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Abstract We propose a machine learning method for computing the eigenvalues and eigenfunctions of the

Schrödinger operator on a d-dimensional hypercube with Dirichlet boundary conditions. The eigenpairs lie

deep within the spectrum. The cut-off function technique is employed to construct trial functions that precisely

satisfy the Dirichlet boundary condition. This approach outperforms the standard boundary penalty method, as

demonstrated by numerical examples. Assuming that the eigenfunctions belong to a new spectral Barron space,

we derive a dimension-free convergence rate O(n−1/4) for the generalization error bound, with all constants in

the error bounds being explicit and growing at most polynomially. This assumption is validated by proving a

new regularity shift result for the eigenfunctions when the potential belongs to an appropriate spectral Barron

space. Moreover, we extend the generalization error bound to the normalized penalty method, which is widely

used in practice.
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1 Introduction

The high-dimensional Schrödinger eigenvalue problem plays a crucial role in various fields, such as

computational chemistry, condensed matter physics, and quantum computing [48, 54]. While traditional

numerical methods have achieved significant success in solving low-dimensional partial differential

equations (PDEs) and eigenvalue problems, the curse of dimensionality (CoD) remains a major challenge,

as computational costs increase exponentially with dimensionality. Recently, machine learning has

emerged as a promising approach to mitigate the CoD. Significant progress has been made in applying
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deep learning-based methods to solve PDEs [19, 21, 32, 56, 60, 73] and the Schrödinger eigenvalue

problems [11,13,15,23,33–35,44,66], among many others.

This study aims to develop a high-precision machine learning method for solving Schrödinger eigenvalue

problems and to analyze its generalization error bound. One of the main challenges in using neural

networks to solve PDEs and eigenvalue problems is accurately handling the essential boundary conditions.

One common approach to address this challenge is to incorporate a boundary penalty term into the loss

function [21,38]. However, recent studies [18,41,50,62,65] have demonstrated that inaccurately imposing

boundary conditions can adversely affect network training and accuracy. The authors in [38, 70] have

shown that the error caused by the boundary penalty is inversely proportional to the penalty factor.

To mitigate this issue, we adopt the approach proposed in [9, 42, 43, 62], which utilizes the product of

neural network outputs and cut-off functions. This ensures that the ansatz functions precisely satisfy the

boundary conditions.

To solve the Schrödinger eigenvalue problem, we use the Rayleigh quotient as the loss function.

However, this loss function is not Lipschitz continuous, primarily due to the denominator, which

involves the square of the L2 norm of the trial functions. This introduces new challenges in deriving

generalization bounds. To overcome this issue, we leverage concentration inequalities for ratio type

empirical processes [26, 27] and bounds for expected values of sup-norms of empirical processes [25].

These inequalities have proven to be crucial in bounding the generalization error of learning algorithms.

To derive the generalization error bound, we will work within the Barron-type spaces, first introduced

by Barron in his seminal work [6], as Barron functions achieve dimension-free approximation rates. Such

spaces have been further developed in recent studies [20, 45, 47, 59]. In this work, we introduce a new

spectral Barron space, denoted as Bs(Ω), defined on the unit hypercube Ω, which is particularly suitable

for studying Dirichlet boundary value problems. This space, referred to as the sine spectral Barron

space, can be viewed as a variant of the cosine spectral Barron space Cs(Ω) proposed in [46, 47]. We

establish a new regularity theory for the Dirichlet eigenvalue problem for Schrödinger operators in Bs(Ω).

Notably, the functions within Bs(Ω) also admit dimension-free approximation rates with two-layer neural

networks.

The following is an informal version of the main generalization theorem; cf. Theorem 3.4.

Theorem 1.1. Under Assumptions 2.1 and 3.3, let F = φFSPτ ,m(∥u∗∥Bs(Ω)) with τ =
√
m. Let umn

be a minimizer of the empirical loss Lk,n over F . If n and m are large enough, then with probability at

least 1− δ, there holds

Lk (u
m
n )− λk ≲

[√
m (k + ln(m/δ))

n
+

1√
m

]
∥u∗∥Bs(Ω).

1.1 Our contributions

Our contributions are summarized as follows:

1. We introduce a new spectral Barron spaceBs(Ω) on Ω = (0, 1)d, particularly suited for investigating

Dirichlet boundary value problems, which can be viewed as a homogeneous version of Cs(Ω)

introduced in [46]. We prove a novel regularity estimate in Theorem 3.8 by showing that all

eigenfunctions lie in Bs+2(Ω) if the potential function belongs to Cs(Ω) with s ⩾ 0.

2. We present the cut-off function technique to construct trial functions that satisfy the essential

boundary conditions. We show that functions in the sine spectral Barron space can be well

approximated in the H1-norm using two-layer ReLU or Softplus networks multiplied by a cut-

off function; see Theorem 3.1 and Theorem 3.2. The approximation rate is O(m−1/2) with m

denoting the number of neurons, which is dimension free.

3. We introduce concentration inequalities for ratio-type suprema to handle the Rayleigh quotient and

derive an oracle inequality for the empirical loss. An exponential inequality is established to bound

the normalized complexity measure in ratio-type concentration inequalities.
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4. We prove a priori generalization error bounds for the proposed learning-based method; see

Theorem 3.4. These bounds hold for higher-order eigenmodes, not just the ground state, and the

convergence rate O(n−1/4) is independent of dimensionality. We also clarify the dependence of the

prefactors on the relevant parameters, including the order of the eigenmodes and the dimensionality,

with the dependence being polynomial and of lower degree.

5. We demonstrate the effectiveness of incorporating a normalized penalty term by proving, in

Theorem 3.9, that the solutions of the normalized penalty method [21] are away from zero with high

probability. The generalization error bounds for the normalization penalty method are established

in Corollary 3.11. We also characterize the cumulative error in Theorem 3.13 and prove the sharp

cumulative rate of generalization error in Proposition 3.14.

6. We test the method numerically in various scenarios, including problems posed on hypercubes up

to d = 10, unit spheres, three-dimensional rings and problems involving inverse square potentials.

The method achieves a relative eigenvalue error as low as O(10−3), or even better, for the first

30 eigenvalues. Furthermore, the numerical results highlight that exactly enforcing the boundary

condition improves accuracy by an order of magnitude or more compared with the boundary penalty

method.

1.2 Related works

Many attempts have been made to understand why learning-based methods can overcome the CoD. In [47,

49,58,70], the authors established a priori generalization error bounds for solving elliptic PDEs using two-

layer neural networks, demonstrating a dimension-independent convergence rate. Similar generalization

bounds have been proven for Black-Scholes PDEs and high-dimensional nonlinear heat equations, as

shown in [10,28–30,37]. Despite these advancements, the analysis of high-dimensional eigenvalue problems

remains limited, with notable exceptions in [46] and [38].

In [46], the authors proposed a machine learning method for solving the Neumann eigenvalue

problem associated with the Schrödinger operator. They introduced a spectral Barron space Cs(Ω) and

demonstrated that functions within this space may be well approximated in the H1-norm using two-layer

ReLU or Softplus networks. Moreover, they established the existence of the ground state in Cs+2(Ω)

when the potential functions reside in Cs(Ω) with s ⩾ 0. In the present work, we extend this approach

by using two-layer ReLU or Softplus networks, multiplied by a cut-off function, to approximate functions

within Bs(Ω). The approximation rate in [46] is further improved by eliminating the logarithmic term

from the approximation bound for the Softplus network. In addition, we prove that all eigenfunctions lie

in Bs+2(Ω) if the potential function belongs to Cs(Ω) with s ⩾ 0.

The authors in [38] also employed neural networks to solve the Dirichlet eigenvalue problem for the

Schrödinger operator posed on a bounded Cm domain Ω. They assumed that V ∈ Cm−1(Ω) with

m > max {2, d/2− 2}, and used a loss function that includes a boundary penalty, a normalization penalty,

and an orthogonal penalty. They demonstrated a convergence rate O(n−1/16) for the generalization

error. In contrast, by using the Rayleigh quotient and trial functions that precisely satisfy the boundary

conditions, our loss function includes only the orthogonal penalty, resulting in improved numerical

accuracy. Additionally, we prove a better accumulative rate for the generalization errors.

The main limitations of our work are twofold. First, in Assumption 2.1, we assume that V is bounded

both above and below. This assumption excludes commonly used singular potentials, although the

algorithm remains applicable to these singular potentials, such as the inverse square potential used in our

numerical tests. The second limitation concerns the regularity assumption on V , namely V ∈ Cs with

s ⩾ 1. This indicates that V is relatively smooth, as demonstrated in [46] and [45].

1.3 Notations

Let H1(Ω) be the standard Sobolev space [1] with the norm ∥ · ∥H1(Ω), while H
1
0 (Ω) is the closure of

C∞
0 (Ω) in H1(Ω). For a function set F , we denote F>r := {f ∈ F : ∥f∥L2(Ω) > r}. The constant C may
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differ from line to line.

The remainder of the paper is organized as follows. First, we introduce the basic settings and show

stability estimates in §2. Our main theoretical results are summarized in §3, followed by the numerical

results in §4. We then focus on proving the theoretical findings. In §5, we derive an oracle inequality for

the generalization error. The approximation results are presented in §6, while the statistical error bound

is established in §7. The proof of Theorem 3.4 is provided in §8. Regularity estimates are derived in

§9. Stability estimates and proofs for certain technical results are deferred to Appendix A–Appendix D.

Results concerning the penalty method are presented in §Appendix E, the accumulative error is analyzed

in §Appendix F, and a priori bound for the eigenmodes is proven in §Appendix G.

2 Basic settings

Let Ω = (0, 1)d be the unit hypercube. Consider the Dirichlet eigenvalue problem

Hu: = −∆u+ V u = λu in Ω, u = 0 on ∂Ω, (2.1)

where H is the Schrödinger operator and V is a potential function. Throughout this paper, we make the

following assumption on V .

Assumption 2.1. There exist positive constants Vmin and Vmax such that Vmin ⩽ V (x) ⩽ Vmax for

every x ∈ Ω.

Given Assumption 2.1 and the fact that Ω is a connected, open, bounded domain, (−∆ + V )−1 is a

compact, self-adjoint operator on L2(Ω). Consequently, H has a purely discrete spectrum {λj}∞j=1, with

∞ as the only accumulation point. The eigenfunctions of H form an orthonormal basis on L2(Ω) [22].

We list all the eigenvalues in an ascending order, with multiplicities, as 0 < λ1 ⩽ λ2 ⩽ λ3 ⩽ · · · ↑ ∞, and

denote the first k − 1 normalized orthogonal eigenfunctions by {ψj}k−1
j=1 . The k-th smallest eigenvalue is

obtained by minimizing the Rayleigh quotient

λk = min
E

max
u∈E\{0}

⟨u,Hu⟩H1×H−1

∥u∥2L2(Ω)

,

where the minimum is taken over all k-dimensional subspace E ⊂ H1
0 (Ω), and ⟨·, ·⟩H1×H−1 denotes the

dual product on H1(Ω) ×H−1(Ω). Given the first k − 1 eigenpairs (λ1, ψ1), · · · , (λk−1, ψk−1), the k-th

eigenvalue λk may be characterized as

λk = min
u∈E(k−1)

⟨u,Hu⟩H1×H−1

∥u∥2L2(Ω)

, (2.2)

where E(k−1) =
{
u ∈ H1

0 (Ω)\{0} | u ⊥ ψi, 1 ⩽ i ⩽ k − 1
}
.

It is intuitive to seek an approximate solution to Problem (2.2) within a hypothesis class F ⊂ H1
0 (Ω)

that is parameterized by neural networks. To achieve this, we introduce a loss function that incorporates

orthogonal penalty terms to enforce the orthogonal constraints. Specifically, the loss function for

computing the k-th eigenfunction is given by

Lk(u) =
⟨u,Hu⟩H1×H−1

∥u∥2L2(Ω)

+ β

k−1∑
j=1

⟨u, ψj⟩2
∥u∥2L2(Ω)

, (2.3)

where ⟨·, ·⟩ denotes the inner product on L2(Ω), and β is a penalty parameter that should be chosen such

that β > λk − λ1. For the ground state (i.e., when k = 1), the loss function simplifies to the Rayleigh

quotient, and the orthogonal penalty term is no longer needed. In practice, the Monte Carlo method is

employed to compute the high-dimensional integral in the loss function, and an approximate solution is

obtained through empirical risk minimization. Denote by PΩ the uniform probability distribution on Ω



Guo Y, Ming P, Yu H et al. Sci China Math 5

and X, X1, X2, · · · are i.i.d. (independent identically distributed) random variables according to PΩ.

The population loss Lk(u) is rewritten as

Lk(u) =
EV (u) + EP (u)

E2(u)
, (2.4)

where
EV (u) := E

[
|∇u(X)|2 + V (X)|u(X)|2

]
,

EP (u) := β

k−1∑
j=1

(E [u(X)ψj(X)])
2
, E2(u) := E

[
|u(X)|2

]
.

The population loss Lk(u) is approximated by the empirical loss

Lk,n(u) =
En,V (u) + En,P (u)

En,2(u)
, (2.5)

where

En,V :=
1

n

n∑
i=1

(
|∇u (Xi)|2 + V (Xi) |u (Xi)|2

)
,

En,P := β

k−1∑
j=1

(
1

n

n∑
i=1

u(Xi)ψj(Xi)

)2

, En,2 :=
1

n

n∑
i=1

|u (Xi)|2 .

Let ûn be a minimizer of Lk,n(u) within F , i.e., ûn = argminu∈F Lk,n(u), and we approximate λk by

λ̂k,n =
⟨ûn,Hûn⟩
⟨ûn, ûn⟩

.

Let Uk be the true solution space for the k-th eigenfunction in H1
0 (Ω), i.e.,

Uk := span {ψ1, ψ2, . . . , ψk−1}⊥ ∩ ker (H− λkI) ⊂ H1
0 (Ω). (2.6)

Any non-zero function is a minimizer of Lk(u) if and only if it lies in Uk. Our goal is to estimate

|λ̂k,n − λk| and the offset of the direction of ûn from the subspace Uk, which is commonly referred as the

generalization error.

The following proposition shows that |λ̂k,n − λk| may be bounded by the energy excess Lk(ûn)− λk.

Proposition 2.2. Under Assumption 2.1, for any nonzero u ∈ H1(Ω) and β > λk − λ1,∣∣∣∣ ⟨u,Hu⟩⟨u, u⟩ − λk

∣∣∣∣ ⩽ max

{
λk − λ1

β + λ1 − λk
, 1

}
(Lk(u)− λk) .

To quantify the offset of a direction u from the subspace Uk, we define P
⊥ as the orthogonal projection

operator from L2(Ω) to U⊥
k , the orthogonal complement of Uk. Let λk′ be the first eigenvalue of H that

is strictly greater than λk, i.e., k
′ ⩾ k + 1, λk′ > λk and λk′−1 = λk. The following proposition shows

that ∥P⊥ûn∥H1(Ω) may also be bounded by the energy excess Lk(ûn)− λk.

Proposition 2.3. Under Assumption 2.1, for any u ∈ H1(Ω) and β > λk − λ1,∥∥P⊥u
∥∥2
L2(Ω)

⩽
Lk(u)− λk

min {β + λ1 − λk, λk′ − λk}
∥u∥2L2(Ω), (2.7a)

∥∥∇ (P⊥u
)∥∥2

L2(Ω)
⩽ (Lk(u)− λk)

(
λk − Vmin

min {β + λ1 − λk, λk′ − λk}
+ 1

)
∥u∥2L2(Ω). (2.7b)

The above two results generalize [46, Proposition 2.1] to multiple eigenvalues. Proposition 2.2 suggests

that β + λ1 − λk serves as a metric for evaluating the stability of the approximate eigenvalues, while

Proposition 2.3 demonstrates that both the gap λk′ −λk and the factor β+λ1−λk influence the stability

of the approximate eigenfunctions. We postpone the proof of Propositions 2.2 and 2.3 to Appendix A.
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3 Main Results

Before stating the main result, we introduce a new function space. Let {û(k)}k∈Nd
+
denote the Fourier

coefficients of u ∈ L1(Ω) against the basis {Φk}k∈Nd
+
given by

{Φk}k∈Nd
+
:=

{
d∏

i=1

sin (πkixi) | k = (k1, k2, . . . , kd), ki ∈ N+

}
.

For s ⩾ 0, the sine spectral Barron space Bs(Ω) is defined by

Bs(Ω) :=
{
u ∈ L1(Ω) | ∥u∥Bs(Ω) <∞

}
, (3.1)

which is equipped with the spectral Barron norm

∥u∥Bs(Ω) =
∑
k∈Nd

+

(1 + πs|k|s1) |û(k)|, (3.2)

where |k|1 is the ℓ1-norm of a vector k. Bs(Ω) is a Banach space, as it can be viewed as a weighted ℓ1

space ℓ1Ws

(
Nd

+

)
, of the sine coefficients defined on the lattice Nd

+ with the weight Ws(k) = 1 + πs|k|s1.
Moreover, it is straightforward to verify that the functions in Bs(Ω) are continuous and vanish on the

boundary.

Our approximation result shows that functions in Bs(Ω) may be well approximated by φv(x; θ) in

the H1-norm using a two-layer neural network with ReLU or Softplus activation functions, where v is a

neural network function and φ is an approximating distance function, and we may take φ as

φ(x) =

[
d∑

i=1

1

sin (πxi)

]−1

=

∏d
i=1 sin (πxi)∑d

i=1

∏
1⩽j⩽d
j ̸=i

sin (πxj)
, x ∈ Ω.

Given an activation function ϕ, the number of the neurons m and a positive constant B, define

Fϕ,m(B) :=

{
c+

m∑
i=1

γiϕ (wi · x− ti) | |c| ⩽ B, |wi|1 = 1, |ti| ⩽ 1,

m∑
i=1

|γi| ⩽ 4B

}
.

The first approximation result concerns the approximation of the hypothesis space φFReLU,m(B)1)

with ReLU(x) = max{x, 0}.
Theorem 3.1. For u ∈ Bs(Ω) with s ⩾ 3, there exists vm ∈ FReLU,m(∥u∥Bs(Ω)) such that

∥u− φvm∥H1(Ω) ⩽
28∥u∥Bs(Ω)√

m
.

Next, we replace the hypothesis space by φFSPτ ,m(B) with the Softplus activation function

SPτ (z) := τ−1 SP(τz) = τ−1 ln (1 + eτz) ,

where τ > 0 is a scaling parameter, and SPτ → ReLU as τ → 0. The rescaled Softplus function may

be viewed as a smooth approximation of ReLU, and its smoothness is particularly useful for bounding

the complexities of function classes that involve the derivatives of the neural network functions. The

following theorem shows that φFSPτ ,m(B) admits a similar approximation bound as φFReLU,m(B).

Theorem 3.2. For u ∈ Bs(Ω) with s ⩾ 3, there exists vm ∈ FSPτ ,m

(
∥u∥Bs(Ω)

)
such that

∥u− φvm∥H1(Ω) ⩽
64∥u∥Bs(Ω)√

m
.

1) In this paper, let φF := {φv : v ∈ F}, where F is a function set.
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Motivated by Theorem 3.1 and Theorem 3.2, we make the following regularity assumption.

Assumption 3.3. There exists a normalized eigenfunction u∗ ∈ Bs(Ω) for some s ⩾ 3 lying in the

subspace Uk defined in (2.6).

Denote µ̄1 = 0 and µ̄k = max1⩽j⩽k−1 ∥ψj∥L∞(Ω) for k ⩾ 2. The following generalization error bound

is the main result of this work.

Theorem 3.4. Under Assumptions 2.1 and 3.3, let F = φFSPτ ,m(B) with B = ∥u∗∥Bs(Ω) and τ =

9
√
m. For r ∈ (0, 1/2) and let umn be a minimizer of the empirical loss Lk,n within F>r. Given δ ∈

(0, 1/3), assume that n and m are large enough so that 64B/
√
m ⩽ 1/2 and

Υ1(n,m,B, r, δ) :=
B

r

√
1 + Vmax

n

(√
m ln

B (1 +
√
m/d) (1 + Vmax)

rd
+

√
ln(1/δ)

d

)
⩽ C, (3.3a)

Υ2(n,m, k,B, µ̄k, r, δ) :=

√
kµ̄kB

nr

[√
m ln

(
µ̄kB

rd

)
+

√
ln(k/δ)

d

]
⩽ 1, (3.3b)

where C is an absolute constant. Then with probability at least 1− 3δ,

Lk (u
m
n )− λk ⩽ C

[
λkΥ1(n,m,B, r, δ) + βΥ2(n,m, k,B, µ̄k, r, δ) + (Vmax + β + λk)B/

√
m
]
, (3.4)

where C is an absolute constant.

In particular, with the choice of m = O(
√
n/k) and n large enough, there exists C̃ > 0 such that with

probability at least 1− 3δ,

Lk (u
m
n )− λk ⩽ C̃

[(
k

n

)1/4
(√

ln(n/k)

k
+ 1

)
+

√
k ln (k/δ)

n

]
.

In (3.4), λkΥ1 and βΥ2 correspond to the statistical errors of the Rayleigh quotient and the

orthogonal penalty term, respectively, and (Vmax + β + λk)B/
√
m stands for the approximation error.

The convergence rate O(n−1/4) is dimension-free. The dependence of C̃ on all parameters is explicit and

at most a polynomial of low degree. We have established a high probability bound for the generalization

error, which immediately implies an expectation bound.

To prove Theorem 3.4, we first introduce concentration inequalities for ratio-type suprema to address

the Rayleigh quotient, and then derive an oracle inequality in §5, which decomposes the generalization

error into the sum of the approximation error and the statistical error. The concentration inequality

controls each term in statistical error by the expectation of suprema of empirical processes and probability

tail terms.

In §6, we estimate the approximation error. To prove Theorem 3.1, we tackle the constraint

approximation by first showing that Bs(Ω) lies in the convex hull of φ times spectral Barron functions of

lower order, as presented in §6.2. In §6.3, we construct network to approximate trigonometric functions,

demonstrating that the convex hull of φFReLU,m is larger and contains Bs(Ω). Theorem 3.1 then follows

from Maurey’s lemma. Theorem 3.2 is derived by replacing ReLU with Softplus in the same construction,

carefully controlling the error caused by the replacement. Using Theorem 3.2 and the continuity of Lk

with respect to the H1 norm, we bound the approximation error in Theorem 6.7.

To estimate the statistical error, we develop tools to bound the expectation of suprema of empirical

processes by covering numbers of corresponding VC class in §7.2 and derive the covering number bounds

for certain function classes in §7.1. Combining all these estimates, we obtain the statistical error bound

in Theorem 7.9. Finally, Theorem 3.4 follows from the approximation results in § 6 and the statistical

error bounds in § 7.

