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Abstract. The accuracy of the quasi-continuum method is analyzed using a series of models
with increasing complexity. It is demonstrated that the existence of the ghost force may lead to large
errors. It is also shown that the ghost force removal strategy proposed by E, Lu, and Yang leads to
a version of the quasi-continuum method with uniform accuracy.
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1. Introduction. The quasi-continuum (QC) method [33] is among the most
successful multiscale methods for modeling the mechanical deformation of crystalline
solids. It is designed to deal with situations when the crystal is undergoing mostly
elastic deformation except at isolated regions with defects. The QC method is usually
formulated as an adaptive finite element method. But instead of relying on a contin-
uum model, the QC method is based on an atomistic model. Its main ingredients are
adaptive selection of representative atoms (rep-atoms), with fewer atoms selected in
regions with smooth deformation; division of the whole sample into local and nonlocal
regions, with the defects covered by the nonlocal regions; and the application of the
Cauchy-Born (CB) approximation in the local region as a device for reducing the
complexity involved in computing the total energy of the system.

The QC method has several distinct advantages. First, it has a reasonably simple
formulation. In fact, it can be considered as a natural extension of adaptive finite
element methods in which one simply uses the atomistic model where the mesh is
refined to the atomic scale. Second, in the QC method, the treatment in different
regions is based on the same model, the atomistic model, with the additional CB
approximation used in the local region. For this reason, it is also considered to be
more seamless than methods that are based on an explicit coupling between continuum
and atomistic models. We refer to the review articles [6, 21] for a discussion of methods
that are based on explicitly coupling atomistic and continuum models.

However, this does not mean that the QC method is free of the problems that one
encounters when formulating coupled atomistic-continuum methodologies. In some
sense, one may also regard the QC method as an example of such a strategy, with the
local region playing the role of the continuum region, and the CB nonlinear elasticity
model playing the role of the continuum model. In particular, the issue of consistency
between the continuum and atomistic models across the coupling interface is very
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much manifested in the accuracy at the local-nonlocal interface for the QC method.
This is the issue we will focus on in this paper. In fact, even though the atomistic
models are used in both the local and the nonlocal regions, the CB approximation
made in the local regions means that the effective model in this region is a nearest
neighbor model for the rep-atoms, whereas the atomistic model itself generally involves
nonnearest neighbor interactions (hence for the term local and nonlocal regions). This
disparity creates problems at the local-nonlocal interface.

From the general perspective of multiscale, multiphysics modeling, particularly
the issue of consistency between continuum and atomistic models across the con-
tinuum atomistic interface, the QC method provides the simplest example for un-
derstanding such issues. It is now well known that the inconsistency between the
local and nonlocal regions is manifested in the existence of the so-called ghost forces,
which are the forces that the atoms experience at their equilibrium positions. We will
demonstrate that the ghost force may lead to finite size error of the gradient of the
solution. We will also show that the ghost force removal strategy proposed in [7] does
result in a version of the QC method that is uniformly accurate across the interface.

Two ways of removing the ghost force have been proposed. The simplest way is
to correct the forces by adding or subtracting some “deadload” [28]. This is called
“force-based correction.” This is easy to implement since one need only calculate the
magnitude of the ghost forces and subtract them from the system as a correction.
Dobson and Luskin [4] have shown the convergence of the iterations for this version
of QC. Explicit error estimates can be found in [24].

In this study we will focus on another approach for removing the ghost forces, the
geometrically consistent scheme [7]. This scheme depends only on the lattice struc-
ture of the system and works for all existing empirical potentials with an arbitrary
interaction range. It generalizes the quasi-nonlocal approach proposed earlier [29].
We will prove uniformly first-order accuracy for the QC method that satisfies the ge-
ometrically consistent condition. We will focus primarily on one-dimensional models.
This is because a lot of insight can already be gained by studying such models. It is
possible to extend the results presented in this paper to high-dimensional cases with
planar local-nonlocal interfaces, and we will outline the ideas for such an extension
later. However, doing a good job of that requires a substantial amount of more work.
Therefore we will postpone a detailed discussion of the high-dimensional results to a
later publication.

Since we are primarily interested in the error induced at the local-nonlocal inter-
face, we will assume that every atom is a rep-atom. To understand the QC method
fully, we also need to study the coarsening process, in particular the transition be-
tween the atom-based and element-based summation rules. There, the presence of
corners seems to present some real difficulty, as was pointed out in [7].

The paper is organized as follows. In section 2, we give a brief review of the
QC method. In section 3, we demonstrate the existence of the “ghost force” and
its consequences. In section 4, we introduce the existing strategies for ghost force
removal, and in section 5, we present detailed analysis of the geometrically consistent
schemes. Conclusions are drawn in the last section. Some omitted proofs of section 3
are given in the appendices.

2. Review of the QC method. We start with a brief review of the QC method.
The main objective of the QC method is to systematically coarsen an atomistic de-
scription by a judicious introduction of kinematic constraints. These kinematic con-
straints are selected and designed so as to preserve full atomistic resolution where
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required, e.g., in the vicinity of lattice defects, and to treat collectively large num-
bers of atoms in regions where the deformation field varies slowly on the scale of the
lattice. The essential building blocks are (i) a reduced representation of the solid
using rep-atoms; (ii) the use of summation rules in order to efficiently compute the
total energy of the system; and (iii) the use of adaptive criteria in order to tailor the
computational mesh to the structure of the deformation field.

The method starts with an underlying atomistic model of the material which
is considered to be accurate. In principle, this atomistic model can be a quantum-
mechanically based description such as a tight-binding model or models based on the
density functional theory [14], but in the present paper we will focus on atomistic
models using empirical potentials.

We will denote by y; and x; the positions of the ith atom in the deformed and
undeformed configurations, respectively. For simple crystalline solids, the undeformed
state can be represented as the collection of points with the form

r = 7’L1A1 + 7’L2A2 + TL3A3,

where A, Az, and Ags are the basis vectors, and ni, ng, and ns are integers. The
displacement vector for the ith atom is defined as

U; =Y; — &y

The total energy of the system can be written as a sum over the energy of each
atom

N N

E*'(y) =Y Ei(y) =Y Ei({y1,¥,- -, yn});

=1 =1

where F; is the energy associated with the ith atom, which depends on the positions
of the other atoms as well, and IV is the number of atoms in the solid.

If some external load is applied to the system, the total energy of the system can
be written as

N
O(y) = E""y) - > _ fs,
=1

where — f,y, is the work done by the external force f; on the ith atom.

The actual displacement of the atoms can in principle be found by minimizing
the above total energy functional. In practice, this is often very expensive and unin-
formative: the computational cost is very large; the information of interest is often
buried together with a huge amount of uninteresting data. In the QC method, one
makes the observation that in regions where the atomic displacement is rather smooth,
there is no need to include every atom as an independent degree of freedom, since
the deformation in these regions can be represented with satisfactory accuracy by a
much smaller set of rep-atoms. This idea is implemented in the QC method through
a set of kinematic constraints—reducing the number of degrees of freedom by intro-
ducing rep-atoms and representing the displacement of all other atoms in terms of
the displacement of the rep-atoms.

The rep-atoms are usually the vertices of the underlying finite element triangula-
tion. They are selected using an adaptive mesh refinement strategy. Piecewise linear
finite elements are used, and the mesh size is denoted by h.
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The kinematic constraint for the displacement of the atoms is given by

Nrep

ul(z;) = ) S(wi)uy,
j=1

where S;j(z) is the basis function associated with the jth rep-atom, and Nyep is the
number of rep-atoms. In general, we expect Nyep to be much smaller than V.

The total energy of such a system is now a function of the positions (displacement)
of the rep-atoms only. However, to compute this energy by direct summation using
the original atomistic model still requires visiting all the atoms. The QC method
bypasses this by introducing approximate summation rules.

In the QC method, the computational domain is divided into local and nonlocal
regions according to the smoothness of the displacement field u”. Inside the nonlocal
region where deformation is large, all the atoms are rep-atoms; hence the energy
associated with these atoms can be computed using direct summation. Inside the
local region, the total energy is computed by using the CB rule on each element [3].
For simple crystals, the CB rule works as follows (there is a simple generalization to
complex crystals; see [34, 30, 10]). Let F' = Vu be the deformation gradient tensor
of a uniform deformation, and let Ey(F) be the energy of the unit cell in a deformed
lattice when its lattice vectors are deformed according to F, i.e.,

The strain energy density at F' is given by

Eo(F)

WCB (F) = QO )

where ¢ is the volume of the unit cell at the equilibrium state. The total energy
associated with an element is simply the energy density evaluated at the deformation
gradient F, associated with the element and multiplied by the volume of the element
Q.. The total potential energy in the local region is simply the sum of the energies
on each element:

Nelement

B = N QWep(F).
e=1

The total potential energy of the system for the QC method is the sum of the energy
of the local and nonlocal regions:

Etot _ Elocal +Enonlocal
QC :

This formulation of the summation rule introduces an inconsistency across the
local/nonlocal interface: the energy in the local region is computed for each element,
whereas the energy in the nonlocal region is naturally computed for each rep-atom.
Formally, the energy of the local region can be rewritten as a sum over all the rep-
atoms:

local E el
E = wiEi 5
i
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where the energy associated with each local atom is defined as
1
Ef'=—% wi.Wen(Fe
— ;w Waos(Fe)

where the weights w; . satisfy w; = ) wj.. However, this may introduce inconsis-
tency at the interface where the transition takes place.

An alternative way of approximating the energy is the cluster-based summation
rule proposed by Knap and Ortiz [16].

