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Abstract—The affine rank minimization (ARM) problem arises
in many real-world applications. The goal is to recover a low-rank
matrix from a small amount of noisy affine measurements. The
original problem is NP-hard, and so directly solving the problem
is computationally prohibitive. Approximate low-complexity so-
lutions for ARM have recently attracted much research interest.
In this paper, we design an iterative algorithm for ARM based
on message passing principles. The proposed algorithm is termed
turbo-type ARM (TARM), as inspired by the recently developed
turbo compressed sensing algorithm for sparse signal recovery. We
show that, for right-orthogonally invariant linear (ROIL) opera-
tors, a scalar function called state evolution can be established to
accurately predict the behaviour of the TARM algorithm. We also
show that TARM converges faster than the counterpart algorithms
when ROIL operators are used for low-rank matrix recovery. We
further extend the TARM algorithm for matrix completion, where
the measurement operator corresponds to a random selection ma-
trix. Slight improvement of the matrix completion performance has
been demonstrated for the TARM algorithm over the state-of-the-
art algorithms.

Index Terms—Low-rank matrix recovery, matrix completion,
affine rank minimization, state evolution, low-rank matrix
denoising.

I. INTRODUCTION

LOW-RANK matrices have found extensive applications in
real-world applications including but not limit to remote

sensing [1], recommendation systems [2], global positioning [3],
and system identification [4]. In these applications, a funda-
mental problem is to recover an unknown matrix from a small
number of observations by exploiting its low-rank property [5],
[6]. Specifically, we consider a rank-rmatrixX0 ∈ Rn1×n2 with
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the integers r, n1, and n2 satisfying r � min(n1, n2). We aim
to recover X0 from an affine measurement given by

y = A(X0) ∈ Rm (1)

where A : Rn1×n2 → Rm is a linear map with m < n1n2 = n.
When A is a general linear operator such as Gaussian operators
and partial orthogonal operators, we refer to the problem as
low-rank matrix recovery; when A is a selector that outputs a
subset of the entries of X0, we refer to the problem as matrix
completion.

The problem can be formally cast as affine rank minimization
(ARM):

min
X

rank(X)

s.t. y = A(X). (2)

Problem (2) is NP-hard, and so solving (2) is computationally
prohibitive. To reduce complexity, a popular alternative to (2) is
the following nuclear norm minimization (NNM) problem:

min
X

‖X‖∗
s.t. y = A(X). (3)

In [7], Recht et al. proved that when the restricted isometry
property (RIP) holds for the linear operatorA, the ARM problem
in (2) is equivalent to the NNM problem in (3). The NNM prob-
lem can be solved by semidefinite programing (SDP). Existing
convex solvers, such as the interior point method [4], can be
employed to find a solution in polynomial time. However, SDP
is computationally heavy, especially when applied to large-scale
problems with high dimensional data. To address this issue, low-
cost iterative methods, such as the singular value thresholding
(SVT) method [8] and the proximal gradient algorithm [9], have
been proposed to further reduce complexity at the cost of a
certain amount of performance degradation.

In real-world applications, perfect measurements are rare, and
noise is naturally introduced in the measurement process. That
is, we want to recover X0 from a noisy measurement of

y = A(X0) + n (4)

where n ∈ Rm is a Gaussian noise with zero-mean and covari-
ance σ2I and is independent of A(X0). To recover the low-rank
matrix X0 from (4), we turn to the following formulation of the
stable ARM problem:

min
X

‖y −A(X)‖22
s.t. rank(X) ≤ r. (5)
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The problem in (5) is still NP-hard and difficult to solve. Several
suboptimal algorithms have been proposed to yield approximate
solutions to (5). For example, the author in [10] proposed an
alternating minimization method to factorize rank-r matrix X0