Remark 3.5. Under Assumption 2.1, there exist constants c1, c2 and c3 such that for k = 1, 2, · · · ,

c1dk
2/d + Vmin ⩽ λk ⩽ c2dk

2/d + Vmax,
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and

∥ψk∥L∞(Ω) ⩽

(
c3k

2/d +
e (Vmax − Vmin)

πd

)d/4

.

We refer to Appendix G for a proof.

Remark 3.6. Condition (3.3b) may be removed provided that Υ2 in (3.4) is replaced by Υ2(1+Υ2)
3.

Substituting Theorem 3.4 into Proposition 2.2 and Proposition 2.3, we obtain

Corollary 3.7. Under the same assumptions of Theorem 3.4, with m = O(
√
n/k), there exist

constants C̃1 depending only on B, d, Vmax, λk, µ̄k, β, r
−1, (β + λ1 − λk)

−1
polynomially, and C̃2

depending only on the same constants as C̃1 and (λk′ − λk)
−1

polynomially such that with probability at

least 1− 3δ, ∣∣∣∣ ⟨umn ,Humn ⟩
⟨umn , umn ⟩ − λk

∣∣∣∣ ⩽ C̃1

[(
k

n

)1/4
(√

ln(n/k)

k
+ 1

)
+

√
k ln (k/δ)

n

]
,

∥∥P⊥umn
∥∥2
H1(Ω)

⩽ C̃2

[(
k

n

)1/4
(√

ln(n/k)

k
+ 1

)
+

√
k ln (k/δ)

n

]
.

Next, we prove a regularity result of the eigenfunctions in the sine Barron space, which validates

Assumption 3.3. We firstly recall the spectral Barron space defined in [46,47]. Let {w̌(k)}k∈Nd
0
represent

the Fourier coefficients of a function w ∈ L1(Ω) against the basis

{Ψk}k∈Nd
0
:=

{
d∏

i=1

cos (πkixi) | ki ∈ N0

}
.

For s ⩾ 0, the cosine spectral Barron space Cs(Ω) is defined by

Cs(Ω) :=
{
w ∈ L1(Ω) | ∥w∥Cs(Ω) <∞

}
, (3.5)

which is equipped with the spectral Barron norm

∥w∥Cs(Ω) =
∑
k∈Nd

0

(1 + πs|k|s1) |w̌(k)|.

Theorem 3.8. If V ∈ Cs(Ω) with s ⩾ 0, then any eigenfunction of Problem (2.1) lies in Bs+2(Ω).

Theorem 3.8 establishes that Assumption 3.3 holds if V ∈ C1(Ω). To prove Theorem 3.8, we first

show that the inverse of the Schrödinger operator H−1 : Bs(Ω) → Bs+2(Ω) is bounded. We then derive

regularity estimates for the eigenfunctions using a bootstrap argument. A detailed proof may be found

in §9.
In Theorem 3.4, we assume that the L2-norms of the approximated eigenfunctions are bounded below

by r, where r ∈ (0, 1/2). This assumption is reasonable, because, in practice, a very small L2-norm can

lead to numerical instability when computing the Rayleigh quotient. From a theoretical perspective, the

L2- normalization u/∥u∥L2(Ω) of all functions u in φFSPτ ,m is not uniformly bounded, which may cause

the statistical error to blow up. Our results show that the statistical error depends linearly on 1/r.

In practice, we treat the minimization of Lk,n in F>r as solving an optimization problem in F , subject

with the constraint ∥u∥L2(Ω) > r. As shown in Figure 1, the L2-norm of the network function gradually

increases as Lk,n is minimized using stochastic gradient descent methods, due to the scaling invariance of

Lk,n. The gradient descent methods implicitly regularize the L2-norm of the solution when minimizing a

scaling-invariant loss function, enabling us to automatically obtain solutions that satisfy the constraint

∥u∥L2(Ω) > r.

Adding a normalized penalty term is a natural approach to solve the constrained optimization problem.

In [21,38], the authors introduced a normalized penalty term γ (E2(u)− 1)
2
in the loss function. We shall

analyze this method in § 3.1.
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Figure 1 ∥u∥L2(Ω) for different cut-off functions. Details of the numerical experiments are provided in Section 4. (Color

online)

3.1 Extensions to the normalization penalty method

The normalization penalty method in [21] employs the population loss

Lk(u) := Lk(u) + γ (E2(u)− 1)
2

and the empirical loss Lk,n(u) := Lk,n(u) + γ (En,2(u)− 1)
2
, where γ > 0 is a penalty parameter. Let

un be a minimizer of Lk,n(u) within F . Firstly, we show that ∥un∥L2(Ω) ⩾ 1/2 with high probability

for sufficiently large γ.

Theorem 3.9. Under Assumptions 2.1 and 3.3, let γ ⩾ 4λk and un = argminu∈F Lk,n(u) where

F = φFSPτ ,m(B) with B = ∥u∗∥Bs(Ω) and τ = 9
√
m. Given δ ∈ (0, 1/4), assume that n and m are large

enough such that C (1 + Vmax + β/γ)B/
√
m ⩽ 1 and

CB

d

(
B

d
+ 1

)√
d (1 + lnB)m+ ln(1/δ)

n
⩽ 1, (3.6a)

C (1 + Vmax + β/γ)B2

√
ln(1/δ)

n
+
Cβµ̄kB

γd

√
k ln(k/δ)

n
⩽ 1, (3.6b)

where C is an absolute constant. Then with probability at least 1− 4δ,

E2(un) ⩾ 1/4.

Remark 3.10. The assumption γ ⩾ 4λk in Theorem 3.9 may be relaxed. Pursuing the proof, one can

prove that ∥un∥L2(Ω) ⩾ r with high probability when n,m are large enough, as long as γ > λk/(1− r2)2.
The condition (3.6) is weaker than (3.3) to certain degree, because the left-hand sides of (3.3a), (3.3b)

are O(
√
m lnm/n), O(

√
m/n) while the left-hand sides of (3.6a), (3.6b) are O(

√
m/n), O(1/

√
n).

As a direct application of our method, we obtain the generalization error bound of the normalization

penalty method. Let Υ(n,m, k,B, µ̄k, β, r, δ) denote the error bound in the right-hand side of (3.4), i.e.,

Υ(n,m, k,B, µ̄k, β, r, δ): = C
[
λkΥ1(n,m,B, r, δ) + βΥ2(n,m, k,B, µ̄k, r, δ) + (Vmax + β + λk)B/

√
m
]
.

Corollary 3.11. Under the same assumptions of Theorem 3.9, for δ ∈ (0, 1/7), assume further that

n and m are large enough so that (3.3a) and (3.3b) hold with r = 0.49. Then, there exists C such that
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Figure 2 E2(u) for different cut-off functions. Details about the numerical experiments are provided in Section 4. (Color

online)

with probability at least 1− 7δ,

Lk(un)− λk ⩽ Υ(n,m, k,B, µ̄k, β, 1, δ)

+ Cγ

[(
B2

d2
+1

)√
d (1+lnB)m+ln(1/δ)

n
+
B2

m

]
.

(3.7)

The second term in the right-hand side of (3.7) corresponds to the statistical and approximation error

due to the normalization penalty term. There is a trade-off with the normalization penalty method: while

a larger value of γ ensures that un remains away from zero, but results in a larger generalization error.

To prove Theorem 3.9, we derive a new oracle inequality to bound |E2(un)− 1| utilizing Hoeffding’s

inequality. We then prove the generalization bound using the Rademacher complexity. The Rademacher

complexity is bounded by applying Dudley’s theorem and leveraging the covering number bounds

discussed in § 7.

The poof of Corollary 3.11 relies on the fact ∥un∥L2(Ω) ⩾ 1/2, allowing the estimates used in the proof

of Theorem 3.4 with r = 0.49 to remain applicable. We refer to Appendix E for the proof of Theorem 3.9

and Corollary 3.11. Numerical results in Figure 2 show that E2(un) exceeds 1/4 with high probability.

Remark 3.12 (The choice of hyperparameters). By Proposition 2.2 and Proposition 2.3, it follows

that β − λk + λ1 > 0 should not be excessively small. For the normalization penalty method, γ should

be greater than a constant multiple of λk. From (3.4) and (3.7), a reasonable choice of both β and γ are

O(λk).

3.2 Analysis of the accumulative error

In practice, we replace the exact eigenfunctions in the orthogonal penalty term with the approximate

eigenfunctions obtained in the previous k−1 steps, which introduces an accumulative error. Theorem 3.13

details the impact of using approximate eigenfunctions on the generalization bound for the k-th step,

while Proposition 3.14 provides the rate at which the accumulated generalization errors grow.

Let uθj denote the j-th approximate eigenfunction parameterized by the neural network. We use the

L2-normalization of uθj as an approximation of ψj and denote ν̄k = max1⩽j⩽k−1 ∥uθj∥L∞(Ω)/∥uθj∥L2(Ω).

Consider the loss function

L̃k(u) =
EV (u)
E2(u)

+ βk

k−1∑
j=1

Pj(u)

E2(u)E2(uθj)
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and the empirical loss

L̃k,n(u) =
En,V (u)
En,2(u)

+ βk

k−1∑
j=1

Pn,j(u)

En,2(u)En,2 (uθj)
,

where Pj(u) := ⟨u, uθj⟩2 and Pn,j(u) :=
(
n−1

∑n
i=1 u(Xi)uθj(Xi)

)2
.

Theorem 3.13. Under Assumptions 2.1 and 3.3, let F = φFSPτ ,m(B) with B = ∥u∗∥Bs(Ω) and

τ = 9
√
m. Let r ∈ (0, 1/2), ∥uθj∥L2(Ω) ⩾ r for all j and uθk = argminu∈F>r

L̃k,n(u). Given δ ∈ (0, 1/3),

assume that n and m are large enough so that 64B/
√
m ⩽ 1/2, (3.3a) and (3.3b) with µ̄k replaced by ν̄k

hold true. Then, with probability at least 1− 3δ,

Lk (uθk)− λk ⩽ Υ(n,m, k,B, ν̄k, βk, r, δ) + 8βk

k−1∑
j=1

√
Lj(uθj)− λj

min {βj + λ1 − λj , λj′ − λj}
. (3.8)

The first term in the right-hand side of (3.8) is the generalization error at k-th step and the second

term represents the accumulative error, where ν̄k plays a similar role as µ̄k in Theorem 3.4. Proposition

3.14 shows that the generalization error grows quadratically as the order of the eigenfunction.

Proposition 3.14. Assume that for all k ⩾ 1,

Lk (uθk)− λk ⩽ ∆k + 8βk

k−1∑
j=1

√
Lj(uθj)− λj

min {βj + λ1 − λj , λj′ − λj}
.

Let τk = max1⩽j⩽k ∆j/βj, ρ0 = 0 and ρk = max1⩽j⩽k 4
√
βj/min {βj + λ1 − λj , λj′ − λj}. Then,

Lk (uθk)− λk ⩽ βk

(
(k − 1)ρk−1 +

√
τk

)2
. (3.9)

When k = 1, the bound (3.9) simplifies to Lk (uθk)− λk ⩽ ∆k, with no accumulated error.

To prove Theorem 3.13, we shall derive a uniform bound for
∣∣∣L̃k(u)− Lk(u)

∣∣∣ and establish a new oracle

inequality to address the penalty term. Proposition 3.14 is proved by an induction argument. Using a

similar argument, one can show that the quadratic growth rate of accumulative error with respect to k

is sharp. We defer the poof of Theorem 3.13 and Proposition 3.14 to Appendix F. As with Corollary 3.7,

the error bounds in Corollary 3.11, Theorem 3.13 and Proposition 3.14 can also be expressed in terms of

the eigenvalues and the H1-norm of eigenfunctions. For simplicity, We do not delve into the details here.

Remark 3.15 (Generalizability to more general neural networks). For simplicity, we focus on shallow

ReLU and Softplus networks to prove the theoretical results. However, our findings also extend to more

general activation functions σ as long as σ is smooth and
∣∣(ReLU−σ)(l)(z)

∣∣ decays at least exponentially
as |z| → ∞ for l = 0, 1. This condition ensures that the rescaled version στ (·) := τ−1σ(τ ·) satisfies

similar properties to those in Lemma B.5. Consequently, all our results hold with only different absolute

constants. For example, our proof applies to GeLU, SiLU and Mish because the distances between ReLU

and these functions decay exponentially, including the derivatives of these distances.

Our analysis may also be extended to deep neural networks (DNNs). Regarding approximation error,

our proof shows that we only need to approximate the spectral Barron functions one order lower than the

eigenfunction using DNNs. Recent results in [45] provide further insights into this matter. For statistical

error, the covering number of shallow networks should be replaced by that of DNNs. The VC dimension

and the covering number of DNNs are well-established and can be found in [7]. While our focus here is on

the key challenges related to constrained approximation and generalization error bounds, the extension

to DNNs will be explored in future work. In all our numerical experiments, we use DNNs to leverage

their superior representation power.
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Figure 3 The neural network architecture combined with cut-off funcions. (Color online)

4 Numerical results

4.1 Deep Learning Model

In this section, we show several numerical experiments for (2.1) to demonstrate the effectiveness of

our method. Although the previous theoretical analysis mainly focused on shallow networks, which

only contain one hidden layer, we will use neural networks with more hidden layers for the numerical

experiments, as is common in most related works. The main reason for this choice is that training DNN

tends to be more efficient, and their numerical performance is usually superior to that of shallow networks.

Figure 3 shows the neural network architecture we used. The left part of our model consists of a fully

connected neural network with several hidden layers, each having the same width. We denote the number

of hidden layers by l and the width of each layer by m. In our experiments, we take l = 3 and m = 40,

resulting in a network with approximately 3, 500 parameters. The activation function used is σ = tanh,

and we vectorize σ(x) as σ̃(x), i.e., σ̃(x) = (σ(x1), σ(x2), . . . , σ(xm)).

The input layer maps the coordinates of the sampling points, from Rd to Rm. The output of the first

layer is given by r1 = σ̃(W1x + b1), where W1 ∈ Rm×d and b1 ∈ Rm. Subsequent hidden layers also

contain similar transformations, mapping values from Rm to Rm, and the output of the i-th layer is

represented by

ri = σ̃(Wiri−1 + bi), 2 ⩽ i ⩽ l,

where Wi ∈ Rm×m and bi ∈ Rm. The final layer on the left part is an output node, yielding a value given

by rl+1 = Wl+1rl + bl+1, where Wl+1 ∈ Rm, bl+1 ∈ R. The final output function u(x) is obtained by

multiplying the output of the left part network with a cut-off function u(x) = rl+1(x)ϕ(x). As mentioned

earlier, the cut-off function plays a key role in the architecture by ensuring the output function satisfies

the homogeneous Dirichlet boundary condition. Similar architectures appear in [31,36,39].

The complete set of parameters in our architecture is defined as θ: = {W1, . . . ,Wl+1, b1, . . . , bl+1}. In
each epoch, the loss function is computed using (2.5), and parameters are updated using the adaptive

moment estimation (ADAM) optimizer. This process is iterated over multiple epochs until the loss

function decreases to a sufficiently small value, indicating that the approximate eigenmodes have been

achieved. Initially, the learning rate is set to 5×10−3, and 1, 000 points are used to compute the empirical
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loss. To balance accuracy and efficiency, the learning rate is reduced to a quarter of its current value,

and the number of sampling points is doubled every 20, 000 epochs. Each eigenmode is derived through

parameter updates over 120, 000 epochs. Besides, when solving for the k-th eigenvalue (k ⩾ 2), we take

β = 4λk−1. This choice is sufficiently large to find the subsequent correct eigenvalue in these cases.

4.2 Regular potential

In the first test, we use the potential

V (x1, · · · , xd) =
1

d

d∑
i=1

cos(πxi + π), (4.1)

and test our method in Ω = (−1, 1)d. Since this potential function is essentially decoupled, we compute

the reference eigenmodes using the spectral method, as described in [33].

We test four different cut-off functions,

ϕa =

d∏
i=1

(1− x2i ), ϕb =

( d∑
i=1

1

1− x2i

)−1

, ϕc =

d∏
i=1

cos
(π
2
xi

)
, ϕd =

( d∑
i=1

1

cos(π2xi)

)−1

,

and the results are summarized in Table 1. All results indicate that our method provides satisfactory

solutions. Each of the four cut-off functions produce solutions with errors less than 6× 10−4 for the first

eigenvalue and less than 5 × 10−3 for at least the first 30 eigenvalues. Notably, the performance varies

slightly across different cut-off functions, with specific functions, such as ϕc, achieving errors of less than

1× 10−3 for the first 30 eigenvalues.

We also compare our results with the standard penalty method, which imposes the boundary conditions

in a soft manner. The loss function we used is

⟨u,Hu⟩H1×H−1

∥u∥2L2(Ω)

+ β

k−1∑
j=1

⟨u, ψj⟩2
∥u∥2L2(Ω)

+ γ
∥u∥2L2(∂Ω)

∥u∥2L2(Ω)

. (4.2)

It includes an additional boundary penalty term compared with (2.3). On the one hand, a small γ may

introduce considerable model error. On the other hand, using a large γ can enhance numerical accuracy,

but training will become more difficult and inefficient due to the rough loss landscape. To ensure a fair

comparison, we use the boundary penalty method with different hyperparameter γ.

For comparison, we set the cut-off function be the identity function in the network architecture and

keep the rest of the configurations the same as in the previous test. Table 2 demonstrates that the

boundary penalty method performs much worse than our method, with errors one or more orders of

magnitude larger than ours. Even with the optimal choice of the hyperparameter, γ = 500, the numerical

accuracy deteriorate rapidly, and the error for the tenth eigenvalue exceeds 1× 10−2. While taking other

hyperparameter γ, the error is larger than 1× 10−2 even for the first eigenvalue.

Next, we set d = 10 and evaluate our method in a higher-dimension scenario. In this case, the

smallest eigenvalue is unique, and the second to the eleventh eigenvalues are equal, followed by 45 equal

eigenvalues. Therefore, we choose to calculate only the first 15 eigenvalues. The cut-off functions ϕa and

ϕc are employed, while also using the boundary penalty method with a proper γ. As shown in Table 3,

our method outperforms the boundary penalty method. All calculations yield errors less than 1 × 10−2

for the first 15 eigenvalues, which is significantly less than that of the boundary penalty method. Notably,

the cut-off function ϕc seems to be the best for d = 10.

We summarize the previous results in Figure 4, which demonstrates that the proposed methods all

significantly outperform the penalty method in both cases, although the performance of different cut-off

functions may vary.
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Table 1 Estimates of the eigenvalues with potential (4.1) and d = 5, using different cut-off functions.

k = 1 k = 2 k = 3 k = 5 k = 10 k = 15 k = 30

Exact 11.8345 19.3369 19.3369 19.3369 26.8392 26.8392 34.3416

ϕa
Result 11.8379 19.3338 19.3394 19.3512 26.8583 26.8621 34.3886

Rel. error 2.87×10−4 1.60×10−4 1.29×10−4 7.40×10−4 7.12×10−4 8.53×10−4 1.37×10−3

ϕb
Result 11.8396 19.3588 19.3700 19.3784 26.9059 26.9130 34.5095

Rel. error 4.31×10−4 1.13×10−3 1.71×10−3 2.15×10−3 2.49×10−3 2.75×10−3 4.89×10−3

ϕc
Result 11.8343 19.3358 19.3382 19.3428 26.8474 26.8553 34.3702

Rel. error 1.69×10−5 5.69×10−5 6.72×10−5 3.05×10−4 3.06×10−4 6.00×10−4 8.33×10−4

ϕd
Result 11.8413 19.3533 19.3692 19.3714 26.8972 26.9095 34.4887

Rel. error 5.75×10−4 8.48×10−4 1.67×10−3 1.78×10−3 2.16×10−3 2.62×10−3 4.28×10−3

Table 2 Estimates of the eigenvalues with potential (4.1) and d = 5, using the boundary penalty method with different

parameters γ.

k = 1 k = 2 k = 3 k = 5 k = 10 k = 15 k = 30

γ Exact 11.8345 19.3369 19.3369 19.3369 26.8392 26.8392 34.3416

100
Result 11.3854 18.6194 18.6198 18.6323 25.9356 25.9711 33.3787

Rel. error 3.79×10−2 3.71×10−2 3.71×10−2 3.64×10−2 3.37×10−2 3.23×10−2 2.80×10−2

500
Result 11.8023 19.3761 19.3781 19.4148 27.2571 27.3496 35.4504

Rel. error 2.72×10−3 2.03×10−3 2.13×10−3 4.03×10−3 1.56×10−2 1.90×10−2 3.23×10−2

2000
Result 11.9934 19.8330 19.9228 20.0627 28.3052 28.6824 38.7467

Rel. error 1.34×10−2 2.57×10−2 3.03×10−2 3.75×10−2 5.46×10−2 6.87×10−2 1.28×10−1

10000
Result 12.4805 21.0279 21.2185 21.8146 30.5426 33.0487 45.7008

Rel. error 5.46×10−2 8.74×10−2 9.73×10−2 1.28×10−1 1.38×10−1 2.31×10−1 3.31×10−1

Table 3 Estimates of the eigenvalues with potential (4.1) and d = 10.

k = 1 k = 2 k = 3 k = 5 k = 11 k = 12 k = 15

Exact 24.1728 31.6250 31.6250 31.6250 31.6250 39.0772 39.0772

cut-off Result 24.2677 31.7994 31.8178 31.8693 31.9868 39.4044 39.4476

(ϕa) Rel. error 3.93×10−3 5.51×10−3 6.10×10−3 7.72×10−3 1.14×10−2 8.37×10−3 9.48×10−3

cut-off Result 24.1895 31.6329 31.6541 31.6633 31.711 39.2598 39.2898

(ϕc) Rel. error 6.91×10−4 2.50×10−4 9.20×10−4 1.21×10−3 2.72×10−3 4.67×10−3 5.44×10−3

penalty Result 20.6123 26.4801 26.5147 26.6332 26.7601 32.7747 32.9277

(γ = 20) Rel. error 1.47×10−1 1.63×10−1 1.62×10−1 1.58×10−1 1.54×10−1 1.61×10−1 1.87×10−1

penalty Result 25.7217 34.8861 34.9384 35.2846 37.4258 44.3579 45.8481

(γ = 100) Rel. error 6.41×10−2 1.03×10−1 1.05×10−1 1.16×10−1 1.83×10−1 1.35×10−1 1.73×10−1

penalty Result 31.7256 43.7200 43.9436 44.4301 49.7948 51.1777 54.2697

(γ = 500) Rel. error 3.12×10−1 3.82×10−1 3.90×10−1 4.05×10−1 5.75×10−1 3.10×10−1 3.89×10−1
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Figure 4 Relative error of the eigenvalues with potential (4.1). (Color online)
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4.3 Inverse square potential

In the last test, we use the inverse square potential

V (x, y, z) =
c2

x2 + y2 + z2
, (4.3)

and solve the three-dimensional Schrödinger eigenvalue problem. We compare our result with [61].