The error in the QC method comes from two main sources. In the local region
the error comes mainly from the kinematic constraint and the CB rule used. This
source of error can be understood following the work of E and Ming [8, 9, 10]. More
interesting is the error introduced at the interface between the local and nonlocal
regions, where “ghost forces” may arise.

3. Ghost forces.

3.1. Illustration of the ghost force. Consider a one-dimensional chain shown
in Figure 3.1, with a pairwise potential V. The first step in the QC method is coarse-
graining, i.e., selecting rep-atoms. Since we are focusing on the interface between
the continuum and atomistic regions, we will consider the case when every atom is a
rep-atom. The first N atoms indexed by —N, ..., —1 will make up the nonlocal region
in which the original atomistic model will be used. The atoms indexed by 1,..., N
will make up the local region in which the CB continuum model will be used. The
atom indexed by 0 separates the two regions. For convenience, we will sometimes use
i to replace —i as the subscript and use r;; to denote the distance between the ith
and the jth atoms.

If the interaction is limited to the nearest neighbor, the CB rule is the same as the
atomistic model (direct summation). In this case, there is no ghost force. However, if
the interaction range contains the next nearest neighbor, then the energies associated
with the atoms near the interface are (in the absence of the external force)

Es = %(%(T53)+V0(7"43)+V0(7“32 )+ Vo(rsr)),
E; = %(V(J(Mz) + Vo(r3z) + Vo(rat) + Vo(rag)),
Er = %(VO(TZH) + Vo(ra1) + Vo(rio) + Vo(ri1)),
Ey = %(VO(TQO) + Vo(rio) + Vo(ro1) 4+ Vo(2ron)),
E, = %(Vo(??“(n) + Vo(ror) + Vo(riz) + Vo(2r12)),
Ey = %(‘/0(27“12) + Vo(ri2) + Vo(ras) + Vo(2res3)).

Therefore, the forces on the atoms with indices 1, 0, and 1 are given by
fi ==V5(rar) = Vg (rar) + Vg (rio) + Vo(ru)
fo=—=Vi(ra) = Vg (r10) + Vg (ro1) + 2‘/()(27“01)7

1
fi= —5‘/0/(7"11) —2V5(2r01) = Vg (ro1) + Vi (r12) + 2V (2r12).
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Fi1Gc. 3.1. One-dimensional chain.

0.031-

0.021-

F1G. 3.2. Ghost force for the original QC solution with Vo the Lennard-Jones potential.

At the equilibrium state, we have

fi=-3WE0, o=V, fi=-5%0),
where € = x1 — xg is the equilibrium bond length. We refer to Figure 3.2 for the
demonstration of the ghost force when Vj is the Lennard-Jones potential [18].

From this example, we see that ghost force arises due to the asymmetry in cal-
culating the energies in the local and nonlocal regions. The energy associated with
atom 1 depends on yi, but the energy associated with atom 1 does not depend on .

Next, let us examine the effect of the ghost force. First, let us discuss a simple
example. We consider a one-dimensional chain with 21 atoms in total, interacting
with the modified Morse potential (see below) and next nearest neighbor interaction.
The atoms are indexed by —10,...,10, where the Oth atom is the interfacial atom.
On the left-hand side, we use the atomistic model. On the right-hand side, we use
the CB continuum model. The QC solution y = (y_10,.--,¥10) is a local minimizer
of E%%(w) subject to the boundary condition

w; =ie, i=—11,—12,11,

where E''(w) is defined as

10 —2
E*Nw) = Y Vollwy —wisa|) + Y Vollws — wisa))
i=—11 i=—12
1 10
+ 5 Vollwr —wi) + Y Vo(2lw; — wiga).
=0
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F1G. 3.3. Conventional (left) and modified (right) Morse potential.

0.04
0.02

-0.02 : : :
-10 -5 0 5 10
0.1

-0.1 : : :
-10 -5 0 5 10

Fi1G. 3.4. Displacement (upper) and deformation gradient (lower) of each atom for the original

QcC.

Here V; is a modified Morse potential [25] (see Figure 3.3) defined as
Vo(r) = De[e=20079) = 2¢=90 1) 4 §cos(100m(r — 0.72)) + 1]

for 0.71 < r < 0.73 and

Vo(r) = D, [e—za(r—rc) _ 2e—a(r—rc):|

for r < 0.71 or r > 0.73. Here a is a constant with the dimension of the reciprocal of
distance, 7. is the atomic length scale parameter, D, is the well depth of the potential,
and the parameter a controls the “width” of the potential. We rescale the potential
and simply set r, = 1.0, D, = 1.0, and a = 1.0. The main feature of the modification
is to create a second well for the potential. § is the parameter that determines the
height of the barrier between two wells in the modified Morse potential and is set to
be § = 1073, The equilibrium distance between neighboring atoms is adjusted to be
approximately 0.70965.

Figure 3.4 shows the displacement and the deformation gradient of each atom.
One can see that the maximum strain in this particular example is as large as 6.8%,
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which occurs near the interface (the 1th atom). Since there is no external force applied
to the system, this strain is entirely due to the numerical error introduced by the QC
formulation, or equivalently by the ghost force. Such an error may push the system to
the basin of attraction of another nearby minimum. Physically, this suggests that it
may cause unphysical dislocation nucleation around the tip of a propagating crack [40].
Moreover, we have confirmed that the system will not switch back to the original state
even if we switch the QC formulation back to a full atomistic description. Whether
this actually occurs in more realistic simulations is still a subject of debate. But the
possibilities are certainly there.

3.2. Explicit solution of the original QC method. In this subsection, we
estimate the error caused by the ghost force in the case when there is an external
force. For the case when there is no external force, we compute explicitly the error,
which allows us to see exactly what the error caused by the ghost force looks like. To
this end, we assume the interaction potential is harmonic,

1
Vo(z1,22) = 5(581 —x2)%,
and consider the next nearest neighbor interaction. Let € be the equilibrium bond
length; we assume that 2Ne = 1 and T = r/e, and we rescale the potential as
V(7) = Vo(r). The atomistic problem is the following: find the minimizer y¢ =

(Y _ 9> YNa2) €S that satisfies

(3.1) y© = argmin{ £*"(w) — ( f,w)},
weS
where
N w; — w; N w; — W;
Emt _ 1 — Wi+l v — Wi42
w= 3 () y v([mee),

i=—N-—1 i=—N-—-2

f is the external force, and ( f,w) = Zf;f ~ Jfiw;. The admissible set S is defined
by
(3.2) S={zeRN™ | z; =i, i=N+1,N+2,-N—-1,-N-2}.

The QC solution y.. = (y-n,...,yn) is the minimizer that satisfies (3.1) with
E*'(w) replaced by

N
EqC(w) _ Z v <‘ Wi — Wi+1

i=—N-1
N w; w;
V 2 17— Wi+l
Jrxr (e

+%V<‘u

€

Using the boundary condition (3.2), we write the above equations as

e’ (4 N =Y N1 — Y Ng2) = € 2(x_n_1+T_Nn_2)+ f-n=—(2N+3)/e+ f_n.
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Similarly,

672 (—yiN + 4yiN+1 - yiN+2 - yiN+3) - 672$7N71 + f*N+1
— (N4 1)fet fonis

and
e’ (4y5\/ —Yn-1— 95\7—2) = (2N +3)/e+ fn,
2 (YN ANt — Yoz —Yh-s) = (N + 1) e+ froi.
Fori=—-N+3,...,N —2,
€2 (~¥ia — Vo1 Y5 — Y — Yie) = fis
We can write these equations in a compact form as
(3.3) By = f,
where
Fon=—CN+3)/e+fon, foner=—(N+1)/e+ fonii,
fvo1=(N+1)/e+ fvor, fv=@N+3)/e+ fa,
fi=fi i=-N+2,... N-2
Similarly, y,. satisfies the Euler-Lagrangian equations

oFac
B 8wl o fl

Proceeding along the same line that leads to (3.3), we write the above equations as
€ ?(4y-N—y-n+1—Y-nt2) = —(2N +3)/e+ [N,
€2 (—y-N+4y-Ny1—y-Ny2—y-nNy3) = —(N+1)/e+ f-ny1,
and for i =—-N+3,..., -2,
€ 2 (—Yim2 = Yie1 + Wi — Yis1 — Yir2) = fi-

Near the interface, we have

2
€2 (~yz — y1 + Tyo — 5y1) = fo,

1 21
e’ (—§y1 — 5yo + Sy 5y2) = fi1.

_ 7 1
e’ <—y3—y2+—y1—yo— §y1) = f1,

Fori=2,...,N —1,
€ 2 (=5yi—1 + 10y; — 5yir1) = fi,
and for the boundary atom N,

e 2 (=byn_1+ 10yy) = (BN +5)/e + fn.
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We may write these equations in a compact form as

(3.4) Ay, = f,

where f; = f; for i = —N,...,N —2 and fx_1 = fn_1, fv = (5N +5)/e + fn. To
avoid the influence of the boundary atoms, we change the (N — 1)th and the Nth
equations of (3.4) to the same as those of (3.3) and still denote the solution by y,;
the equations (3.4) change to

(3.5) Ay, = ¥,
where
jij:{Ai,j if =N, N=2,j=-N..N,
’ Bi; if i=N-1,N,j=—-N,...,N.
THEOREM 3.1. Fori=—N,...,N —1,
[
(36) D -y < | 252 ) (171w +1).

where y .. is the QC solution (3.5) and y© is the solution of the atomistic model (3.3).
The forward difference quotient operator DV is defined as DVy; = (yir1 — yi)/€ and
[ £lloc = max_n<i<n |fil-

We start with the following identity:

o~ -~

(3.7) B(Yy —Y) =By, —f=B-Ay,=F,
where F € R2V+1 which is given by
F,=0, i=—N,....2,N—1,N,

1 2
Fr = —iDJr(yi +90), Fo=—(D")yo+ ZDJrZ/o,

1
Fy = —e*(D%)y; — 2—6D+(yi +y0), Fb=—e*(D)*yo,

€2

Fi:€(D+)2fi,1, i=3,...,N —2.

