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SPECTRAL BARRON SPACE FOR DEEP NEURAL NETWORK

APPROXIMATION

YULEI LIAO AND PINGBING MING

Abstract. We prove the sharp embedding between the spectral Barron space

and the Besov space with embedding constants independent of the input di-

mension. Given the spectral Barron space as the target function space, we

prove a dimension-free convergence result that if the neural network contains

L hidden layers with N units per layer, then the upper and lower bounds of

the L2-approximation error are O(N−sL) with 0 < sL ≤ 1/2, where s ≥ 0 is

the smoothness index of the spectral Barron space.

1. Introduction

A series of works have been devoted to studying the neural network approxima-

tion error and generalization error with the Barron class [Bar92,Bar93,Bar94,KB18]

as the target function space. For f a complex-valued function and s ≥ 0, the spec-

tral norm υf,s is defined as

υf,s: =

∫

Rd

|ξ|s|f̂(ξ)|dξ,

where f̂ is the Fourier transform of f in the sense of distribution. A function f

is said to belong to the Barron class if the spectral norm υf,s is finite, and the

pointwise Fourier inversion holds true. Nonetheless, it is vital to note that this

definition lacks rigor, as it fails to specify the conditions under which the pointwise

Fourier inversion is valid. Addressing this issue is a nontrivial matter, as has been

discussed in [PT97]. Subsequently, the authors in [LGM+17, Xu20, SX22, SX23]
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assume f ∈ L1(Rd) and s ≥ 0, and define

(1.1) B̂
s(Rd): =

{
f ∈ L1(Rd) | υf,0 + υf,s <∞

}
.

For functions in B̂s(Rd), the Fourier transform and the pointwise Fourier inversion

are valid. Unfortunately, we shall prove in Lemma 2.3 that B̂s(Rd) equipped with

the norm υf,0 + υf,s is not complete, and thus, it is not a Banach space.

To tackle this issue, an alternative function spaces has been proposed, which

roots tracing back to the seminar work of Hörmander [Hör63]. It is defined as

follows:

FLs
p(R

d): =
{
f ∈ S

′(Rd) | (1 + |ξ|s)f̂(ξ) ∈ Lp(Rd)
}

for 1 ≤ p ≤ ∞ and s ≥ 0. This space has been studied extensively and bears

various names. It is sometimes called the Hörmander space, as mentioned in works

such as [Hör63,MR01,MM14,IV21]; alternatively, it may be referred to the Fourier

Lebesgue space, as evidenced in the works such as [GG02,PTT10,BO13,KST20].

We focus on p = 1 and s ≥ 0, and denote it as the spectral Barron space:

B
s(Rd): =

{
f ∈ S

′(Rd) | υf,0 + υf,s <∞
}
,

which is equipped with the norm

‖ f ‖Bs(Rd): = υf,0 + υf,s =

∫

Rd

(1 + |ξ|s)|f̂(ξ)|dξ.

We show in Lemma 2.1 that the pointwise Fourier inversion is valid for functions

in Bs(Rd) with a nonnegative s. Some authors also refer to Bs(Rd) as the Fourier

algebra or Wiener algebra, whose algebraic properties, such as the Wiener-Levy

theorem [Wie32,Lév35,HKKR59], have been extensively studied in [RS00,LST12].

Another popular space for analyzing shallow neural networks is the Barron space

introduced in [EMW19,EMW22], which can be viewed as shallow neural networks

with infinite width. Recent works such as [EW22a,EW22b] claimed that the spec-

tral Barron space is considerably smaller than the Barron space. However, as

pointed out in [CPV23], this claim lacks accuracy because they have not discrimi-

nated the smoothness index s in Bs(Rd). In addition, the variation space, initially

introduced in [BCDD08], has been studied in relation to the spectral Barron space

Bs(Rd) and the Barron space in [SX24, SX23]. These spaces have been exploited

to study the regularity of partial differential equations [CLL21, LLW21, EW22b,

CLLZ23]. Recently a novel space, originating from variational spline theory, as

discussed in [PN22], which is closely related to the variation space, has emerged as

a target function space for neural network approximation [PN23].

The first objective of the present work is the analytical properties of Bs(Rd).

In Lemma 2.2, we show that Bs(Rd) is complete, while Lemma 2.3 shows that

B̂s(Rd) is not complete. This distinction highlights a key difference between these

two spaces. Furthermore, Lemma 2.5 provides an example that illustrates functions

in Bs(Rd) may decay arbitrarily slow. This elegantly constructed example, utilizing
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the generalized Hypergeometric function, unveils intriguing relationships between

the Fourier transform and the decay rate of the functions. Furthermore, we study

the relations between Bs(Rd) and some classical function spaces. In Theorem 2.9,

we establish the connections between Bs(Rd) and the Besov space. Moreover,

in Corollary 2.13, we establish the connections between Bs(Rd) and the Sobolev

spaces.

Notably, we prove the embedding relation

B
s+d/2
2,1 (Rd) →֒ B

s(Rd) →֒ Bs
∞,1(R

d),

which is an optimal result seemingly absent from the existing literature. Roughly

speaking, the optimality is understood in the sense that B
s+d/2
2,1 (Rd) is the largest

Besov space contained in Bs(Rd), while Bs
∞,1(R

d) is the smallest Besov space that

contains Bs(Rd). We refer to Thoerem 2.9 for a precise statement. Moreover, the

embedding constants are independent of the input dimension d, which indicates

that the embedding is effective in high dimension. This embedding may serve

as a bridge to study how the Barron space, the variation space and the space

in [PN22] are related to the classical function spaces such as the Besov space.

To the best of our knowledge, only a few studies have addressed the embedding

relationships between neural network-related spaces and classical function spaces,

such as [GKNV22, GV23], while the scope of their investigations has not been

comprehensive.

The second objective of this work is to explore the neural network approximation

on a bounded domain. Building upon Barron’s seminal works on approximating

functions in B1(Rd) with L2-norm, recent studies have extended the approxima-

tion to functions in Bk+1(Rd) with Hk-norm, as demonstrated in [SX20, Xu20].

Furthermore, improved approximation rates have been achieved for functions in

Bs(Rd) with large s in works such as [BN20a,MSX22,SX22]. These advancements

contribute to a deeper understanding of the approximation capabilities of neural

networks.

The distinction between deep ReLU networks and shallow networks has been

highlighted in the separation theorems presented in [ES16,Tel16, SES22,GIJK23].

These theorems offer examples that can be well approximated by deep networks

but not by shallow networks without the curse of dimensionality. This sheds light

on the differences in the expressive power between the shallow and deep neural

networks. Moreover, the approximation rates for neural networks targeting mixed

derivative Besov/Sobolev spaces, spectral Barron spaces, and Hölder spaces have

also been investigated. These studies contribute to a broader understanding of

the approximation capabilities of neural networks in various function spaces as

in [MD19, BN20b, EPGB21, LSYZ21, TS21]. Additional works focusing on deep

neural network approximation in novel spaces may be founded in [SH20, EW22b,

GKNV22].
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We focus on the L2-approximation properties for functions in Bs(Rd) when

s is small. In Theorem 3.5, we establish that a neural network with L hidden

layers and N units in each layer can approximate functions in Bs(Rd) with a

convergence rate ofO(N−sL) when 0 < sL ≤ 1/2. This bound is sharp, as proved in

Theorem 3.11. Our results provide optimal convergence rates compared to existing

literature. For deep neural networks, a similar result has been presented in [BN20b]

with a convergence rate of O(N−sL/2). For shallow neural network; i.e., L = 1,

convergence rates of O(N−1/2) have been established in [MM22, SX22] when s =

1/2. However, it is worth noting that the constants in their estimates depend on the

dimension at least polynomially, or even exponentially, and require other bounded

norms besides υf,s. Our results provide a significant advancement by achieving

optimal convergence rates without the additional dependency on dimension or other

bounded norms.

The remaining part of the paper is structured as follows. In Section 2, we

demonstrate that the spectral Barron space is a Banach space and examine its

relationship with other function spaces. This analysis provides a foundation for

understanding the properties of the spectral Barron space. In Section 3, we delve

into the error estimation for approximating functions in the spectral Barron space

using deep neural networks with finite depth and infinite width. By investigating the

convergence properties of these networks, we gain insights into their approximation

capabilities and provide error bounds for their performance. Finally, in Section

4, we conclude our work by summarizing the key findings and contributions of

this study. We also discuss potential avenues for future research and highlight

the significance of our results in the broader context of function approximation

using neural networks. Certain technical results that are tedious but not the main

focusing have been postponed to the Appendix.

2. Completeness of Bs and its relation to other function spaces

This part discusses the completeness of the spectral Barron space and embedding

relations to other classical function spaces. Firstly, we fix some notations. Let S

be the Schwartz space and let S ′ be its topological dual space, i.e., the space of

tempered distribution. The Gamma function

Γ(s): =

∫ ∞

0

ts−1e−tdt, s > 0.

Denoting the surface area of the unit sphere Sd−1 by ωd−1 = 2πd/2/Γ(d/2). The

volume of the unit ball is νd = ωd−1/d. The Beta function

B(α, β): =

∫ 1

0

tα−1(1− t)β−1dt =
Γ(α)Γ(β)

Γ(α + β)
, α, β > 0.
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The series formulation of the first kind of Bessel function is defined as

Jν(x): = (x/2)ν
∞∑

k=0

(−1)k
(x/2)2k

Γ(ν + k + 1)k!
.