Let the domain be a unit ball, we take c = 1/3 and use the cut-off function ϕ(x, y, z) = 1−x2−y2−z2.
As presented in Table 4, the relative difference between these two methods for the first five eigenvalues is

less than 4×10−4. For the tenth eigenvalue, the highest eigenvalue provided in [61], the relative difference

remains around 1× 10−3.

We also test the method in a 3-dimensional ring, i.e., Ω = {(x, y, z) ∈ R3 | 1
2 ⩽

√
x2 + y2 + z2 ⩽ 1}

and take c = 1/2. The cut-off function is

ϕ(x, y, z) =

(
1− x2 − y2 − z2

)(
x2 + y2 + z2 − 1

4

)
. (4.4)

We report the results in Table 5, which keep the difference of the first nine eigenvalues less than 2×10−3.

Table 4 Estimates of the eigenvalues with potential (4.3) in a unit ball.

k = 1 k = 2 k = 3 k = 5 k = 10

Our 10.7873 20.6167 20.6184 33.5391 41.4362

[61] 10.7836 20.6206 20.6206 33.5352 41.3859

Rel. diff. 3.43×10−4 1.89×10−4 1.07×10−4 1.16×10−4 1.22×10−3

Table 5 Estimates of the eigenvalues with potential (4.3) in a three-dimensional ring.

k = 1 k = 2 k = 3 k = 5 k = 9

Our 40.0149 43.7195 43.7281 51.1062 51.1355

[61] 39.9433 43.6545 43.6545 51.0341 51.0341

Rel. diff. 1.79×10−3 1.49×10−3 1.69×10−3 1.41×10−3 1.99×10−3

5 Oracle inequality for the generalization error

In this section, we introduce an oracle inequality for the empirical loss. As a preparation, we firstly

introduce concentration inequalities for ratio-type suprema of empirical processes. The study of ratio

type empirical processes has a long history that goes back to the 1970s-1980s when certain classical

function classes {1(−∞,t] : t ∈ R} have been explored in great detail [67] and Alexander extended this

theory to ratio type empirical processes indexed by VC classes of sets [2,3] in the late 1980s. Thereafter,

there has been a great deal of work on the development of ratio type inequalities, primarily, in more

specialized contexts of nonparametric statistics [24,52] and learning theory [8].

5.1 Concentration inequalities for normalized empirical processes

Let Fbe a class of real valued measurable functions2) taking values in [0, 1]. Let X, X1, X2, . . . be i.i.d.

random variables with distribution P. We denote by Pn := n−1
∑n

i=1 δXi
the empirical measure based

on the sample (X1, . . . , Xn). Let Pf = Ef(X) and VarP(f) = Pf2 − (Pf)2. Suppose that σP(f) is

defined such that

VarP(f) ⩽ σ2
P(f) ⩽ 1, f ∈ F.

2) In order to avoid measurability problems, we shall assume that the supremum over the class F or over any of the

subclasses we consider is in fact a countable supremum. In this case we say that the class F is measurable.
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In particular, σP(f) may be the standard deviation itself or equal to
√Pf because f takes values in [0, 1].

Here, we present concentration inequalities for the supremum of the normalized empirical process

sup
f∈F,σP(f)>r

|Pnf − Pf |
σ2
P(f)

for some properly chosen cutoff r ∈ (0, 1). Define the random variable

∥Pn − P∥F := sup
f∈F

|Pnf − Pf | = sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f (Xi)−Ef(X)

∣∣∣∣∣ ,
which measures the absolute deviation between the sample average Pnf and the population average Pf ,
uniformly over the class F. For 0 < r < s, we define

F(r) := {f ∈ F : σP(f) ⩽ r} and F(r, s] := F(s)\F(r).

For q > 1 and r < s ⩽ rql with l ∈ N, let ρj := rqj and define3)

KF
n,q(r, s] := max

1⩽j⩽l

E ∥Pn − P∥F(ρj−1,ρj ]

ρ2j−1

. (5.1)

We recall a concentration inequality proved in [27, Lemma 2] when σP(f) =
√Pf .

Lemma 5.1. [27, Lemma 2] For t > 0,

P

{
sup

f∈F(r,s]

∣∣∣∣Pnf

Pf − 1

∣∣∣∣ ⩾ Kn,q(r, s] +

√
2t

nr2
(q2 + 2Kn,q(r, s]) +

t

3nr2

}
⩽

q2

q2 − 1

q

t
e−t/q.

Proceeding along the same line that leads to [27, Lemma 2] , we may extend the above result to the

more general σP(f). The proof is quite straightforward, and we omit the details.

Lemma 5.2. For t > 0,

P

{
sup

f∈F(r,s]

|Pnf − Pf |
σ2
P(f)

⩾ Kn,q(r, s] +

√
2t

nr2
(q2 + 2Kn,q(r, s]) +

t

3nr2

}
⩽

q2

q2 − 1

q

t
e−t/q.

Define Kn(F, r) := KF
n,

√
2
(r, 1]. It follows from Lemma 5.2 that we deduce

Lemma 5.3. For 0 < δ < 2/e, with probability at least 1− δ,

sup
f∈F,σP(f)>r

|Pnf − Pf |
σ2
P(f)

< 2Kn(F, r) +
5

2

√
ln(2/δ)

nr2
+

2 ln(2/δ)

nr2
.

Proof. Recall that σP(f) ⩽ 1. Taking s = 1, q =
√
2 and t =

√
2 ln(2/δ) in Lemma 5.2, we obtain

q2

q2 − 1

q

t
e−t/q =

δ

ln(2/δ)
< δ,

and with probability at least 1− δ,

sup
f∈F(r,1]

|Pnf − Pf |
σ2
P(f)

< Kn(F, r) + 2

√
t

nr2
Kn(F, r) + 2

√
t

nr2
+

t

3nr2

⩽ 2Kn(F, r) + 2

√√
2 ln(2/δ)

nr2
+

4
√
2 ln(2/δ)

3nr2

⩽ 2Kn(F, r) +
5

2

√
ln(2/δ)

nr2
+

2 ln(2/δ)

nr2
,

which completes the proof.

3) When there is no ambiguity, we omit the superscript F of K.
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5.2 Oracle inequality for the generalization error

Let F be some hypothesis class and 0 < r < 1/2. We minimize Lk,n(u) over F>r = {u ∈ F : E2(u) > r2}
with a minimizer un = argminu∈F>r

Lk,n(u). We aim to bound the energy excess Lk(un)− λk. For any

uF ∈ F>r, we write

Lk (un)− λk = Lk (un)− Lk,n (un) + Lk,n (un)− Lk,n (uF )

+ Lk,n (uF )− Lk (uF ) + Lk (uF )− λk.
(5.2)

Note that Lk,n (un)− Lk,n (uF ) ⩽ 0 because un is the minimizer of Lk,n (u). Therefore,

Lk (un)− λk ⩽
(
Lk(un)− Lk,n(un)

)
+
(
Lk,n (uF )− Lk (uF )

)
+
(
Lk (uF )− λk

)
=: T1 + T2 + T3,

(5.3)

where T1 is the statistical error arising from the random approximation of the integrands, T2 is the Monte

Carlo error and T3 is the approximation error due to restricting the minimizing Lk(u) over F>r instead

of H1
0 (Ω).

Bounding T1: We firstly decompose T1 as

T1 ⩽

∣∣∣∣En,V (un)

En,2 (un)
− EV (un)

E2 (un)

∣∣∣∣+ ∣∣∣∣En,P (un)

En,2 (un)
− EP (un)

E2 (un)

∣∣∣∣
⩽

∣∣∣∣En,V (un)

EV (un)

E2 (un)
En,2 (un)

−1

∣∣∣∣ EV (un)

E2 (un)
+

EP (un) |E2 (un)−En,2 (un)|
E2 (un) En,2 (un)

+
|En,P (un)−EP (un)|

En,2 (un)
=: T11 + T12 + T13.

To bound T11, T12 and T13, we define

G1: =
{
g | g = u2 where u ∈ F

}
,

G2: =
{
g | g = |∇u|2 + V |u|2 where u ∈ F

}
,

Fj : = {g | g = uψj where u ∈ F} for j = 1, 2, . . . , k − 1.

(5.4)

We assume that the set F satisfies supu∈F ∥u∥L∞(Ω) ⩽ MF so that supg∈G1
∥g∥L∞(Ω) ⩽ M2

F . Assume

further that supg∈G2
∥g∥L∞(Ω) ⩽MG2

and ∥ψj∥L∞(Ω) ⩽ µj for each j. So supg∈Fj
∥g∥L∞(Ω) ⩽ µjMF . In

what follows, we shall derive the high probability bounds for T11, T12 and T13 by Lemma 5.3. To this

end, we rescale the function classes G1, G2 and Fj so that their elements take values in [0, 1].

We firstly derive a high probability bound for En,2 (un) /E2 (un). For the rescaled set G1/M
2
F
4), we take

σP(f) =
√Pf and for n ∈ N and 0 < δ < 1/3, define

ξ1(n, r, δ): = 2Kn(G1/M
2
F , r/MF ) +

5MF
2

√
ln(2/δ)

nr2
+

2M2
F ln(2/δ)

nr2
, (5.5)

and the event

A1(n, r, δ): =

{
sup

u∈F,E2(u)>r2

∣∣∣∣En,2 (u)E2 (u)
− 1

∣∣∣∣ < ξ1(n, r, δ)

}
.

Applying Lemma 5.3 to G1/M
2
F , we get

P [A1(n, r, δ)] ⩾ 1− δ. (5.6)

Recall that E2(un) > r2. So if ξ1(n, r, δ) < 1, then, on the event A1(n, r, δ),

T12 ⩽
ξ1(n, r, δ)

1− ξ1(n, r, δ)

EP (un)

E2 (un)
. (5.7)

4) In this paper, aF+ b := {af + b : f ∈ F} where F is a set of functions and a, b ∈ R are some constants.
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To bound T11, it follows from E2(u) > r2 that EV (u) > λ1r
2. For the rescaled set G2/MG2 , we take

σP(f) =
√Pf and define

ξ2(n, r, δ): = 2Kn(G2/MG2 , r
√
λ1/MG2) +

5

2

√
MG2

ln(2/δ)

nλ1r2
+

2MG2
ln(2/δ)

nλ1r2
. (5.8)

Define the event

A2(n, r, δ): =

{
sup

u∈F,EV (u)>λ1r2

∣∣∣∣En,V (u)

EV (u)
− 1

∣∣∣∣ < ξ2(n, r, δ)

}
.

Applying Lemma 5.3 to G2/MG2 , we obtain

P [A2(n, r, δ)] ⩾ 1− δ. (5.9)

Therefore, if ξ1(n, r, δ) < 1, then, on the event A1(n, r, δ) ∩A2(n, r, δ), there holds

T11 ⩽

(
1 + ξ2(n, r, δ)

1− ξ1(n, r, δ)
− 1

) EV (un)

E2 (un)
=
ξ1(n, r, δ) + ξ2(n, r, δ)

1− ξ1(n, r, δ)

EV (un)

E2 (un)
. (5.10)

To bound T13, we rescale Fj to Fj/ (2µjMF ) + 1/2. For any g ∈ Fj , g = uψj ,

Var

(
g

2µjMF
+

1

2

)
⩽

1

4
E

∣∣∣∣ uψj

µjMF

∣∣∣∣2 ⩽
1

4
E

∣∣∣∣ uψj

µjMF

∣∣∣∣ ⩽ ∥u∥L2(Ω)

4µjMF
,

where we have used |uψj | ⩽ µjMF in the second inequality and the fact ∥ψj∥L2(Ω) = 1 in the last

inequality. Therefore, we may take

σ2
P(f) =

∥u∥L2(Ω)

4µjMF
for any f :=

uψj

2µjMF
+

1

2
∈ (2µjMF )

−1Fj +
1

2
. (5.11)

Note that E2(u) > r2 implies ∥u∥L2(Ω) > r. For all 1 ⩽ j ⩽ k − 1, we define

ξ3,j(n, r, δ) := 2Kn

( Fj

2µjMF
+

1

2
,

√
r

4µjMF

)
+ 5

√
µjMF ln(2k/δ)

nr
+

8µjMF ln(2k/δ)

nr
,

and ξ3(n, r, δ): = max1⩽j⩽k−1 ξ3,j(n, r, δ). Notice that for f ∈ (2µjMF )
−1 Fj + 1/2,

sup
σP(f)>

√
r/4µjMF

|Pnf − Pf |
σ2
P(f)

= sup
u∈F,∥u∥L2(Ω)>r

2 |Pn (uψj)− ⟨u, ψj⟩|
∥u∥L2(Ω)

.

For each 1 ⩽ j ⩽ k − 1, we define the events

A3,j(n, r, δ) :=

{
sup

u∈F,∥u∥L2(Ω)>r

2 |Pn (uψj)− ⟨u, ψj⟩|
∥u∥L2(Ω)

< ξ3,j(n, r, δ)

}
,

andA3(n, r, δ): =
⋂k−1

j=1 A3,j(n, r, δ).Applying Lemma 5.3 to (2µjMF )
−1 Fj+1/2, we getP [A3,j(n, r, δ)] ⩾

1− δ/k. Hence,

P [A3(n, r, δ)] ⩾ 1− δ

k
(k − 1) ⩾ 1− δ. (5.12)

Using a2 − b2 = (a− b)2 + 2b(a− b) for a, b ∈ R, on event A3(n, r, δ), we obtain

|En,P (un)−EP (un)|
βE2 (un)

⩽
k−1∑
j=1

[
|Pn (unψj)− P (unψj)|2

∥un∥2L2(Ω)

+
2 |⟨un, ψj⟩|
∥un∥L2(Ω)

|Pn (unψj)− P (unψj)|
∥un∥L2(Ω)

]

⩽
k−1∑
j=1

[
ξ23,j
4

+ ξ3,j
|⟨un, ψj⟩|
∥un∥L2(Ω)

]

⩽
k−1∑
j=1

ξ23,j
4

+

k−1∑
j=1

ξ23,j

1/2k−1∑
j=1

|⟨un, ψj⟩|2

∥un∥2L2(Ω)

1/2

⩽
k

4
ξ3(n, r, δ)

2 +
√
kξ3(n, r, δ).

(5.13)
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Hence, on event A1(n, r, δ) ∩A3(n, r, δ), if ξ1(n, r, δ) < 1, then

T13 =
E2 (un)
En,2 (un)

|En,P (un)− EP (un)|
E2 (un)

⩽
β

1− ξ1

(
k

4
ξ23 +

√
kξ3

)
. (5.14)

It follows from (5.7), (5.10) and (5.14) that if ξ1(n, r, δ) < 1, then, within event
⋂3

i=1Ai(n, r, δ), we obtain

T1 ⩽
ξ1 + ξ2
1− ξ1

EV (un)

E2 (un)
+

ξ1
1− ξ1

EP (un)

E2 (un)
+

β

1− ξ1

(
k

4
ξ23 +

√
kξ3

)
⩽
ξ1 + ξ2
1− ξ1

Lk (un) +
β

1− ξ1

(
k

4
ξ23 +

√
kξ3

)
,

(5.15)

while it follows from (5.6), (5.9) and (5.12) that

P [A1(n, r, δ) ∩A2(n, r, δ) ∩A3(n, r, δ)] ⩾ 1− 3δ. (5.16)

Bounding T2. Similar to bounding T1, it follows from ∥uF∥L2(Ω) > r that if ξ1(n, r, δ) < 1, then,

within event
⋂3

i=1Ai(n, r, δ), we get

T2 ⩽
ξ1 + ξ2
1− ξ1

Lk (uF ) +
β

1− ξ1

(
k

4
ξ23 +

√
kξ3

)
. (5.17)

Bounding T3. A combination of the bounds (5.3), (5.15) and (5.17) leads to

Lk (un)− λk ⩽
ξ1 + ξ2
1− ξ1

(Lk (un)− λk) +
1 + ξ2
1− ξ1

(Lk (uF )− λk) + 2λk
ξ1 + ξ2
1− ξ1

+
2β

1− ξ1

(
k

4
ξ23 +

√
kξ3

)
.

If 2ξ1 + ξ2 < 1, then

Lk (un)− λk ⩽
(1 + ξ2) (Lk (uF )− λk) + 2λk (ξ1 + ξ2) + β

(
kξ23/2 + 2

√
kξ3

)
1− 2ξ1 − ξ2

.

Combining the above estimate with (5.16), we obtain

Theorem 5.4. Let un = argminu∈F>r
Lk,n(u), 0 < δ < 1/3 and let {ξi(n, r, δ)}3i=1 be defined in (5.5),

(5.8), (5.2), respectively. Assume that 2ξ1 + ξ2 ⩽ 1/2 and uF ∈ F>r. Then, with probability at least

1− 3δ,

Lk (un)− λk ⩽ 4λk (ξ1 + ξ2) + β
(
kξ23 + 4

√
kξ3

)
+ 3 (Lk (uF )− λk) .

6 Approximation theorem for sine spectral Barron functions

In this section, we study the properties of the sine spectral Barron functions on the hypercube as well as

the neural network approximation.

6.1 Preliminaries

We start with some preliminary results about the sine functions S = {Φk}k∈Nd
+
. It is clear that the

set S forms an orthogonal basis of L2(Ω) and H1
0 (Ω). Given u ∈ L2(Ω), let {û(k)}k∈Nd

+
be the Fourier

coefficients of u against the basis {Φk}k∈Nd
+
, hence

u(x) =
∑
k∈Nd

+

û(k)Φk(x) and ∥u∥2L2(Ω) =
∑
k∈Nd

+

2−d|û(k)|2,

where we have used ⟨Φk,Φk⟩L2(Ω) = 2−d. A straightforward calculation yields that for u ∈ H1
0 (Ω),

∥u∥2H1(Ω) =
∑
k∈Nd

+

2−d
(
1 + π2|k|2

)
|û(k)|2.
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Lemma 6.1. The following embedding hold:

B0(Ω) ↪→ L∞(Ω) and B2(Ω) ↪→ H1
0 (Ω).

We postpone its proof to Appendix B.1.

6.2 Sine Spectral Barron Space and the Neural Network Approximation

The main results in this part are summarized in the following two propositions.

Proposition 6.2. Assume that u ∈ Bs+1(Ω) for some s ⩾ 0. Then, u/φ admits the representation

u(x)

φ(x)
=

∑
(k,i)∈Γ

v̂(k, i) cos (kiπxi)
∏

1⩽j⩽d
j ̸=i

sin (kjπxj) , (6.1)

where Γ =
{
(k, i) | k ∈ Nd

0, 1 ⩽ i ⩽ d, (k + ei) ∈ Nd
+

}
and ei is the i-th canonical basis.

Moreover, the coefficients v̂(k, i) satisfy∑
(k,i)∈Γ

(1 + πs|k|s1) |v̂(k, i)| ⩽ ∥u∥Bs+1(Ω). (6.2)

Roughly speaking, the above result indicates that u/φ lies in a spectral Barron space of one order

lower than u. Using this proposition, we may prove a preliminary H1 approximation result for functions

in the sine spectral Barron space. Denote by conv(G) the convex hull of a set G, and denote by G the

H1-closure of G. Let

Γ1 =
{
k ∈ Zd | ∃1 ⩽ i ⩽ d, ((|k1|, |k2|, · · · , |kd|), i) ∈ Γ

}
.

Note that k ∈ Γ1 if and only if k has at most one zero component.

Proposition 6.3. For s ⩾ 0, define

Fs(B) :=

{
γ

1 + πs|k|s1
f(π(k · x+ b)) | |γ| ⩽ B, b ∈ {0, 1}, k ∈ Γ1

}
,

where f(x) = cosx if d is odd and f(x) = sinx if d is even. Then, for any u ∈ Bs+1(Ω) with s ⩾ 1,

u ∈ conv(φFs(Bu)) with Bu = ∥u∥Bs+1(Ω) and there exists vm which is a convex combination of m

functions in Fs(Bu) such that

∥u− φvm∥H1(Ω) ⩽

√
6

m
Bu.

When d > 1, the constant
√
6 may be replaced by 2.

We postpone the proof of Proposition 6.2 and Proposition 6.3 to Appendix B.3. We exploit the seminal

result for nonlinear approximation known as Maurey’s method to prove the approximation bounds.

Lemma 6.4. [6,55] If f̄ is in the closure of the convex hull of a set G in a Hilbert space, with ∥g∥ ⩽ b

for each g ∈ G, then for every m ⩾ 1, there is an fm in the convex hull of m points in G such that

∥∥f̄ − fm
∥∥2 ⩽

b2

m
.

6.3 Reduction to ReLU and Softplus Activation Functions

We have found that if u ∈ Bs+1 with s ⩾ 1, u lies in the bounded set conv(φFs(Bu)) ⊂ H1(Ω) with

Bu = (1 + 2/π) ∥u∥Bs+1 . Define the function classes

FReLU(B) := {c+ γ ReLU(w · x− t) | |c| ⩽ B, |w|1 = 1, |t| ⩽ 1, |γ| ⩽ 4B} ,
FSPτ (B): = {c+ γSPτ (w · x− t) | |c| ⩽ B, |w|1 = 1, |t| ⩽ 1, |γ| ⩽ 4B} .

(6.3)
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In this subsection, we aim to prove that each function in φFs(B) lies in conv(φFReLU(B)) and

conv(φFSPτ (B)) when s ⩾ 2, which together with Lemma 6.4 yields Theorem 3.1 and Theorem 3.2.

By Lemma B.2, to prove φFs(B) lies in conv(φFReLU(B)) and conv(φFSPτ
(B)), one only needs to

show Fs(B) lies in conv(FReLU(B)) and conv(FSPτ
(B)), respectively. Notice that every function in Fs(B)

is a composition of a function g defined on [−1, 1] by

g(z) =


γ

1+πs|k|s1
cos(π(|k|1z + b)), d is odd,

γ
1+πs|k|s1

sin(π(|k|1z + b)), d is even,
(6.4)

where k ∈ Γ1, |γ| ⩽ B, b ∈ {0, 1}, and a linear function z = w ·x with w = k/|k|1 or z = x1 in case k = 0.