Using (3.7) we obtain the following explicit expression of the error in terms of the
Green’s difference function [36] that is defined by

G=e¢2B"1
LEMMA 3.2. Lety,. and y© be the solutions of (3.5) and (3.3), respectively; then

4 N3 3
€ €
D+(ch —y°)i= -5 Z D1D2G; ;D f; + 3 (Dlgi,N—2D+fN—2 — D1D2gi,0fl)

j=1
+€2D D lgf + §g _ ig D+( + ,)
12 57l T ¥ i,0 10 i1 Yo T+ Y1

(3.8) — 262D1D2G; 0Dy,
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where D1G; j = € (Git1,5 — Gij) and D2G; j = € 1(Gi j41 — Gij)-
Proof. Tt is clear to see that y; — yf = €2 Z;-V:_N GijFj = ¢ Zj\’:_iz Gi jFj. Sum-
ming by parts, we obtain

- 9 N-3
€ €
(3.9) Z GijFj = - Z DG ;DT f; + g(gi,N—QDJrfN—Q —GizD™" f3).
— =
A direct calculation gives

2 1
(3.10) Y Fj=—c(D)y, Y Fj=-
=1

Using the first identity of (3.10), we get

Zgz,]F = egzZ yl"’_z gz,j gz2

j=1
= —€Gi2(D1)3y; — €D2gi,1(Fi + Fy+ Fh)
—€D3G;0Fy — €D2(G; 1 + Gio) Fi.

Using the second identity of (3.10) and the expressions of F} and Fj, we obtain

1
Z (Gij — Gi2)Fj = €D2G; 1 (DV)?y1 — (D1)?yo) + €D2G; (DT )?yo
Jj= 1
—2D5G; 0D yo + §D2(gi,i + Gi.o)DT (y1 + wo)
= €DG; 1(DT)?y1 — €D3G;.0(D)yo

1
—2D5G; 0D yo + §D2(gi7i + Gi,0) DT (y1 + yo)-

=

Using the (N + 3)th, (N +4)th, and (N + 5)th equations of (3.5), we get

1
(DF)?y; = —%, (D*)?yy = ];1 + HDWyl + Y0),

D*jy

which together with the above equation leads to

2 2
€ € €
Zg@ij = ggi72D+f2 - 3D2gi,1f2 + EDSQi,ofl
=1 1 €
—2D5Gi oD yo + [§D2(Qi,1 +Gio) — 1—0D§Qi7o D™ (y1 + o).

This equation and (3.9) give

4N 3
yz_y: __ZD2g1,jD f]+_(g’LN 2D+fN 2_D2g10f1)
Jj=1

1 3 1
+ 2D, [5@-,1 + ggm - 1—ng‘71] DT (y1 +yo) + 262D2G; 0D yo.

The identity (3.8) immediately follows from the above equation. O
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It remains to bound G, D%y, and DVyg. We estimate DTyo and D y; in the
following lemma and postpone the proof to Appendix B.
LEMMA 3.3. There exists a constant C such that

(3.11) [D*yol + 1D y1] < C(I| f lloo + 1)

To estimate the Green’s difference function G, we resort to its explicit expression,
which will be given below. By definition, it is clear that for i = —-N +2,..., N — 2,

4G, N —Gi,—N+1 — Gi—N4+2 =0,
—Gi,—N +4G;_N1+1 — Gi,—N+2 — Gi,.—Nn43 = 0,

(312) ¢ —Gij—2—Gij—1+4G; —Gijr1 —Gijr2=1054, j=—N+2,...,N—-2
—GiNn-3—Gin—2+4GiNn-1—Gin =0,
—GiN-2—Gin-1+4G;n = 0.

From the theory of recurrence equation, we get

i = o Fngs + BiFng s , j=—N,...,i+1,
513) {g” et B ) ’

gi,j:'yl-FN_j(wl)—HSiFN_j(wg), j:i—l,...,N,
where F,,(z) = f(z) + g(z)m + 2™, m € Z, with
f(z)=14+5z, g¢g(z) =11+4z, w1 =(=3+V5)/2, wy=(-3-5)/2.

To determine the unknown parameters «;, 5;, i, and d; in (3.13), we equate the
expressions of G; ; for j =4 —1,4,9+ 1 and use the ith equation of (3.12). To this
end, we first prove an auxiliary identity.

LEMMA 3.4. For z = wi,ws, and for i € Z, we have

(3.14) Fi_3(2) + Fi_2(2) + Fi(2) + Fip1(2) = 4Fifl1 (2),
Fi(2) + Fiya(2) — 2F;41(2) = =521
Proof. Tt follows from 22 + 3241 =0, 2 = w1, wy that
ZHl gt = 22t 2l and 23 422 = 92 il
Adding these two identities, we obtain

B B T I e T P e P R P

which together with the definition of F;(z) gives the identity (3.14);.
Proceeding in the same way, we obtain (3.14)s. O
Using the ith equation of (3.12), we obtain

[AFN4i(w1) — FNti—2(w1) — Engic1(w1) — Fnitr(wi)]os
+ [4FN1i(w2) = Fnyi—2(w2) = Fnyic1(w2) = Fniipr(we)]Bi
— Fy_i—o(w1)yi — Fn—i—2(w2)d; = 1.

By (3.14)1, we write the above equation as

Fniito(wi)oy + Fnpige(w2)Bi — Fn—i—a(wi)yi — Fn—i—2(w2)d; = 1.
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The above equation together with the equations obtained by equating the expressions
for G; i1, Gis, and Gy 441 gives

Fniici(w1) Fngici(w2) —Fn—igi(wr) —Fn—ipi(wa2) oy 0

Frngi(wr) Frnii(wa) —Fn_i(w1) —Fn_i(w2) Gil |0
Fniiti(w1) Fnyit1(w2) —Fnoici(w1) —Fn—i—1(wa) il |0
Fniito(w1) Fnyito(ws) —Fn—i—a(w1) —Fn—i—a2(wa) s 1

Denote the above (4 x 4)-matrix by A. Solving the above linear system and substi-
tuting o, Bi, vi, and J; into (3.13), we obtain the explicit expression of G; ;.
LEMMA 3.5. Fori=—-N+2,...,N—=2, let iAj = min(i, j) and iVj = max(i, j),

(3.15) Gij = Yinj (w1, w2)Fn_iv;(w1) + Yinj (w2, w1) Fn—ivj(w2),

where

Yi(wr,w2) = {5[9(w2) + wiN g(wn)]fw) T f(we) — w' T f(wr) + (N + i) (w1 — wo)]

+5wr — wy 4wy’ Tg(wr) — wi g (ws)]
(3.16) x [WB f (1) = fw2) — 2N g(w2)] } (det 4) 7,

and
(3.17) det A = 50(w; — wa)[wi g(wa) + wd g(w1)][wd Fi (w1) — wi Fy (wa)]-

For the cases when i = —N,—N + 1, N — 1, N, we have the following lemma.
LEMMA 3.6. For j = —N,..., N,

1

Nj=—j—-N-14—"—
g N.g J + A(wl,wg)

(D1(w2)Fntj(wi) — Ai(w1)Fvj(w2))

G- N1, =2(N+1+5)+1+ Ag(w2) Fngj(wi) — Do(wi) Fvyj(w2))

1
A(L«Jl,UJQ) (

On;=G-N—j, Gn-1;=0G-N+1,—j

with A(wr,w2) = Fony1(wi)Fanga(w2) — Fanyi1(w2)Fanqa(wr) and

{ Aq(z) = (2N +2)Fon12(2) — (2N + 3) Fan41(2), P

AQ(Z) = —(4N + 5)F2N+2(Z) + (4N + 7)F2N+1(Z),
By Lemmas 3.5 and 3.6, we get the following estimates for G and its forward

difference quotient; the proof is postponed to Appendix A.

LEMMA 3.7. There exists a constant C' such that
0<G;<Ce(N+1+iANj)(N+1-iVyj), 4,j=-N,...,N

[D1D2Gi 5] < O (e w7 = =N, N =1

) )

(3.18)

Combining the estimates (3.11), (3.18) and the explicit expression of the error
(3.8), we are ready to prove Theorem 3.1.
Proof of Theorem 3.1. Using (3.18)1, we get

|D1Gi n—a| < (|Gis1.N—2| +|Gin_2|) /e < Cet.
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A direct calculation gives

N-3
D an| < 1+|“’1|, i=-N,...,N.
= T 1 ]

Using the above two estimates, (3.18)2, and the fact that |DVf;| < || f /€, we
bound the first three terms in the right-hand side of (3.8) as

4 N-3 3
€ €
3 E D1DsG; ;DT f; + 3 (D1Gi,N—2D" fn—3 — D1D2Giof1)
P

N-3

<Ce | D w1 £ lloo + Cell £ lloo + C(e® + el [N]] £ [l
j=1

< Cell f oo

Using Lemma 3.7 and (3.11), we estimate the last two terms in (3.8) as

1 3 1
€Dy Dy [5@-,1 + ggm - 1_0g“ DT (yo + y1) — 26€2D1D2G; 0D yo

< Ole+ oMU lloe +1).

