretical estimates. The number of the cell problems and the
running time plot in Fig. 5 demonstrate that the offline-online method is more efficient.
This is easily understood because the number of the cell problems in the offline-online
method is of O(N4/3) for m= 2 and is of O(N) for m= 3, while the number of the cell
problems in HMM-LS is of O(N2).
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Figure 5: Comparison between the offline-online method and the HMM-LS method in [35].

4.2 Problems posed on L-shape domain in d=2,3

In this part, we test the offline-online strategy for a problem posed on L-shape domain. It
is well-known that the adaptive strategy has to be used in the macroscopic solver because
the solution u0 is nonsmooth [26].

Example 4.2. The boundary value problem is the same with Example 4.1 except that the
domain D=(−1,1)2\[0,1]×[−1,0]. We let

u0(x)=(x2
1+x2

2)
1/3.

The inhomogeneous boundary condition g(x)=u0(x)|x∈∂D and the source term f is com-
puted from the homogenized problem (4.1)1.

The triangulation TH is plot in Fig. 6a, we have 972 sampling points in total. The
periodic cell problems (4.4) are solved by Fourier spectral method [49]. The third order
reconstruction is used to obtain AH. Under these settings, e1(MOD) = 2.5E−02 in the
offline stage. P1 element is used as the macroscopic solver, and we set TOL= 10−2 and
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(a). Offline sampling mesh TH.
(b). Online adaptive mesh τh after 8

iterations.

Figure 6: Offline and online triangulations for L-shaped domain.

let TH be the initial mesh of the online computation. The mesh is refined by the strategy
taken from [27], and we plot the resulting mesh after 8 iterations in Fig. 6b.

The error estimate reads as

‖∇(u0−uh)‖L2(D)≤C
(

DOF−1/2+Q−4+e−βNs
)

, (4.5)

where DOF is the total degrees of freedom in the online computation, and the factor
e−βNs comes from the approximation error caused by solving the cell problem, and β is
a universal constant and Ns is the points we used in each cell. Given the error tolerance
(TOL), we obtain the offline refinement strategy as

Q.TOL−1/4 and e−βNs .TOL.

The relative H1 error is plot in Fig. 7a, and we observe that the error decays with optimal
rate of convergence O(DOF−1/2).

Next we decrease the error tolerance to 10−3, and we also use the third order recon-
struction to approximate A and there are 4332 sampling points in total. The error caused
by the reconstruction is e(MOD)=9.48E−04. The relative H1 error is plot in Fig. 7b, and
we observe that the error decays with optimal rate of convergence O(DOF−1/2).

Finally we compare the accuracy and efficiency between our method and HMM. The
offline computation is the same as the previous test, while in the online stage, we solve
the homogenized problem with linear element over the same mesh as HMM. Such mesh
is obtained after 8 iterations with 34394 triangles from a uniform mesh dividing each of
the uniform squares into two sub-triangles; see Fig. 6b. It is clear that the mesh refinement
mostly takes place in the vicinity of the re-entrant corner. It follows from Table 3 that the
offline-online method and HMM attain almost the same H1 error, while the running time
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Figure 7: The H1 error of Example 4.2

of the offline-online method is only around 2.46% of HMM. This is easily understood
because the number of the cell problems is only 1.67% of HMM.

Table 3: Comparison between offline-online method and HMM.

] cell problems Relative H1 error Time
Offline-Online 576 3.53e-5 295.95s

HMM 34394 3.62e-5 12020.6s

Next we consider a three-dimensional problem in L-shape domain.

Example 4.3. The example is the same with Example 4.1 except that

a ε(x)=
(2.5+1.5sin(2πx1))(2.5+1.5cos(2πx2))(2.5+1.5cos(2πx3))

(2.5+1.5sin(2πx1/ε))(2.5+1.5sin(2πx2/ε))(2.5+1.5sin(2πx3/ε))
13×3×3,

and D = (0,1)3\[0,0.5]3. The homogenization problem is the same with (4.1) with the
effective matrix as

A(x)=
1
5
(2.5+1.5sin(2πx1))(2.5+1.5cos(2πx2))(2.5+1.5cos(2πx3))13×3×3. (4.6)

We let
u0(x)=

(
(x1−0.5)2+(x2−0.5)2+(x3−0.5)2)1/10

,

and
g(x)=u0(x)|∂D f (x)=−div(A(x)∇u0).
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We write
‖∇(u0−uh)‖L2(D)≤C

(
DOF−1/3+Q−(m+1)+e−βNs

)
. (4.7)

The offline refinement strategy reads as

Q.TOl−
1

m+1 and e−βNs .TOL.