When s ⩾ 2, it is clear that g ∈ C2([−1, 1]) and g satisfies

∥g(r)∥L∞([−1,1]) ⩽ |γ| ⩽ B, for r = 0, 1, 2.

The uniform boundness of ∥g∥W 2,∞([−1,1]) for all k is key to the proof. In addition, we observe that

g′(0) = 0 if d is odd and g′( 1
2|k|1 ) = 0 if d is even. Proceeding along the same line as [47, Section 4.3], we

prove that functions in Fs(B) can be well approximated by two-layer ReLU networks. Compared with

[47, Lemma 4.5], Lemma 6.5 handles both sine and cosine cases.

Lemma 6.5. Let g ∈ C2([−1, 1]) with
∥∥g(r)∥∥

L∞([−1,1])
⩽ B for r = 0, 1, 2. Assume that g′(ρ) = 0 for

some ρ ∈ [0, 1/2]. Let {zj}2mj=0 be a partition of [−1, 1] with z0 = −1, zm = ρ, z2m = 1 and zj+1 − zj =

h1 = (ρ+1)/m for each j = 0, · · · ,m− 1; zj+1− zj = h2 = (1− ρ)/m for each j = m, · · · , 2m− 1. Then

there exists a two-layer ReLU network

gm(z) = c+

2m∑
i=1

ai ReLU (ϵiz − bi) , z ∈ [−1, 1] (6.5)

with c = g(ρ), bi ∈ [−1, 1] and ϵi ∈ {±1}, i = 1, · · · , 2m, such that

∥g − gm∥W 1,∞([−1,1]) ⩽
2B

m
. (6.6)

Moreover, we have |c| ⩽ B, |ai| ⩽ 2Bh1 if i < m, |am| ⩽ Bh1, |am+1| ⩽ Bh2 and |ai| ⩽ 2Bh2 if i > m+1

so that
∑2m

i=1 |ai| ⩽ 4B.

Given Proposition 6.3 and Lemma 6.5, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Proposition 6.3, for any u ∈ Bs(Ω) with s ⩾ 3, u ∈ conv(φFs−1(Bu)) with

Bu = ∥u∥Bs(Ω). Since s − 1 ⩾ 2, a combination of Lemma 6.5 and Lemma B.2 yields that the set

φFs−1(Bu) lies in the H1-closure of conv(φFReLU(Bu)). Hence, u ∈ conv(φFReLU(Bu)). Notice that

when |w|1 = 1, for constants a, b ⩾ 0,

∫
Ω

(a+ bw · x)2 dx = a2 + ab

d∑
i=1

wi + b2

1

3

d∑
i=1

w2
i +

1

4

∑
i ̸=j

wiwj


⩽ a2 + ab|w|1 + b2

(
1

4
|w|21 +

1

12
|w|22

)
⩽ a2 + ab+ b2/3.

(6.7)

By (6.7), for each v ∈ FReLU(B), we get

∥v∥2L2(Ω) ⩽
∫
Ω

[B + 4B(w · x+ 1)]
2
dx ⩽ 51B2.

Since |v(x)| ⩽ (5 + 4w · x)B, ∥∇v∥L∞(Ω) ⩽ |γ| ⩽ 4B, by Lemma B.1 and the inequality (6.7), we obtain

∥∇(φv)∥2L2(Ω) ⩽
∫
Ω

(|∇φ| |v|+ φ |∇v|)2 dx ⩽ B2

∫
Ω

[π(5 + 4w · x) + 4]
2
dx ⩽ 689B2.
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Hence, ∥φv∥2H1(Ω) ⩽ 740B2. Therefore, the H1-norm of each function in φFReLU(B) can be bounded by

28B. Theorem 3.1 follows immediately from Lemma 6.4.

Lemma 6.6 shows that functions in Fs(B) are also well approximated by two-layer Softplus networks.

Lemma 6.6. Under the same assumption of Lemma 6.5, there exists

gτ,m(z) = c+

2m∑
i=1

aiSPτ (ϵiz − bi) , z ∈ [−1, 1] (6.8)

with τ > 0, c = g(ρ), bi ∈ [−1, 1] and ϵi ∈ {±1}, i = 1, · · · , 2m such that

∥g − gτ,m∥W 1,∞([−1,1]) ⩽ 4Bτ−1(1 + τ−1). (6.9)

Moreover, the bounds for |c|, |ai| and
∑2m

i=1 |ai| are valid as in Lemma 6.5.

Now we are ready to prove Theorem 3.2. It follows from (B.8c) that

sup
f∈FSPτ (B)

∥f∥H1(Ω) ⩽ B + 4B ∥SPτ∥W 1,∞([−2,2]) ⩽ 13B + 4Bτ−1. (6.10)

Proof of Theorem 3.2. According to Proposition 6.3, for any u ∈ Bs(Ω) with s ⩾ 3, u ∈
conv(φFs−1(B)) with B = ∥u∥Bs(Ω). Note that each function in Fs−1(B) with s ⩾ 3 is a composition

of the multivariate linear function z = w · x with |w|1 = 1 and the univariate function g(z) defined

in (6.4) such that g′(ρ) = 0 for some ρ ∈ [0, 1/2] and
∥∥g(r)∥∥

L∞([−1,1])
⩽ B for r = 0, 1, 2. By

Lemma 6.6, such g may be approximated by gτ,m which lies in the convex hull of the set of functions

{c+ γSPτ (ϵz − b) : |c|⩽B, ϵ∈{±1}, |b|⩽1, γ ⩽ 4B} . Moreover, ∥g − gτ,m∥W 1,∞([−1,1]) ⩽ 4B(1 + τ)/τ2.

As a consequence, we have

∥g(w · x)− gτ,m(w · x)∥H1(Ω) ⩽ ∥g − gτ,m∥W 1,∞([−1,1]) ⩽ 4Bτ−1(1 + τ−1).

By Lemma B.2, there exists a function vτ in the convex hull of FSPτ
(B) such that

∥u− φvτ∥H1(Ω) ⩽ 4
√
21Bτ−1(1 + τ−1).

Thanks to Lemma 6.4 and the bound (6.10), there exists vm ∈ FSPτ ,m(B), which is a convex combination

of m functions in FSPτ (B) such that

∥φvτ − φvm∥H1(Ω) ⩽
√
21 ∥vτ − vm∥H1(Ω) ⩽

√
21

m
B
(
13 + 4τ−1

)
,

where the first inequality follows from Lemma B.2.

Combining the last two inequalities and setting τ = 9
√
m, we obtain (6.9).

6.4 Bounding the approximation error

The following theorem bounds the approximation error in (5.3) when F = φFSPτ ,m. We postpone the

proof of Theorem 6.7 to Appendix B.5.

Theorem 6.7. Under Assumptions 2.1 and 3.3, let Bu∗ = ∥u∗∥Bs and vm ∈ FSPτ ,m (Bu∗) be defined

in Theorem 3.2. Assume in addition that η (Bu∗ ,m) := 64Bu∗/
√
m ⩽ 1/2. Then,

Lk(φvm)− Lk(u
∗) ⩽ (3max {1, Vmax}+ 7λk + 5β) η (Bu∗ ,m) .

7 Statistical error

By Theorem 5.4, in order to bound the statistical error, we need to control

Kn

( G1

M2
F
,
r

MF

)
, Kn

(
G2

MG2

, r

√
λ1
MG2

)
and Kn

( Fj

2µjMF
+

1

2
,

√
r

4µjMF

)
, 1 ⩽ j ⩽ k − 1. (7.1)
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To this end, we firstly bound the covering numbers of the properly rescaled function classes in §7.1.
Secondly, we derive inequalities to bound the quantity Kn,q(r, s] defined in (5.1) with respect to covering

numbers in §7.2. Finally, we obtain the bounds for the quantities in (7.1).

7.1 Bounding the covering numbers

For fixed positive constants C, Γ, W and T , we consider the set of two-layer neural networks

F̃m =

{
vθ(x) = c+

m∑
i=1

γiϕ (wi · x+ ti) : x ∈ Ω, |c| ⩽ C,

m∑
i=1

|γi| ⩽ Γ, |wi|1 ⩽W, |ti| ⩽ T

}
, (7.2)

where ϕ is the activation function, θ = (c, {γi}mi=1 , {wi}mi=1 , {ti}
m
i=1) denotes the parameters of the two-

layer neural network. Denote the parameter space

Θ = Θc ×Θγ ×Θw ×Θt = [−C,C]×Bm
1 (Γ)×

(
Bd

1 (W )
)m × [−T, T ]m.

We consider the set Θ endowed with the metric ρ defined for θ = (c, γ, w, t), θ′ = (c′, γ′, w′, t′) in Θ by

ρΘ (θ, θ′) = max
{
|c− c′| , |γ − γ′|1 ,max

i
|wi − w′

i|1 , ∥t− t′∥∞
}
. (7.3)

Assume that ϕ satisfies the following assumption, which is valid for the Softplus activation function.

Assumption 7.1. ϕ ∈ C2(R) and ϕ (resp. ϕ′, the derivative of ϕ) is L-Lipschitz (resp. is L′-Lipschitz)
for some L, L′ > 0. Moreover, there exist positive constants ϕmax and ϕ′max such that

sup
w∈Θw,t∈Θt,x∈Ω

|ϕ(w · x+ t)| ⩽ ϕmax and sup
w∈Θw,t∈Θt,x∈Ω

|ϕ′(w · x+ t)| ⩽ ϕ′max.

Example 7.2. Let Θw =
(
Bd

1 (1)
)m

and Θt = [−1, 1]m. It is clear that
∥∥SP′

τ

∥∥
L∞(R) ⩽ 1 and∥∥SP′′

τ

∥∥
L∞(R) ⩽ τ , hence SPτ satisfies Assumption 7.1 with

L = ϕ′max = 1, L′ = τ, and ϕmax ⩽ 2 + 1/τ. (7.4)

Example 7.3. The activation function tanh satisfies Assumption 7.1 with

L = ϕ′max = 1, L′ = 4
√
3/9 and ϕmax = 1.

Let (E, ρ) be a metric space with metric ρ. A δ-cover of a set A ⊂ E with respect to ρ is a collection

of points {x1, · · · , xn} ⊂ A such that for every x ∈ A, there exists i ∈ {1, · · · , n} such that ρ (x, xi) ⩽ δ.

The δ-covering number N (δ, A, ρ) is the cardinality of the smallest δ cover of the set A with respect to

the metric ρ. Equivalently, the δ-covering number N (δ, A, ρ) is the minimal number of balls Bρ(x, δ) of

radius δ required to cover A.

Let Q be any probability measure on Ω and ∥g∥∗ = supx∈Ω |g(x)|. Define

G1
m :=

{
g : Ω → R

∣∣∣ g = φ2v2θ where vθ ∈ F̃m

}
,

G2
m :=

{
g : Ω → R

∣∣∣ g = |∇ (φvθ) |2 + V φ2v2θ where vθ ∈ F̃m

}
,

G3
m :=

{
g : Ω → R

∣∣∣ g = φψvθ where vθ ∈ F̃m

}
.

Thanks to Assumption 7.1,

max
θ∈Θ

∥vθ∥∗ ⩽ |c|+
m∑
i=1

|γi| sup
wi∈Θw,ti∈Θt,x∈Ω

|ϕ (wi · x+ ti)| ⩽ C + Γϕmax, (7.5)

max
θ∈Θ

∥|∇vθ|∥∗ ⩽
m∑
i=1

|γi| |wi| sup
wi∈Θw,ti∈Θt,x∈Ω

|ϕ′ (wi · x+ ti)| ⩽ ΓWϕ′max.
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Since |∇ (φvθ) | ⩽ |φ| |∇vθ|+ |vθ| |∇φ| and 0 ⩽ V ⩽ Vmax,

sup
g∈G2

m

∥g∥∗ ⩽ [ΓWϕ′max/d+ π (C + Γϕmax)]
2
+ Vmax (C + Γϕmax)

2
d−2. (7.6)

The next proposition provides upper bounds for N
(
δ,Gi

m/Mi, ∥ · ∥L2(Q)

)
, where {Mi}3i=1 are certain

scaling parameters. Given C, Γ, W and T in (7.2), as in [47], we define

M(δ,Λ,m, d) :=
2CΛ

δ

(
3ΓΛ

δ

)m(
3WΛ

δ

)dm(
3TΛ

δ

)m

.

Proposition 7.4. If 0 ⩽ V ⩽ Vmax and ϕ satisfies Assumption 7.1, then for i = 1, 2, 3,

N
(
δ,Gi

m/Mi, ∥ · ∥L2(Q)

)
⩽ M (δ,Λi/Mi,m, d) ,

where

Λ1 := 2 (C + Γϕmax) (1 + ϕmax + 2LΓ) /d2,

Λ2 := 2 [ΓWϕ′max/d+ π (C+Γϕmax)]
[(

(W+Γ)ϕ′max + 2ΓWL′
)
/d+ π (1+ϕmax+2LΓ)

]
+ 2Vmax (C + Γϕmax) (1 + ϕmax + 2LΓ) ,

Λ3 := ∥ψ∥L2(Q) (1 + ϕmax + 2LΓ) /d.

The proof is postponed to Appendix C.1.

7.2 Estimates of the expectation of suprema of empirical processes

Let {ϵi}∞i=1 be independent Rademacher variables5) independent from {Xi}∞i=1, and let F ⩾ supf∈F |f |
be a measurable envelope of the function class F. Here, we call Fa VC class if there exist some finite A ⩾
3
√
e and v ⩾ 1 such that for all probability measures Q and 0 < τ < 1, N

(
τ∥F∥L2(Q),F, ∥ · ∥L2(Q)

)
⩽

(A/τ)
v
. We firstly recall the following fundamental lemma.

Lemma 7.5. [25, Proposition 2.1] Let F be a measurable uniformly bounded VC class. Let U ⩾
supf∈F∥f∥L∞ and σ2 ⩾ supf∈FEPf2 be such that 0 < σ ⩽ U . Then there exists a universal constant C

such that for all n ∈ N,

E

∥∥∥∥∥
n∑

i=1

ϵif (Xi)

∥∥∥∥∥
F

⩽ C

[
vU ln

AU

σ
+ σ

√
vn ln

AU

σ

]
.

To bound E ∥Pn − P∥F with F a subset of a rescaled class Gi
m/Mi (1 ⩽ i ⩽ 3) in §7.1, we need the

following lemma, whose proof is deferred to Appendix C.2.

Lemma 7.6. Let F be a class of real valued measurable functions taking values in [−1, 1]. Let F ⩽ 1

be a measurable envelope of F and supf∈FVarP f ⩽ σ2 ⩽ 1. Assume that for all 0 < τ < 1, there exists

a universal net {fi}Mi=1 for all probability measures Q such that M ⩽ (A/τ)
v
and for any f ∈ F,

min
1⩽i⩽M

∥f − fi∥L2(Q) ⩽ τ∥F∥L2(Q).

Then, there exists a universal C such that for all n ∈ N,

E ∥Pn − P∥F ⩽ C

(
v

n
ln
A

σ
+ σ

√
v

n
ln
A

σ

)
.

Remark 7.7. If F⊂ Gi
m/Mi (1 ⩽ i ⩽ 3), then the universal nets exist due to Proposition C.1 and the

procedure by which we control the covering numbers. The universal nets correspond to the nets for the

parameter space Θ.

5) A Rademacher variable ϵ is one that satisfies P(ϵ = 1) = P(ϵ = −1) = 1/2.
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Recall KF
n,q(r, s] defined in (5.1) and Kn(F, r) = KF

n,
√
2
(r, 1]. Corollary 7.8 is a direct consequence of

Lemma 7.6. We postpone its proof to Appendix C.2.

Corollary 7.8. Let F satisfy the assumptions in Lemma 7.6 and all functions in F take values in

[0, 1]. For all n ∈ N, there holds

]Kn(F, r) ⩽ C

(
v

nr2
ln
A

r
+

√
v

nr2
ln
A

r

)
,

where C ⩾ 1 is an absolute constant. In particular, if [v/(nr2)] ln(A/r) ⩽ 1, then

Kn(F, r) ⩽ 2C

√
v

nr2
ln
A

r
.

7.3 Bounding Kn in the statistical error

We take F = φF̃m and F̃m = FSPτ ,m(B) with τ = 9
√
m, and consider

G1 = GSPτ ,m,1(B) :=
{
g : g = φ2v2 where v ∈ FSPτ ,m(B)

}
,

G2 = GSPτ ,m,2(B) :=
{
g : g = |∇ (φv) |2 + V |φv|2 where v ∈ FSPτ ,m(B)

}
,

Fj = FSPτ ,m,j(B) := {g : g = φψjv where v ∈ FSPτ ,m(B)} for j = 1, 2, . . . , k − 1.

Note that FSPτ ,m(B) coincides with the set F̃m defined in (7.2) with

C = B, Γ = 4B, W = 1, T = 1. (7.8)

By (7.5) and (7.6), using (7.4) and (7.8), we take MF , MG2
as

sup
g∈F

∥g∥L∞(Ω) ⩽ 9.5B/d =:MF , sup
g∈G2

∥g∥L∞(Ω) ⩽ 342B2 + Vmax (9.5B/d)
2
=:MG2

. (7.9)

Applying Lemma 7.6 or Corollary 7.8 to certain rescaled function classes, we estimate Kn as follows

Theorem 7.9. Assume that 0 ⩽ V ⩽ Vmax and ∥ψj∥L∞(Ω) ⩽ µj for 1 ⩽ j ⩽ k − 1. Consider the

sets F = φFSPτ ,m(B), G1 = GSPτ ,m,1(B), G2 = GSPτ ,m,2(B) and Fj = FSPτ ,m,j(B) with τ = 9
√
m and

B ⩾ 1. Assume that n is large enough such that

C0
mB2 (1 + Vmax)

nr2
ln
B (1 +

√
m/d) (1 + Vmax)

rd
⩽ 1, (7.10)

where C0 is an absolute constant. There exists an absolute constant C such that

Kn

(
G1/M

2
F , r/MF

)
⩽ C

√
mB2

ndr2
ln
B

rd
, (7.11a)

Kn

(
G2/MG2

, r
√
λ1/MG2

)
⩽ C

√
mB2 (1 + Vmax)

nr2
ln
B (1 +

√
m/d) (1 + Vmax)

rd
, (7.11b)

Kn

( Fj

2µjMF
+

1

2
,

√
r

4µjMF

)
⩽ C

[
mµjB

nr
ln

(
µjB

rd

)
+

√
mµjB

nr
ln

(
µjB

rd

)]
. (7.11c)

The proof is postponed to Appendix C.3.

8 Proof of the main generalization theorem

Combining Theorem 5.4, Theorem 6.7 and Theorem 7.9, we are ready to prove Theorem 3.4.
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Proof of Theorem 3.4. Thanks to Theorem 5.4, taking F>r = φFSPτ ,m(B) ∩ {∥u∥L2(Ω) > r} with

B = ∥u∗∥Bs(Ω) and τ = 9
√
m, if 2ξ1 + ξ2 < 1/2, for any uF ∈ F>r,

Lk (u
m
n )− λk ⩽ 4λk (ξ1 + ξ2) + β

(
kξ23 + 4

√
kξ3

)
+ 3 (Lk (uF )− λk) . (8.1)

By Theorem 3.2, there exists uF ∈ φFSPτ ,m(B) such that ∥u∗ − uF∥H1(Ω) ⩽ 64B/
√
m. Since 64B/

√
m ⩽

1/2 and 0 < r < 1/2, ∥uF∥L2(Ω) ⩾ ∥u∗∥L2(Ω) − 64B/
√
m > r. Thus, uF ∈ F>r. By Theorem 6.7,

Lk (uF )− λk ⩽ 64 (3max {1, Vmax}+ 7λk + 5β)B/
√
m. (8.2)

Substituting the bounds in Theorem 7.9 into {ξi(n, r, δ)}3i=1, we obtain, if (7.10) holds, then

ξ1(n, r, δ) ⩽
CB

rd
√
n

(√
md ln

B

rd
+
√
ln(1/δ)

)
,

ξ2(n, r, δ) ⩽ CΥ1(n,m,B, r, δ),

ξ3(n, r, δ) ⩽ CΥ2(n,m, k,B, µ̄k, r, δ)/
√
k,

(8.3)

where we have used (7.9), the fact λ1 ⩾ dπ2 and (3.3b). Note that the bound for ξ1 is smaller than the

bound for ξ2. Hence, there exists a constant C such that (3.3a) ensures both (7.10) and 2ξ1 + ξ2 ⩽ 1/2.

A combination of (8.1), (8.2) and (8.3) completes the proof.

9 Solution theory in the spectral Barron Spaces

In this section we aim to prove the regularity of the eigenfunctions in the sine Barron space, as stated

in Theorem 3.8. The regularity properties of PDEs within Barron spaces have been investigated only

recently. In [20], the regularity results for the screened Poisson equation and various time-dependent

equations in the Barron space have been proved through integral representations. The authors in [47]

established a solution theory for the Poisson equation and the Schrödinger equations on the hypercube

with homogeneous Neumann boundary condition. This work was further extended in [46] to include

regularity estimates for the ground state of the Schrödinger operator. In addition, Chen et al. [14] proved

the regularity theory for the static Schrödinger equations on Rd within the spectral Barron space.

Without loss of generality, we assume that V ⩾ 0. For f ∈ L2(Ω), consider the static Schrödinger

equation with Dirichlet boundary condition

Hu = −∆u+ V u = f on Ω, u = 0 on ∂Ω. (9.1)

To show the boundedness of H−1, we prove an estimate for the solution of (9.1).

Theorem 9.1. Assume that f ∈ Bs(Ω) and V ∈ Cs(Ω) with s ⩾ 0 and V (x) ⩾ 0 for x ∈ Ω. Then

(9.1) has a unique solution u ∈ Bs+2(Ω). Moreover, there exists C > 0 depending on V and d such that

∥u∥Bs+2(Ω) ⩽ C(V, d)∥f∥Bs(Ω).

Corollary 9.2. Assume that V ∈ Cs(Ω) with V (x) ⩾ 0 for x ∈ Ω. Let S := H−1. Then S : Bs(Ω) →
Bs+2(Ω) is bounded and S is a compact operator on Bs(Ω).

We prove the above two results in Appendix D.2. To prove Theorem 3.8, we start with s = 0.

Proposition 9.3. If V ∈ C0(Ω), then any eigenfunction of Problem (2.1) lies in B2(Ω).