A combination of the above two inequalities leads to (3.6). a

Next we turn to the case when there is no external force. In this special case, a
simpler expression (see Lemma 3.8) can be found for the error of the QC method, as
was first noted by Dobson and Luskin [5] in a slightly different setup, although we
derived this result independently. In the absence of the external force, the atomistic
system is at the equilibrium state, i.e., y¢ = x. It is easy to see that

(3.19) Al —z) =,

where hy = —1/¢, hg = 2/¢, hy = —1/¢, and h; = 0 otherwise. The difference between
Yqc and z is the error of the QC method. This error is given explicitly by the following
lemma. The basic strategy for deriving the explicit expression of such an error is the
same as the above procedure to find the explicit formula of the Green’s difference
function. It consists of two steps. First, we get a general expression by the recurrence
equation with certain unknown parameters; second, we match the equations near the
“interface” to determine such parameters.

LEMMA 3.8. Let y,. be the solution of (3.4), and let ¥ = y,. — x. Define
v = ag(wi) + Bg(w2), where a and B are two parameters that satisfy (3.24) below.
Then

(320) ~€ {(7’+N)A/+af(wl)+6f(CU2)+OZW§+N+5w;+N Zf 1= —N,...,O,

%

(i—N—1)y if i=1,...,N
and
(3.21)
%+%wi*N(w1—1)+§w§+N(w2—1) if i=-N,....1,
D = _Z_WN_af(wl)—Fﬂf(wz) _aw{v—kﬂwé\’ ;i
€ € €

/e if i=1,...,N—1.
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C
D (Yqe—X)

(a) Profile for y.. — = (b) Profile for Dt (yy. — x)

F1G. 3.5. Error profile for the original QC solution with N = 16.

Proof. From the theory of recurrence relations, we have

(3.22) G = {QE+N(w1)+ﬁFi+N(w2), z::—N,...,O,

v —N—1), i1=1,...,N.
Summing up the 1th, Oth, and 1th equations, we obtain

5(Y2 =) = 21 + Yo — 205 — Vs
Substituting (3.22) into the above equation, we obtain
a(2Fn-1 —2FN—2+ Fy — Fy_3)(w1) + B8(2FN-1 — 2FNn—2 + Fx — Fn_3)(w2) = 57.
A direct calculation gives the following: for z = wy, wo,

(2FN_1—2FN_2+ Fn — Fn_3)(2) = bg(2).

Combining the above two equations leads to
(3.23) v = ag(wi) + Bg(ws),

which together with (3.22) gives (3.20). A direct calculation gives (3.21). a
Equations (3.20) and (3.21) give the asymptotic error profile that is consistent
with the “exact” profiles plotted in Figure 3.5 even without knowing the exact values
of a, B, and .
Now we use the QC equations near the interface to determine the coefficients.
Using the equation for i = 1, we get

7 7
o (§FN—1 —Fy_9—Fy_3— FN) (w1)+ 0 (§FN—1 —Fy_2—Fy_3— FN) (w2)

N
2 Py - €
using (3.14), we write the above equation as
Fn_ Fn_ N
a <FN+1 - ]\; 1) (w1) + 8 (FN+1 -z 1) (w2) + 7= "¢
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Using the equation for : = 1, we get

a (_5FN - %FN1> (w1) + 8 <_5FN - %FNI) (w2) — <1—21N + 5) ¥ =—€

Combining the above two equations, we obtain that « and 3 satisfy the following
(2 x 2)-linear system:

My M) [« —€
.24 =
(324 <M21 Mm) (5) ( € > ’
where M11 = R(L«)l), M12 = R(UJQ), M21 = S(wl), and MQQ = S(wz) with

R(:) = Fivia(2) = 3Fn-1(2) + S0(6),

1 11
S(Z) = 5FN(Z) + §FN71(Z) + (EN + 5) g(Z)
Solving the above equations, we obtain

a=—[6f(ws) + (2 —wi)wy' +6(2N + 1)g(w2))e/A(wr,wa),
B= [6f(wi)+(2—wo)wi +6(2N + 1)g(wi)le/A(wr,ws),

where
Awr,wz) = R(wr)S(w2) — R(w2)S(w1)
= (34 3) st + 38008 = (84 3) glea)(1Ten + 35060
— %(74 + 191wy)wd + %(74 + 191w )w] + 12(wy — wa).
Using (3.23), we obtain
7= [Blwz —w1) = (2 = w0)glwn)ed + (2 - wa)glwa)el e/ Alwn,w)

It is easy to deduce that

(w1 — 2)w§’€ el [V _ 6(2N + 1)9(601)6 2l IV
(3.25) o A(wr,ws) O, f= A(wr,w2) Ol
' - (w1 — Q)Q(Wl)wév 2 N
T T Awr, we) e+ O(Ekal™).

This leads to the following theorem.
THEOREM 3.9. Let y,. be the solution of (3.4). Then

Dt (y; — ;)| < C (e+ |w1|‘i') ., i=-N,...,0,

(3.26)
|D*(y; — )] < Ce,  i=1,...,N.

Moreover, we have

(3.27) D (yp — x7) > (5 -1)

VO N>4.
T 174+5V5
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A direct consequence of the above result is the characterization of the width of the
polluted region around the interface, that is, the region beyond which |D* (y,. —)| =
Ofe).

COROLLARY 3.10. Let y,. be the solution of (3.4). Then

Ine
— or i=1,...,N.
1n(3+\/3)/2H

REMARK 3.11. Since the equilibrium bond length is €, it follows from the above
corollary that the width of the interface is O(e|lne|) (see [22]). Essentially the same re-
sult was presented firstly in print by Dobson and Luskin in their recent manuscript [5].

Proof of Theorem 3.9. Our starting point is (3.21). For i = —N, ..., 1, we obtain

ID*(ys — )| < Ce, z’:-N,...,_[

|DF (yi — ai)| < Cle+ |wn| ™).
For ¢ = 0, using (3.25), we obtain

g(w1)(2N(2 — wy) — 12N)wd’

2N <
Awr,ws) +Ce+ |wi*N) < Cle+1).

|D*gg| <

Fori=1,..., N, we have
|DTgif| < Ce.

The above three equations give (3.26).
For i = 1, we have

Dt (y; — 1) = P(wi,wa2)w? /(A(wr, we)wi),
where

P(wi,w2)wl = 6(2N + 1)g(w1)(1 — wy) — 6(2N + 1)g(wa)(1 — wa)wi
— [6(1 — w2) f(wa) + (w2 — 2)g(wo)|wi™ + 7(wz — wi)wi'
+6(1 —wi)f(wr) + (w1 — 2)g(wr).

It is easy to have
P(wi,w2)wl > 62N + 1)g(w1)(1 — wy).
Next,
W A(wr,ws) = (N + %) g(w1)(17wy + 38) — (N + %) g(w2)(17ws + 38)wi
— %(74 +191ws) + %(74 +191w))wi +12(w; — wa)wi'.
We have
0 < wiVAwr,w2) < (N +3/2)g(w1)(17w; + 38).

This implies

12N +6 1—uw,
DT (y; —z1) > )
Wi=21) 2 375170, 1 58
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This implies (3.27) since N > 4. O

Before proceeding, we introduce some notation. For any vector z = (z_n,...,2n)
€ R*N*1 we define the backward difference quotient D~2; = (z; — 2z;_1)/e, the
central difference quotient D = (DY +D7)/2, and the higher-order forward difference
quotient operator (D1)* = [(E — I)/¢]* for any k € N, where E is the forward shift
operator. We will use (-,-) to denote the standard Euclidean inner product unless
otherwise stated. We define a discrete rescaled H' norm as

N 1/2
(3.28) lzlla= <e_2z2N +e 223 + Z |D+zi|2> .
i=—N

By the Cauchy-Schwarz inequality, we have
(3.29) len-1] < V2ellzlla, |on—2] S VBellzlla,  |zn—s] < 2¢] 2 |a-

4. Removal of ghost forces.

4.1. Quasi-nonlocal QC method. To remove the ghost force, Shimokawa
et al. [29] introduced the concept of quasi-nonlocal atoms. Roughly speaking, a quasi-
nonlocal atom acts like a nonlocal atom on the nonlocal side of the interface, while it
acts like a local atom on the local side of the interface. For the case of next nearest
neighbor interaction, the introduction of the quasi-nonlocal atoms is sufficient to re-
move the ghost force. For the one-dimensional chain as Figure 3.1, if the interaction
range contains the next nearest neighbor, then the energies associated with the atoms
near the interface are (in the absence of the external force)

By = %(Vb(?‘gj) + Volrar) + Vo(rio) + Vo(rin).
Eoy = %(Vo(rgo) - Valrio) + Vo(ron) + Vo (2ron)),
By = %(Vo(rh) - Volron) + Vo(riz) + Vo (2r12)),
Ey = %(V()(?Tlg) + Vo(ri2) + Vo(ras) + Vo(2ras)).

The forces for the atoms indexed by i = —N,...,2,2,..., N are the same as for the
original QC method, while the forces for the interfacial atoms 1, 0, and 1 are

fr= —%{V’ (D~yr) + V' (2Dys) + V' (=D y1) + V' (~2Dyo) }
fo= —%{V’ (2Dy1) + V' (D7yo) + V' (=D*yo) + V' (~2D* o) }
fi = ‘%{V/ (D7y1) + V' (2Dy1) + V' (2D71) + V' (=D ) +2V" (_2D+yl)}'

At the equilibrium state, we have

Therefore, there is no ghost force.
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4.2. Geometrically consistent reconstruction scheme. In [7], the authors
introduced the concept of geometrically consistent schemes as a general strategy for
removing the ghost force. This is a concept that depends only on the geometry of
the lattice, not the details of the potential. Moreover, this scheme has an underlying
variational formulation.