We set TOL=3E−3 and m=3. We firstly divide the domain into 7 subdomain as in the
last example, next we triangulate each subdomain by a uniform mesh with Q=33. There
are 7623 sampling points in total; see Fig. 8a. The H1 error is plot in Fig. 8b. We observe
that the H1 error decays with an optimal convergence rate O(DOF−1/3).

(a). Offline sampling mesh TH.
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Figure 8: Offline triangulation and H1 error for Example 4.3.

4.3 Example with quasi-periodic coefficient

Example 4.4. The example is the same with Example 4.1 except that

a ε(x)= a0(x/ε)a1(x)12×2, (4.8)

where

a0(x)=

 6+sin(2πx1)
2+sin

(
2
√

2πx1

)2
0

0 6+sin(2πx2)
2+sin

(
2
√

2πx2

)2

,

and
a1(x)=(2.5+1.5sin(2πx1))(2.5+1.5cos(2πx2)).
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Such coefficient belongs to Kozlov class [32] and the example is adapted from [24].
The coefficients a0

11(x/ε) and a ε
11 are visualized in Fig. 9 with ε=0.1. The effective matrix

is given by

Aij(x)= liminf
R→+∞

〈
∇(χj+xj)·a0(x)∇(χi+xi)

〉
QR
∗a1(x), i, j=1,2, (4.9)

where QR =(−R,R)2 and {χi}2
i=1 are the solutions of

−∇·(a0(x)∇χi)=∇·(a0(x)∇xi) in R2. (4.10)

As oppose to the locally periodic case, there is no explicit expression of A. The naive ap-
proach to approximate (4.9) consists in replacing {χi}2

i=1 by {χi
R}2

i=1, which are solutions
of a truncated cell problem{

−∇·(a0(x)∇χi
R)=∇·(a0(x)∇xi) in QR,

χi
R =0 on ∂QR,

and AR is defined by

(AR(x))ij :=
〈
∇(χj

R+xj)·a0(x)∇(χi
R+xi)

〉
QR
∗a1(x), i, j=1,2.

We take R=200 and use P2 Lagrange element over a 4000×4000 mesh to solve the above
truncated cell problem and obtain

A200=

(
7.00∗a1(x) 0

0 7.00∗a1(x)

)
.
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In the offline stage, we choose δ=10ε and use P2 Lagrange element over a mesh with
size 120×120 to solve the cell problems (2.3). Next we plot the relative H1 error and the
relative L2 error in Fig. 10, which clearly shows the higher-order reconstruction is more
accurate.
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Figure 10: The effect of Q and the reconstruction orders in Example 4.4; Online solver is P2 FEM and N=100.

Finally we compare the number of the cell problems and the running time among
reconstructions of different orders in Table 4. The second order reconstruction takes only

Table 4: Comparison of the reconstruction of different orders; online solver is P2 FEM and N=100.

Q ] cell problems Relative H1 error Time
m=1 20 400 6.08e-3 1083.08s
m=2 14 196 4.95e-3 546.24s

about 50% of the time used for the first order reconstruction. It is clear that the higher-
order reconstruction is more accurate with less cost.

4.4 Example with random coefficient

Example 4.5. The example is the same with Example 4.1 except that

a ε(x)=(a ε
rand+a0(x))12×2, (4.11)

where a ε
rand is a random checker-board, and a0(x)=(2.5+1.5sin(2πx1))(2.5+1.5cos(2πx2)).

a ε
rand is constructed by partitioning D=(0,1)2 into uniform square cells of size ε, each of

which is randomly designated as k1 or k2 with probability p1 and p2=1−p1, respectively.
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We visualize one realization of the random coefficients in Fig. 11 with ε = 0.02. Theo-
rem 3.1 remains true with a minor modification of e1(MOD), we refer to [19] for related
result.

Figure 11: Plot of one realization of a ε
11 in (4.11). (a) is the contour of a ε

11.

As oppose to the standard random checker-board [30], there is no explicit formula for
the effective matrix of (4.11). To extract the effective matrix over D, we take δ= 16ε as
the cell size and use P2 Lagrange element over a mesh of size 160×160 to solve the cell
problem (4.4). We set the offline mesh size as Q=20 and use third order reconstruction to
get an approximation effective matrix A, which will be exploited to obtain the reference
solution in the following test.