as the product of two matrices with dimensionn1 × r and r × n2

respectively. This method is more efficient in storage than SDP
and SVT methods, especially when large-dimension low-rank
matrices are involved. A second approach borrows the idea of
iterative hard thresholding (IHT) for compressed sensing. For
example, the singular value projection (SVP) algorithm [11]
for stable ARM can be viewed as a counterpart of the IHT
algorithm [12] for compressed sensing. SVP solves the stable
ARM problem by combining the projected gradient method with
singular value decomposition (SVD). An improved version of
SVP, termed normalized IHT (NIHT) [13], adaptively selects the
step size of the gradient descent step of SVP, rather than using a
fixed step size. These algorithms involve a projection step which
projects a matrix into a low-rank space using truncated SVD.
In [14], a Riemannian method, termed RGrad, was proposed
to extend NIHT by projecting the search direction of gradient
descent into a low dimensional space. Compared with the al-
ternating minimization method, these IHT-based algorithms ex-
hibit better convergence performance with lower computational
complexity. Furthermore, the convergence of these IHT-based
algorithms is guaranteed when a certain restricted isometry
property (RIP) holds [11], [13], [14].

In this paper, we aim to design low-complexity iterative
algorithms to solve the stable ARM problem based on message-
passing principles [15], a different perspective from the existing
approaches mentioned above. Specifically, we present a turbo-
type algorithm, termed turbo-type affine rank minimization
(TARM), for solving the stable ARM problem, as inspired by
the turbo compressed sensing (Turbo-CS) algorithm for sparse
signal recovery [15], [16]. Interestingly, although TARM is de-
signed based on the idea of message passing, the resulting algo-
rithm bears a similar structure to the gradient-based algorithms
such as SVP and NIHT. A key difference of TARM from SVP
and NIHT resides in an extra step in TARM for the calculation
of the so-called extrinsic messages. With this extra step, TARM
is able to find a better descent direction for each iteration, so as
to achieve a much higher convergence rate than SVP and NIHT.
For low-rank matrix recovery, we establish a state evolution tech-
nique to characterize the behaviour of the TARM algorithm when
the linear operator A is right-orthogonally invariant (ROIL). We
show that the state evolution accurately predicts the performance
of the TARM algorithm. We also show that TARM runs faster
and achieves successful recovery for a broader range of parame-
ter settings than those of the existing algorithms including SVP,
NIHT, RGrad, Riemannian conjugate gradient descent (RCG)
[14], algrebraic pursuits (ALPS) [18], Bayesian affine rank
minimization (BARM) [19], iterative reweighted least squares
(IRLS) [20], and low-rank matrix fitting (LMAFit) [21]. We
further extend the TARM algorithm for matrix completion (when
the linear operator is chosen as a random selector). We show
that TARM with carefully tuned parameters outperforms the
counterpart algorithms, especially when the measurement rate
is relatively low.

Fig. 1. The diagram of the TARM algorithm.

It is worthy of mentioning the early seminal work [22], [23]
on message passing for solving compressed sensing problems.
Particularly, the denoising-based approximated message passing
(AMP) algorithm in [23] can be possibly used to recover sig-
nals with a general structure including low-rank matrices. It is
known that the AMP algorithms perform well when the sensing
matrix consists of independent and identically distributed (i.i.d.)
elements; however, these algorithms suffer from considerable
performance losses when applied to the case of non-i.i.d. sensing
matrices. In this paper, the considered operator A is a ROIL
operator for low-rank matrix recovery and a random selector
for matrix completion. In both cases, the corresponding sensing
matrices are partial orthogonal and thus far from being i.i.d.
generated. As such, rather than following [22] and [23], we
take the turbo message passing approach [15], [16] (designed
to handle partial orthogonal sensing) in our algorithm design.

In this paper, we use bold capital letters to denote matrices
and use bold lowercase letters to denote vectors. Denote byXT ,
rank(X), and Tr(X) the transpose, the rank, and the trace of
matrix X , respectively. Denote by Xi,j the (i, j)-th entry of
matrix X , and by vec(X) the vector obtained by sequentially
stacking the columns of X . Denote by A a linear operator,
and by AT its adjoint linear operator. The inner product of
two matrices is defined by 〈X,Y 〉 = Tr(XY T ). I denotes
the identity matrix with an appropriate size. ‖X‖F and ‖X‖∗
denote the Frobenius norm and the nuclear norm of matrix X
respectively. ‖x‖2 denotes the l2 norm of vectorx andmin(a, b)
denotes the minimum of two numbers a and b.

II. THE TARM ALGORITHM

As inspired by the success of the Turbo-CS algorithm for
sparse signal recovery [15], [16], we borrow the idea of turbo
message passing and present the TARM algorithm for the affine
rank minimization problem in this section.