This definition may be found in [Luk62, § 1.4.1, Eq. (1)].

For f ∈ L1(Rd), its Fourier transform of f is defined as

f̂(ξ): =

∫

Rd

f(x)e−2πix·ξdx,

and the inverse Fourier transform is defined as

f∨(x): =

∫

Rd

f(ξ)e2πix·ξdξ.

If f ∈ S ′(Rd), then the Fourier transform in the sense of distribution means

〈 f̂ , ϕ〉 = 〈 f, ϕ̂〉 for any ϕ ∈ S (Rd) ⊂ L1(Rd).

We shall frequently use the following Hausdorff-Young inequality. Let 1 ≤ p ≤ 2

and f ∈ Lp(Rd), then

(2.1) ‖ f̂ ‖Lp′(Rd) ≤ ‖ f ‖Lp(Rd),

where p′ is the conjugate exponent of p; i.e. 1/p+ 1/p′ = 1.

We shall use the following pointwise Fourier inversion theorem.

Lemma 2.1. Let g ∈ L1(Rd), then ĝ∨ = g in S ′(Rd). Furthermore, let f ∈
S ′(Rd) and f̂ ∈ L1(Rd), then (f̂)∨ = f , a.e. on Rd.

Proof. By definition, there holds

〈 ĝ∨, ϕ〉 = 〈 g∨, ϕ̂〉 = 〈 g, ϕ〉 for any ϕ ∈ S (Rd).

Therefore, ĝ∨ = g in S ′(Rd). Note that f̂ ∈ L1(Rd),

〈 (f̂)∨, ϕ〉 = 〈 f̂ , ϕ∨〉 = 〈 f, ϕ〉 for any ϕ ∈ S (Rd).

By the Hausdorff-Young inequality (2.1),

‖ (f̂)∨ ‖L∞(Rd) ≤ ‖ f̂ ‖L1(Rd).

Therefore, f is a linear bounded operator on L1(Rd); i.e., f ∈ [L1(Rd)]∗ = L∞(Rd)

due to S (Rd) is dense in L1(Rd) and

|〈 f, ϕ〉| = |〈 (f̂)∨, ϕ〉| ≤ ‖ (f̂)∨ ‖L∞(Rd)‖ϕ ‖L1(Rd) ≤ ‖ f̂ ‖L1(Rd)‖ϕ ‖L1(Rd).

Hence, (f̂)∨ = f , a.e. on Rd because (f̂)∨−f ∈ L∞(Rd) [Bre11, Corollary 4.24]. �

A direct consequence of Lemma 2.1 is that the pointwise Fourier inversion is

valid for functions in Bs(Rd). We shall frequently use this fact later on.
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2.1. Completeness of the spectral Barron space.

Lemma 2.2. (1) Bs(Rd), s ≥ 0 is a Banach space.

(2) When s > 0, Bs(Rd) is not a Banach space if the norm ‖ f ‖Bs(Rd) is

replaced by υf,s.

Proof. We give a brief proof for the first claim for the readers’ convenience, which

has been stated in [Hör63, Theorem 2.2.1].

It is sufficient to check the completeness of Bs(Rd). For any Cauchy sequence

{fk}∞k=1 ⊂ Bs(Rd), there exists g ∈ L1(Rd) such that f̂k → g in L1(Rd). Therefore

there exists a sub-sequence of {fk}∞k=1(still denoted by fk) such that f̂k → g a.e.

on Rd.

Define the measure µ by setting that for any measurable set E ⊂ Rd,

µ(E): =

∫

E

|ξ|sdξ.

Then {f̂k}∞k=1 is a Cauchy sequence in L1(Rd, µ) and there exists h ∈ L1(Rd, µ) such

that f̂k → h in L1(Rd, µ). Therefore there exists a sub-sequence of {fk}∞k=1(still

denoted by fk) such that f̂k → h µ-a.e. on Rd. Note that for any measurable set

E ⊂ Rd, µ(E) = 0 is equivalent to |E| = 0. Therefore f̂k → h a.e. on Rd. By the

uniqueness of limitation, h = g, a.e. on Rd.

Define f = g∨. Lemma 2.1 shows that f̂ = g in S ′(Rd). Therefore f ∈ Bs(Rd)

and fk → f in Bs(Rd). Hence Bs is complete and it is a Banach space.

We prove (2) by contradiction, suppose that the assertion (2) is false, i.e., Bs(Rd)

equipped merely with the spectral norm υf,s is a Banach space, then there exists

C depending only on s and d such that for any f ∈ Bs(Rd),

(2.2) υf,0 ≤ Cυf,s.

The following example suggests that this is false.

For some δ > −1, let

fn(x) =

(
n∑

k=1

2kd(1 − 22k|ξ|2)δ+

)∨

(x).

We rewrite fn in terms of the Bochner-Riesz multipliers that is defined by

φR =

((
1− |ξ|2

R2

)δ

+

)∨

, δ > −1.

Therefore, fn =
∑n

k=1 φ2−k(x). We claim that φR admits the following explicit

representation

(2.3) φR(x) =
Γ(δ + 1)

πδ|x|δ+d/2
R−δ+d/2Jδ+d/2(2π|x|R),
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and for s ≥ 0, the spectrum norm of φR is

(2.4) υφR,s =
ωd−1

2
B

(
s+ d

2
, δ + 1

)
Rs+d.

The proof of the above two identities is postponed to Appendix A.1. It follows

from (2.3) that

(2.5) fn(x) =
Γ(δ + 1)

πδ|x|δ+d/2

n∑

k=1

2k(δ+d/2)Jδ+d/2(2
1−kπ|x|),

and fn ∈ Bs(Rd) with

υfn,s =

n∑

k=1

2kdυφ
2−k ,s =

1− 2−ns

2s+1 − 2
ωd−1B

(
s+ d

2
, δ + 1

)
,

and

υfn,0 =

n∑

k=1

2kdυφ
2−k ,0 =

ωd−1

2
B

(
d

2
, δ + 1

)
n.

where we have used (2.4). It is clear that

ωd−1

2s+1
B

(
s+ d

2
, δ + 1

)
≤ υfn,s ≤

ωd−1

2s+1 − 2
B

(
s+ d

2
, δ + 1

)
.

Hence υfn,0 ≃ O(n) while υfn,s ≃ O(1). This shows that (2.2) is invalid for a large

number n. This proves the second claim and completes the proof. �

Similar to Bs(Rd), the space B̂s(Rd) defined in (1.1) has been exploited as the

target function space for neural network approximation by several authors [LGM+17,

Xu20, SX22, SX23]. The advantage of this space is that the Fourier transform is

well-defined and the pointwise Fourier inversion is true for functions belonging to

B̂s(Rd). Unfortunately, B̂s(Rd) is not a Banach space as shown below.

Lemma 2.3. The space B̂s(Rd), s ≥ 0 defined in (1.1) equipped with the norm

υf,0 + υf,s is not a Banach space.

To prove Lemma 2.3, we recall the Barron spectrum space introduced by Meng

and Ming in [MM22]: For s ∈ R and 1 ≤ p ≤ 2,

(2.6) B
s
p(R

d): =
{
f ∈ Lp(Rd) | ‖ f ‖Lp(Rd) + υf,s <∞

}

equipped with the norm ‖ f ‖Bs
p(R

d): = ‖ f ‖Lp(Rd) + υf,s. A useful moment in-

equality that compares the spectral norm of different indexes has been proved

in [MM22, Lemma 2.1]: For 1 ≤ p ≤ 2 and −d/p < s1 < s2, there exists C

depending only on s1, s2, d and p such that

(2.7) υf,s1 ≤ C‖ f ‖γ
Lp(Rd)

υ1−γ
f,s2

,

where γ = (s2 − s1)/(s2 + d/p). For any ε > 0, denoting fε := f(x/ε) and using

υfε,s = ε−sυf,s,
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we observe that the inequality (2.7) is dilation invariant because it is invariant if

we replace f by fε.

Proof of Lemma 2.3. The authors in [MM22] have proved that Bs
p(R

d) defined

above is a Banach space. For any f ∈ Bs
1(R

d), taking s1 = 0, s2 = s and p = 1

in (2.7), we obtain, there exists C depending only on d and s such that

υf,0 ≤ C‖ f ‖γ
L1(Rd)

υ1−γ
f,s ≤ C‖ f ‖Bs

1(R
d),

where γ = s/(s+ d).

On the contrary, suppose that B̂s(Rd) equipped with the norm υf,0 + υf,s is

also a Banach space, then by the bounded inverse theorem and the above moment

inequality (2.7), we get, there exists C depending only on s and d such that for any

f ∈ Bs
1(R

d),

(2.8) ‖ f ‖L1(Rd) ≤ C(υf,0 + υf,s).

We obtain a contradiction by the following example.

For some δ > (d− 1)/2, we define

fn(x): =

(
n∑

k=1

(1 − 22k|ξ|2)δ+

)∨

(x).

Using (2.3) and noting fn =
∑n

k=1 φ2−k , we have the explicit form of fn as

(2.9) fn(x) =
Γ(δ + 1)

πδ|x|δ+d/2

n∑

k=1

2k(δ−d/2)Jδ+d/2(2
1−kπ|x|).