As we have addressed in section 2, computing the energy of the whole system is
equivalent to computing the site energy for each rep-atom. For this reason, it suffices
to reconstruct the local environment of each rep-atom. We can then compute the
associated energy using the atomic potential. Denote by R;(j) the reconstruction of
the relative position of the jth atom with respect to the ith atom. Well inside the
nonlocal region, we may simply use the position of the nearby rep-atom, i.e.,

Ri(j) = R} (J) = (y; —yi)/e.
Inside the local region, we may use the position of the nearest rep-atom, i.e.,

Ri(j) = R?B(j) =j—- i|(yi+sgn(j—i) —y;)/e.

At the local-nonlocal interface, one needs to reconstruct the relative atomic positions
with respect to each rep-atom, inside its interaction range.

In [7], the authors introduced the geometrically consistent condition. As to the
one-dimensional chain, this condition becomes the following definition.

DEFINITION 4.1. The reconstruction scheme is geometrically consistent if for all
k and n,

ORi(j) .

4.1 E =0 I,

(4.1) ) o for all i
Iri(5)|=Rn

where 7;(j) = x; — x; denotes the relative position of atom j with respect to atom i at
the equilibrium state, and R,, is the distance between atom i and atom j.

To find reconstruction schemes that are geometrically consistent, instead of using
either R2(j) or RSB (), we allow a linear combination of R(j) and REB(j),

Ri(j) = Ci(j)R2(j) + (1 — Ci ()RS (),

where the C;(j)’s are the coefficients to be determined. In particular, for the nth
nearest neighbors of atom i, we let

Ri(i£n) = CE(n)Ri+n)+ (1 — CE(n)REE(i £ n)
(4.2) = CE(n)(Yizn — i) /e + n(1 = CF(n))(yiz1 — i) /e

The original QC method and the quasi-nonlocal approach correspond to the case when
C;(j) equals either 0 or 1. We further require that, away from the interface, in the
local region C;(j) = 0 in accordance with the CB rule and that in the nonlocal region
C;(j) = 1 in accordance with the atomistic reconstruction. Using these constraints,
we can solve the linear system (4.1) to determine the coefficients C;(j). Tables of
coefficient for different crystal structures have been provided in [7]. Throughout this
paper, we assume that

(4.3) 0<CH2),0,(2) <1.

2

As was shown in [7], as long as a reconstruction scheme is geometrically consis-
tent, there are no ghost forces at the local-nonlocal interface. In addition, geometric
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consistency is also a necessary condition for local uniform first-order accuracy at the
local/nonlocal interface; see [7, Proposition 5].

The quasi-nonlocal approach is a special case of geometrically consistent recon-
struction schemes. The quasi-nonlocal reconstruction scheme uses the positions of the
nearest neighbor atoms to reconstruct the relative position of other atoms. There-
fore, the method is limited to cases for which, along each line, the interaction involves
only the second nearest neighbors. If the interaction range is larger, for example, if
it involves the third nearest neighbors along a line, the condition (4.1) in the quasi-
nonlocal approach is violated. In Figure 3.1, the reconstruction of atom 3 starting
from atom 0 will use the position of atom 1. However, the reconstruction of atom 0
from atom 3 does not involve atom 1, since it is not the nearest neighbor of atom 3.

5. Error estimates for the geometrically consistent QC method. In this
section, we study the geometrically consistent QC method for the one-dimensional
chain with a pairwise potential Vj and Dirichlet boundary condition (3.2). It will be
clear from the presentation that similar analysis carries over to the case of any finite
range interaction (see [11] for details). We refer the reader to [19, 8,9, 1, 2, 20, 4, 26]
for related work on the analysis of the QC method.

5.1. Analysis of the one-dimensional chain. The problem we need to solve

is

y© € argmin { E*"(w) — ( f,w)},
weS

where E'' is the same as (3.1) with a general pairwise potential V;. The local
minimizer y¢ € S satisfies the equilibrium equation

(5.1) ay) =71
We write (5.1) in component form as follows: for i = —N,... N,
1 ~ ~
(5:2) - {V’ (D~ y:) + V' (2Dyi_1) +V (=Dry) 4V (—2Dyi+1)} _

Using the fact that V’ is an odd function, we write (5.2) in a more compact form as
(5.3) DV (D*y) + 2DV (2Dys) = i
From now on, we assume that there exists a smooth function
F@) i I=[-1/2,1/2) R
such that
(5.4) f(z:) = fi, i=—-N,...,N.

To begin with, we need to establish the existence results for the atomistic model
(5.1) and derive a priori estimates for its solution; see Theorem 5.6. The proof is
based on a systematic asymptotic analysis of the solution. We view the atomistic
model as a singular perturbation of the macroscopic model obtained from the CB
rule [3]. Asymptotic expansions are used to construct approximate solution that sat-
isfies the macroscopic equations to high-order accuracy. Finally, using linear stability
results for the atomistic model and implicit functional theorem, we obtain the desired
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existence results. Such ideas have been used by Strang [32] in the context of nonlin-
ear finite difference schemes. A general approach for constructing such higher-order
approximation for the atomistic model has been introduced in [10, section 5]. Here,
for the one-dimensional chain, the construction can be made quite explicit.

Define

(55) - T; + uen (1) + Eug(z;) ifi=—N,...,N,
' A P ifi=—-N—-2-N—-1,N+1,N+2,

where wu.}, satisfies

Lo(uen(z)) = f(z) in I,
Uen(—1/2) = uep(1/2) = 0,

__i / % / ducb
Lo(uch) = dx{v (1+ dx>+2v (2+2dx>}.

Moreover, us satisfies

Liin (ueh (z))uz (z) = —La(uep(x)) in 1,
u(—1/2) = uz(1/2) = 0,

(5.6)

and

(5.7)

where Ly (ucp) is the linearized operator of Ly at ucp,, which takes the form

_ d ” ducp " duep dusg
Ehn(ucb)u2— dx{[v <1+ dz )+4V 242 dz dr s

_1d . duen . duen \ ] duc
LQ(Ucb)—Ea{{V (1+W>+16V 242 P
1

d . duey, , due, A?ue \ 2
+24dx{[v <1+ dx)+16V 24222 T .

It is easy to verify that y € S. We may also view y as a function of x, which is
denoted by y and defined as

¥(r) = 2 + uen(2) + Eug(x), x€l.

We need to show that the problems (5.6) and (5.7) are solvable. Obviously, us
exists, provided that Ly, is coercive at uch, and us is smooth as long as ucp is smooth.
More precisely, we have the following regularity estimate for wuo:

(5.8) HUQHW?J’(I) < O||Ucb|\w4’p(1)7 p=>1

The case when p > 2 can be found in [12], and the case when 1 < p < 2 is quite
elementary for this one-dimensional problem. The existence of up is implied by the
following lemma.

LEMMA 5.1. There exist two constants p1 and ps such that for any m > 0 and
p > 1, forall f € W™P(I) with || f|lwm.»ry < p1, there exists a locally unique solution
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Uep € WTPP(I) that satisfies (5.6) and lwesllwmtzrry < p2. Moreover, there evists
a constant A > 0 such that

(5.9) (Liim(uch)v,v) = Alvlfpny  for any v e Hy(I),

where (-,-) denotes the dual pair between H}(I) and H1(I).

The proof of the above lemma follows essentially the same argument as in [38,
Chapter IV, Theorem 5.3].

LEMMA 5.2. There exists a constant py such that if || f|lwary < p1 with p > 1,
then there exists a y € S such that

(5.10) I£5(®) = Flloo < Ce?,

where C depends on p;.
Proof. Using the Taylor expansion, we obtain, for any i = —N,..., N,

| Loc(®)i — [Lo(U(x) — ) + € La(5(2) — @)]|oms, | < O,

where C' depends on ||ucp |lws.(r)-
By the definition of i (5.5), using (5.6) and (5.7), we get, for any i = —N,..., N,

‘ [‘Co(g_ x) + 62£2(§_ x)”w:wi - fl | < 0647

where C' depends on [|uep ||y, (7). Combining the above two inequalities and using
Lemma 5.1, we obtain (5.10). O

REMARK 5.3. The estimate (5.10) improves the result in [10, Corollary 5.1] for
the case when d = 1.

Next, we give a direct proof of the coercivity of the linearized operator of the
atomistic model. Define the Hessian matrix H € RCN+D” of the total energy as

82Etot
- 8w18w3 (W),

(5.11) H,j (w)
We have the following coercivity inequality for H(w) at w = .
LEMMA 5.4.

(5.12)  (H(@)z2) = (V' ) -4V @Dl 2|3 for zeRH,
Proof. A direct calculation gives

e (H(x)z,z) = (V' (1) + V" (2)) (225 +23) + V" (2) (2 yy1 + 28 1)

N-—-1 N—-2
(5.13) FVIA) Y (= zi)? V' (2) (2i — zip2)?
i=—N i=—N

If V" (2) < 0, then by the Cauchy—Schwarz inequality
|20 = zivol? < 2(|25 — 21 [* + |2i41 — 2ig2]?),
we write (5.13) as

N—-2

E(H@)z,2) = [V (1) +4V" ()] D (25— zis1)’

i=—N+1
V) VT @NEE N+ 2X) +V(2) (22 +2vo)
V) +2V" 2)((2-n = z-n41)? + (2v — 2v-1)?).
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Fori=N,j=N-—-1landi=—N, j=—N+1, we have

V7 (1) + V" @)z + V" (2) 2 + V" (1) + 2V (2)] (2 — 2)°
(5.14) =[V" Q) +4V" @) + (21 — 2)*) + (V" @) + (22 — 2)°].

Combining the above two inequalities gives (5.12) for the case when V" (2) < 0.

If V" (2) > 0, then we get (5.12) from (5.13). 0

The next lemma is a perturbation result of (5.12) that follows exactly the same
way as [10, Lemma 6.7]; we omit the proof.