Proof. By the definition of Cs(Ω) and Lemma D.2, V ∈ C0(Ω) if and only if Ṽe ∈ ℓ1
(
Zd
)
. Specifically,

∥Ṽe∥ℓ1(Zd) =
∑
k∈Nd

0

2
∑d

i=1 1ki ̸=0 |Ṽe(k)| =
∑
k∈Nd

0

21k ̸=0 |V̌ (k)| ⩽ ∥V ∥C0(Ω),

∥V ∥C0(Ω) =
∑
k∈Nd

0

2β−1
k |Ṽe(k)| ⩽ 2∥Ṽe∥ℓ1(Zd),
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where we have used βk = 21k ̸=0−
∑d

i=1 1ki ̸=0 ∈ [21−d, 1]. Since Ṽe ∈ ℓ1
(
Zd
)
, Young’s inequality implies

that for p ∈ [1, 2], if {ak}k∈Zd ∈ ℓp
(
Zd
)
, then (Ṽe ∗ a) ∈ ℓp

(
Zd
)
and

∥Ṽe ∗ a∥ℓp ⩽ ∥Ṽe∥ℓ1∥a∥ℓp . (9.2)

For any eigenmode λ, ψ ∈ H1
0 (Ω), let ψo be the odd extension of ψ on [−1, 1]d, which may be regarded

as an eigenfunction of the Schrödinger operator H̃: = −∆ + Ve with periodic boundary conditions:

H̃ψo = −∆ψo + Veψo = λψo.

Next, we claim that if ψ̃o ∈ ℓp with some p ∈ [1, 2], then (π2|k|22 + 1)ψ̃o ∈ ℓp. Notice that

ψ̃o = F
[
(−∆+ I)−1(H̃+ I − Ve)ψo

]
=
(
π2|k|22 + 1

)−1
(λ+ 1) ψ̃o −

(
π2|k|22 + 1

)−1
(ψ̃o ∗ Ṽe),

where F represents the Fourier transform. Since Ṽe ∈ ℓ1
(
Zd
)
, ψ̃o ∈ ℓp

(
Zd
)
, we conclude (λ + 1)ψ̃o ∈

ℓp
(
Zd
)
and (Ṽe ∗ ψ̃o) ∈ ℓp

(
Zd
)
from (9.2). Hence

(λ+ 1) ψ̃o − (ψ̃o ∗ Ṽe) =
(
π2|k|22 + 1

)
ψ̃o ∈ ℓp

(
Zd
)
.

This proves the claim.

Now we complete the proof through a bootstrap argument. Since ψ ∈ L2(Ω), we have ψo ∈ L2(Ω̃) and

its Fourier transform ψ̃o ∈ ℓ2
(
Zd
)
. It follows from the above claim that

(
π2|k|22 + 1

)
ψ̃o ∈ ℓ2

(
Zd
)
. For

all r > d/2,
(
π2|k|22 + 1

)−1 ∈ ℓr
(
Zd
)
. By Hölder’s inequality, as long as q−1 < 2/d+1/2 and q ⩾ 1, there

exists r > d/2 such that q−1 = r−1 + 2−1 and

∥ψ̃o∥ℓq(Zd) ⩽
∥∥∥(π2|k|22 + 1

)−1
∥∥∥
ℓr(Zd)

∥∥∥(π2|k|22 + 1
)
ψ̃o

∥∥∥
ℓ2(Zd)

<∞.

Thus ψ̃o ∈ ℓq
(
Zd
)
. Repeating this argument j times, we have ψ̃o ∈ ℓq

(
Zd
)
as long as q−1 < 2j/d+ 1/2

and q ⩾ 1. Choosing j properly, we conclude that ψ̃o ∈ ℓ1
(
Zd
)
. Repeating the claim again, we have(

π2|k|22 + 1
)
ψ̃o ∈ ℓ1

(
Zd
)
. Using Lemma D.1, we get

∥ψ∥B2(Ω) =
∑
k∈Nd

+

(
1 + π2|k|21

)
2d|ψ̃o(k)| =

∑
k∈Zd

(
1 + π2|k|21

)
|ψ̃o(k)|.

Hence, ψ ∈ B2(Ω) because ∥ψ∥B2(Ω) ⩽ d∥
(
1 + π2|k|22

)
ψ̃o∥ℓ1(Zd).

With the aid of Proposition 9.3 and Corollary 9.2, we are ready to prove Theorem 3.8.

Proof of Theorem 3.8. Note that Br(Ω) ↪→ Bs(Ω) and Cr(Ω) ↪→ Cs(Ω) for 0 ⩽ r ⩽ s. Take any

eigenmode (λ, ψ) of Problem (2.1) such that Hψ = λψ. Since V ∈ Cs(Ω) with s ⩾ 0, V ∈ C0(Ω) and thus

ψ ∈ B2(Ω) according to Proposition 9.3. For any 0 ⩽ r ⩽ s, V ∈ Cr(Ω), it follows from Corollary 9.2 that

S : Br(Ω) → Br+2(Ω) is bounded. Notice that ψ = λSψ. Hence ψ ∈ B2(Ω) implies ψ ∈ Bmin(s+2,4)(Ω).

Repeating this argument j times, we conclude that ψ ∈ Bmin(s+2,2j+2)(Ω). When j is large enough so

that 2j + 2 > s+ 2, we obtain ψ ∈ Bs+2(Ω), which completes the proof.
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Appendix A Stability estimate of the k-th eigenfunction

In this appendix, we prove Proposition 2.2 and Proposition 2.3. Define P as the orthogonal projection

operator from L2(Ω) to Uk and P⊥ as the orthogonal projection from L2(Ω) to U⊥
k . Recall that {ψj}k−1

j=1

are the first k − 1 normalized orthogonal eigenfunctions. For u ∈ H1(Ω), we write

u = Pu+ P⊥u = Pu+ w + z with w: =

k−1∑
j=1

⟨u, ψj⟩ψj , z: = P⊥u− w.

Note that w is the orthogonal projection of u onto the subspace Wk = span {ψ1, ψ2, . . . , ψk−1} and z is

the orthogonal projection of u onto the subspace Zk =W⊥
k ∩ ker (H− λkI)

⊥
. Recall that λk′ is the first

eigenvalue of H that is strictly larger than λk. For any z ∈ Zk,

⟨z,Hz⟩ ⩾ λk′∥z∥2L2(Ω) ⩾ λk∥z∥2L2(Ω). (A.1)

Notice that H leaves the three orthogonal subspaces Wk, Uk, Zk invariant. Therefore,

⟨u,Hu⟩ = ⟨w,Hw⟩+ ⟨Pu,HPu⟩+ ⟨z,Hz⟩

=

k−1∑
j=1

λj ⟨u, ψj⟩2 + λk⟨Pu, Pu⟩+ ⟨z,Hz⟩.
(A.2)

Using the definition (2.3), the decomposition (A.2) and

∥u∥2L2(Ω) = ⟨w,w⟩+ ⟨Pu, Pu⟩+ ⟨z, z⟩, (A.3)
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we obtain

(Lk(u)− λk) ∥u∥2L2(Ω) = ⟨u,Hu⟩+ β

k−1∑
j=1

⟨u, ψj⟩2 − λk⟨u, u⟩

=

k−1∑
j=1

(β + λj − λk) ⟨u, ψj⟩2 + ⟨z, (H− λk)z⟩.
(A.4)

This identity is the key to proving Proposition 2.2 and Proposition 2.3.

Proof of Proposition 2.2. Note that 0 ⩽ λk − λj ⩽ λk − λ1 for each 1 ⩽ j ⩽ k − 1. It follows from

(A.2), (A.3) and (A.1) that∣∣∣⟨u,Hu⟩ − λk∥u∥2L2(Ω)

∣∣∣ = |⟨w, (H− λk)w⟩+ ⟨Pu, (H− λk)Pu⟩+ ⟨z, (H− λk)z⟩|

⩽
k−1∑
j=1

(λk − λj) ⟨u, ψj⟩2 + ⟨z, (H− λk)z⟩

⩽ max

{
λk − λ1

β + λ1 − λk
, 1

}
(Lk(u)− λk) ∥u∥2L2(Ω),

where we have used (A.4) and β > λk − λ1 in the last line. This gives Proposition 2.2.

Proof of Proposition 2.3. It follows from (A.1) that ⟨z, (H− λk) z⟩ ⩾ (λk′ − λk) ∥z∥2L2(Ω). Using (A.4)

and the facts 0 ⩽ λk − λj ⩽ λk − λ1 for all 1 ⩽ j ⩽ k − 1, we obtain

(Lk(u)− λk) ∥u∥2L2(Ω) ⩾ (β + λ1 − λk) ∥w∥2L2(Ω) + (λk′ − λk) ∥z∥2L2(Ω)

⩾ min {β + λ1 − λk, λk′ − λk}
∥∥P⊥u

∥∥2
L2(Ω)

,
(A.5)

where we have used
∥∥P⊥u

∥∥2
L2(Ω)

= ∥w∥2L2(Ω)+ ∥z∥2L2(Ω). Since β+λ1−λk and λk′ −λk are both strictly

greater than zero, the inequality (A.5) implies the estimate (2.7a).

To bound
∥∥∇P⊥u

∥∥2, we note that

(Lk(u)− λk) ∥u∥2L2(Ω) = ⟨Pu, (H− λk)Pu⟩+
〈
P⊥u, (H− λk)P

⊥u
〉
+ β∥w∥2L2(Ω)

⩾
〈
P⊥u, (H− λk)P

⊥u
〉

=

∫
Ω

∣∣∇P⊥u
∣∣2 dx+

∫
Ω

(V − λk)
∣∣P⊥u

∣∣2 dx,

where we have used ⟨Pu, (H− λk)Pu⟩ = 0. Rearranging the terms, we arrive at∥∥∇P⊥u
∥∥2
L2(Ω)

⩽ (Lk(u)− λk) ∥u∥2L2(Ω) −
∫
Ω

(V − λk)
∣∣P⊥u

∣∣2 dx

⩽ (Lk(u)− λk) ∥u∥2L2(Ω) + (λk − Vmin)
∥∥P⊥u

∥∥2
L2(Ω)

.

Substituting (2.7a) into the above inequality, we obtain (2.7b).

Appendix B Missing proof in section 6

Appendix B.1 Preliminaries

Proof of Lemma 6.1. (1) For u ∈ B0(Ω), it follows from the fact ∥Φk∥L∞(Ω) ⩽ 1 that

∥u∥L∞(Ω) ⩽
∑
k∈Nd

+

|û(k)| = 1

2
∥u∥B0(Ω).

Moreover, since u ∈ Bs(Ω) with s ⩾ 0 have summable sine coefficients, the sum of sine expansion

converges uniformly, which implies that u ∈ C(Ω) and u vanishes on the boundary of Ω.
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(2) If u ∈ B2(Ω), then |û(k)| ⩽ ∥u∥B2(Ω) for each k ∈ Nd
+ by definition. It follows from the Cauchy-

Schwarz inequality that

∥u∥2H1(Ω) ⩽ 2−d∥u∥B2(Ω)

∑
k∈Nd

+

(
1 + π2|k|21

)
|û(k)| ⩽ 2−d∥u∥2B2(Ω).

Hence u ∈ H1
0 (Ω).

Appendix B.2 Upper bounds for the cut-off function φ

The following lemma gives upper bounds for the cut-off function φ and its gradient.

Lemma B.1. For all x ∈ Ω, it holds that 0 < φ(x) < 1/d and |∇φ(x)| < π.

Proof. For any x = (x1, x2, · · · , xd)T ∈ Ω and 1 ⩽ i ⩽ d, 0 < sin (πxi) < 1. It is evident that

0 < φ(x) < 1/d. A straightforward calculation yields

|∇φ(x)|2 = π2

∑d
l=1 cos

2 (πxl)
[∏

j ̸=l sin (πxj)
]4

[∑d
l=1

∏
j ̸=l sin (πxj)

]4 .

Since for every 1 ⩽ l ⩽ d and x ∈ (0, 1)d,
∏

j ̸=l sin (πxj) > 0 and cos2 (πxl) ∈ [0, 1), we have

d∑
l=1

cos2 (πxl)

∏
j ̸=l

sin (πxj)

4

<

d∑
l=1

∏
j ̸=l

sin (πxj)

4

⩽

 d∑
l=1

∏
j ̸=l

sin (πxj)

4

,

which implies |∇φ(x)|2 < π2 for all x ∈ (0, 1)d.

Lemma B.2. For any h ∈ H1(Ω), ∥φh∥H1(Ω) ⩽
√
21 ∥h∥H1(Ω) . Particularly, if {hj}∞j=1 converges to

h in H1(Ω), then {φhj}∞j=1 converges to φh in H1(Ω).

Proof. By Lemma B.1, for h ∈ H1(Ω), a direct calculation yields ∥φh∥L2(Ω) ⩽ ∥h∥L2(Ω)/d and∫
Ω

|∇(φ(x)h(x))|2 dx ⩽ 2

∫
Ω

(
h2|∇φ|2 + φ2|∇h|2

)
dx ⩽ 2

∫
Ω

(
π2h2 +

1

d2
|∇h|2

)
dx.

Notice that 2π2 + 1 < 21 and d ⩾ 1. Therefore, we obtain

∥φh∥2H1(Ω) ⩽

(
2π2 +

1

d2

)
∥h∥2L2(Ω) +

2

d2
∥∇h∥2L2(Ω) ⩽ 21 ∥h∥2H1(Ω) .

In particular, if {hj}∞j=1 converges to h in H1(Ω), then ∥φhj − φh∥H1(Ω) ⩽
√
21 ∥hj − h∥H1(Ω) → 0.

Appendix B.3 Sine Spectral Barron Space and Neural Network Approximation

To prove Proposition 6.2, we need the following elementary facts.

Lemma B.3. The following expansion holds for m ∈ N+ and x ∈ (0, 1)

sin (mπx)

sin(πx)
=


1 +

(m−1)/2∑
l=1

2 cos (2lπx) , m is odd,

m/2∑
l=1

2 cos ((2l − 1)πx) , m is even.

The proof is straightforward, and we omit the proof.
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Proof of Proposition 6.2. For u ∈ Bs+1, dividing both sides of u =
∑

k∈Nd
+
û(k)Φk by φ, we get

u(x)

φ(x)
=
∑
k∈Nd

+

û(k)

 d∑
i=1

sin (kiπxi)

sin (πxi)

∏
j ̸=i

sin (kjπxj)

 . (B.1)

The sum in (B.1) is absolutely convergent for all x ∈ Ω because
∣∣∣ sin(kiπx)

sin(πx)

∣∣∣ ⩽ ki and

∑
k∈Nd

+

|û(k)|

 d∑
i=1

|sin (kiπxi)|
sin (πxi)

∏
j ̸=i

|sin (kjπxj)|

 ⩽
∑
k∈Nd

+

|û(k)|
(

d∑
i=1

ki

)
⩽ ∥u∥B1(Ω).

Expanding sin(kiπxi)
sin(πxi)

with ki ∈ N+,using by Lemma B.3 and substituting this expansion into (B.1), we

obtain that u/φ has an expansion of the form (6.1), where (k, i) ∈ Γ if and only if k ∈ Nd
0 has at most one

zero component at position ki. Furthermore, the coefficients v̂(k, i) can be expressed in terms of û(k) as

v̂(k, i) =
(
1 + 1{ki⩾1}

) ∞∑
l=0

û (k + (2l + 1)ei) for (k, i) ∈ Γ, (B.2)

where ei is the i-th cannonical basis.

By (B.2), we obtain

∑
(k,i)∈Γ

(1 + πs|k|s1) |v̂(k, i)| ⩽
d∑

i=1

 ∑
k∈Nd

+,ki is odd

A1|û(k)|+
∑

k∈Nd
+,ki is even

A2|û(k)|

 , (B.3)

where

A1 = 1 + πs |k − kiei|s1 + 1{ki⩾3} · 2
(ki−3)/2∑

l=0

[1 + πs |k − (2l + 1)ei|s1] ,

A2 = 2

ki/2∑
l=1

[1 + πs |k − (2l − 1)ei|s1] .

Notice that s ⩾ 0, ts is a nondecreasing function for t ⩾ 0. When k ∈ Nd
+ and ki is odd,

A1 ⩽ ki + 2πs

(ki−1)/2∑
l=0

(|k|1 − 2l − 1)
s ⩽ ki + 2πs

∫ |k|1

|k|1−ki

ts d t.

Similarly, when k ∈ Nd
+ and ki is even,

A2 = ki + 2πs

ki/2∑
l=1

(|k|1 − 2l + 1)
s ⩽ ki + 2πs

∫ |k|1

|k|1−ki

ts d t.

Hence,

|A1| , |A2| ⩽
2πs

s+ 1

(
|k|s+1

1 − (|k|1 − ki)
s+1
)
.

Substituting the above bound into (B.3) and exchanging the order of summation, we bound (B.3) by

∑
(k,i)∈Γ

(1 + πs|k|s1) |v̂(k, i)| ⩽
d∑

i=1

∑
k∈Nd

+

|û(k)|
[
ki +

2πs

s+ 1

(
|k|s+1

1 − (|k|1 − ki)
s+1
)]

=
∑
k∈Nd

+

|û(k)|
{
|k|1 +

2πs

s+ 1

[
d|k|s+1

1 −
d∑

i=1

(|k|1 − ki)
s+1

]} (B.4)
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Using Jensen’s inequality and the fact that ts+1 is convex, we get

1

d

d∑
i=1

(|k|1 − ki)
s+1 ⩾

[
1

d

d∑
i=1

(|k|1 − ki)

]s+1

=

(
d− 1

d
|k|1
)s+1

.

Combining the above two inequalities and using the Bernoulli inequality

(1− 1/d)s+1 > 1− s+ 1

d
,

we obtain∑
(k,i)∈Γ

(1 + πs|k|s1) |v̂(k, i)| ⩽⩽
∑
k∈Nd

+

|û(k)|
{
|k|1 +

2πs

s+ 1

[
d|k|s+1

1 − d

(
d− 1

d
|k|1
)s+1

]}

=
∑
k∈Nd

+

|û(k)|
{
|k|1 +

2d

π(s+ 1)

[
1−

(
d− 1

d

)s+1
]
πs+1|k|s+1

1

}

⩽
∑
k∈Nd

+

|û(k)|
{
|k|1 +

2

π
πs+1|k|s+1

1

}
⩽ (3/π)∥u∥Bs+1(Ω) ⩽ ∥u∥Bs+1(Ω).

The estimate (6.2) follows from (B.3), (B.4) and the above bound.

The following lemma is useful to show that u/φ lies in the convex hull of Fs(B).

Lemma B.4. [47, Lemma 4.2] For any θ = (θ1, θ2, · · · , θd)T ∈ Rd,

d∏
i=1

cos θi =
1

2d

∑
ξ∈{1,−1}d

cos(ξ · θ).

Proof of Proposition 6.3. Step 1: Show that u lies in conv(φFs(Bu)) with Bu = ∥u∥Bs+1(Ω). By

Lemma B.4 and sin θj = cos (θj − π/2), let θ = (k1πx1, k2πx2, . . . , kdπxd)
⊤
, hence

cos (kiπxi)
∏
j ̸=i

sin (kjπxj) =
1

2d

∑
ξ∈{1,−1}d

cos

πkξ · x− π

2

∑
j ̸=i

ξj

 , (B.5)

where kξ = (k1ξ1, k2ξ2, . . . , kdξd) . Since u ∈ Bs+1(Ω) with s ⩾ 1, plugging (B.5) into the expansion of

u/φ in Proposition 6.2 yields

u(x)

φ(x)
=

∑
(k,i)∈Γ

v̂(k, i) · 1

2d

∑
ξ∈{1,−1}d

cos

πkξ ·x− π

2

∑
j ̸=i

ξj


=

∑
(k,i)∈Γ

|v̂(k, i)| (1+πs|k|s1)
Zv

Zv

1+πs|k|s1
1

2d

∑
ξ∈{1,−1}d

sign(v̂(k, i)) cos

πkξ ·x− π

2

∑
j ̸=i

ξj

 ,

where Zv is a constant to be specified later on. We define a probability measure on Γ by

µ(d(k, i)): =
|v̂(k, i)| (1 + πs|k|s1)

Zv
δ(d(k, i))

with Zv =
∑

(k,i)∈Γ |v̂(k, i)| (1 + πs|k|s1) ⩽ Bu. Let sign(v̂(k, i)) = (−1)θk,i with θk,i ∈ {0, 1}, and

g(x, k, i) =
Zv

1 + πs|k|s · 1

2d

∑
ξ∈{1,−1}d

cos

π
kξ · x− 1

2

∑
j ̸=i

ξj + θk,i

φ(x).
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Then, for any x ∈ Ω,

u(x) =
∑

(k,i)∈Γ

g(x, k, i)µ(d(k, i)) = Eµg(x, k, i). (B.6)

For ξ ∈ {1,−1}d, ∑j ̸=i ξj is even when d is odd, and
∑

j ̸=i ξj is odd when d is even. It is clear that

g(x, k, i) is a convex combination of 2d elements in φFs(Bu). Moreover, thanks to (B.6) and the uniform

boundness of ∥g(·, k, i)∥H1(Ω) derived from the following step, u lies in conv(φFs(Bu)).

Step 2: Check that φFs(B) with s ⩾ 1 is a bounded set in H1(Ω). By Lemma B.1, whether f is a

sine function or a cosine function,∫
Ω

φ2(x)f2(π(k · x+ b)) dx ⩽
∫
Ω

φ2(x) dx ⩽ d−2,

and ∫
Ω

|∇(φ(x)f(π(k · x+ b)))|2 dx ⩽ 2

∫
Ω

[
f2(π(k · x+ b))|∇φ|2 + φ2|∇f(π(k · x+ b))|2

]
dx

⩽ 2

∫
Ω

(
|∇φ|2 + π2|k|2φ2

)
dx

⩽ 2π2(1 + d−2).

Hence, for any w ∈ φFs(B), w(x) = γ(1 + πs|k|s)−1φ(x)f(π(k · x+ b)),

∥w∥2H1(Ω) ⩽
B2

(1 + πs|k|s1)2
(

1

d2
+ 2π2 +

2π2|k|2
d2

)
.

When |k|1 ⩾ 1, since s ⩾ 1 and

1/d2 + 2π2 + 2π2|k|2/d2 ⩽ 4 + 8π|k|1 + 4π2|k|21 ⩽ 4 (1 + πs|k|s1)2 ,

we have ∥w∥2H1(Ω) ⩽ 4B2. Since k ∈ Γ1, the only case where k = 0 can occur is when d = 1. In this case,

w(x) = γφ(x) = γ sin(πx) and

∥w∥2H1(Ω) ⩽ γ2
(
1 + π2

)
/2 ⩽ 6B2.