To justify this approach, we choose AH at three representative points in D: A =
(1/4,0), which is one of the maximum point of a0 over D; B=(3/4,1/2), which is one of
the minimum point of a0 over D, and C=(1,1/4), which is one of the maximum point of
∇a0 over D. We let δ= Lε and use P2 Lagrange element over a mesh of size 10L×10L to
solve the cell problem (4.4) posed over these three points. We denote by An

16 the approx-
imation effective matrix for n−th realization. In addition, we use the empirical average

E(A16)(x):=
1
N

N

∑
n=1
An

16(x) (4.12)

as the proxy of the expectation E, where N is the total number of the realization. We take
N=1000 in the simulation, and the results are reported in Table 5.

Secondly, for x=A,B,C, we measure the variance as

σ
diag
L (x):=

√
E
(
(AL(x)11−E(A16(x))11)

2+(AL(x)22−E(A16(x))22)
2
)

,

and
σ12

L (x):=
√

E(AL(x)2)12.
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Table 5: The approximating effective matrix on three points with L=16.

E(A)

A=(1/4,0)
(

20.78 −2.58e−4
−2.58e−4 20.78

)
B=(3/4,1/2)

(
5.20 −9.47e−4

−9.47e−4 5.20

)
C=(1,1/4)

(
10.84 −4.86e−4

−4.86e−4 10.84

)

Fig. 12a and Fig. 12b suggest that σ
diag
L (x) and σ12

L (x) decay asO(L−1), which is consistent
with the theoretical predictions [25]. A systematical numerical tests for the variance may
be found in a recent work [31].

4 6 8 10 12

L

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

d
ia

g
L

A=(1/4,0)

B=(3/4,1/2)

C=(1,1/4)

slope=-1

(a). Decays of σ
diag
L with respect to the cell

size L.

4 6 8 10 12 14 16 18

L

10-2

10-1

1
2

L

A=(1/4,0)

B=(3/4,1/2)

C=(1,1/4)

(b). Decays of σ12
L with respect to the cell

size L.

Figure 12: The accuracy for the approximating effective matrix.

Finally we compare the effect of the reconstructions with different orders in the offline
computation. We fix the online solver as P2 Lagrange element over a mesh with size
100×100. In the offline stage, we choose δ=8ε and use P2 Lagrange element over a mesh
with size 80×80 to solve the cell problem (2.3). We take Q= 8,10,16 and m= 1,2 in the
tests, and compute the ensemble average of the relative H1 error and L2 error

E
(
‖∇(u0−uh)‖L2(D)

)
‖∇u0‖L2(D)

and
E
(
‖u0−uh‖L2(D)

)
‖u0‖L2(D)

.

The expectation E is replaced by the empirical average as that in (4.12) with N = 1000
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realizations. The visualization in Fig. 13a and Fig. 13b clearly shows that the second
order reconstruction is more accurate than the first order reconstruction.
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(a). Ensemble average of the H1 error.

8 10 12 14 16 18 20

Q

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

R
e

la
ti
v
e

 L
2
 e

rr
o

r

m=1

m=2

(b). Ensemble average of the L2 error.

Figure 13: The error between numerical solution and homogenized solution in Example 4.5.

5 Conclusion

We have proposed a new online-offline method to solve the multiscale elliptic problems.
Both theoretical and numerical results show that the method significantly reduces the
cost while retains the optimal rate of convergence. Moreover, the strategy is problem
independent, and it can be extended to time-dependent problems [21, 42]. The imple-
mentation of the present method is mainly based on the a priori error estimates, adap-
tive algorithms should be developed for automatic tuning of the parameters so that the
method is more efficient. We shall leave all these issues in the future work.
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[34] A. Kroó, and J. Szabados, Markov-Bernstein type inequalities for multivariate polynomials
on sets with cusps, J. Approx. Theory, 102 (2000), 72-95.

[35] R. Li, P. B. Ming, and F. Y. Tang, An efficient high order heterogeneous multiscale method
for elliptic problems, Multiscale Model. & Simul., 10 (2012), 259-283.

[36] R. Li, P. B. Ming, Z. Y. Sun, and Z. J. Yang, An arbitrary-order Discontinuous Galerkin
method with one unknown per element, J. Sci. Comput., 80 (2019), 268-288.

[37] R. Li, and F.Y. Yang, A discontinuous Galerkin method by patch reconstruction for elliptic
interface problem on unfitted mesh, SIAM J. Sci. Comput. 42 (2020), A1428-A1457.

[38] A. Markov, Sur une question posee par Mendeleieff, Bull. Acad. Sci. St. Petersburg, 62 (1889),
1-24.
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