Using (2.4), we get

υfn,s =

n∑

k=1

υφ
2−k ,s =

1− 2−n(s+d)

2s+d+1 − 2
ωd−1B

(
s+ d

2
, δ + 1

)
,

and
ωd−1

2s+d+1
B

(
s+ d

2
, δ + 1

)
≤ υfn,s ≤

ωd−1

2s+d+1 − 2
B

(
s+ d

2
, δ + 1

)
.

Proceeding along the same line, we obtain

υfn,0 =

n∑

k=1

υφ
2−k ,0 =

1− 2−nd

2d+1 − 2
ωd−1B

(
d

2
, δ + 1

)
,

and
ωd−1

2d+1
B

(
d

2
, δ + 1

)
≤ υfn,0 ≤ ωd−1

2d+1 − 2
B

(
d

2
, δ + 1

)
.

Hence,

(2.10) υfn,0 + υfn,s ≤
ωd−1

2

(
B(d/2, δ + 1)

2d − 1
+
B((s+ d)/2, δ + 1)

2s+d − 1

)
.

By (2.3), a direct calculation gives

‖φR ‖L1(Rd) =
Γ(δ + 1)

πδRδ−d/2

∫

Rd

|Jδ+d/2(2π|x|R)|
|x|δ+d/2

dx =
2δΓ(δ + 1)

πδ+d/2

∫

Rd

|Jδ+d/2(|x|)|
|x|δ+d/2

dx.
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Invoking [Gra14, Appendix B.6, B.7], there exists C depending on ν such that

|Jν(x)| ≤ C




|x|ν |x| ≤ 1,

|x|−1/2 |x| > 1.

We get, there exists C depending only on d and δ such that

‖φR ‖L1(Rd) =
2δΓ(δ + 1)

πδ+d/2

(∫

|x|≤1

|Jδ+d/2(|x|)|
|x|δ+d/2

dx+

∫

|x|>1

|Jδ+d/2(|x|)|
|x|δ+d/2

dx

)

≤ C

(∫

|x|≤1

dx+

∫

|x|>1

|x|−1/2−δ−d/2dx

)

≤ C

(
1 +

1

δ − (d− 1)/2

)
,

where we have used the fact δ > (d− 1)/2 in the last step. Therefore, ‖φR ‖L1(Rd)

is bounded by a constant that depends only on δ and d but is independent of R.

Moreover,

‖ fn ‖L1(Rd) ≤
n∑

k=1

‖φ2−k ‖L1(Rd) ≤ n‖φ1 ‖L1(Rd),

and by the Hausdorff-Young inequality (2.1),

‖ fn ‖L1(Rd) ≥ ‖ f̂n ‖L∞(Rd) = f̂n(0) = n.

This means that ‖ fn ‖L1(Rd) = O(n), which together with (2.10) immediately shows

that the inequality (2.8) cannot be true for sufficiently large n. Hence, we conclude

that B̂s(Rd) is not a Banach space. �

2.2. Embedding relations of the spectral Barron spaces. In this part we

discuss the embedding of the spectral Barron spaces.

Lemma 2.4. (1) The moment inequality: For any 0 ≤ s1 ≤ s ≤ s2 satisfying

s = αs1 + (1− α)s2 with 0 ≤ α ≤ 1, and f ∈ Bs1 (Rd), there holds

(2.11) υf,s ≤ υαf,s1υ
1−α
f,s2

,

and

(2.12) ‖ f ‖Bs(Rd) ≤ ‖ f ‖α
Bs1 (Rd)‖ f ‖1−α

Bs2(Rd)
.

(2) Let 0 ≤ s1 ≤ s2, there holds Bs2 (Rd) →֒ Bs1 (Rd) with

(2.13) ‖ f ‖Bs1(Rd) ≤
(
2− s1

s2

)
‖ f ‖Bs2(Rd) ∀f ∈ B

s2(Rd).

The embedding (2.13) has been stated in [Hör63, Theorem 2.2.2] without tracing

the embedding constant.
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Proof. We start with the moment inequality (2.11) for the spectral norm. For any

0 ≤ s1 ≤ s ≤ s2 with s = αs1 + (1− α)s2, using Hölder’s inequality, we obtain

υf,s =

∫

Rd

(
|ξ|s1 |f̂(ξ)|

)α (
|ξ|s2 |f̂(ξ)|

)1−α

dξ ≤ υαf,s1υ
1−α
f,s2

.

This gives (2.11).

Next, for a, b, c > 0, by Young’s inequality, we have

a+ bαc1−α

(a+ b)α(a+ c)1−α
=

(
a

a+ b

)α(
a

a+ c

)1−α

+

(
b

a+ b

)α(
c

a+ c

)1−α

≤ α
a

a+ b
+ (1− α)

a

a+ c
+ α

b

a+ b
+ (1 − α)

c

a+ c

= 1.

This yields

a+ bαc1−α ≤ (a+ b)α(a+ c)1−α.

Let a = υf,0, b = υf,s1 and c = υf,s2 , we obtain

‖ f ‖Bs(Rd) = υf,0 + υf,s ≤ υf,0 + υαf,s1υ
1−α
f,s2

≤ ‖ f ‖α
Bs1 (Rd)‖ f ‖1−α

Bs2(Rd)
.

This implies (2.12).

Next, if we take s1 = 0 in (2.11) and s = (1− α)s2 with α = 1− s/s2, then

‖ f ‖Bs(Rd) ≤ υf,0 + υαf,0υ
1−α
f,s2

≤ (1 + α)υf,0 + (1 − α)υf,s2 ≤ (1 + α)‖ f ‖Bs2(Rd).

This leads to (2.13) and completes the proof. �

The next lemma shows that Bs
p(R

d) is a proper subspace of Bs(Rd).

Lemma 2.5. For s ≥ 0 and 1 ≤ p ≤ 2, there holds Bs
p(R

d) →֒ Bs(Rd), and the

inclusion is proper in the sense that for any 1 ≤ p < ∞, there exists fp ∈ Bs(Rd)

and fp 6∈ Lp(Rd).

Proof. It follows from the moment inequality (2.7) that υf,0 ≤ C‖ f ‖Bs
p(R

d). Hence

‖ f ‖Bs(Rd) ≤ C‖ f ‖Bs
p(R

d).

This implies Bs
p(R

d) →֒ Bs(Rd) for any s ≥ 0 and 1 ≤ p ≤ 2.

It remains to prove that the inclusion is proper. Let

fp(x): =
(
|ξ|−d/p′

χ[0,1)(|ξ|)
)∨

(x),

where χΩ(t) is the characteristic function on R that equals to one if t ∈ Ω and zero

otherwise. For any s ≥ 0, a straightforward calculation gives

υfp,s =
ωd−1

s+ d/p
.

Hence, fp ∈ Bs(Rd).
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What is left is to show that fp /∈ Lp(Rd), which is based on the following explicit

formula for fp shown in Appendix A.2:

(2.14) fp(x) = 1F2(d/(2p); 1 + d/(2p), d/2;−π2|x|2)pνd,

where the generalized Hypergeometric function nFm is defined as follows. For

nonnegative integer n,m and none of the parameters {βj}mj=1 is a negative integer

or zero,

nFm(α1, . . . , αn;β1, . . . , βm;x): =

∞∑

k=0

∏n
j=1(αj)k∏m
j=1(βj)k

xk

k!
.

The generalized Hypergeometric function nFm converges for all finite x if n ≤ m.

In particular nFm(α1, . . . , αn;β1, . . . , βm; 0) = 1. Hence fp(x) is finite for any x.

Using [MS73, Appendix], we obtain

1F2(α;β, γ;−x2/4) ≃ O(|x|α−β−γ+1/2 + |x|−2α) when |x| → ∞.

Therefore,

fp(x) ≃ O(|x|−(d+1)/2 + |x|−d/p) when |x| → ∞.

This immediately implies fp 6∈ Lp(Rd). �

Remark 2.6. The representation (2.14) is rather complicated, we give explicit for-

mulas for certain special cases. For d = p = 1, using the relation [Luk69, § 6.2.1,

Eq.(10)]

sinx = 0F1(; 3/2;−x2/4)x,

we obtain

f1(x) = 21F2(1/2; 3/2, 1/2;−π2x2) = 20F1(; 3/2;−π2x2) =
sin(2πx)

πx
.

When p = 2, using the identity [Luk69, § 6.2.11, Eq. (41)]

C(
√
2x/π) =

√
2x

π
1F2(1/4; 5/4, 1/2;−x2/4) when x > 0,

we obtain

f2(x) = 41F2(1/4; 5/4, 1/2;−π2x2) =
2√
|x|
C(2

√
|x|).

where C is the Fresnel Cosine integral given by

C(x) =

∫ x

0

cos(πt2/2)dt→ 1

2
when x→ ∞.
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2.3. Relations to some classical function spaces. In this part, we establish

the embedding between the spectral Barron space Bs(Rd) and the Besov space,

and hence we bridge Bs(Rd) and the Sobolev space as in [MM22]. Let us begin

with the definition of the Fourier-analytical based Besov space [Tri83].

Definition 2.7 (Besov space). Let {ϕj}∞j=0 ⊂ S (Rd) satisfies 0 ≤ ϕj ≤ 1 and



supp(ϕ0) ⊂ Γ0: =

{
x ∈ Rd | |x| ≤ 2

}
,

supp(ϕj) ⊂ Γj : =
{
x ∈ Rd | 2j−1 ≤ |x| ≤ 2j+1

}
, j = 1, 2, . . . .