Thus, we conclude that for any w ∈ φFs(B) with s ⩾ 1,

∥w∥H1(Ω) ⩽
√
6B.

Step 3: Using Lemma 6.4 along with the facts that u lies in conv(φFs(Bu)) and ∥w∥H1(Ω) ⩽
√
6B for

any w ∈ φFs(B), we obtain Proposition 6.3.

Appendix B.4 Reduction to ReLU and Softplus Activation Functions

Proof of Lemma 6.5. Let gm be the piecewise linear interpolant of g with respect to grid {zj}2mj=0. Let

h = max(h1, h2). Then, h ⩽ (1 + ρ)/m ⩽ 3/(2m), According to [5],

∥g − gm∥L∞([−1,1]) ⩽
h2

8
∥g′′∥L∞([−1,1]) .

Consider z ∈ [zj , zj+1] for some 0 ⩽ j ⩽ 2m− 1. By the mean value theorem, there exist ξ, η ∈ (zj , zj+1)

such that (g(zj+1)− g(zj)) /(zj+1 − zj) = g′(ξ) and∣∣∣∣g′(z)− g (zj+1)− g (zi)

zj+1 − zj

∣∣∣∣ = |g′(z)− g′(ξ)| = |g′′(η)| |z − ξ|,

which implies that ∥g′ − g′m∥L∞([−1,1]) ⩽ h ∥g′′∥L∞([−1,1]) . Thus,

∥g − gm∥W 1,∞([−1,1]) ⩽
h2

8
∥g′′∥L∞([−1,1]) + h ∥g′′∥L∞([−1,1]) ⩽

19

16
Bh ⩽

2B

m
.



36 Guo Y, Ming P, Yu H et al. Sci China Math

This proves (6.6).

Next, it is straightforward to verify that gm can be rewritten as a two-layer ReLU neural network

gm(z) = c+

m∑
i=1

ai ReLU (zi − z) +

2m∑
i=m+1

ai ReLU (z − zi−1) , z ∈ [−1, 1], (B.7)

where c = g (zm) = g(ρ) and the parameters ai defined by

ai =


(g (zm+1)− g (zm)) /h2, if i = m+ 1,

(g (zm−1)− g (zm)) /h1, if i = m,

(g (zi)− 2g (zi−1) + g (zi−2)) /h2, if i > m+ 1,

(g (zi−1)− 2g (zi) + g (zi+1)) /h1, if i < m.

Furthermore, by the mean value theorem, there exists ξ1, ξ2 ∈ (zm, zm+1) such that

|am+1| = |g′ (ξ1)| = |g′ (ξ1)− g′(ρ)| = |g′′ (ξ2) ξ1| ⩽ Bh2.

In a similar manner we obtain |am| ⩽ Bh1, |ai| ⩽ 2Bh2 if i > m+1 and |ai| ⩽ 2Bh1 if i < m. Therefore,

2m∑
i=1

|ai| ⩽ 2Bmh1 + 2Bmh2 = 4B.

Finally, setting ϵi = −1, bi = −zi for i = 1, · · · ,m and ϵi = 1, bi = zi−1 for i = m + 1, · · · , 2m, we

obtain that gm satisfies (6.5). This completes the proof.

Next, we prove the approximation results with the Softplus activation. To this end, we recall a lemma

from [47] which shows that ReLU may be well approximated by SPτ for τ ≫ 1.

Lemma B.5. [47, Lemma 4.6] The following inequalities hold:

|ReLU(z)− SPτ (z)| ⩽ τ−1e−τ |z|, ∀z ∈ [−2, 2], (B.8a)∣∣ReLU′(z)− SP′
τ (z)

∣∣ ⩽ e−τ |z|, ∀z ∈ [−2, 0) ∪ (0, 2], (B.8b)

∥SPτ∥W 1,∞([−2,2]) ⩽ 3 + τ−1. (B.8c)

Proof of Lemma 6.6. Thanks to Lemma 6.5, there exists gm of the form (B.7) such that

∥g − gm∥W 1,∞([−1,1]) ⩽
2B

m
.

Let gτ,m be the function obtained by replacing ReLU in gm by SPτ , i.e.,

gτ,m(z) = c+

m∑
i=1

aiSPτ (zi − z) +

2m∑
i=m+1

aiSPτ (z − zi−1) , z ∈ [−1, 1]. (B.9)

By (B.8a) and the bounds of |ai| in Lemma 6.5, the difference |gm(z)− gτ,m(z)| may be bounded by

m∑
i=1

|ai| |ReLU (zi − z)− SPτ (zi − z)|+
2m∑

i=m+1

|ai| |ReLU (z − zi−1)− SPτ (z − zi−1)|

⩽
m−1∑
i=1

2Bh1
τ

e−τ |z−zi| +
Bh1
τ

e−τ |z−zm| +
Bh2
τ

e−τ |z−zm| +
2m∑

i=m+2

2Bh2
τ

e−τ |z−zi−1|

⩽
2B

mτ
+

2B

τ

(
m−1∑
i=1

h1e
−τ |z−zi| +

2m−1∑
i=m+1

h2e
−τ |z−zi|

)
=:

2B

mτ
+

2B

τ
I,
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where we have used e−τ |z−zm| ⩽ 1 and h1 + h2 = 2/m in the last inequality. Suppose that z ∈ (zj , zj+1)

for some fixed 0 ⩽ j ⩽ 2m − 1. When j = 0, the term i = j + 1 = 1 in the sum I may be bounded by

h = max(h1, h2) ⩽ 3/(2m). The other terms can be bounded by∫ z2m−1

zj+1

e−τ(x−z)dx ⩽
1

τ

(
1− e−τ(z2m−1−zj+1)

)
⩽

1

τ

(
1− e−2τ

)
.

Thus, I ⩽ h + (1 − e−2τ )/τ . Similar bound holds when j = 2m − 1. When 1 ⩽ j ⩽ 2m − 2, the term

i = j and i = j + 1 in the sum I is bounded by h, respectively. The other terms may be bounded by∫ zj

z1

e−τ(z−x)dx +

∫ z2m−1

zj+1

e−τ(x−z)dx ⩽
1

τ

(
2− e−τ(zj−z1) − e−τ(z2m−1−zj+1)

)
⩽

2

τ

(
1− e−τ(z2m−1−z1)/2

)
⩽

2

τ

(
1− e−τ

)
,

where we have used Jensen’s inequality in the second inequality. Since 2(1−e−τ ) > 1−e−2τ for all τ > 0,

we summarize that I ⩽ 2h+ 2(1− e−τ )/τ for all 0 ⩽ j ⩽ 2m− 1. Hence,

∥gm − gτ,m∥L∞([−1,1]) ⩽
2B

τ

(
1

m
+ 2h+

2(1− e−τ )

τ

)
⩽

4B

τ

(
2

m
+

1− e−τ

τ

)
.

Using (B.8b), proceeding along the same line that leads to the above estimate, we obtain

∥∥g′m − g′τ,m
∥∥
L∞([−1,1])

⩽ 4B

(
2

m
+

1− e−τ

τ

)
.

A combination of the above estimates and ∥g − gm∥W 1,∞([−1,1]) ⩽ 2B/m yields

∥g − gτ,m∥W 1,∞([−1,1]) ⩽ ∥g − gm∥W 1,∞([−1,1]) + ∥gm − gτ,m∥W 1,∞([−1,1])

⩽
2B

m
+ 4B

(
1 +

1

τ

)(
2

m
+

1− e−τ

τ

)
⩽ 4B

(
1 +

1

τ

)(
3

m
+

1− e−τ

τ

)
.

Since τ > 0, choose m ∈ N+ such that m ⩾ max{3τeτ , 2}. Then, we obtain (6.9). Finally, we rewrite

(B.9) in the form (6.8), which completes the proof.

Appendix B.5 Bounding the approximation error

Proof of Theorem 6.7. We denote φvm by um. Since u∗ ∈ Uk, Lk (u
∗) = λk. Note that

Lk (um)− λk =
EV (um)− EV (u∗)

E2 (um)
+

EP (um)− EP (u∗)
E2 (um)

+
E2 (u∗)− E2 (um)

E2 (um)
Lk (u

∗) . (B.10)

Since u∗ ∈ Bs(Ω) for some s ⩾ 3, by Theorem 3.2, we have

∥u∗ − um∥H1(Ω) ⩽ η (Bu∗ ,m) ⩽ 1/2 with Bu∗ = (1 + 2/π)∥u∗∥Bs(Ω).

Combining this inequality with ∥u∗∥2L2(Ω) = 1 yields

1/2 ⩽ 1− ∥u∗ − um∥H1(Ω) ⩽ ∥um∥L2(Ω) ⩽ 1 + ∥u∗ − um∥H1(Ω) ⩽ 3/2, (B.11)

and

|E2 (um)− E2 (u∗)| =
(
∥u∗∥L2(Ω) + ∥um∥L2(Ω)

) ∣∣∣∥u∗∥L2(Ω) − ∥um∥L2(Ω)

∣∣∣
⩽ (2 + η (Bu∗ ,m)) η (Bu∗ ,m)

⩽ 5η (Bu∗ ,m) /2.

(B.12)
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Since a2 − b2 = (a− b)2 + 2b(a− b), it follows from 0 ⩽ V ⩽ Vmax that

|EV (u)− EV (u∗)| ⩽
∫
Ω

(
|∇u−∇u∗|2 + 2 |∇u∗| |∇u−∇u∗|

)
dx

+

∫
Ω

(
V |u− u∗|2 + 2V |u∗| |u− u∗|

)
dx

⩽ max {1, Vmax} ∥u− u∗∥2H1(Ω) + 2 ∥∇u∗∥L2(Ω) ∥∇u−∇u∗∥L2(Ω)

+ 2
∥∥∥√V u∗∥∥∥

L2(Ω)

∥∥∥√V (u− u∗)
∥∥∥
L2(Ω)

⩽ max {1, Vmax} ∥u− u∗∥2H1(Ω) + 2 (EV (u∗) EV (u− u∗))1/2

⩽ max {1, Vmax} ∥u− u∗∥2H1(Ω) + 2
√
λk max {1, Vmax} ∥u− u∗∥H1(Ω) ,

(B.13)

where we have used EV (u) = ∥∇u∥2L2(Ω) +
∥∥∥√V u∥∥∥2

L2(Ω)
and EV (u∗) = λk. Hence,

|EV (um)− EV (u∗)| ⩽ (3max {1, Vmax} /2 + λk) η (Bu∗ ,m) .

Moreover, since {ψj}k−1
j=1 are normalized orthogonal eigenfunctions,

|EP (um)− EP (u∗)| ⩽ β

k−1∑
j=1

⟨um + u∗, ψj⟩2
1/2k−1∑

j=1

⟨um − u∗, ψj⟩2
1/2

⩽ β
(
∥u∗∥L2(Ω) + ∥um∥L2(Ω)

)
∥u∗ − um∥L2(Ω)

⩽
5

2
βη (Bu∗ ,m) .

Substituting all the above estimates into (B.10), we obtain Theorem 6.7.

Appendix C Missing proof in Section 7

Appendix C.1 Bounding the covering numbers

The following proposition gives an upper bound for the covering number N (δ,Θ, ρΘ).

Proposition C.1. [47, Proposition 5.1] Consider the metric space (Θ, ρΘ) with ρΘ defined in (7.3).

Then for any δ > 0, the covering number N (δ,Θ, ρΘ) satisfies that

N (δ,Θ, ρΘ) ⩽
2C

δ

(
3Γ

δ

)m(
3W

δ

)dm(
3T

δ

)m

.

Proof of Proposition 7.4. Bounding N
(
δ,G1

m/M1, ∥ · ∥L2(Q)

)
. For θ, θ′ ∈ Θ, by adding and

subtracting terms, we may bound |vθ(x)− vθ′(x)| by

|c− c′|+
∣∣∣∣∣

m∑
i=1

γiϕ (wi · x− ti)−
m∑
i=1

γ′iϕ (w
′
i · x− t′i)

∣∣∣∣∣
⩽ |c− c′|+

m∑
i=1

|γi − γ′i| |ϕ (wi · x− ti)|+
m∑
i=1

|γ′i| |ϕ (wi · x− ti)− ϕ (w′
i · x− t′i)| .

(C.1)

Since ϕ satisfies Assumption 7.1, |ϕ (wi · x− ti)− ϕ (w′
i · x− t′i)| ⩽ L

(
|wi − w′

i|1 + |ti − t′i|
)
. Therefore,

it follows from (C.1) that

|vθ(x)− vθ′(x)| ⩽ |c− c′|+ ϕmax |γ − γ′|1 + LΓ
(
max

i
|wi − w′

i|1 + |t− t′|∞
)

⩽ (1 + ϕmax + 2LΓ) ρΘ (θ, θ′) .
(C.2)
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Consequently, using 7.5 and C.2, we obtain∥∥φ2v2θ − φ2v2θ′

∥∥
L2(Q)

⩽
∥∥φ2

∥∥
L2(Q)

(∥vθ∥∗ + ∥v′θ∥∗) ∥vθ − v′θ∥∗
⩽ 2 (C + Γϕmax) (1 + ϕmax + 2LΓ) ρΘ (θ, θ′) /d2.

Thus, for any gθ, gθ′ ∈ G1
m, ∥gθ/M1 − gθ′/M1∥L2(Q) ⩽ Λ1ρΘ (θ, θ′) /M1 and then

N
(
δ,G1

m/M1, ∥ · ∥L2(Q)

)
⩽ N (M1δ/Λ1,Θ, ρΘ) ⩽ M (δ,Λ1/M1,m, d) ,

where the second inequality follows from Proposition C.1 with δ replaced by M1δ/Λ1.

Bounding N
(
δ,G2

m/M2, ∥ · ∥L2(Q)

)
. As in (C.1), by adding and subtracting terms,

|∇vθ(x)−∇vθ′(x)| ⩽
m∑
i=1

|γi − γ′i| |wi|1 |ϕ′ (wi ·x+ti)|+
m∑
i=1

|γ′i| |wi − w′
i|1 |ϕ′ (wi ·x+ti)|

+

m∑
i=1

|γ′i| |w′
i|1 |ϕ′ (wi ·x+ti)− ϕ′ (w′

i · x+t′i)|

⩽Wϕ′max |γ − γ′|1 + Γϕ′max max
i

|wi − w′
i|1

+ ΓWL′
(
max

i
|wi − w′

i|1 + |t− t′|∞
)

⩽ ((W + Γ)ϕ′max + 2ΓWL′) ρΘ (θ, θ′) .

Combining (C.2) and the above estimate, we obtain

∥|∇(φvθ)−∇(φvθ′)|∥L2(Q) ⩽ ∥φ∥L2(Q) ∥∇vθ −∇vθ′∥∗ + ∥∇φ∥L2(Q) ∥vθ − vθ′∥∗
⩽ [((W+Γ)ϕ′max + 2ΓWL′) /d+ π (1+ϕmax+2LΓ)] ρΘ (θ, θ′) .

Using the fact maxθ∈Θ ∥|∇ (φvθ)|∥∗ ⩽ ΓWϕ′max/d+ π (C + Γϕmax) , we have∥∥∥|∇ (φvθ)|2 − |∇ (φvθ′)|2
∥∥∥
L2(Q)

⩽ ∥|∇ (φvθ)|+ |∇ (φvθ′)|∥∗ ∥∇ (φvθ)−∇ (φvθ′)∥L2(Q)

⩽ Λ21ρΘ (θ, θ′) ,

where Λ21: = 2 [ΓWϕ′max/d+ π (C + Γϕmax)]
[(
(W + Γ)ϕ′max + 2ΓWL′)/d+ π (1 + ϕmax + 2LΓ)

]
. It

follows from 0 ⩽ V ⩽ Vmax and (C.2) that∥∥V φ2v2θ − V φ2v2θ′

∥∥
L2(Q)

⩽ Vmax ∥φ∥2∗ (∥vθ∥∗ + ∥vθ′∥∗) ∥vθ − vθ′∥∗
⩽ 2Vmax (C + Γϕmax) (1 + ϕmax + 2LΓ) ρΘ (θ, θ′) /d2

=: Λ22ρΘ (θ, θ′) .

Combining the last two estimates, for any gθ, gθ′ ∈ G2
m, we get

∥gθ − gθ′∥L2(Q) ⩽
∥∥∥|∇ (φvθ)|2 − |∇ (φvθ′)|2

∥∥∥
L2(Q)

+
∥∥V φ2v2θ − V φ2v2θ′

∥∥
L2(Q)

⩽ (Λ21 + Λ22) ρΘ (θ, θ′) = Λ2ρΘ (θ, θ′) .

Dividing both sides of the above inequality by M2, we obtain

N
(
δ,G2

m/M2, ∥ · ∥L2(Q)

)
⩽ N (M2δ/Λ2,Θ, ρΘ) ⩽ M (δ,Λ1/M1,m, d) ,

where the second inequality follows from Proposition C.1 with δ replaced by M2δ/Λ2.

Bounding N
(
δ,G3

m/M3, ∥ · ∥L2(Q)

)
. It follows from (C.2) that

∥φψjvθ − φψjvθ′∥L2(Q) ⩽ ∥φ∥∗ ∥ψj∥L2(Q) ∥vθ − vθ′∥∗
⩽ ∥ψj∥L2(Q) (1 + ϕmax + 2LΓ) ρΘ (θ, θ′) /d.

The bound for N
(
δ,G3

m/M3, ∥ · ∥L2(Q)

)
follows from a similar argument that leads to the bound of

N
(
δ,G2

m/M2, ∥ · ∥L2(Q)

)
.
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Appendix C.2 Estimates of the expectation of suprema of empirical processes

Proof of Lemma 7.6. By standard symmetrization,

E

∥∥∥∥∥
n∑

i=1

(f (Xi)− Pf)
∥∥∥∥∥
F

⩽ 2E

∥∥∥∥∥
n∑

i=1

ϵi (f (Xi)− Pf)
∥∥∥∥∥
F

.

Next, we shall apply Lemma 7.5 to the centered class F̄ := {f − Pf : f ∈ F} . To this end, we verify the

assumptions in Lemma 7.5 for F̄. If functions in F take values in [−1, 1], then functions in F̄ take values

in [−2, 2]. If F is a measurable envelope of F, then F + PF is a measurable envelope of F̄. Since for

any f ∈ F and 0 < τ < 1, there exists fi with ∥f − fi∥L2(Q) ⩽ τ∥F∥L2(Q) for all probability measures

Q, then |P (f − fi)| ⩽ P |f − fi| ⩽ τPF. Hence,

∥(f − Pf)− (fi − Pfi)∥L2(Q) ⩽ ∥f − fi∥L2(Q) + |P (f − fi)|
⩽ τ

(
∥F∥L2(Q) + PF

)
⩽

√
2τ∥F + PF∥L2(Q),

which means that {fi − Pfi}Mi=1 is a
√
2τ∥F + PF∥L2(Q)-net for F̄. Therefore, F̄ is a VC class and

N
(
τ∥F + PF∥L2(Q), F̄, ∥ · ∥L2(Q)

)
⩽
(√

2A/τ
)v

for all probability measures Q and 0 < τ < 1. The proof is completed by applying Lemma 7.5 to F̄.

Proof of Corollary 7.8. Applying Lemma 7.6 to F(ρj) with ρj = 2j/2r, we have

Kn(F, r) ⩽ max
1⩽j⩽l

E ∥Pn − P∥F(ρj)

ρ2j−1

⩽ C max
1⩽j⩽l

(
v

nρ2j−1

ln
A

ρj
+

√
2v

nρ2j−1

ln
A

ρj

)
.

Notice that the quantity in parenthesis decreases as j increases and the maximum value reaches at j = 1,

which completes the proof.

Appendix C.3 Bounding Kn in the statistical error

Proof of Theorem 7.9. With (7.4) and (7.8), a direct calculation yields

Λ1 ⩽ 19B (4 + 8B) /d2,

Λ2 ⩽ 68B
(
11 + 30B + 17B

√
m/d

)
+ 19VmaxB (4 + 8B) /d2,

Λ3 ⩽ ∥ψ∥L2(Q) (4 + 8B) /d,

(C.3)

and for B ⩾ 1,

M(δ,Λ,m, d) = 22m+13(d+2)mBm+1 (Λ/δ)
(d+2)m+1

⩽
(
2

3
d+3B

2
d+3 3Λ/δ

)(d+2)m+1

.
(C.4)

For G1/M
2
F , it has a measurable envelope F ≡ 1. By Lemma 7.4, (7.9), (C.3) and (C.4),

N
(
τ∥F∥L2(Q),G1/M

2
F , ∥ · ∥L2(Q)

)
⩽ M

(
τ,Λ1/M

2
F ,m, d

)
⩽
(
2

3
d+3B

2
d+3 6B (4 + 8B) /

(
9.5B2τ

))(d+2)m+1

⩽
(
2

3
d+3+3B

2
d+3 /τ

)(d+2)m+1

.

Thus, we may take A = 2
3

d+3+3B
2

d+3 , v = (d+ 2)m+ 1, r̂ = r/MF and

v

nr̂2
ln
A

r̂
⩽ C1

mB2

ndr2
ln
B

rd
=: I1,
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where C1 is an absolute constant. If I1 ⩽ 1, then we apply Corollary 7.8 to G1/M
2
F , and obtain (7.11a).

For G2/MG2 , it has a measurable envelope F ≡ 1. By Lemma 7.4, (7.9), (C.3) and (C.4),

N
(
τ∥F∥L2(Q),G2/MG2 , ∥ · ∥L2(Q)

)
⩽ M (τ,Λ2/MG2 ,m, d)

⩽
(
2

3
d+3B

2
d+3
(
8 + 3

√
m/d

)
/τ
)(d+2)m+1

.

Thus, we may take A = 2
3

d+3B
2

d+3 (8 + 3
√
m/d), v = (d+ 2)m+ 1, r̂ = r

√
λ1/MG2

and thus

v

nr̂2
ln
A

r̂
⩽ C̃2

dm
(
B2 + Vmax (B/d)

2
)

nλ1r2
ln
B

2
d+3 (1 +

√
m/d)

(
B2 + Vmax (B/d)

2
)

r
√
λ1

⩽ C2
mB2 (1 + Vmax)

nr2
ln
B (1 +

√
m/d) (1 + Vmax)

rd
=: I2,

where we have used λ1 ⩾ dπ2 in the second inequality. If I2 ⩽ 1, then (7.11b) follows from applying

Corollary 7.8 to G2/MG2 . Let C0 = max{C1, C2}, and then (7.10) ensures both I1 ⩽ 1 and I2 ⩽ 1.