LEMMA 5.5. If

<H(y1)z, z> 2 KH z HZ?
then there exists a constant 6 > 0 such that if | DV (y; — Ys)|leo < 0, then we have
(5.15) (H(ya)z, 2) = (5/2)l 23

Based on the above higher-order approximation result, we prove the interior regu-
larity for the solution of the atomistic model that is the main result of this subsection.

THEOREM 5.6. Forp > 1, there exists a constant p3 such that if || f|lwar) < p3,
then the problem (5.1) has a locally unique solution y© € S satisfying

(5.16) IDH(y = §)lls < Ce
Moreover,
2
(5.17) e D) < —N+12n§ai)§N—2kzl (D™)rys| < C.

Proof. The existence of y¢ follows from [10, Theorem 2.2]. By [10, Lemma 6.8],
the solution y° satisfies

Iy —glla < Cet,

which immediately implies (5.16).
Moreover, for i = —N + 2,..., N — 3, the quantity (D¥)3y¢ is well defined and
we have

[(D*)Pys] < [(DH)P(y° = w)| + [(DF) i
<3¢ DT (Y = 9) [loo + [(DF) 3l
<32 DY (Y = 9) lloo + (D) ucp ()| + 3] D ua(2;)]
< O + Cllueplws. (1) + Clluallwr()
< Ce® + Cllucwlwar (1) + Clluzllwzne(r)
< Ce + Cllucy|lwar(r)
<G,

where C' depends on p;. This leads to the first inequality in (5.17). A similar estimate
holds for |(D*)*ys| with k =1,2. O
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5.2. Convergence analysis of the geometrically consistent QC method.
The problem we need to solve is the following: find the local minimizer y,. € S that
satisfies

ch € argmin{EgCS(w) - <f7w>}a
weS

where
N N
EE(w) = Y V(Ri(i+1)+ Y V(Ri(i+2)).
i=—N-—-1 i=—N-—-2

We write the equilibrium equations for the above problem as follows: find y,. € S
such that

(518) LS (ch)i:fia i:—N,...,N,

gcs

where

Loes(2)i = D7V (DT 2)
- %[0;2(2)‘/’ (Rit2(2)) + (C; (2) — 2)V' (R (i — 2))
+2(1 = G (2))V' (Riga (i - 1))]
B %[0;2(2)1/' (Ri—2(i)) + (G (2) = 2)V/ (Ri(i +2))
+2(1 = CF(2)V (Ria (i + 1)),

where R;(i & n) is defined the same as in (4.2) with y replaced by z. To avoid the
influence of the boundary condition on the accuracy of the method (cf. [35]), we
assume that

(5.19) L (2)i = LS (2)i, i=N,N—1.

gcs
We make the following assumption on the coefficients:

CH2)=1, i<-5; CH(2)=0, i>3,
Cr(2)=1, i<-3; C;(2)=0, i>5.

K3

(5.20)

That leaves a sufficiently wide transition region for interactions that involves up to
the next nearest neighbors.

The geometrically consistent condition (4.1) can be written in a more explicit
form as

CiLy(2) - € (2) +2[C77(2) - G4 (2)]
(5.21) = 05, (2) — C7 (2) + 2[5 (2) — Cry (2)]

for any ith atom with next nearest neighbor interaction.

To analyze the geometrically consistent QC method, we follow the strategy of
Strang for the finite difference scheme [32]. Therefore, we need to study the stability
and the consistency error of the method. The stability of the linearized operator of
Lg.s may be proved as in Lemma 5.4, which will be shown in Lemma 5.12 below. To
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TABLE 5.1
Coefficients for one-dimensional chain with next nearest neighbor interaction.

Atom -5 —4 -3 -2 —1 0 1 2 3 4 5
Cct(2) 1 al1 | as | a3 | au | a5 | ag | a7 0 0 0

Cc—(2) 1 1 1 a1 as | a3 | ag | a5 | ag | a7 | O

analyze the consistency error, we first illuminate the geometrically consistent condition
(5.21).

LEMMA 5.7. For i = —5,...,3, if the geometrically consistent condition (5.21)
and the assumption (5.20) hold, then

(5.22) CF(2) = C,(2).
Proof. For i = —6,...,3, denote d; = C;(2) — C;;,(2). By (5.20), we get

K2

d_s = d_¢ = 0. Moreover, it follows from (5.21) that
d; = 2d;_1 — d;_o,

which immediately implies

d; —d;_1 :di_l—di_zz"'zd_5—d_6:0.

Therefore d; = d;—1 = --- = d_g = 0, which leads to (5.22). d
By (5.22), we get Table 5.1 for the coefficients C;"(2) and C; (2) with i =
—4,...,4. If we take a; = --- = a4 =1 and a5 = ag = ay = 0 in Table 5.1, then

the geometrically consistent QC method changes to the quasi-nonlocal QC method as
shown in [7].

Next we define the truncation error functional as follows.

DEFINITION 5.8. Let y© € S be the solution of (5.1). The truncation error
functional F € R®N*1 s defined as

Fi:(ﬁfzt_52cs)(y€)i7 l:_N,,N

A direct calculation gives F = O(1) (see [11, Lemma 4.6] for a proof), which
seems to suggest that this scheme does not converge. However, we will see that
the truncation error functional has some structure that can be exploited, due to
the translation invariance of the potential function [15] and the periodicity of the
underlying lattice structure [27].

It is easy to see that F; =0 for i = —N,..., =5, N — 1, N. Using the assumption
(5.20), we have, for i =5,... ;N — 2,
E = D+Qi7
(5.23)

Qi=V' (Qﬁyi) v (25%,1) — 2V (2D%yi 1)

Summing by parts for the first term in the right-hand side of (5.3), we obtain, for any
w € RY,
4 2 R 4
> Li(z)wi =2 ) V' (R ,(i) Dwiyr — Y D7V (DY) w;
i=—4 i=—4 i=—4
a Wy a w3
VI (RE() V' (R(3)

(5.24) — V' (Rg(@) =L — V' (R(3)) =2,
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Using the explicit expression of L., and summation by parts, we get the following
lemma.

LEMMA 5.9. If (5.20) is true, then for any w € R® we have

;4:4 L (2)iw; = — 24:4D—V’ (DT y;) w
+ ; 2 ) {[ Ciia)V' (Riya(i)) — G (2)V' (Ri(i + 2))}D+wi+1
+ [Cra @V (Ria () — (2= CHR)V (Rifi+2))] Dm}
~ V/(R(5) D ws + [V (REP(6)) ~ V' (RSP (3))] =
(5.25) V' (RE(8) =2 — V' (Rg(3) .

Proof. Denoting the second and the third terms of the expression of L5, by I
and I, respectively, summing by parts, and using (5.20), we obtain

Z VI Z+2 ( Cl+2(2))D Wiyl + Cl+2( )Derl]
1_—4

216 [~V (B§(6)) ws — V" (RE(3)) wy + 2V (REP(3)) ]

and

== Z V' (Ri(i+2)) [Cf (2)DT w1 + (2 — CF(2)) DH ]
1—74

— 2—6 (V' (RE(4)) wg + V' (RE(3)) wg — 2V (RF®(6)) wa] — V' (RSB (5)) DF ws.

Combining the above two equations, we get (5.25). a

Combining the above three identities (5.23), (5.24), and (5.25), and using the fact
that 2D = DT + D~, we obtain the following identity for F.

LEMMA 5.10. If (5.20) is true, then for any w € R2N+1 we have

(F,w)
2 - +
= Z |:<Cz+22(2) — 1> V/ (R1+2(l)) + 012(2) V/ (Rz(l + 2)) + V/( ;1+2(‘)):|D+wi+l
i=—4
2 - .
+ 2 [V’ i2(0) — O”TMV’ (Riya(i)) + (1 ~ CT(Z)) V' (Ri(i+2))} Dt
i=—4

N-3
- Z Qi1 D w; — [V/ (R3(5)) =V’ (R:),CB(S’))} DYws + Qn— 1wN 2.
i=4

A remarkable aspect of the above lemma is that it is valid without assuming the
geometrically consistent condition (5.21). Given this condition, using the a priori
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estimates for the atomistic solution y¢, we can prove that the truncation error of the
geometrically consistent QC method is small in a weak norm.