For every multi-index α, there exists a positive number cα such that

2j|α||∇αϕj(x)| ≤ cα for all j = 0, . . . , for all x ∈ R
d,

and
∞∑

j=0

ϕj(x) = 1 for every x ∈ R
d.

Let α ∈ R and 1 ≤ p, q ≤ ∞. Define the Besov space

Bα
p,q(R

d): =
{
f ∈ S

′(Rd) | ‖ f ‖Bα
p,q(R

d) <∞
}

equipped with the norm

‖ f ‖Bα
p,q(R

d): =




∞∑

j=0

2αqj‖ (ϕj f̂)
∨ ‖q

Lp(Rd)




1/q

when q <∞,

and

‖ f ‖Bα
p,∞(Rd): = sup

j≥0
2αj‖ (ϕj f̂)

∨ ‖Lp(Rd).

Firstly we recall some well-known facts about the embedings of Besov spaces,

which was firstly proved by Taibleson in the series of work [Tai64,Tai65,Tai66]. We

retain the proof in Appendix A.3 for the readers’ convenience.

Lemma 2.8. There holds Bα1
p1,q1(R

d) →֒ Bα2
p2,q2(R

d) if and only if p1 ≤ p2 and one

of the following conditions holds:

(1) α1 − d/p1 > α2 − d/p2 and q1, q2 are arbitrary;

(2) α1 − d/p1 = α2 − d/p2 and q1 ≤ q2.

The main result of the embedding is:

Theorem 2.9. (1) There holds

(2.15) B
s+d/2
2,1 (Rd) →֒ B

s(Rd) →֒ Bs
∞,1(R

d)

with

(2.16) 2−s‖ f ‖Bs
∞,1(R

d) ≤ ‖ f ‖Bs(Rd) ≤ 2s+1+d/2√νd‖ f ‖Bs+d/2
2,1 (Rd)

.
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(2) The above embedding is optimal in the sense that Bα
p,q(R

d) →֒ Bs(Rd) if

and only if Bα
p,q(R

d) →֒ B
s+d/2
2,1 (Rd), and Bs(Rd) →֒ Bα

p,q(R
d) if and only

if Bs
∞,1(R

d) →֒ Bα
p,q(R

d).

Remark 2.10. By tracking the embedding constant in (2.16), we observe that it is

indenpendent of the dimension d because

2s+1+d/2√νd ∼ 2s+1

(dπ)1/4

(8πe
d

)d/4
→ 0 as d→ ∞.

This suggests that the embedding is effective in high dimension. It also indicates

that the spectral Barron space is more suitable than the Besov space as a target

function space for neural network approximation because

‖ f ‖B(Rd) ≤ Cd−(d+1)/4‖ f ‖
B

s+d/2
2,1 (Rd)

for any f ∈ B
s+d/2
2,1 (Rd)

with a universal constant C.

Proof of Theorem 2.9. To prove (1), firstly, for any f ∈ Bs(Rd),

‖ f ‖Bs(Rd) =

∞∑

j=0

∫

Rd

(1 + |ξ|s)ϕj(ξ)|f̂ (ξ)|dξ

≤
∞∑

j=0

(∫

supp ϕj

(1 + |ξ|s)2dξ
)1/2

‖ϕj f̂ ‖L2(Rd).

A direct calculation gives: for j = 0, 1, . . . ,
∫

supp ϕj

(1 + |ξ|s)2dξ ≤
∫

0≤|ξ|≤2j+1

(1 + |ξ|s)2dξ

= ωd−1

∫ 2j+1

0

(1 + rs)2rd−1d r

≤ 2ωd−1

∫ 2j+1

0

(1 + r2s)rd−1d r

≤ 2ωd−1

(
2(j+1)d

d
+

2(j+1)(2s+d)

2s+ d

)

≤ 4νd2
(j+1)(2s+d).

Using the Plancherel’s theorem, we get

‖ f ‖Bs(Rd) ≤ 2s+1+d/2√νd
∞∑

j=0

2j(s+d/2)‖ϕj f̂ ‖L2(Rd)

= 2s+1+d/2√νd
∞∑

j=0

2j(s+d/2)‖ (ϕj f̂)
∨ ‖L2(Rd)

= 2s+1+d/2√νd‖ f ‖Bs+d/2
2,1 (Rd)

.
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Next, for any f ∈ Bs(Rd), by Lemma 2.1, we have ϕj f̂ ∈ L1(Rd), using the

Hausdorff-Young inequality (2.1), we obtain

‖ f ‖Bs
∞,1(R

d) =

∞∑

j=0

2sj‖ (ϕj f̂)
∨ ‖L∞(Rd) ≤

∞∑

j=0

2sj‖ϕj f̂ ‖L1(Rd)

≤‖ϕ0f̂ ‖L1(Rd) + 2s
∞∑

j=1

∫

Rd

ϕj(ξ)|ξ|s|f̂(ξ)|dξ

≤υf,0 + 2sυf,s.

Therefore, ‖ f ‖Bs
∞,1(R

d) ≤ 2s‖ f ‖Bs(Rd). This proves (2.15) with

2−s‖ f ‖Bs
∞,1(R

d) ≤ ‖ f ‖Bs(Rd) ≤ 2s+1+d/2√νd‖ f ‖Bs+d/2
2,1 (Rd)

.

It remains to show that the embedding (2.15) is optimal. The “if”-part is appar-

ent, it suffices to show the “only if”-part. On the one hand, suppose Bα
p,q(R

d) →֒
Bs(Rd), one would have Bα

p,q(R
d) →֒ Bs

∞,1(R
d). Using Lemma 2.8, we conclude

that the triple (p, q, α) must be in the set

(2.17) S1: = { p, q ∈ [1,∞], α ∈ R | α > s+ d/p, or α = s+ d/p and q = 1 } .

We split this set into three subsets.

First, if (p, q, α) ∈ S1 with 1 ≤ p ≤ 2, then by Lemma 2.8 we obtain Bα
p,q(R

d) →֒
B

s+d/2
2,1 (Rd). This proves the first assertion.

Second, if (p, q, α) ∈ S1 with 2 < p < ∞, then we shall exploit an example

adopted from [LL01, Ch. 5, Ex. 9] to show that Bα
p,q(R

d) 6 →֒ Bs(Rd). Let

ψn(x) = (1 + in)−d/2e−π|x|2/(1+in).

A direct calculation gives ψ̂n(ξ) = e−π(1+in)|ξ|2 . Hence |ψ̂n(ξ)| = e−π|ξ|2 ∈ S (Rd)

and

‖ψn ‖Bs(Rd) = 1 +
Γ((s+ d)/2)

Γ(d/2)πs/2
,

which is independent of n. We shall show in Appendix A.4 that there exists C

independent of n such that

(2.18) ‖ψn ‖Bα
p,q(R

d) ≤ C(1 + n2)−d(p−2)/(4p)

when 2 ≤ p <∞ and α > 0. Therefore, ‖ψn ‖Bα
p,q(R

d) → 0 when p > 2 and n→ ∞.

This proves Bα
p,q(R

d) 6 →֒ Bs(Rd).

Finally, if (p, q, α) ∈ S1 with p = ∞. Note that ϕj(x) = δ0j when |x| < 1. A

direct calculation gives

‖ 1 ‖Bα
∞,q(R

d) = ‖ (ϕ01̂)
∨ ‖L∞(Rd) = ‖ 1 ‖L∞(Rd) = 1,

while it is clear that the constant function 1 6∈ Bs(Rd). This implies Bα
∞,q(R

d) 6 →֒
Bs(Rd).

Summing up the above three cases, we conclude the first part of the assertion

(2).
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On the other hand, suppose Bs(Rd) →֒ Bα
p,q(R

d), one would have B
s+d/2
2,1 (Rd) →֒

Bα
p,q(R

d). Invoking Lemma 2.8 again, we conclude that the index (p, q, α) must be

in the set

(2.19) S2: = { p ∈ [2,∞], q ∈ [1,∞], α ∈ R | α ≤ s+ d/p } .

Again we split this set into two subsets.

First, if (p, q, α) ∈ S2 with 2 ≤ p <∞, then we have proved that fp constructed

in Lemma 2.5 satisfying fp ∈ Bs(Rd) while fp 6∈ Lp(Rd). A direct calculation gives

‖ fp ‖Bα
p,q(R

d) = ‖ (ϕ0f̂p)
∨ ‖Lp(Rd) = ‖ fp ‖Lp(Rd).

Hence fp 6∈ Bα
p,q(R

d) and it yields Bs(Rd) 6 →֒ Bα
p,q(R

d).

Second, if (p, q, α) ∈ S2 with p = ∞. As expected, Lemma 2.8 yields that

Bs
∞,1(R

d) →֒ Bα
∞,q(R

d). Hence we prove the second part of the assertion (2).

Therefore, we conclude that the embedding (2.15) is optimal. �

As a consequence of Theorem 2.9 and Lemma 2.5, we establish the embedding

between the spectral Barron space and the Sobolev spaces.