To bound Kn(Fj/ (2µjMF ) + 1/2,
√
r̂/4µjMF ), recall (5.11) for the choice of σP(f), and note that

Kn

( Fj

2µjMF
+
1

2
,

√
r

4µjMF

)
=

1

2
max
1⩽i⩽l

1

ρ2i−1

E sup
∥u∥L2/(µjMF )∈(4ρ2

i−1,4ρ
2
i ]

|Pn (uψj)−P (uψj)|
µjMF

. (C.5)

To estimate the expectation, we may apply Lemma 7.6 to the set{
uψj

MFµj

∣∣∣∣ u ∈ F , (µjMF )
−1∥u∥L2 ∈

(
4ρ2i−1, 4ρ

2
i

]}
,

which has a measurable envelope Fj = ψj/µj . Taking ψ = ψj , by Lemma 7.4, (7.9), (C.3) and (C.4), we

get
N
(
τ∥Fj∥L2(Q),Fj/(µjMF ), ∥ · ∥L2(Q)

)
⩽ M

(
τ∥ψj∥L2(Q)/µj ,Λ3,j/(µjMF ),m, d

)
⩽
(
8B

2
d+3 /τ

)(d+2)m+1

.

Taking A = 8B
2

d+3 , v = (d+ 2)m+ 1, σ = 2ρi in Lemma 7.6, we obtain that for all n ∈ N,

E sup
∥u∥L2/(µjMF )∈(4ρ2

i−1,4ρ
2
i ]

|Pn (uψ)− P (uψ)|
µMF

⩽ C

(
dm

n
ln
B

ρj
+ ρj

√
dm

n
ln
B

ρj

)
,

where C is an absolute constant. Therefore, substituting the above bound into (C.5) and noting that

ρi = 2i/2
√
r/(4µjMF ) = 2i/2

√
rd/(38µjB), we obtain (7.11c).

Appendix D Missing proof in section 9

Appendix D.1 Some useful facts on sine and cosine series

Assume that u ∈ L1(Ω) admits the sine series expansion u(x) =
∑

k∈Nd
+
û(k)Φk(x), where û(k) are the

sine expansion coefficients, i.e.,

û(k) =

∫
Ω
u(x)Φk(x) dx∫
Ω
Φ2

k(x) dx
= 2d

∫
Ω

u(x)Φk(x) dx. (D.1)

Let Ω̃ := [−1, 1]d and define the odd extension uo of a function u by

uo(x) = uo (x1, x2, . . . , xd) = sign (x1x2 · · ·xd)u (|x1| , |x2| , . . . , |xd|) , x ∈ Ω̃,

where sign (y) = 1{y>0} − 1{y<0}. Let ũo(k) be the Fourier coefficients of uo, i.e., uo(x) =∑
k∈Zd ũo(k)e

iπk·x, where ũo(k) = 2−d
∫
Ω̃
uo(x)e

−iπk·x dx. By abuse of notation, we use |k| to stand
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for the vector (|k1| , |k2, | , . . . , |kd|) in this section and denote by |k|2 the Euclid norm of the vector k.

Since uo is real and odd, ũo(k) = sign (k1k2 · · · kd) ũo(|k|). Particularly, when d is odd, uo(x) = −uo(−x),
ũo(k) = −ũo(−k) and

uo(x) =
∑
k∈Zd

ũo(k)i sin(πk · x) with iũo(k) = 2−d

∫
Ω̃

uo(x) sin(πk · x) dx. (D.2)

When d is even, uo(x) = uo(−x), ũo(k) = ũo(−k) and

uo(x) =
∑
k∈Zd

ũo(k) cos(πk · x) with ũo(k) = 2−d

∫
Ω̃

uo(x) cos(πk · x) dx. (D.3)

We may extend {û(k)} from a sequence on Nd
+ to a sequence on Nd

0 by letting û(k) = 0 if k ∈ Nd
0 \Nd

+.

The relation between ũo(k) and û(k) is established in the following lemma.

Lemma D.1. For every k ∈ Zd, there holds

iũo(k) = 2−d(−1)
d−1
2 sign (k1k2 · · · kd) û(|k|), if d is odd;

ũo(k) = 2−d(−1)
d
2 sign (k1k2 · · · kd) û(|k|), if d is even.

Proof. When d is odd, by the oddness of uo(x), we obtain∫
Ω̃

uo(x) sin(πk · x)dx =

∫
Ω̃

uo(x) sin

(
π

(
d−1∑
i=1

kixi

))
cos (πkdxd) dx︸ ︷︷ ︸

=0

+

∫
Ω̃

uo(x) cos

(
π

(
d−1∑
i=1

kixi

))
sin (πkdxd) dx

=

∫
Ω̃

uo(x) cos

(
π

(
d−2∑
i=1

kixi

))
cos (πkd−1xd−1) sin (πkdxd) dx︸ ︷︷ ︸
=0

−
∫
Ω̃

uo(x) sin

(
π

(
d−2∑
i=1

kixi

))
sin (πkd−1xd−1) sin (πkdxd) dx

= (−1)
d−1
2

∫
Ω̃

uo(x)

d∏
i=1

sin (πkixi) dx

= (−1)
d−1
2 2d sign (k1k2 · · · kd)

∫
Ω

uo(x)Φ|k|(x)dx.

According to (D.2) and (D.1), for every k ∈ Zd, we have

iũo(k) = 2−d

∫
Ω̃

uo(x) sin(πk · x) dx = 2−d(−1)
d−1
2 sign (k1k2 · · · kd) û(|k|).

When d is even, similarly, by oddness of uo(x),∫
Ω̃

uo(x) cos(πk · x) dx =

∫
Ω̃

uo(x) cos

(
π

(
d−1∑
i=1

kixi

))
cos (πkdxd) dx︸ ︷︷ ︸

=0

−
∫
Ω̃

uo(x) sin

(
π

(
d−1∑
i=1

kixi

))
sin (πkdxd) dx.
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Then, we have∫
Ω̃

uo(x) cos(πk · x) dx = −
∫
Ω̃

uo(x) sin

(
π

(
d−2∑
i=1

kixi

))
cos (πkd−1xd−1) sin (πkdxd) dx︸ ︷︷ ︸
=0

−
∫
Ω̃

uo(x) sin

(
π

(
d−2∑
i=1

kixi

))
sin (πkd−1xd−1) sin (πkdxd) dx

= (−1)
d
2

∫
Ω̃

uo(x)

d∏
i=1

sin (πkixi) dx

= (−1)
d
2 2d sign (k1k2 · · · kd)

∫
Ω

uo(x)Φ|k|(x) dx.

According to (D.3) and (D.1), for every k ∈ Zd, we have

ũo(k) = 2−d

∫
Ω̃

uo(x) cos(πk · x)dx = 2−d(−1)
d
2 sign (k1k2 · · · kd) û(|k|).

The lemma is proved.

Assume that V (x) ∈ L1(Ω) admits the cosine series expansion V (x) =
∑

k∈Nd
0
V̌ (k)Ψk, where

V̌ (k) = 2
∑d

i=1 1ki ̸=0

∫
Ω

V (x)

(
d∏

i=1

cos (kiπxi)

)
dx.

Define the even extension Ve of the function V by

Ve(x) = Ve (x1, · · · , xd) = V (|x1| , · · · , |xd|) , x ∈ Ω̃.

Let Ṽe(k) be the Fourier coefficients of Ve. Since Ve is real and even, Ve(x) =
∑

k∈Zd Ṽe(k)· cos(πk · x),
where

Ṽe(k) =

∫
Ω̃
Ve(x) cos(πk · x)dx∫
Ω̃
cos2(πk · x) dx = 2−d+1k ̸=0

∫
Ω̃

Ve(x) cos(πk · x) dx.

It follows from [47, Lemma B.1] that the relation between Ṽe(k) and V̌ (k) reads as

Lemma D.2. [47, Lemma B.1] For every k ∈ Zd, Ṽe(k) = βkV̌ (|k|) where βk = 21k ̸=0−
∑d

i=1 1ki ̸=0 .

Let w(x) = u(x)V (x) in Ω and its odd extension wo(x) = uo(x)Ve(x) in Ω̃ with Fourier coefficients

w̃o(k). By the oddness of wo(x), we have wo(x) =
∑

k∈Zd iw̃o(k) sin(πk · x), where w̃o(k) =

sign (k1k2 · · · kd) w̃o(|k|). By the properties of Fourier transform,

w̃o(k) =
∑
m∈Zd

ũo(m)Ṽe(k −m). (D.4)

Similar to uo(x), wo(x) admits the sine series expansion wo(x) =
∑

k∈Nd
+
ŵ(k)Φk(x) on Ω.

The following proposition gives a representation of ŵ(k) in terms of û(k) and V̌ (k).

Proposition D.3. Let βk = 21k ̸=0−
∑d

i=1 1ki ̸=0 . For any k ∈ Nd
+, there holds

ŵ(k) = (̂uV )(k) =
∑
m∈Zd

sign (m1m2 · · ·md)β|m−k|û(|m|)V̌ (|k −m|).

Proof. Thanks to Lemma D.1, Lemma D.2 and relation (D.4), when d is odd, for each k ∈ Nd
+,

ŵ(k) = 2d(−1)
d−1
2 iw̃o(k) = 2d(−1)

d−1
2

∑
m∈Zd

iũo(m)Ṽe(k −m)

= 2d(−1)
d−1
2

∑
m∈Zd

2−d(−1)
d−1
2 sign (m1m2 · · ·md) û(|m|) · β|m−k|V̌ (|k −m|)

=
∑
m∈Zd

sign (m1m2 · · ·md)β|m−k|û(|m|)V̌ (|k −m|),
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where β|m−k| = 21k ̸=m−∑d
i=1 1ki ̸=mi .

Similarly, when d is even, for each k ∈ Nd
+,

ŵ(k) = 2d(−1)
d
2 w̃o(k) = 2d(−1)

d
2

∑
m∈Zd

ũo(m)Ṽe(k −m)

= 2d(−1)
d
2

∑
m∈Zd

2−d(−1)
d
2 sign (m1m2 · · ·md) û(|m|) · β|m−k|V̌ (|k −m|)

=
∑
m∈Zd

sign (m1m2 · · ·md)β|m−k|û(|m|)V̌ (|k −m|),

where β|m−k| = 21k ̸=m−∑d
i=1 1ki ̸=mi .

Appendix D.2 Boundedness of H−1 : Bs(Ω) → Bs+2(Ω)

Proof of Theorem 9.1. It is clear that there exists a unique solution u ∈ H1
0 (Ω) such that

∥∇u∥2L2(Ω) ⩽ ∥f∥L2(Ω)∥u∥L2(Ω). (D.5)

To show u ∈ Bs+2(Ω), we firstly derive an operator equation that is equivalent to (9.1). Multiplying Φk

on both sides of (9.1) and then integrating the resulting equation, we get

π2|k|22û(k) + (̂V u)(k) = f̂(k), k ∈ Nd
+. (D.6)

Using Proposition D.3, we rewrite (D.6) as

π2|k|22û(k) +
∑
m∈Zd

sign (m1m2 · · ·md)β|m−k|û(|m|)V̌ (|k −m|) = f̂(k), k ∈ Nd
+,

where βk = 21k ̸=0−
∑d

i=1 1ki ̸=0 . Define the operator M : û 7→ Mû by

(Mû)(k) = π2|k|22û(k), k ∈ Nd
+.

We may extend û(k) as 0 when k ∈ Nd
0 \ Nd

+. Define the operator V : û 7→ Vû by

(Vû)(k) =
∑
m∈Zd

sign (m1m2 · · ·md)β|m−k|û(|m|)V̌ (|k −m|), k ∈ Nd
+.

We rewrite (D.6) as

(M+ V)û = f̂ . (D.7)

Since the diagonal operator M is invertible, this operator equation is equivalent to(
I+M−1V

)
û = M−1f̂ . (D.8)

Next, we claim that equation (D.8) has a unique solution û ∈ ℓ1Ws

(
Nd

+

)
and there exists C1 depending

on V and d such that
∥û∥ℓ1Ws

(Nd
+)

⩽ C1(V, d)∥f̂∥ℓ1Ws
(Nd

+)
. (D.9)

It follows from the compactness of M−1V as shown in Lemma D.5 that I+M−1V is a Fredholm operator

on ℓ1Ws

(
Nd

+

)
. By the celebrated Fredholm alternative theorem, the operator I + M−1V has a bounded

inverse
(
I+M−1V

)−1
if and only if

(
I+M−1V

)
û = 0 has a trivial solution. By the equivalence between

equation (9.1) and (D.8), we only need to show that the only solution of (9.1) is zero when f = 0, which

is a direct consequence of (D.5) and the Poincaré’s inequality.

It follows from (D.7) and the boundedness of V on ℓ1Ws

(
Nd

+ ) proved in Lemma D.5 that

∥Mû∥ℓ1Ws
(Nd

+)
⩽ ∥Vû∥ℓ1Ws

(Nd
+)

+ ∥f̂∥ℓ1Ws
(Nd

+)

⩽ C2(V, d)∥û∥ℓ1Ws
(Nd

+)
+ ∥f̂∥ℓ1Ws

(Nd
+)

⩽ C3(V, d)∥f̂∥ℓ1Ws
(Nd

+)
,

(D.10)
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where we have used (D.9) in the last step. Therefore, the estimate (D.10) implies

∥u∥Bs+2(Ω) =
∑
k∈Nd

+

(
1 + πs+2|k|s+2

1

)
|û(k)| =

∑
k∈Nd

+

1 + πs+2|k|s+2
1

π2|k|22
· π2|k|22 |û(k)|

⩽
(
π−2 + d

)
∥Mû∥ℓ1Ws

(Nd
+)

⩽ C(d, V )∥f̂∥ℓ1Ws
(Nd

+)
,

which completes the proof.

Proceeding along the same line that leads to [47, Lemma 7.2], we obtain

Lemma D.4. Suppose that T is a multiplication operator on ℓ1Ws

(
Nd

+

)
defined for each a = (a(k))k∈Nd

+

that (Ta)k = λkak with λk → 0 as |k|2 → ∞. Then T : ℓ1Ws

(
Nd

+

)
→ ℓ1Ws

(
Nd

+

)
is compact.

The following lemma shows that the operator V is bounded on ℓ1Ws

(
Nd

+

)
.

Lemma D.5. Assume that V ∈ Cs(Ω). Then the operator V is bounded on ℓ1Ws

(
Nd

+

)
and the operator

M−1V is compact on ℓ1Ws

(
Nd

+

)
.

Proof. Since M−1 is a multiplication operator on ℓ1Ws

(
Nd

+

)
with the diagonal entries converging to zero,

it follows from Lemma D.4 that M−1 is compact on ℓ1Ws

(
Nd

+

)
. To show the compactness of M−1V, it

suffices to show that the operator V is bounded on ℓ1Ws

(
Nd

+

)
. Since βk = 21k ̸=0−

∑d
i=1 1ki ̸=0 ∈ [21−d, 1] and

V ∈ Cs(Ω), using Proposition D.3, one has that for any û ∈ ℓ1Ws

(
Nd

+

)
with û(k) = 0 when k ∈ Nd

0 \ Nd
+,

∥Vû∥ℓ1Ws
(Nd

+)
=
∑
k∈Nd

+

(1 + πs|k|s1)

∣∣∣∣∣∣
∑
m∈Zd

sign (m1m2 · · ·md)β|m−k|û(|m|)V̌ (|k −m|)

∣∣∣∣∣∣
⩽
∑
m∈Zd

∑
k∈Nd

+

(
1 + πs max

(
2s−1, 1

)
(|m− k|s1 + |m|s1)

)
|û(|m|)|

∣∣V̌ (|k −m|)
∣∣

⩽ 2d max
(
2s−1, 1

) (
∥û∥ℓ1(Nd

+)
∥V̌ ∥ℓ1Ws

(Nd
0)

+ ∥û∥ℓ1Ws
(Nd

+)
∥V̌ ∥ℓ1(Nd

0)

)
⩽ 2d+1 max

(
2s−1, 1

)
∥V ∥Cs(Ω)∥û∥ℓ1Ws

(Nd
+)
,

where we have used the elementary inequality |a+ b|s ⩽ max
(
2s−1, 1

)
(|a|s + |b|s) in the first inequality

and the fact
∑

m∈Zd |û(|m|)| ⩽ 2d∥û∥ℓ1(Nd
+)

⩽ 2d∥û∥ℓ1Ws
(Nd

+)
in the second inequality.

Proof of Corollary 9.2. Note that the operator S : Bs(Ω) → Bs+2(Ω) is bounded, as proved in

Theorem 9.1. It remains to show the inclusion J : Bs+2(Ω) ↪→ Bs(Ω) is compact. Indeed, by definition,

the space Bs(Ω) may be viewed as a weighted ℓ1 space ℓ1Ws

(
Nd

0

)
of the sine coefficients defined on the

lattice Nd
+ with the weight Ws(k) = (1 + πs|k|s1). Therefore, the inclusion satisfies

∥J u∥Bs(Ω) =
∑
k∈Nd

+

Ws(k)|û(k)| =
∑
k∈Nd

+

Ws(k)

Ws+2(k)
Ws+2(k)|û(k)|.

Since Ws(k)
Ws+2(k)

→ 0 as |k|2 → ∞, by a similar argument as the proof of Lemma D.4, one can conclude

that J is compact from ℓ1Ws+2

(
Nd

+

)
to ℓ1Ws

(
Nd

+

)
and hence from Bs+2(Ω) to Bs(Ω).

Consequently, Corollary 9.2 is a direct consequence of the boundness of S : Bs(Ω) → Bs+2(Ω) and

the compactness of the inclusion J from Bs+2(Ω) to Bs(Ω).

Appendix E About the penalty method

Firstly, we prove that ∥un∥L2(Ω) ⩾ 1/2 with high probability when γ is sufficiently large. To this end,

we decompose E2(un)− 1 as

E2(un)− 1 = En,2(un)− 1−
(
En,2(un)− E2(un)

)
=: En,2(un)− 1−R1,
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and for any uF ∈ F ,

γ (En,2 (un)− 1)
2 ⩽ Lk,n (un) ⩽ Lk,n (uF )

=
(
Lk,n(uF )− Lk(uF )

)
+
(
Lk(uF )− λk

)
+ λk

+ γ
[(

En,2(uF )− E2(uF )
)
+
(
E2(uF )− 1

)]2
=: R2 +R3 + λk + γ (R4 +R5)

2
,

(E.1)

where the second inequality follows from the fact that un is a minimizer of Lk,n(u). Therefore,

|E2(un)− 1| ⩽ |R1|+
[
λk
γ

+
R2 +R3

γ
+ (R4 +R5)

2

]1/2
. (E.2)

Note that R1 is the statistical error, R2, R4 are the Monte Carlo error, and R3, R5 are the approximation

error.

Bounding R1. To control R1, we employ the well-known tool of Rademacher complexity. We recall

the definition firstly.

Definition E.1. For a set of random variables {Zj}nj=1 independently distributed according to P and

a function class G, the empirical Rademacher complexity is defined by

R̂n(G) := Eσ

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1

σjg (Zj)

∣∣∣∣∣∣ | Z1, · · · , Zn

 ,
where the expectation Eσ is taken with respect to the independent uniform Bernoulli sequence {σj}nj=1

with σj ∈ {±1}. The Rademacher complexity of G is defined by

Rn(G) = EPn

[
R̂n(G)

]
.

We introduce the following generalization bound via the Rademacher complexity.

Lemma E.2. [64, Theorem 4.10] Let G be a class of integrable real valued functions such that

supg∈G ∥g∥L∞(Ω) ⩽ MG. Let Z1, Z2, · · · , Zn be i.i.d. random samples from some distribution P over

Ω. Then for any positive integer n ⩾ 1 and any scalar δ ⩾ 0, with probability at least 1− δ,

sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

g (Zi)−Eg(Z)

∣∣∣∣∣ ⩽ 2Rn(G) +MG

√
2 ln(1/δ)

n
.

Recall the function class G1 defined in (5.4) and supu∈F ∥u∥L∞(Ω) ⩽ MF , hence supg∈G1
∥g∥L∞(Ω) ⩽

M2
F . Define for n ∈ N and δ > 0 the constant

ξ4(n, δ) := 2Rn (G1) +M2
F

√
2 ln(1/δ)

n
,

and the event A4(n, δ) := {|En,2 (un)− E2 (un)| ⩽ ξ4(n, δ)} . Applying Lemma E.2 to G1, we have

P [A4(n, δ)] ⩾ 1− δ. (E.3)

Next, the celebrated Dudley’s theorem will be used to bound the Rademacher complexity in terms of

the metric entropy.

Theorem E.3. [17] Let F be a class of real functions, {Zi}ni=1 be random i.i.d. samples and the

empirical measure Pn = n−1
∑n

i=1 δZi
. If

sup
f∈F

∥f∥L2(Pn) := sup
f∈F

(
1

n

n∑
i=1

f2 (Zi)

)1/2

⩽ c,

then

R̂n(F) ⩽ inf
ϵ∈[0,c/2]

(
4ϵ+

12√
n

∫ c/2

ϵ

√
lnN

(
δ,F, ∥ · ∥L2(Pn)

)
dδ

)
.
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By Lemma 7.4, (7.9), (C.3) and (C.4), the covering number

N
(
δ,G1, ∥ · ∥L2(Pn)

)
⩽
(
2

3
d+3B

2
d+3 3 · 19B(4 + 8B)/(d2δ)

)(d+2)m+1

⩽
(
1368B5/2/(d2δ)

)(d+2)m+1

.

Using Theorem E.3 and (7.9), we obtain, there exists an absolute constant C such that

R̂n(G1) ⩽ 12

√
(d+ 2)m+ 1

n

∫ M2
F/2

0

√
ln (1368B2.5/(d2δ)) dδ

⩽ C

√
dm

n

(
M2

F
√
1 + ln (B/d) +

∫ M2
F/2

0

√
(ln(1/δ))+ dδ

)

⩽
CB

d

(
B

d
+ 1

)√
d (1 + lnB)m

n
,

(E.4)

where in the last inequality we have used∫ M2
F/2

0

√
(ln(1/δ))+ dδ ⩽

∫ min(1,M2
F/2)

0

√
1/δ dδ ⩽ min(2,

√
2MF ).