LEMMA 5.11. Let y© € S be the solution of the atomistic model (5.1). Under the
same conditions in Theorem 5.6 and if the geometrically consistent condition (4.1)
and the assumption (5.20) are valid, then there exists a constant C' such that

(5.26) [(F,w)| < Ce|lwlq for all w € R?NTL,

Proof. We start with the expression of ( F, w) in Lemma 5.10. Denote the right-
hand side of ( F,w) by I1,...,I5 and let C;" (2) = C;,,(2) = a. By (5.22) and Taylor
expansion, we obtain

(71 5CR22)) V' (Resal0) + 5CF IV (Reli +2) + V' (Reo(0)

= (1-5) IV (REa@) ~ V" (Resal@)] + 5 [V (RE0(9) V' (i + 2)]

=(1—a)e [(1 = %) /O V" (R} 5(i) + (1 — t)Rijo(i)) di
~(3) [ v et + (- o+ ) o] 04y
Proceeding along the same line, we get
V! (E5(0) + (1 565220V (Rii-+2) = 507 OV ()

(1 - 5) V' (R42(i) = V' (—Ri(i +2))] + [V/ (Rio(i)) = V' (Risa(i)]

:(1_a)e[(%—1> /01 V" (tRS (i) — (1 — t)Ri(i +2)) dt
+<g) / V7 (ERE5(6) + (1 — O)Risa()) dt| (D)

0

Using the a priori estimates (5.17) for y§ with ¢ = —4,...,2, we bound I; and I as

2
|Il| + |12| < Ce Z |D+wi+1| < Ce|| w ||d
i=—4
Using a Taylor expansion, we can write Q; fori =1,..., N — 1 as

1
Q=c| [ vriaropt 0ot al 0%
0

1
Sl [ VDt s a0t ) 0
0

el [ v onti, +a-npt af 0

[/ / V" (L +t)DTys_y 4+ (1 —t)DT (syf + (1 — s)ys_y)) ds (1 — t) dt

) (yz 2+y1 1)(D+) y1—2'
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Using (5.17) once again, we have
Q| <Ce* for i=1,...,N—1,

which immediately implies

N—2 N—2 1/2
Is| < C Y |DTw;| < CEN (Z |D+wi|2> < CE? | w g

i=4 i=4
A direct calculation gives
R5(5) = R5%(5) = e(D™)?ys5.
Therefore, we obtain

1
V! (R5(5)) = V' (R§P(5)) = 6/0 V" (tR§(5) + (1 — ) R§P(5)) dt (DF)?ys,

which yields
|[Ii| < Ce|DTws| < Cel|w a-
By (3.29) and the above estimate for Qn_1, we get
|I5| < Celwn—2| < O w a.
Combining the above estimates for I, ..., I5, we get (5.26). O

Given any F € R?2VN+1 define

(5.27) IFla= sup ‘o

weren+1 [[wla
This norm is the so-called Spijker norm [37, 31]. By Lemma 5.11, we obtain
|Fll—q < Ce.

This suggests that the local truncation error of the geometrically consistent scheme
is small measured in the Spijker norm.

Next, we prove the stability of the geometrically consistent QC method. The proof
follows the same line as for (5.12). Since we modify the equilibrium equations for the
boundary atoms (cf. (5.19)), there is no well-defined energy functional. Therefore,
the Hessian matrix is defined as

O(Lges)i
(Hac)ij = _ij(w)’
where (Lg.)i is regarded as a function of w. We may use H to replace Hqc when

there is no confusion occurs.
LEMMA 5.12. If the assumption (5.20) is valid for i = —4,...,4 and the geomet-
rically consistent condition (4.1) holds true, then, for all z € R2N+1,

(5.28) (Hoc(®)z,2) > V"(l)—l—flV"@)l 22
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Proof. By (5.20) and the elementary identity
1 1
a’ —ab= §(a —b)% + §(a2 - %), a,beR,

a direct calculation gives, for any z € RZ2V+1,

& (Maol@)z,2) = IV (1) + V" @2y 4V )2+ (V7 ()4 377 2)) 54

vl (2)
+ 7(3212\772 — 231 — Zh-3)
+ Z —€ Hz 1+1 - Zz—i—l + Z —€ H’L z+2 P zi+2)2

[V" (D) +2V" (2)](2n—2 — ZNfl) + V”( ) (zn-1 — 2n)?
V// (2)
2

(5.29) + ((ZN73 — ZN,1)2 + (zn_2 — ZN)2) .

A direct calculation gives
Mg = -V () +[(CF(2) -2)(1 - CF(2) + (1 - Cf 1(2)CE 2]V (2)
+[(1 = Ca(2)C2(2) + (C4 (2) = 2)(1 = C114, (2))] V" (2),
PHiisr = —3[CF 22~ CF (2)) + Cria@2 — Cra@)]V” (2),
which together with the geometrically consistent condition (5.22) leads to
—2(Hiiv1 +2Hiiv2 +2Hi—1i01) = V" (1)
+[4-C(2) + 0 (2) + CL1(2) - L (2)]V7 (2)
(5.30) = V" (1) +4V" (2).
Using (5.20), we get

{ —(Hon N1+ 2Hon—n2) = V7 (1) +2V" (2),

5.31
(5:31) —(Hn—3N—2+2Hn_an—2) = V" (1) +4V" (2).

If V" (2) < 0, then by the Cauchy—Schwarz inequality
|2 — ziyal® < 2(12i — ziga|* + 2zig1 — 2ig2l”)
and (5.30) and (5.31), we obtain

N-—-4

€ (Hac(x)z,2) > [V (1) +4V" (2)] > (21 — zi41)”

i=—N
V” ( ) + 5V” ( )](ZN,;), — ZN72)2 + [V” (1) + 4V” (2)](2]\],2 — ZN,1)2
V(1) + V" (2))(en-1 — 2n)?
V" () + V" @225 + V" (@) 22 gn + V" (1) 42V @)y = 2-n1)*}

{l
+ <V” + = V”( )) 23 + VHQ(Z)

[
[

+
_|_
+

(3Z12v72 - Z12v71 - Z12v73)-
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Invoking (5.14) once again, we obtain

(Hqoo(z)z,z) > [V (1) +5V" (2)]] 2 |13 + 3‘/2/;2(2) 22 .

By (3.29) and N > 4, we get

(Hocl@z,) = (v @)+ 57 @)+ 22 ) 22

> v+ v el 1=

On the other hand, if V" (2) > 0, then we have
(Hac(@)z, z) = (V" (1) = 3V" (2)) || 2 [I3-

Combining the above two inequalities leads to (5.12). O

We are ready to prove the main theorem of this paper.

THEOREM 5.13. Assume that the geometrically consistent condition (4.1) and the
conditions (4.3) and (5.20) hold. Assume that p > 1, m > 4. There exists a constant
k1 such that if || fllwm.rer) < k1, then the problem (5.18) has a locally unique solution
Y, that satisfies

(5.32) 1D (yge = ¥l < Ce.

Proof. Write

@ww»—@w@wzﬁlHmﬁy+u—w¢wﬂwy—¢»

Hence y € S is a solution of (5.18) if and only if

[ Hactty 0oy y) = F,
since
Loes() = Loes(U°) = Lies(y) = L3(Y) + L3 (¥°) — L (¥) = (Lo — Lae) (¥°)-
Next define
Si={yeS|IIDT(y -y < Ve}

Let T : S1 — 51, and let T(y) be the solution of the following linear system:
1 A~
/ Hao(ty + (1 —t)y)dt - (T(y) —y°) = F.
0

Defining w = f(y) — y° and using (5.16), we obtain

ID* (ty + (1 = )y" = @)lloo <HIDF (Y =y ) + DT (¥ = Y)lloo + I1DT(F — )]l
<+Ve+ Ce®/? + |UCb|W1,oo(]) + 062|u2|w1,oo(1)

(5.33) < (\/E + 065/2 + C]€2|u2|W2,p(I)) + C]||quHW2,p(I),
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where C7 is the imbedding constant. By the regularity estimate (5.8), we have, for
sufficiently small e,

Ve+ Ce? 4 Cllus|wanry < Ve + Ce? + Cpae® < §/2.
Moreover, there exists a constant p3 such that if || f|| »(;) < p3, then
Cillucpllw2r ) < 9/2.
Substituting the above two inequalities into (5.33) leads to
I D* (ty + (1 = )y — ) [lo < 0.

Therefore, using Lemmas 5.5 and 5.12, we get

1 ’
(5.31) ([ Hactiy+ -0y dtww) = Sjwlz

Using (5.26) and (5.34), we obtain

lwlla < Ce.
By the definition of || - |4, the above inequality immediately implies
(5.35) IDT(T(y) = y) lloo = | DTw oo < w4 < Ce.

Therefore, for sufficiently small €, we have
[DFwlloo < Ve

Thus, we conclude that f(y) € S1. By the fixed point theorem, there exists a solution
of the geometrically consistent QC method. The solution is locally unique since the
Hessian matrix

/0 Hao(ty + (1 — ty*) dt

is nondegenerate for small f.

The error estimate (5.32) follows from (5.35). O

A direct consequence of the above theorem is the following corollary.

COROLLARY 5.14. Ifp > 1, m > 4, then there exists a constant p such that
for all ||fllwm»ay < p the quasi-nonlocal QC method has a locally unique solution
Y €S that satisfies

1D (yge = ¥)lo < Ce

The uniform first-order convergence of the geometrically consistent QC method
may seem quite unexpected since the pointwise local truncation error of such schemes
is of O(1). The origin of the above result lies in the supraconvergence phenomenon
[17, 36, 37] as shown in Lemma 5.11.

The analysis presented above can be extended to high dimensions, when the inter-
face between the local and nonlocal regions is planar; i.e., there are no corners along
the interface. To do so, we have to establish the stability result and the consistent
analysis in high dimensions. The stability results, namely, Lemmas 5.4 and 5.12, can
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TABLE 5.2
Parameters for various metals; data for arg adapted from [13, Table I].

Metal Rb Cs Na K Ba Fe Cr
arg 1.206 | 1.260 | 1.267 | 1.293 | 1.650 | 1.988 | 2.260
M 1.293 | 1.520 | 1.548 | 1.646 911 .62 .596
UGN I I R I I I

be easily extended to high dimensions by combining the argument in [10] and the
proof of Lemma 5.4. As for the consistency analysis, there are two main ingredients.
One is the analysis of the local truncation error that is guaranteed by the geomet-
rically consistent condition. The other is the structure of the consistency error, i.e.,
(5.26). This is also due to the symmetry of the lattice and the potential function.
Even though the main ideas for the analysis in high dimensions are quite clear, the
technicalities are quite involved. We shall present the detailed analysis in a separate
paper [23].

5.3. Stability condition. In the remaining part we verify the stability condition
" 19 "
(5.36) V') > 7|V (2)]

for several pairwise potentials.
First we consider the Lennard-Jones potential [18]

Vo(r) = 4((e/r)"* = (o/r)°),

where ¢ is some atomic length scale parameter. The equilibrium bond length ¢ =
(2/K)Y%c with K = (1 +279)/(1+27'2) > 1. A direct calculation gives

1 1
V"(2) <0 and V' (1)-— 79|V” 2)]=V" (1) + 791/” (2) > 48K > 0.