A. Algorithm Description

The diagram of TARM is illustrated in Fig. 1 and the detailed
steps of TARM are presented in Algorithm 1. We use index t to
denote the t-th iteration. There are two concatenated modules in
TARM:
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Algorithm 1: TARM for Affine Rank Minimization.

Input: A,y,X(0) = 0, t = 0
1: while the stopping criterion is not met do
2: t = t+ 1
3: R(t) = X(t−1) + μtAT (y −A(X(t−1)))
4: Z(t) = D(R(t))
5: X(t) = Dext(R(t),Z(t)) = ct(Z

(t) − αtR
(t))

6: end while
Output: Z(t)

1) Module A:
• Step 1: We estimate the low-rank matrix X0 via a linear

estimator E(·) based on the observation y and the input
X(t−1):

E(X(t−1)) = X(t−1) + γtAT (y −A(X(t−1))) (6)

where γt is a certain given coefficient.
• Step 2: The extrinsic estimate of X0 is then given by

R(t) = Eext(X(t−1), E(X(t−1)))

= X(t−1) +
μt

γt
(E(X(t−1))−X(t−1))

= X(t−1) + μtAT (y −A(X(t−1))) (7)

where Eext(X(t−1), E(X(t−1))) linearly combines the
inputs X(t−1) and E(X(t−1)) with μt being a known
coefficient.1

We combine (6) and (7) into a linear estimation (Line 3 of
Algorithm 1) since both operations are linear.

2) Module B:
• Step 1: The output of Module A, i.e., R(t), is passed to

a denoiser D(·) which suppresses the estimation error
by exploiting the low-rank structure of X0 (Line 4 of
Algorithm 1).

• Step 2: The denoised output Z(t) is passed to a linear
function Dext(·, ·) which linearly combines Z(t) and
R(t) (Line 5 of Algorithm 1).

Denoiser D(·) can be chosen as the best rank-r approx-
imation [25] or the singular value thresholding (SVT)
denoiser [26]. In this paper, we focus on the best rank-r
approximation defined by

D(R) =
r∑

i=1

σiuiv
T
i (8)

whereσi,ui, andvi are respectively the i-th singular value
and the corresponding left and right singular vectors of the
input R.

In the above, the superscript “ext” stands for extrinsic mes-
sage. Step 2 of each module is dedicated to the calculation of
extrinsic messages which is a major difference of TARM from
its counterpart algorithms. In particular, we note that in TARM

1From the turbo principle [16], μt is chosen to ensure that the output error
of Module A is uncorrelated with the input error, i.e. 〈R(t) −X0,X

(t−1) −
X0〉 = 0. More detailed discussions can be found in Subsection II-B.

when ct = 1 and αt = 0 for any t, the algorithm reduces to
the SVP or NIHT algorithm (depending on the choice of μt). As
such, the key difference of TARM from SVP and NITH resides in
the choice of these parameters. By optimizing these parameters,
the TARM algorithm aims to find a better descent direction in
each iteration, so as to achieve a convergence rate much higher
than SVP and NIHT.

B. Determining the Parameters of TARM

In this subsection, we discuss how to determine the parameters
{μt}, {ct}, and {αt} based on turbo message passing. Turbo
message passing was first applied to iterative decoding of turbo
codes [24] and then extended for solving compressed sensing
problems in [15], [16]. Following the turbo message passing rule
in [16], three conditions for the calculation of extrinsic messages
are presented:

• Condition 1:

〈R(t) −X0,X
(t−1) −X0〉 = 0; (9)

• Condition 2:

〈R(t) −X0,X
(t) −X0〉 = 0; (10)

• Condition 3: For given X(t−1),

‖X(t) −X0‖2F is minimized under (9) and (10). (11)

In the above, Conditions 1 and 2 follow from [16, Eq. 7,
Eq. 14], and Condition 3 follows from Condition (ii) in [16].
Condition 1 ensures that the input and output estimation errors
of Module A are uncorrelated. Similarly, Condition 2 ensures
that the input and output estimation errors of Module B are un-
correlated. Condition 3 ensures that the output estimation error
of Module B is minimized over {μt, ct, αt} for each iteration
t. Intuitively, in graphical-model based message passing, the
out-going message on an edge is required to be independent of
the incoming message on the edge (by excluding the incoming
message in the calculation of the out-going message). Since
uncorrelatedness implies independence for Gaussian random
variables, (9) and (10) can be seen as necessary conditions for
turbo Gaussian message passing. In this sense, the minimization
in (11) can be interpreted as finding the best estimate of X∗

for each iteration under the turbo Gaussian message passing
framework.