By (E.4) and (7.9), on the event A4(n, δ),

R1 ⩽ ξ4(n, δ) ⩽
CB

d

(
B

d
+ 1

)√
d (1 + lnB)m+ ln(1/δ)

n
. (E.5)

Bounding R3 and R5. Let F = φFSPτ ,m(B) with B = ∥u∗∥Bs(Ω) and τ = 9
√
m. By Theorem 3.2,

there exists uF ∈ φFSPτ ,m(B) such that ∥u∗ − uF∥H1(Ω) ⩽ 64B/
√
m ⩽ 1/2. By Theorem 6.7,

R3 = Lk (uF )− λk ⩽ 64 (3max {1, Vmax}+ 7λk + 5β)B/
√
m. (E.6)

Similar as in (B.11) and (B.12), we have 1/2 ⩽ ∥uF∥L2(Ω) ⩽ 3/2 and

R5 ⩽
(
∥uF∥L2(Ω) + ∥u∗∥L2(Ω)

) ∣∣∥uF∥L2(Ω) − ∥u∗∥L2(Ω)

∣∣ ⩽ 160B/
√
m. (E.7)

Bounding R2 and R4. As a preparation, we introduce Hoeffding’s inequality to control the Monte

Carlo error.

Lemma E.4 (Hoeffding’s inequality). [63, Theorem 2.2.6] Let Z1, Z2, · · · , Zn be independent random

variables. Assume that Zi ∈ [mi,Mi] for every i. Then, for any t > 0,

P

(
n∑

i=1

(Zi −EZi) ⩾ t

)
⩽ exp

(
− 2t2∑n

i=1 (Mi −mi)
2

)
.

In particular, if Z1, Z2, · · · , Zn are identically distributed with |Zi| ⩽M , then for any t > 0,

P

(∣∣∣∣∑n
i=1 Zi

n
−EZ1

∣∣∣∣ ⩾ t

)
⩽ 2 exp

(
− nt2

2M2

)
.

Consider uF ∈ φFSPτ ,m(B) given by Theorem 3.2. To bound R4, we define the constant ξ5(n, δ) :=

M2
F
√

ln(2/δ)/(2n) and the event A5(n, δ) := {|En,2 (uF )− E2 (uF )| ⩽ ξ5(n, δ)} . On the event A5(n, δ),

R4 ⩽ ξ5(n, δ). (E.8)

Since ∥u2F∥L∞(Ω) ⩽M2
F , applying Lemma E.4 yields thatP [A5(n, δ)] ⩾ 1−δ. To bound R2, we decompose

R2 ⩽
|En,V (uF )−EV (uF )|

En,2 (uF )
+

EV (uF )+EP (uF )
E2 (uF ) En,2 (uF )

|E2 (uF )−En,2 (uF )|+
|En,P (uF )−EP (uF )|

En,2 (uF )
=: R21 +R22 +R23.
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Recall the function classes G2, Fj defined in (5.4) and that we assume supg∈G2
∥g∥L∞(Ω) ⩽ MG2 . Since

{ψj}k−1
j=1 are normalized orthogonal eigenfunctions and ∥uF∥L2(Ω) ⩽ 3/2,

EP (uF ) = β

k−1∑
j=1

⟨uF , ψj⟩2 ⩽ β∥uF∥2L2(Ω) ⩽
9

4
β.

By (B.13) and EV (u∗) = λk,

EV (uF ) ⩽ max {1, Vmax} ∥u− u∗∥2H1(Ω) + 2
√
λk max {1, Vmax} ∥u− u∗∥H1(Ω) + EV (u∗)

⩽
(
max

{
1,
√
Vmax

}
/2 +

√
λk

)2
.

Therefore, if ξ5(n, δ) < 1/2, on the event A5(n, δ), then

R22 ⩽

((
max

{
1,
√
Vmax

}
+ 2

√
λk
)2

+ 9β
)
ξ5(n, δ)

1− 2ξ5(n, δ)
. (E.9)

To bound R21, we define the constant ξ6(n, δ) :=MG2

√
ln(2/δ)/(2n) and the event

A6(n, δ) := {|En,V (uF )− EV (uF )| ⩽ ξ6(n, δ)} .

Using Lemma E.4, we get P [A6(n, δ)] ⩾ 1− δ. Hence, if ξ5(n, δ) < 1/2, within event A5(n, δ) ∩A6(n, δ),

then

R21 ⩽
2ξ6(n, δ)

1− 2ξ5(n, δ)
. (E.10)

To bound R23, recall that µ̄k = max1⩽j⩽k−1 ∥ψj∥L∞(Ω). We define the constant

ξ7(n, δ) := µ̄kMF

√
ln(2k/δ)

2n
,

and the events

A7,j(n, δ) :=

{∣∣∣∣∣ 1n
n∑

i=1

uF (Xi)ψj (Xi)− ⟨uF , ψj⟩
∣∣∣∣∣ ⩽ ξ7(n, δ)

}
for each 1 ⩽ j ⩽ k − 1.

Let A7(n, δ) :=
⋂k−1

j=1 A7,j(n, δ). By Lemma E.4, P [A7,j(n, δ)] ⩾ 1− δ/k and hence P [A7(n, δ)] ⩾ 1− δ.

On event A7(n, δ), it follows from the fact a2 − b2 = (a− b)2 + 2b(a− b) that

β−1 |En,P (uF )− EP (uF )| ⩽
k−1∑
j=1

[
ξ27(n, δ) + 2 |⟨uF , ψj⟩| ξ7(n, δ)

]

⩽ 2

k−1∑
j=1

⟨uF , ψj⟩2
1/2k−1∑

j=1

ξ27(n, δ)

1/2

+ (k − 1)ξ27(n, δ)

⩽ 3
√
kξ7(n, δ) + kξ27(n, δ),

where we have used ∥uF∥L2(Ω) ⩽ 3/2 in the last inequality. Hence, on the event A5(n, δ) ∩A7(n, δ),

R23 ⩽
2β

√
kξ7(n, δ)

(
3 +

√
kξ7(n, δ)

)
1− 2ξ5(n, δ)

. (E.11)

Thus, it may be concluded from (E.9), (E.10) and (E.11) that if ξ5(n, δ) < 1/2, within event
⋂7

i=5Ai(n, δ),

then

R2 ⩽

((
max

{
1,
√
Vmax

}
+2

√
λk
)2
+9β

)
ξ5(n, δ) + 2ξ6(n, δ) + 2β

√
kξ7(n, δ)

(
3+

√
kξ7(n, δ)

)
1− 2ξ5(n, δ)

.



Guo Y, Ming P, Yu H et al. Sci China Math 49

By (7.9), there exist certain absolute constants C such that

ξ5(n, δ) ⩽ C

(
B

d

)2
√

ln(1/δ)

n
, ξ6(n, δ) ⩽ CB2 (1 + Vmax)

√
ln(1/δ)

n
,

ξ7(n, δ) ⩽
Cµ̄kB

d

√
ln(k/δ)

n
,

and if ξ5(n, δ) < 1/4, then

R2 ⩽ C (Vmax + λk + β)B2

√
ln(1/δ)

n
+ Cβ (µ̄kB/d)

√
k ln(k/δ)

n
. (E.12)

Note that the bound for ξ5 is smaller than that for R1 and R2 up to an absolute constant. The bound

for R5 is smaller than that for R3 up to an absolute constant. By the estimates (E.5), (E.6), (E.7), (E.8)

and (E.12) with the choice γ ⩾ 4λk, (3.6) ensures that ξ5(n, δ) < 1/4 and |R1|, R2/γ, R3/γ, (R4 +R5)
2

are all bounded by 1/16 on event
⋂7

i=4Ai(n, δ). Then, for 0 < δ < 1/4, it follows from (E.2), (E.3) amd

P [Ai(n, δ)] ⩾ 1− δ for i = 5, 6, 7 that

P (E2(un) ⩾ 1/2) ⩾ P

(
7⋂

i=4

Ai(n, δ)

)
⩾ 1− 4δ, (E.13)

which completes the proof of Theorem 3.9.

Next, we analyze the generalization error of the penalty method. To this end, we decompose

Lk(un)− λk ⩽
[
Lk(un)−Lk,n(un)

]
+Lk,n(un)− λk

=: R6 +R2 +R3 + γ (R4 +R5)
2
,

(E.14)

where we have used (E.1). Further, we decompose R6 as follows

R6 = Lk(un)− Lk,n(un) + γ (E2(un)− 1)
2 − γ (En,2(un)− 1)

2

⩽ Lk(un)− Lk,n(un) + γ
[
(E2(un)− En,2(un))

2
+ 2 |E2(un)− 1| |E2(un)− En,2(un)|

]
=: R61 + γ

[
R2

1 + 2 |E2(un)− 1| |R1|
]
.

(E.15)

Notice that under the assumptions of Theorem 3.9, within event
⋂7

i=4Ai(n, δ), E2(un) ⩾ 1/2. Thus, the

analysis in §5 is applicable to un and uF . Proceeding along the same line in §5 that leads to (5.15), we

have, if ξ1(n, r, δ) < 1, within event
⋂3

i=1Ai(n, r, δ), then

R61 ⩽
ξ1 + ξ2
1− ξ1

(Lk(un)− λk) + λk
ξ1 + ξ2
1− ξ1

+
β

1− ξ1

(
k

4
ξ23 +

√
kξ3

)
. (E.16)

Notice that R2 coincides with T2. Thus, by (5.17),

R2 ⩽
ξ1 + ξ2
1− ξ1

(Lk(uF )− λk) + λk
ξ1 + ξ2
1− ξ1

+
β

1− ξ1

(
k

4
ξ23 +

√
kξ3

)
.

Combining the above inequality with (E.14), (E.15) and (E.16), we obtain, if 2ξ1 + ξ2 ⩽ 1/2, then

Lk(un)− λk ⩽
ξ1 + ξ2
1− ξ1

(Lk(un)− λk) + 2λk
ξ1 + ξ2
1− ξ1

+
2β

1− ξ1

(
k

4
ξ23 +

√
kξ3

)
+
ξ1 + ξ2
1− ξ1

(Lk(uF )− λk) + γ
[
(R4 +R5)

2
+R2

1 + |R1|
]
+R3,

and so

Lk(un)− λk ⩽ 4λk (ξ1 + ξ2) + β
(
kξ23 + 4

√
kξ3

)
+ 2 (Lk(uF )− λk)

+ 2γ
(
2R2

4 + 2R2
5 +R2

1 + |R1|
)
+ 2R3.

(E.17)
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Note that under the assumptions of Theorem 3.9, ξ5(n, δ), |R1|, R4 +R5 are all bounded by 1/4. When

(3.3a) and (3.3b) with r = 0.49 hold, 2ξ1 + ξ2 ⩽ 1/2. Here, without loss of generality, we may take

r = 0.49 and δ ∈ (0, 1/7). Substituting the bounds (E.5), (E.6), (E.8), (E.7) derived for R1, R3, R4,

R5 earlier in this section, and the bounds (8.3) for {ξi}3i=1 into (E.17), we obtain (3.7) on the event

Ain =
(⋂3

i=1Ai(n, r, δ)
)⋂(⋂7

i=4Ai(n, δ)
)
with P (Ain) ⩾ 1−7δ followed from (E.13) and (5.16), which

completes the proof of Corollary 3.11.

Appendix F Analysis of the accumulative error

In this section, we prove Theorem 3.13 and Proposition 3.14. Recall the loss Lk(u) defined in (2.4)

and we take ψj to be the normalization of the orthogonal projection of uθj to subspace Uj , i.e., ψj =

Pjuθj/∥Pjuθj∥L2(Ω). Since uθk is a minimizer of L̃k,n(u) over F>r, L̃k,n(un) − L̃k,n(uF ) ⩽ 0 for any

uF ∈ F>r. Similar to (5.2), for any uF ∈ F>r, we decompose the generalization error as

Lk(uθk)− λk ⩽
(
Lk(uθk)− L̃k(uθk)

)
+
(
L̃k(uθk)− L̃k,n(uθk)

)
+
(
L̃k,n(uF )− L̃k(uF )

)
+
(
L̃k(uF )− Lk(uF )

)
+
(
Lk(uF )− λk

)
=: S1 + S2 + S3 + S4 + S5,

(F.1)

Note that S1, S4 are the accumulative errors, S2 is the statistical error, S3 is the Monte Carlo error and

S5 is the approximation error.

Firstly, we give a uniform bound on the accumulative error L̃k(u)− Lk(u).

Proposition F.1. Assume that for each j ∈ N+, ψj is the normalization of the orthogonal projection

of uθj to subspace Uj. Set β = βk in Lk(u). Then, for any u ∈ L2(Ω), there holds

∣∣∣L̃k(u)− Lk(u)
∣∣∣ ⩽ 2βk

k−1∑
j=1

√
Lj(uθj)− λj

min {βj + λ1 − λj , λj′ − λj}
.

Proof. For any u ∈ L2(Ω), we let ū = u/∥u∥L2(Ω) and ūθj = uθj/∥uθj∥L2(Ω). Using the triangle

inequality and the Cauchy’s inequality, we get

1

βk

∣∣∣L̃k(u)− Lk(u)
∣∣∣ ⩽ k−1∑

j=1

|⟨ū, ūθj + ψj⟩| |⟨ū, ūθj − ψj⟩|

⩽
k−1∑
j=1

∥ū∥2L2∥ūθj + ψj∥L2∥ūθj − ψj∥L2 .

(F.2)

Since ūθj and ψj are both normalized,

∥ūθj + ψj∥L2∥ūθj − ψj∥L2 = 2
√
1− ⟨ūθj , ψj⟩2. (F.3)

By the choice of ψj and the stability estimates in Proposition 2.3,

√
1− ⟨ūθj , ψj⟩2 =

∥P⊥
j uθj∥L2

∥uθj∥L2

⩽

√
Lj(uθj)− λj

min {βj + λ1 − λj , λj′ − λj}
. (F.4)

The proof is completed by combining (F.2), (F.3) and (F.4).

Recall the constants {ξi(n, r, δ)}3i=1 and the events {Ai(n, r, δ)}3i=1 defined in §5. We bound S2 as

S2 ⩽

∣∣∣∣En,V (uθk)En,2(uθk)
− EV (uθk)

E2(uθk)

∣∣∣∣+ βk

k−1∑
j=1

∣∣∣∣ Pn,j(uθk)

En,2(uθk)En,2(uθj)
− Pj(uθk)

E2(uθk)E2(uθj)

∣∣∣∣
=: S21 + S22.
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Proceeding along the same line that leads to (5.10), we obtain, if ξ1(n, r, δ) < 1, then on the event⋂2
i=1Ai(n, r, δ), there holds

S21 ⩽
ξ1(n, r, δ) + ξ2(n, r, δ)

1− ξ1(n, r, δ)
· EV (uθk)

E2 (uθk)
. (F.5)

For S22, we get

S22

βk
⩽

|Pn,j(uθk)−Pj(uθk)|
E2(uθk)E2(uθj)

E2(uθk)E2(uθj)
En,2(uθk)En,2(uθj)

+
Pj(uθk)

E2(uθk)E2(uθj)

∣∣∣∣ E2(uθk)E2(uθj)
En,2(uθk)En,2(uθj)

− 1

∣∣∣∣ .
To bound the statistical error, we use the normalization property and L∞(Ω) boundedness of ψj . We

may define ξθ3(n, r, δ), Aθ3(n, r, δ) as ξ3(n, r, δ), A3(n, r, δ) by replacing ψj with ūθj , and get bounds for

them by replacing ∥ψj∥L∞(Ω) with ∥ūθj∥L∞(Ω). Therefore, similar to (5.13), we obtain

k−1∑
j=1

|Pn,j(uθk)−Pj(uθk)|
E2(uθk)E2(uθj)

⩽
k

4
ξθ3(n, r, δ)

2 +
√
kξθ3(n, r, δ).

If ξ1(n, r, δ) < 1, on the event A1(n, r, δ), then

(1 + ξ1)
−2

<
E2(uθk)E2(uθj)

En,2(uθk)En,2(uθj)
< (1− ξ1)

−2
.

Hence, ∣∣∣∣ E2(u)E2(uθj)
En,2(u)En,2(uθj)

− 1

∣∣∣∣ < ξ1 (2− ξ1)

(1− ξ1)
2 .

Thus, on event A1(n, r, δ) ∩Aθ3(n, r, δ), if ξ1(n, r, δ) < 1, then

S22 ⩽
βk

(1− ξ1)
2

(
k

4
ξ2θ3 +

√
kξθ3

)
+
ξ1 (2− ξ1)

(1− ξ1)
2

k−1∑
j=1

βkPj(uθk)

E2(uθk)E2(uθj)
. (F.6)

We conclude from (F.5) and (F.6) that on event A1(n, r, δ) ∩ A2(n, r, δ) ∩ Aθ3(n, r, δ), if ξ1(n, r, δ) < 1,

then

S2 ⩽
2ξ1 + ξ2

(1− ξ1)
2Lk(uθk) +

βk

(1− ξ1)
2

(
k

4
ξ2θ3 +

√
kξθ3

)
.

Similarly, since ∥uF∥L2(Ω) > r, we obtain

S3 ⩽
2ξ1 + ξ2

(1− ξ1)
2Lk(uF ) +

βk

(1− ξ1)
2

(
k

4
ξ2θ3 +

√
kξθ3

)
.

Then, it follows from the above two estimates and (F.1) that

Lk(uθk)− λk ⩽
2ξ1 + ξ2

(1− ξ1)
2 (Lk(uθk)− λk) +

2ξ1 + ξ2

(1− ξ1)
2 (Lk(uF )− λk) + 2λk

2ξ1 + ξ2

(1− ξ1)
2

+
2βk

(1− ξ1)
2

(
k

4
ξ2θ3 +

√
kξθ3

)
+ S1 + S4 + S5,

and if 4ξ1 + ξ2 ⩽ 1/2, then

Lk(uθk)− λk ⩽ 4λk (2ξ1 + ξ2) + βk

(
kξ2θ3 + 4

√
kξθ3

)
+ 2S1 + 2S4 + 3S5. (F.7)

Let uF be given by Theorem 3.2. Substituting the bounds (8.3) for {ξi}3i=1, the bound for S1, S4 given

by Proposition F.1 and the bound for S5 given by Theorem 6.7 into (F.7), we prove Theorem 3.13.
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Proof of Proposition 3.14. Let d0 = 0 and dk =
∑k

j=1

√(
Lj (uθj)− λj

)
/βj . Since

Lk (uθk)− λk
βk

⩽
∆k

βk
+ 8

k−1∑
j=1

√
βj

min (βj + λ1 − λj , λj′ − λj)
· Lj (uθj)− λj

βj
,

we have

(dk − dk−1)
2
=
Lk (uθk)− λk

βk
⩽ τk + 2ρk−1dk−1 (F.8)

and dk ⩽ dk−1 +
√
τk + 2ρk−1dk−1. We claim that dk ⩽ ρk−1k

2/2 +
√
τkk for all k ∈ N, which may be

proved by induction. When k = 0, the bound is trivial. Assume that the claim holds for k. For k + 1,

since ρk−1 ⩽ ρk and τk ⩽ τk+1,

dk+1 ⩽
ρk−1

2
k2 +

√
τkk +

√
τk+1 + 2ρk (ρk−1k2/2 +

√
τkk)

=
ρk
2
k2 +

√
τkk +

(
ρkk +

√
τk+1

)
⩽
ρk
2
(k + 1)2 +

√
τk+1(k + 1),

which completes the proof of the claim. The estimate (3.9) follows from the claim and (F.8).

Appendix G Properties of eigenvalues and eigenfunctions

In this part, we characterize the asymptotic distribution of the eigenvalues and estimate the maximum

norm of the eigenfunctions.

Lemma G.1. If H satisfies Assumption 2.1, then, there exists an absolute constant C such that

1

C
dk2/d + Vmin ⩽ λk ⩽ Cdk2/d + Vmax.

Proof. First, when V ≡ 0, we consider the eigenvalue problem of the Laplacian. By Weyl’s formula[68,

69], the k-th eigenvalue νk satisfies

c1C(d)
2/dk2/d ⩽ νk ⩽ c2C(d)

2/dk2/d,

where c1, c2 are absolute constants and C(d) = d2d−1πd/2Γ (d/2). A straightforward calculation gives

C(d)2/d = 4πΓ(d/2 + 1)2/d. Using the Stirling’s approximation formula [4, eq. 3.9],

√
2πx

(x
e

)x
⩽ Γ(x+ 1) ⩽

√
2πx

(x
e

)x
e1/(12x), x > 0,

we obtain
2π

e
(πd)1/d ⩽

C(d)2/d

d
⩽

2π

e
(πd)1/de1/(3d

2).

Using the elementary facts

(πd)1/d ⩾ 1 and (πd)1/de1/(3d
2) ⩽ πe1/3,

we get
2π

e
d ⩽ C(d)2/d ⩽ 4πd.

Therefore, there exists absolute constant C such that

1

C
dk2/d ⩽ νk ⩽ Cdk2/d.

Second, by the minimax principle, we get

λk = min
dimE=k

max
u∈E\{0}

∫
Ω

(
|∇u|2 + V u2

)
dx∫

Ω
u2 dx

,
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where the minimum is taken over all k-dimensional subspace E ⊂ H1
0 (Ω). Using Vmin ⩽ V (x) ⩽ Vmax,

we conclude

νk + Vmin ⩽ λk ⩽ νk + Vmax,

which together with the upper and the lower bounds for νk completes the proof.

Lemma G.2. If H satisfies Assumption 2.1, then

∥ψk∥L∞(Ω) ⩽

(
Ck2/d +

e (Vmax −Vmin)

πd

)d/4

, (G.1)

where C is an absolute constant.

Proof. Combining Example 2.1.9 and Lemma 2.1.2 in [16], for any Schrödinger operator H1 = −∆+V1
where 0 ⩽ V1 ∈ L1

loc(Ω), the kernel K(t, x, y) of e−H1t satisfies

0 ⩽ K(t, x, y) ⩽ (4πt)−d/2e−(x−y)2/4t ⩽ (4πt)−d/2,

which implies that e−H1t is a symmetric Markov semigroup on L2(Ω) and e−H1t : L2(Ω) → L∞(Ω) is a

bounded operator with norm ∥e−H1t∥∞,2 ⩽ (4πt)−d/4 for all 0 < t <∞. Suppose that ϕ is a normalized

eigenfunction of H1 associated with the eigenvalue λ. Hence,

∥ϕ∥L∞(Ω) = eλt∥e−H1tϕ∥L∞(Ω) ⩽ (4πt)−d/4eλt. (G.2)

Let V1 = V −Vmin. By Assumption 2.1, 0 ⩽ V1 ⩽ Vmax−Vmin and ψk is the k-th normalized eigenfunction

of H1 associated with the eigenvalue λk − Vmin. Taking t = d/[4λ], ϕ = ψk and λ = λk − Vmin in (G.2),

we have

∥ψk∥L∞(Ω) ⩽

(
e (λk −Vmin)

πd

)d/4

for all k ⩾ 1.

Substituting the upper bound for λk in Lemma G.1 completes the proof.
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