Definition 2.11 (Fractional Sobolev space). Let 1 ≤ p < ∞ and non-integer

α > 0, then the fractional Sobolev space

Wα
p (R

d): =

{
f ∈W ⌊α⌋

p (Rd) |
∫∫

Rd×Rd

|∇⌊α⌋f(x)−∇⌊α⌋f(y)|p
|x− y|d+(α−⌊α⌋)p

dxdy <∞
}

equipped with the norm

‖ f ‖Wα
p (Rd): = ‖ f ‖

W
⌊α⌋
p (Rd)

+

(∫∫

Rd×Rd

|∇⌊α⌋f(x)−∇⌊α⌋f(y)|p
|x− y|d+(α−⌊α⌋)p

dxdy

)1/p

.

It is a straightforward corollary of the following embedding relation between the

Sobolev space and Bs
p(R

d).

Lemma 2.12 ([MM22, Theorem 4.3]). (1) If 1 ≤ p ≤ 2 and α > s+ d/p > 0,

then

Wα
p (Rd) →֒ B

s
p(R

d).

(2) If s > −d is not an integer or s > −d is an integer and d ≥ 2, then

W s+d
1 (Rd) →֒ B

s
1(R

d).

It follows from the above lemma and Lemma 2.5 that

Corollary 2.13. (1) If 1 ≤ p ≤ 2 and α > s+ d/p, there holds

(2.20) Wα
p (R

d) →֒ B
s(Rd) →֒ Cs(Rd).

(2) If s is not an integer or s is an integer and d ≥ 2, then

W s+d
1 (Rd) →֒ B

s(Rd).
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The first embedding with p = 2 and s = 1 was hidden in [Bar93, § II, Para.

7; § IX, 15].

Proof. By Lemma 2.12 and Lemma 2.5, when α > s+ d/p and 1 ≤ p ≤ 2, we have

Wα
p (Rd) →֒ B

s
p(R

d) →֒ B
s(Rd).

When s is not an integer or s is an integer and d ≥ 2, there holds

W s+d
1 (Rd) →֒ B

s
1(R

d) →֒ B
s(Rd).

It remains to prove the right-hand side of (2.20). Using Theorem 2.9,

B
s(Rd) →֒ Bs

∞,1(R
d) →֒ Cs(Rd)

due to Theorem 2.9, Lemma 2.8 and [Tri83, § 2.3.5, Eq. (1); § 2.5.7, Eq. (2), (9),

(11)]. �

3. Application to deep neural network approximation

The embedding results proved in Theorem 2.9 and Corollary 2.13 indicate that s

is a smoothness index. Consequently, we are interested in exploring the approximate

rate when s is small with Bs as the target function space. To facilitate our analysis,

we shall focus on the hypercube Ω: = [0, 1]d, and the spectral norm for function f

with respect to Ω is

υf,s,Ω = inf
Ef |Ω=f

∫

Rd

|ξ|s1|Êf(ξ)|dξ.

Here we replace |ξ| by |ξ|1 in the definition of υf,s,Ω, the latter seems more natural

for studying the approximation over the hypercube as suggested by [Bar93, § V].

Definition 3.1. A sigmoidal function is a bounded function σ : R 7→ R such that

lim
t→−∞

σ(t) = 0, lim
t→+∞

σ(t) = 1.

For example, the Heaviside function χ[0,∞) is a sigmoidal function.

A classical idea for the approximation error of neural networks with sigmoidal

activation functions σ is to use the Heaviside function χ[0,∞) as a transition.

Caragea et. al. [CPV23] pointed out that the gap between sigmoidal func-

tion σ and the Heaviside function χ[0,∞) cannot be dismissed in L∞(Ω). While this

gap does not exist in L2(Ω).

Lemma 3.2. For fixed ω ∈ Rd\{0} and b ∈ R,

lim
τ→∞

‖ σ(τ(ω · x+ b))− χ[0,∞)(ω · x+ b) ‖L2(Ω) = 0.

Proof. Note that

lim
t→±∞

|σ(t)− χ[0,∞)(t)| = 0.
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We divide the cube Ω into Ω1: = {x ∈ Ω | |τ(ω · x+ b)| < δ } and Ω2: = Ω \ Ω1.

With proper choice of δ > 0 and τ > 0 large enough, we can obtain that the

L2-distance between σ(τ(ω · x+ b)) and χ[0,∞)(ω · x+ b) is arbitrarily small. �

For a shallow neural network, the following lemma in [Bar93] is proved for the

real-valued function, while it is straightforward to extend the proof to the complex-

valued function.

Lemma 3.3 ([Bar93, Theorem 1]). Let f ∈ B1(Rd), there exists

(3.1) fN (x) =

N∑

i=1

ciσ(ωi · x+ bi)

with ωi ∈ Rd, bi ∈ R and ci ∈ C such that

‖ f − fN ‖L2(Ω) ≤
2υf,1,Ω√

N
.

In this part, we shall show the approximation error for the deep neural network.

We use the (L,N)-network to describe a neural network with L hidden layers and

at most N units per layer. Here L denotes the number of hidden layers, e.g., the

shallow neural network, expressed as (3.1), is an (1, N)-network.

Definition 3.4 ((L,N)-network). An (L,N)-network represents a neural network

with L hidden layers and at most N units per layer. The activation functions of

the first L−1 layers are all ReLU and the activation function of the last layer is the

sigmoidal function. The connection weights between the input layer and the hidden

layer, and between the hidden layer and the hidden layer are all real numbers. The

connection weights between the last hidden layer and the output layer are complex

numbers.

There is relatively little work on the approximation rate of deep neural net-

works that utilize the spectral Barron space as the target space. For deep ReLU

networks, [BN20b] has proven approximation results of (sL/2)-order. The main

contribution of this section is to improve this result to an sL-order approximation,

at the cost of introducing υf,s,Ω in the estimate; cf. Theorem 3.5.

Theorem 3.5. Let the positive integer L and f ∈ Bs(Rd) with 0 < sL ≤ 1/2. For

any positive integer N there exists an (L,N + 2)-network fN such that

(3.2) ‖ f − fN ‖L2(Ω) ≤
29υf,s,Ω
NsL

.

Moreover, if f is a real-valued function, then the connection weights in fN are all

real.

As far as we are aware, the above theorem represents the state-of-the-art in

the literature to date. For shallow neural network L = 1, the authors in [MM22]

established a 1/2-order convergence with target function space B
1/2
2 (Rd), which is a
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subspace of B1/2(Rd). Their estimate depends on the dimension with a factor d1/4.

The upper bound in [SX22] depends on υf,0 + υf,1/2, whereas (2.5) demonstrates

that υf,0 can be much larger than υf,s for certain functions in Bs(Rd), and the

estimate depends on the dimension exponentially. In contrast to these two results,

the upper bound in Theorem 3.5 relies solely on υf,s,Ω, and is independent of the

dimension.

For deep neural network, a similar result for the ReLU activation function has

been presented in [BN20b] with a (sL/2)-order approximation. Compared to this

result, our estimate exhibits a higher level of optimality. At first glance, our result

might seem to contradict [BN20b, Theorem 2]. In reality, this is not the case because

the upper bound in that reference is
√
υf,0υf,s + υf,0, which requires f ∈ Bs(Rd),

but is typically smaller than ‖ f ‖Bs(Rd) for oscillatory functions; cf. Lemma A.1.

In what follows, we make some preparations to prove Theorem 3.5. The analysis

in this part owns the most to [BN20b] with certain improvements that will be

detailed later on. For any function g defined on [0, 1] and it is symmetric about

x = 1/2, We use the notation g,n to denote the function g in the [0, 1] interval of

the period repeated n times, i.e.,

(3.3) g,n(t) = g(nt− j), j = 0, . . . , n− 1, 0 ≤ nt− j ≤ 1.

Define

β(t) = ReLU(2t)− 2ReLU(2t− 1) + ReLU(2t− 2) =





2t, 0 ≤ t ≤ 1/2,

2− 2t, 1/2 ≤ t ≤ 1,

0, otherwise.

By definition (3.3), β,n represents a triangle function with n peaks and can be

represented by 3n ReLUs:

β,n(t) =

n−1∑

j=0

β(nt− j), 0 ≤ t ≤ 1.

Lemma 3.6. Let g be a function defined on [0, 1] and symmetric about x = 1/2,

then g,n2 ◦ β,n1 = g,2n1n2 on [0, 1].

The above lemma is a rigorous statement of [Tel16, Proposition 5.1]. A key

example is cos(2πn2β,n1(t)) = cos(4πn1n2t) when t ∈ [0, 1]. A geometrical expla-

nation may be founded in [EPGB21, Figure 3]. We postpone the rigorous proof in

Appendix A.5.

For r ∈ (0, 1), we define

α(t, r) = χ[0,∞)(t−r/2)−χ[0,∞)(t−(1−r)/2) =




χ[r/2,(1−r)/2](t), 0 < r ≤ 1/2,

−χ[(1−r)/2,r/2](t), 1/2 ≤ r < 1,
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then supp(α(·, r)) ⊂ (0, 1/2) and α(t, r) is symmetric about t = 1/4. Define

γ(t, r) = α(t+ 1/4, r)− α(t− 1/4, r) + α(t− 3/4, r).

Then γ(t, r) is symmetric about t = 1/2 because

γ(1− t, r) =α(5/4− t, r)− α(3/4− t, r) + α(1/4− t, r)

=α(t− 3/4, r)− α(t− 1/4, r) + α(t+ 1/4, r) = γ(t, r).