This verifies (5.36).
The next example is the Morse potential [25] mentioned before:

Vb(’f’) _ e—a(r—rg) _ 26—(1(7“—7’0)'

—ae

Let € be the equilibrium bond length, and denoting by s = e®™ and t = e~ %€, we find

that ¢ satisfies
(5.37) 2st® 4+ (s —2)t — 1 = 0.

It is clear to see that there exists a unique solution ¢ € (0, 1), denoted by to; a direct
calculation gives

19 19
V") - 7|V” (2)] = 2a%€*sty <2$t0 -1- 7|1 +tp — st0|) :

Let M = 2stg — 1 — 2|1+t — sto|. For the cubic metals listed in [13], e.g., Rb, Cs,
Na, K, Ba, Fe, Cr, et al., see Table 5.2 for the corresponding values of M.
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6. Conclusion. The analysis presented here is done for one-dimensional models,

which demonstrates that

1. the deformation gradient may have O(1) error;

2. the geometrically consistent QC method is uniformly accurate, even near the
interface.

The main limitation of the analysis in this paper is the assumption that every
atom is treated as a representative atom. The motivation comes from the fact that we
are mainly interested in the local-nonlocal interface. To understand the QC method
fully, we also need to analyze the coarsening procedure, in particular, the transition
between atom-based summation and element-based summation [7]. As was pointed
out in [7], this is where difficulty associated with corners comes from. At the present
time, there is no clean solution to this problem.

Appendix A. Auxiliary results and estimates of the Green’s difference
function. We prove some auxiliary results in section 3 in this part.

Proof of (3.17) and (3.16). Adding the 3rd row to the 1st row and the 2nd row
to the 4th row, and subtracting, respectively, (—2) times the 2nd row and the 3rd row
from the 1st row and the 4th row, using the relation (3.14)s, we get

—5w{v+i —5wév+i 5w{v_i 5wév_i
dot A — | Inwilwr) o Evailws)  —Fyei(wr)  —Fv-ilws) |
Fyyivi(w1) Fnyivi(w2) —Fn—i—i(wi) —Fn—i—1(w2)
—5w{v+i+1 —5wév+i+1 5w{v_i_l 5wév_i_l

Multiplying the 1st row by —w; and adding to the 4th row, we obtain

—5wiv+i —5wé\"H Swiv_i Swév_i
dot A — Fyyi(wr) Fnyi(w2) —Fn_i(w1) —Fn_i(w2) '
Fnyiv1(wr) Fnyiv1(we) —Fn_i—1(w1)  —Fy—i—1(we)
0 5wy T (W2 — 1) 5wl T — W) 0

Multiplying the 4th row by w1 /(w? — 1) and adding to the 1st row, we obtain

A 0 0 5wy
det A — Fnyi(w) Fyyi(w2) —Fn_i(w1) —Fn_i(w2) '
Fnyiv1(wr) Fnyiz1(w2) —Fn_i—1(w1) —Fn—i—1(wo2)
0 5w T (W — 1) 5wV TN — W) 0

Multiplying the 1st column by w2 and adding to the 4th column, and multiplying
the 2nd column by w? and adding to the 3rd column, respectively, we obtain

det A = 25((4}2 - wl) [(w%NFNH- ((.Ug) - FNfi (wl)) (wSNFNJriJrl (wl) — FN,Z',1 ((.Ug))

- (W%NFN+1'+1(W2) = Fn_ic1(w1)) (W3N Engi(wr) — Fn_i(w2))].
A straightforward calculation gives

det A = 25(w; — wo)[w¥ g(wa) + wd g(wr)]

X W (Fn—ic1 + Fniit1)(w1) — o (Fn—i—1 + Fngit1)(we)].

Using the expression of Fy,,(z), we get (3.17).
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We calculate only ~; and d; in (3.13) since G is symmetric. By definition,
i = (cof A)sz/det A, & = (cof A)ss/ det A.

Moreover, we calculate only ~y; since (cof A)4q(wi,w2) = (cof A)az(we,w1). By (3.14),
a direct calculation gives

Yilwr,wz) = 50’ [0l glwn) + ' gDl T Fvpira (2) — w8 Fivpig (w1)]
+wr —wa + g(wi)wy T = g(wo)wr Tws Frpig (w1) — @i Fy—im1 (w2)]} / det A.
Substituting F,,,(z) into the above equation, we obtain (3.16). O
Proof of Lemma 3.7. The upper bound in (3.18); immediately follows from (3.15)

and Lemma 3.6, while the lower bound follows from the fact that G is monotone [39).
Using (3.15) and (3.16), a direct calculation gives

(Al) Dnggi,j = DJF’}Q' (L«Jl, WQ)D+FN_j (wl) + D+’yi(w2, wl)DJrFN_j (UJQ),

where DT Fy_;(2) = [—g(2) + 2V 7771 (1 — 2)] /e, z = w1, w2, and

D aifn,2) = | 2(n — w2) w3V g(en) + ()]
+ 5D W w3 (w1 — ws) + 2f(w2)g(w2) + 2N g° (w2)]

— 5D W) T [fwi)g(wa) + f(w2)g(wr) + 2N g(wi)g(w2)] | / det A,

where we have used f(w2)g(w1) — f(w1)g(w2) = w1 —wa. By

flwi)g(we) + f(w2)g(wr) =15,  g(wi)g(wa) =5,

we write DT ; as
5 )
DT y(wr,ws) = E(wl - wg)[ngg(wl) + g(w2)] — 5(10N + 15)D+wév+l
+ 5DTWN T w3IN (w1 — wa) 4 2f (w2)g(wa) + 2N g2 (w2)] | / det A.

Using (3.17), we get
et A = O(c s ™Y),
which together with the above expression of DT, leads to
Dtyi(wr,wa) = O(1),  Dtyi(ws,wi) = O Hwy [N 71,
Substituting the above estimate into (A.1), we obtain
|D1D2Gi | < Cle ! + € Hun |V 771+ e |un ) < Ce (e + |wn [,

which together with the fact that j > i and the symmetry of G gives (3.18) for
i=-N+2,... N—2.
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Using Lemma 3.6 and proceeding along the same line, we find that the estimate
(3.18) remains true for the cases when ¢ = —N,—N + 1, N — 1, N. This finishes the
proof. |

Appendix B. A priori estimate for the solution of (3.5). Defining 3 =
Yqe — T, by (3.5), Y satisfies

(B.1) Ajc = f.
LEMMA B.1. For §° the solution of (B.1), we have
S e (N + 1)e?
(8.2 vl < ST

__ Proof. Note that A is an irreducible diagonally dominant matrix. Therefore,
A is monotone [39]; i.e., each entry of A~! is nonnegative. Define g = e?e with
e=(1,...,1) € R*V+1 A direct calculation gives

(Ag)_n = (Ag)n =2, (Ag)_n41 = (Ag)ny_1 =1, and (Ag); =0 otherwise.

Hence,

N
gi= (A" Ag)i = > (A )i;(Ag); = 2[(A™Y)in + (A )in].
e

Therefore,
(B.3) 0< (A n+ (A Yy <2

Next we let g € R2V+! with g; = (N +1+4)(N+1—i)e?, i = —N,...,N. Using
the relation

gi—2+giv2 =29; —8 and  gi—1+ giy1 = 29 — 2,

we obtain (Ag)_y = (Ag)y =7 — 2N and (Ag); = 10 otherwise. Therefore,

N-1
gi = (A7 Ag)i = (T—2N)[(A™ )i n + (A )in]+10 Y (A,
j=—N+1
which together with (B.3) leads to
1 g  2N+3 , ~ ~ g 2N +3,
== - N < % ;
Ure)i= 15+ 3 (A )iov F (Al < 5+ 55—

using the above identity with i = —N and —N + 1, we get (B.2). d
Next we prove (3.11). Denote t = (DT y_y,..., D yo) € RVN! which satisfies

(B.4) Ct=g,
where
2 1 0
-1 2 1 0
-1 -2 2 1 0
.
-1 -2 2 1
-1 -2 3/2 1/2

-1 2 )



QC ANALYSIS 1873
and
2 1, .
91=—Gf1+;y_zva 92=—Gf2+zy_zv+1a gi=—¢f; fori=3,...,N+1

Proof of (3.11). Denote the (N + 1)th row of C~* by (z1,...,zx11). It is easy
to verify that

2x1 — x9 —x3 =0,

Ti—1 +2x; — 22541 —Xi40 =0, i=2,...,N—1,
n—1+ (3/2)any — 22n41 =0,
(1/2)zn + 5xny1 = 1.

By the standard theory of recurrence equation, we get

2= a+ bW+ wi ), o= 6[1)(w1) + P (w2)] b= _ 1

p(w1) + pwz) d(wr) + d(wa)’
6(2) = 2N 2972 4 38), (z) = N2 (5% + 1) .

Using the fact that a = O(1) and b = O(|w1|"), we get

|z1] + |z2| < 2]a| +5|b| < C

and
N+1
1 |L4J2|N+l — 1)
a:igaN+1+b< <ow,
> ol < al(V + 1)+ bl (= +
which together with (B.2) leads to
N+1
+~e 2 ~ec ~€
1D7yg| < — (2] + |22 (5| + 51 l) + € (Z |a:¢|> [ flloe < CI f e
i=1

Using the triangle inequality, we obtain the estimate (3.11) for DTyy. Proceeding
along the same line, we get the estimate for DT y;. O
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