We have the following lemma for {μt, ct, αt}, with the proof
given in Appendix A.

Lemma 1: If Conditions 1–3 hold, then

μt =
‖X(t−1) −X0‖2F

〈A(X(t−1) −X0)− n,A(X(t−1) −X0)〉 (12a)

αt =
−bt ±

√
b2t − 4atdt
2at

(12b)

ct =
〈Z(t) − αtR

(t),R(t)〉
‖Z(t) − αtR(t)‖2F

, (12c)

with

at = ‖R(t)‖2F ‖R(t) −X0‖2F (13a)

bt = −‖R(t)‖2F 〈R(t)−X0,Z
(t)〉−‖Z(t)‖2F ‖R(t) −X0‖2F
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+ ‖Z(t)‖2F 〈R(t) −X0,X0〉 (13b)

dt = ‖Z(t)‖2F 〈R(t) −X0,Z
(t) −X0〉. (13c)

Remark 1: In (12b), αt has two possible choices and only
one of them minimizes the error in (11). From the discussion
below (37), minimizing the square error in (11) is equivalent to
minimizing ‖X(t) −R(t)‖2F . We have

∥∥∥X(t) −R(t)
∥∥∥
2

F

=
∥∥∥ct(Z(t) − αtR

(t))−R(t)
∥∥∥
2

F
(14a)

= −〈Z(t) − αtR
(t),R(t)〉2

‖Z(t) − αtR(t)‖2F
+ ‖R(t)‖2F (14b)

where (14a) follows from substituting X(t) in Line 5 of Algo-
rithm 1, and (14b) follows by substituting ct in (12c). Since
‖R(t)‖2F is invariant to αt, minimizing ‖X(t) −R(t)‖2F is

equivalent to maximizing 〈Z(t)−αtR
(t),R(t)〉2

‖Z(t)−αtR(t)‖2F
. We chooseαt that

gives a larger value of 〈Z(t)−αtR
(t),R(t)〉2

‖Z(t)−αtR(t)‖2F
.

Remark 2: Similarly to SVP [11] and NIHT [13], the con-
vergence of TARM can be analyzed by assuming that the linear
operator A satisfies the restricted isometry property (RIP). The
convergence rate of TARM is much faster than those of NIHT
and SVP (provided that {αt} are sufficiently small). More
detailed discussions are presented in Appendix B.

We emphasize that the parameters μt, αt, and ct in (12) are
actually difficult to evaluate since X0 and n are unknown. This
means that Algorithm 1 cannot rely on (12) to determine μt, αt

and ct. In the following, we focus on how to approximately
evaluate these parameters to yield practical algorithms. Based
on different choices of the linear operator A, our discussions are
divided into two parts, namely, low-rank matrix recovery and
matrix completion.

III. LOW-RANK MATRIX RECOVERY

A. Preliminaries

In this section, we consider recovering X0 from measure-
ment in (4) when the linear operator A is right-orthogonally
invariant and X0 is generated by following the random models
described in [17].2 Denote the vector form of an arbitrary matrix
X ∈ Rn1×n2 by x = vec(X) = [xT

1 ,x
T
2 , . . . ,x

T
n ]

T , where xi

is the ith column of X . The linear operator A can be generally
expressed as A(X) = Avec(X) = Ax where A ∈ Rm×n is a
matrix representation of A. The adjoint operator AT : Rm →
Rn1×n2 is defined by the transpose of A with x′ = vec(X ′) =
vec(AT (y′)) = ATy′. Consider a linear operatorAwith matrix
formA, the SVD ofA isA = UAΣAV

T
A, whereUA ∈ Rm×m

and V A ∈ Rn×n are orthogonal matrices and ΣA ∈ Rm×n is a
diagonal matrix.