By definition (3.3), γ,n(·, r) is well defined on [0, 1] and

γ,n(t, r) =





α(nt− j + 1/4, r), 0 ≤ nt− j ≤ 1/4,

−α(nt− j − 1/4, r), 1/4 ≤ nt− j ≤ 3/4,

α(nt− j − 3/4, r), 3/4 ≤ nt− j ≤ 1,

j = 0, . . . , n− 1

=




α(nt− j + 1/4, r), −1/4 ≤ nt− j ≤ 1/4,

−α(nt− j − 1/4, r), 1/4 ≤ nt− j ≤ 3/4,
j = 0, . . . , n.

And γ,n(·, r) on [0, 1] can be represents by 4n Heaviside function χ[0,∞) due to

α(nt+ 1/4, r), α(nt− n+ 1/4, r) only need one Heaviside function each:

γ,n(t, r) =

n∑

j=0

α(nt− j + 1/4, r)−
n−1∑

j=0

α(nt− j − 1/4, r).

A direct consequence of the above construction is

Lemma 3.7. For t ∈ [0, 1], there holds

(3.4)
π

2

∫ 1

0

cos(πr)γ,n(t, r)dr = cos(2πnt).

Proof. For any t ∈ [0, 1/2], a direct calculation gives

π

2

∫ 1

0

cos(πr)α(t, r)dr = π

∫ 2t

0

cos(πr)dr = sin(2πt).

Fix a t ∈ [0, 1]. If there exists an integer j satisfying 0 ≤ j ≤ n and −1/4 ≤ nt−j ≤
1/4, then γ,n(t, r) = α(nt− j + 1/4, r) and

π

2

∫ 1

0

cos(πr)α(nt − j + 1/4, r)dr = sin(2π(nt− j + 1/4)) = cos(2πnt).

Otherwise there exists an integer j satisfying 0 ≤ j ≤ n−1 and 1/4 ≤ nt− j ≤ 3/4.

Then γ,n(t, r) = −α(nt− j − 1/4, r) and

−π
2

∫ 1

0

cos(πr)α(nt − j − 1/4, r)dr = − sin(2π(nt− j − 1/4)) = cos(2πnt).

This completes the proof of (3.4). �

The following Lemma is the key point to prove Theorem 3.5, which follows the

framework of [BN20b], while we achieve a higher order convergence rate and the

constant is dimension-free for high-frequency function.
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Lemma 3.8. Let the positive integer L and f ∈ Bs(Rd) with 0 < sL ≤ 1/2 and

supp f̂ ⊂
{
ξ ∈ Rd | |ξ|1 ≥ 1

}
. For any positive integer N there exists an (L,N)-

network fN such that

(3.5) ‖ f − fN ‖L2(Ω) ≤
22υf,s,Ω
NsL

.

Proof. By Lemma 2.1, for f ∈ Bs(Rd), assume f is real-valued, then

f(x) =

∫

Rd

f̂(ξ)e2πiξ·xdξ =

∫

Rd

|f̂(ξ)| cos(2π(ξ · x+ θ(ξ)))dξ,

with proper choice θ(ξ) such that 0 ≤ ξ · x + θ(ξ) ≤ |ξ|1 + 1. For fixed ξ, choose

nξ = 2L−1⌈(|ξ|1 +1)1/L⌉L and tξ(x) = (ξ · x+ θ(ξ))/nξ, then 0 ≤ tξ(x) ≤ 1 and by

Lemma 3.7, we reshape f(x) as

f(x) =

∫

Rd

|f̂(ξ)| cos(2πnξtξ(x))dξ =
π

2

∫

Rd

|f̂(ξ)|dξ
∫ 1

0

cos(πr)γ,nξ
(tξ(x), r)dr.

Define the probability measure

(3.6) µ(dξ, dr) =
1

Q
|ξ|−s

1 |f̂(ξ)|χ(0,1)(r)dξdr,

where Q is the normalized factor that

Q =

∫

Rd

|ξ|−s
1 |f̂(ξ)|dξ

∫ 1

0

dr ≤ υf,s,Ω.

Therefore f(x) = E(ξ,r)∼µF (x, ξ, r) with

F (x, ξ, r) =
πQ

2
|ξ|s1 cos(πr)γ,nξ

(tξ(x), r).

If {ξi, ri}mi=1 is an i.i.d. sequence of random samples from µ, and

f̃ =
1

m

m∑

i=1

F (x, ξi, ri),

then using Fubini’s theorem, we obtain

E(ξi,ri)∼µ‖ f − f̃ ‖2L2(Ω) =

∫

Ω

E(ξi,ri)∼µ|E(ξ,r)∼µF (x, ξ, r) − f̃(x)|2dx

=
1

m

∫

Ω

Var(ξ,r)∼µF (x, ξ, r)dx

≤ 1

m
E(ξ,r)∼µ‖F (·, ξ, r) ‖2L∞(Ω).

Note that

‖F (·, ξ, r) ‖L∞(Ω) ≤
πQ

2
|ξ|s1,

we obtain

E(ξi,ri)∼µ‖ f − f̃ ‖2L2(Ω) ≤
1

m
E(ξ,r)∼µ‖F (·, ξ, r) ‖2L∞(Ω) ≤

π2Qυf,s,Ω
4m

.
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By Markov’s inequality, with probability at least (1 + ε)/(2 + ε), for some ε > 0 to

be chosen later on, we obtain

(3.7) ‖ f − f̃ ‖2L2(Ω) ≤
(2 + ε)π2Qυf,s,Ω

4m

It remains to calculate the number of units in each layer. For each γ,nξ
(tξ(x), r),

choose n1 = · · · = nL = ⌈(|ξ|1+1)1/L⌉, then nξ = 2L−1n1 . . . nL, and by Lemma 3.6,

γ,nξ
(·, r) = γ,nL(·, r) ◦ β,nL−1 ◦ · · · ◦ β,n1 on [0, 1]. Lemma 3.2 shows the Heaviside

function χ[0,∞) can be approximated by σ with at most

max{3n1, . . . , 3nL−1, 4nL} ≤ 4⌈(|ξ|1 + 1)1/L⌉ ≤ 12|ξ|1/L1

units in each layer to represent γ,nξ
(tξ(x), r). Denote N the total number of units

in each layer, then N ≤ 12
∑m

i=1 |ξi|
1/L
1 and

E(ξi,ri)∼µN
2sL ≤ 12

m∑

i=1

E(ξi,ri)∼µ|ξi|2s1 ≤ 12mυf,s,Ω
Q

.

Invoking Markov inequality again, with probability at least (1 + ε)/(2 + ε), we

obtain

(3.8)
Q

m
≤ 12(2 + ε)υf,s,Ω

N2sL
.

Combining (3.7) and (3.8), with probability at least ε/(2 + ε), there exists an

(L,N)-network fN such that

‖ f − fN ‖L2(Ω) ≤
√
3(2 + ε)πυf,s,Ω

NsL
≤ 11υf,s,Ω

NsL
,

with proper choice of ε in the last step. Finally, if f is complex-valued, we approx-

imate the real and imaginary parts of the function separately to obtain (3.5). �

Remark 3.9. We assume supp f̂ ⊂
{
ξ ∈ Rd | |ξ|1 ≥ 1

}
in Lemma 3.8 because

we want to obtain an upper bound depending only on υf,s,Ω. If we give up this

condition, then the upper bound in Theorem 3.5 changes to C‖ f ‖Bs(Rd)/N
sL for

some dimension-free constant C. The proof is essentially the same provided that

the probability measure (3.6) is replaced by

µ(dξ, dr) =
1

Q
(1 + |ξ|1)−s|f̂(ξ)|χ(0,1)(r)dξdr,

We leave it to the interested reader.

Proof of Theorem 3.5. We write f = f1 + f2 with

f1(x) =

∫

|ξ|1<1

f̂(ξ)e2πiξ·xdξ, f2(x) =

∫

|ξ|1≥1

f̂(ξ)e2πiξ·xdξ.

Then υf1,1,Ω ≤ υf,s,Ω and υf2,s,Ω ≤ υf,s,Ω because

f̂1(ξ) = f̂(ξ)χ[0,1)(|ξ|1) and f̂2(ξ) = f̂(ξ)χ[1,∞)(|ξ|1).
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We approximate f1 with an (L, n1)-network with n1 = ⌈N/6⌉. By applying Lemma 3.3

to f1, we obtain, there exists an (1, n1)-network f1,n1 such that

‖ f1 − f1,n1 ‖L2(Ω) ≤
2υf1,1,Ω

n
1/2
1

≤ 2
√
6υf,s,Ω
NsL

.

Noting that an (1, n1)-network can be represented by an (L, n1)-network. We just

need to fill the rest of the hidden layers with

t =




ReLU(t), t ≥ 0,

−ReLU(−t), t < 0.

Secondly, we approximate f2 with an (L, n2)-network with n2 = ⌈5N/6⌉ and obtain

the error estimate. Applying Lemma 3.8 we obtain, there exists an (L, n2) network

f2,n2 such that

‖ f2 − f2,n2 ‖L2(Ω) ≤
22πυf2,s,Ω

ns
2

≤ 22
√
6/5πυf,s,Ω
NsL

.

These together with the triangle inequality give the estimate (3.2) and the total

number of units in each layer is

n1 + 2n2 = ⌈N/6⌉+ ⌈5N/6⌉ ≤ N + 2.

If f is a real-valued function, then we let fN = Re(f1,n1 + f2,n2), and the upper

bound (3.2) still holds true. �

Remark 3.10. The activation function of the last hidden layer of the (L,N)-network

in Theorem 3.5 may be replaced by many other familiar activation functions such

as Hyperbolic tangent, SoftPlus, ELU, Leaky ReLU, ReLUk and so on. Because all

these activation functions can be reduced to sigmoidal functions by certain shifting

and scaling argument; e.g., for SoftPlus, we observe that SoftPlus(t)−SoftPlus(t−1)

is a sigmoidal function. Unfortunately, it is not easy to change ReLU of the first

L− 1 hidden layers by other activation functions.

In what follows, we shall show that Theorem 3.5 is sharp if the activation

function of the last hidden layer is Heaviside function. This example is adopted

from [BN20b]. For readers’ convenience, We reserve the proof in Appendix A.6.

Theorem 3.11. For any fixed positive integers L,N and real numbers ε, s with

0 < ε, sL ≤ 1/2, there exists f ∈ Bs(Rd) satisfying υf,s,Ω ≤ 1+ ε such that for any

(L,N)-network fN whose activation function σ in the last layer is the Heaviside

function χ[0,∞), there holds

(3.9) ‖ f − fN ‖L2(Ω) ≥
1− ε

8NsL
.
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4. Conclusion

We discuss the analytical functional properties of the spectral Barron space.

The sharp embedding between the spectral Barron spaces and various classical

function spaces have been established. The approximation rate has been proved

for the deep ReLU neural networks when the spectral Barron space with a small

smoothness index is employed as the target function space. There are still some

unsolved problems, such as the sup-norm error and the higher-order convergence

results for larger s, the relations among Barron type spaces, variational space and

the Radon bounded variation space as well as understanding how these spaces are

related to the classical function spaces, which will be pursued in the subsequent

works.
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Appendix A. Some proof details

A.1. Proof for (2.3) and (2.4).

Proof. Note that φ̂R is a radial function. By Lemma 2.1 and φ̂R ∈ L1(Rd),

φR(x) =

∫

BR

(
1− |ξ|2

R2

)δ

e2πix·ξdξ

=

∫ R

−R

e2πi|x|ξ1dξ1

∫

ξ22+...ξ2d<R2−ξ21

(
1− |ξ|2

R2

)δ

dξ2 . . . dξd.

Performing the polar transformation and changing the variable t = r2/(R2 − ξ21),

we obtain
∫

ξ22+...ξ2d<R2−ξ21

(
1− |ξ|2

R2

)δ

dξ2 . . . dξd

= ωd−2

∫ √
R2−ξ21

0

rd−2

(
1− ξ21 + r2

R2

)δ

dr

=
ωd−2

2
Rd−1

(
1− ξ21

R2

)δ+(d−1)/2 ∫ 1

0

t(d−3)/2(1− t)δdt

=
ωd−2

2
Rd−1

(
1− ξ21

R2

)δ+(d−1)/2

B

(
d− 1

2
, δ + 1

)
.

Substituting this equation into the previous one and changing the variable ξ1 =

R cos θ, we get

φR(x) =
ωd−2

2
Rd−1B

(
d− 1

2
, δ + 1

)∫ R

−R

(
1− ξ21

R2

)δ+(d−1)/2

e2πi|x|ξ1dξ1

=
π(d−1)/2Γ(δ + 1)Rd

Γ(δ + (d+ 1)/2)

∫ π

0

cos(2π|x|R cos θ) sin2δ+d θdθ

=
Γ(δ + 1)

πδ|x|δ+d/2
R−δ+d/2Jδ+d/2(2π|x|R),

where we have used

Jν(x) =
(x/2)ν

π1/2Γ((d + 1)/2)

∫ π

0

cos(x cos θ) sin2ν θdθ, ν > −1

2
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in the last step. The above integral representation of the first kind of Bessel function

may be found in [Luk62, § 1.4.5, Eq. (4)].

For s ≥ 0, a direct calculation gives

υφR,s =

∫

BR

|ξ|s
(
1− |ξ|2

R2

)δ

dξ = ωd−1

∫ R

0

rs+d−1

(
1− r2

R2

)δ

dr

=
ωd−1

2
Rs+d

∫ 1

0

t(s+d)/2−1(1− t)δdt

=
ωd−1

2
B

(
s+ d

2
, δ + 1

)
Rs+d.

Therefore φR ∈ Bs(Rd). �

A.2. Proof for (2.14).

Proof. To prove (2.14), we start with the following representation formula. If f̂ ∈
L1(Rd) is a radial function with f̂(ξ) = g0(|ξ|), then

(A.1) f(x) =
2π

|x|d/2−1

∫ ∞

0

g0(r)r
d/2Jd/2−1(2π|x|r)dr.

If d = 1, then using Lemma 2.1, we obtain

f(x) =

∫

R

g0(|ξ|)e2πixξdξ = 2

∫ ∞

0

g0(r) cos(2π|x|r)dr,

which gives (A.1), where we have used the relation [Luk62, § 1.4.6, Eq. (7)]

J−1/2(x) =

√
2

πx
cos(x)

in the last step.

For d ≥ 2, combining Lemma 2.1 and [SW71, Ch. IV, Theorem 3.3], we ob-

tain (A.1), which immediately implies

fp(x) =
2π

|x|d/2−1

∫ 1

0

rd(1/2−1/p′)Jd/2−1(2π|x|r)dr

= ωd−1

∫ 1

0

rd/p−1
0F1(; d/2;−π2|x|2r2)dr,

where we have used the relation [Luk62, § 1.4.1, Eq. (1)]

Jν(x) =
(x/2)ν

Γ(ν + 1)
0F1(; ν + 1;−x2/4)

in the last step. Changing the variable t = r2 and using the identity [Luk62, § 1.3.2,

Eq. (2)]

1F2(ρ; ρ+ σ, β;x) =
1

B(ρ, σ)

∫ 1

0

tρ−1(1− t)σ−1
0F1(;β;xt)dt,

we get (2.14). �
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A.3. Proof for Lemma 2.8.

Proof. The “if”-part is standard by [Tri83, § 2.3.2, Proposition 2; § 2.7.1, Theorem].

We illustrate the “only if”-part with an example, which is taken from [Tri83, § 2.3.9,

Proof of Theorem].

Let f0 ∈ S (Rd) with supp(f̂0) ⊂
{
x ∈ Rd | 1 ≤ |x| ≤ 3/2

}
. Let fn(x) =

f0(2
−nx) for an integer n, then

f̂n(ξ) = 2−dnf̂0(2
−nξ) and supp(f̂n) ⊂

{
x ∈ R

d | 2n ≤ |x| ≤ 3× 2n−1
}
.

Choose proper {ϕj}∞j=0 ⊂ S (Rd) in the definition of Besov space such that ϕ0(x) =

1 when |x| ≤ 3/2 and ϕj = 1 on supp(f̂j) for j ≥ 1, then

supp(f̂n) ∩ supp(ϕj) = ∅ if n ≥ 0 and n 6= j.

A direct calculation gives that

(ϕj f̂n)
∨ = δ0nfn, if n ≤ 0 and (ϕj f̂n)

∨ = δjnf̂n, if n > 0.

By definition, when n < 0,

‖ fn ‖Bα
p,q(R

d) = ‖ fn ‖Lp(Rd) = 2−dn/p‖ f0 ‖Lp(Rd).

Let n→ −∞ with the embedding relation Bα1
p1,q1(R

d) →֒ Bα2
p2,q2(R

d) yields p1 ≤ p2.

Similarly, when n > 0,

‖ fn ‖Bα
p,q(R

d) = 2αn‖ fn ‖Lp(Rd) = 2(α−d/p)n‖ f0 ‖Lp(Rd).

Let n → +∞ with the embedding relation implies α1 − d/p1 ≥ α2 − d/p2. Finally

if α1 − d/p1 = α2 − d/p2, then q1 ≤ q2 proved in [ST95, Theorem 3.2.1]. �

A.4. Proof for (2.18).

Proof. If 1 ≤ p < ∞ and α > 0, then Bα
p,1(R

d) is equivalent to the space defined

in [Tri83, § 2.5.7, Theorem]

Λα
p,q(R

d): =

{
f ∈W [α]

p (Rd) |
∫

Rd

‖∆2
h(∇[α]f) ‖q

Lp(Rd)

|h|d+{α}q
dh <∞

}

equipped with the norm

‖ f ‖Λα
p,q(R

d): = ‖ f ‖
W

[α]
p (Rd)

+

(∫

Rd

‖∆2
h(∇[α]f) ‖q

Lp(Rd)

|h|d+{α}q
dh

)1/q

for 1 ≤ q <∞, and

Λα
p,∞(Rd) :=

{
f ∈W [α]

p (Rd) | sup
h∈Rd\{0}

|h|−{α}‖∆2
h(∇[α]f) ‖Lp(Rd) <∞

}

equipped with the norm

‖ f ‖Λα
p,∞(Rd) := ‖ f ‖

W
[α]
p (Rd)

+ sup
h∈Rd\{0}

|h|−{α}‖∆2
h(∇[α]f) ‖Lp(Rd).
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Here α = [α] + {α} with integer [α] and 0 < {α} ≤ 1, and ∆2
hf(x) = f(x + 2h)−

2f(x+ h) + f(x); see [Tri83, § 2.2.2, Eq. (9)].

For any nonnegative integer k, a direct calculation gives

∇kψn(x) =

k∑

j=0

cjx
βj

(1 + in)d/2+j
e−π|x|2/(1+in)

for some constants {cj}kj=0, and the multi-index βj = (βj1, . . . , βjd) satisfies |βj | ≤ j

with xβj = x
βj1

1 . . . x
βjd

d . Then

‖∇kψn ‖Lp(Rd) ≤ C

k∑

j=0

1

(1 + n2)d/4+j/2
‖ |x||βj |e−π|x|2/(1+n2) ‖Lp(Rd).

A direct calculation gives
∫

Rd

|x||βj |pe−πp|x|2/(1+n2)dx =(1 + n2)(d+|βj|p)/2

∫

Rd

|y||βj|pe−πp|y|2dy

=
ωd−1Γ ((|βj |p+ d)/2)

2(pπ)(|βj|p+d)/2
(1 + n2)(d+|βj |p)/2.

Therefore, there exists C depending only on d, p, k such that

(A.2) ‖∇kψn ‖Lp(Rd) ≤ C
k∑

j=0

(1 + n2)d/(2p)+|βj|/2

(1 + n2)d/4+j/2
≤ C(1 + n2)−d(p−2)/(4p).

If f ∈W 2
p (R

d), then

∆2
hf(x) =

∫ 1

0

dt

∫ 1+t

t

∇2f(x+ sh)dsh · h =

∫ 2

0

∇2f(x+ sh)ds

∫ min(s,1)

max(s−1,0)

dth · h.

Therefore,

|∆2
hf(x)| ≤ |h|2

∫ 2

0

|∇2f(x+ sh)|ds.

By the Minkowski’s inequality, we obtain

‖∆2
hf(x) ‖Lp(Rd) ≤ |h|2

∫ 2

0

‖∇2f(·+ sh) ‖Lp(Rd)ds = 2|h|2‖∇2f ‖Lp(Rd).

Splitting the integral part of the Λα
p,q-norm into two parts, we get

∫

|h|<1

‖∆2
hf ‖qLp(Rd)

|h|d+{α}q
dh+

∫

|h|>1

‖∆2
hf ‖qLp(Rd)

|h|d+{α}q
dh

≤2q‖∇2f ‖q
Lp(Rd)

∫

|h|<1

h(2−{α})q−ddh+ 4q‖ f ‖q
Lp(Rd)

∫

|h|>1

h−d−{α}qdh

=2qωd−1

(
‖∇2f ‖q

Lp(Rd)

(2− {α})q +
2q‖ f ‖q

Lp(Rd)

{α}q

)

≤22qωd−1

{α}q ‖ f ‖q
W 2

p (Rd)
.
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In the same manner we can see that when q = ∞,

sup
h∈Rd\{0}

|h|−{α}‖∆2
h(∇[α]f) ‖Lp(Rd)

≤ sup
0<|h|<1

|h|−{α}‖∆2
h(∇[α]f) ‖Lp(Rd) + sup

|h|≥1

|h|−{α}‖∆2
h(∇[α]f) ‖Lp(Rd)

≤2‖∇2f ‖Lp(Rd) sup
0<|h|<1

|h|2−{α} + 4‖ f ‖Lp(Rd) sup
|h|≥1

|h|−α

≤4‖ f ‖W 2
p (R

d).

Note that ∇[α]ψn ∈W 2
p (R

d), a combination of the above inequality and (A.2) yields

‖ψn ‖Λα
p,q(R

d) ≤ C‖ψn ‖W [α]+2
p (Rd)

≤ C(1 + n2)−d(p−2)/(4p),

where C is a constant depending on p, α and d but independent of n. So does

‖ψn ‖Bα
p,q(R

d). �

A.5. Proof for Lemma 3.6.

Proof. Firstly we show that g,n is symmetric about x = 1/2. By definition,

g,n(1− t) = g(n(1− t)− j) = g(nt− n+ j + 1) = g(nt− k) = g,n(t)

for some integers j, k satisfying 0 ≤ j, k ≤ n− 1 and k = n− j − 1.

For a fixed t ∈ [0, 1], there exist integers j, k satisfying 0 ≤ j ≤ 2n1 − 1, 0 ≤ k ≤
n2 − 1 such that 0 ≤ 2n1n2t− n2j − k ≤ 1, then 0 ≤ n2(2n1t− j)− k ≤ 1 and

g,2n1n2(t) = g(2n1n2t− n2j − k) = g(n2(2n1t− j)− k) = g,n2(2n1t− j).

By definition,

β,n(t) =




2nt− 2j, 0 ≤ nt− j ≤ 1/2,

2 + 2j − 2nt, 1/2 ≤ nt− j ≤ 1,
j = 0, . . . , n− 1.

If j is even, then j = 2l for some integer l satisfying 0 ≤ l ≤ n1−1 and 0 ≤ n1t− l ≤
1/2. Therefore

g,n2(β,n1(t)) = g,n2(2n1t− 2l) = g,n2(2n1t− j).

Otherwise j is odd, then j = 2l+1 for some integer l satisfying 0 ≤ l ≤ n1 − 1 and

1/2 ≤ n1t− l ≤ 1. Therefore

g,n2(β,n1(t)) = g,n2(2 + 2l − 2n1t) = g,n2(1 + j − 2n1t) = g,n2(2n1t− j).

This gives g,n2 ◦ β,n1 = g,2n1n2 on [0, 1]. �
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A.6. Proof for Theorem 3.11.

Lemma A.1. Given n,R > 0 and let f(x) = cos(2πnx1)e
−π|x|2/R, then f ∈

Bs(Rd) with

(A.3) υf,s,Ω ≤
(
n+

d

π
√
R

)s

for 0 ≤ s ≤ 1.

Proof. For any R > 0, the Fourier transform of the dilated Guass function e−πx2
j/R

reads as
̂
e−πx2

j/R =
√
Re−πRξ2j .

A direct calculation gives

f̂(ξ) =
1

2

∫

R

e−πx2
1/R
(
e−2πix1(ξ1−n) + e−2πix1(ξ1+n)

)
dx1

d∏

j=2

∫

R

e−πx2
j/R−2πixjξjdxj

=
Rd/2

2

(
e−πR(ξ1−n)2 + e−πR(ξ1+n)2

) d∏

j=2

e−πRξ2j

=Rd/2e−πR(|ξ|2+n2) cosh(2πnRξ1).

It is clear that f, f̂ ∈ L1(Rd) and the pointwise Fourier inversion theorem holds

true, and

υf,0,Ω =

∫

Rd

|f̂(ξ)|dξ =
∫

Rd

f̂(ξ)dξ = f(0) = 1,

where we have used the positiveness of f̂ .

Next, using the elementary identities

√
R

∫

R

e−πRξ2jdξj = 1 and
√
R

∫

R

|ξj |e−πRξ2j dξj =
1

π
√
R
,

we obtain

υf,1,Ω = Rd/2

∫

R

|ξ1|e−πR(ξ1−n)2dξ1

d∏

j=2

∫

R

e−πRξ2jdξj

+Rd/2

∫

R

e−πR(ξ1−n)2dξ1

d∑

j=2

∫

R

|ξj |e−πRξ2j dξj
∏

k 6=1,j

∫

R

e−πRξ2kdξk

≤
√
R

∫

R

(|ξ1 − n|+ n)e−πR(ξ1−n)2dξ1 +
d− 1

π
√
R

= n+
d

π
√
R
.

Using the interpolation inequality (2.11), we obtain (A.3). �

Proof for Theorem 3.11. Define n = 2L+2NL and f(x) = n−s cos(2πnx1)e
−π|x|2/R

with large enough R such that υf,s,Ω ≤ 1 + ε by Lemma A.1 and e−π|x|2/R ≥ 1− ε
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when x ∈ Ω. Fix x2, . . . , xd, then any (L,N)-network fN can be viewed as an one-

dimensional (L,N)-network, i.e. fN (·, x2, . . . , xd) : [0, 1] → C. Divide [0, 1] into n-

internals of [j/n, (j+1)/n] with j = 0, . . . , n−1. There exists at least n−2L+1NL =

2L+1NL intervals such that fN does not change sign on those intervals [Tel16,

Lemma 3.2]. Without loss of generality, we assume fN (·, x2, . . . , xd) ≥ 0 on some

interval [j/n, (j + 1)/n], then
∫ (j+1)/n

j/n

(f(x)− fN (x))2dx1 ≥ (1− ε)2

n2s

∫ (4j+3)/(4n)

(4j+1)/(4n)

cos2(2πnx1)dx1 ≥ (1− ε)2

4n2s+1
,

because cos(2πnx1) ≤ 0 when 2πj + π/2 ≤ 2πnx1 ≤ 2πj + 3π/2.

Summing up these n− 2L+1NL intervals gives

‖ f − fN ‖2L2(Ω) ≥
∫

[0,1]d−1

dx2 . . . dxd

∫ 1

0

(f(x)− fN (x))2dx1

≥2L+1NL(1 − ε)2

4n2s+1
≥ (1 − ε)2

22sL+4s+3N2sL
≥ (1− ε)2

64N2sL
.

Simultaneously squaring off both sides of the inequality, we obtain

‖ f − fN ‖L2(Ω) ≥
1− ε

8NsL
.

�
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