2The generation models of X0 can be found in the definitions before
Assumption 2.4 in [17]. This choice allows us to borrow the results of [17]
in our analysis; see (61).

Definition 1: If VA is a Haar distributed random matrix [34]
independent of ΣA, we say that A is a right-orthogonally invari-
ant linear (ROIL) operator.3

We focus on two types of ROIL operators: partial orthogonal
ROIL operators where the matrix form ofA satisfiesAAT = I ,
and Gaussian ROIL operators where the elements of A are i.i.d.
Gaussian with zero mean. For convenience of discussion, the
linear operator A is normalized such that the l2-norm of each
row of A is 1. It is worth noting that from the perspective of the
algorithm,A is deterministic sinceA is known by the algorithm.
However, the randomness of A has impact on parameter design
and performance analysis, as detailed in what follows.

We now present two assumptions that are useful in determin-
ing the algorithm parameters in the following subsection.

Assumption 1: For each iteration t, Module A’s input estima-
tion error X(t−1) −X0 is independent of the orthogonal matrix
VA and the measurement noise n.

Assumption 2: For each iteration t, the output error of Mod-
ule A, given by R(t) −X0, is an i.i.d. Gaussian noise, i.e., the
elements of R(t) −X0 are independently and identically drawn
from N (0, vt), where vt is the output variance of Module A at
iteration t.

The above two assumptions will be verified for ROIL opera-
tors by the numerical results presented in Subsection D. Similar
assumptions have been introduced in the design of Turbo-CS
in [15] (see also [27]). Later, these assumptions were rigorously
analyzed in [28], [29] using the conditioning technique [30].
Based on that, state evolution was established to characterize
the behavior of the Turbo-CS algorithm.

Assumptions 1 and 2 allow to decouple Module A and Mod-
ule B in the analysis of the TARM algorithm. We will derive
two mean square error (MSE) transfer functions, one for each
module, to characterize the behavior of the TARM algorithm.
The details will be presented in Subsection C.

B. Parameter Design

We now determine the parameters in (12) when ROIL op-
erators are involved. We show that (12) can be approximately
evaluated without the knowledge of X0. Since {ct} in (12c) can
be readily computed given {αt}, we focus on the calculation of
{μt} and {αt}.

We start with μt. From (12a), we have

μt =
‖X(t−1) −X0‖2F

〈A(X(t−1) −X0)− n,A(X(t−1) −X0)〉 (15a)

≈ ‖X(t−1) −X0‖2F
‖A(X(t−1) −X0)‖22

(15b)

=
1

x̃TVAΣT
AΣAV T

A x̃
(15c)

=
1

vT
AΣ

T
AΣAvA

≈ n

m
(15d)

3In this section, we focus on ROIL operators so that the algorithm parameters
can be determined by following the discussion in Subsection B. However,
we emphasize that the proposed TARM algorithm applies to low-rank matrix
recovery even when A is not a ROIL operator. In this case, the only difference
is that the algorithm parameters shall be determined by following the heuristic
methods described in Section III.
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where (15b) holds approximately for a relatively large ma-
trix size since 〈n,A(X(t−1) −X0)〉 ≈ 0 from Assumption
1, (15c) follows by utilizing the matrix form of A and x̃ =
vec(X(t−1)−X0)
‖X(t−1)−X0‖F , and (15d) follows by letting vA = V T

A x̃. VA is
Haar distributed and from Assumption 1 is independent of x̃,
implying that vA is a unit vector uniformly distributed over the
sphere ‖vA‖2 = 1. Then, the approximation in (15d) follows by
noting Tr(ΣT

AΣA) = m.
We next consider the approximation of αt. We first note

〈R(t) −X0,X
(t) −X0〉 (16a)

= 〈R(t) −X0, ct(Z
(t) − αtR

(t))−X0〉 (16b)

≈ ct〈R(t) −X0,Z
(t) − αtR

(t)〉 (16c)

where (16a) follows by substituting X(t) in line 5 of Algorithm
1, and (16b) follows from 〈R(t) −X0,X0〉 ≈ 0 (implying that
the errorR(t) −X0 is uncorrelated with the original signalX0).
Combining (16) and Condition 2 in (10), we have

αt =
〈R(t) −X0,Z

(t)〉
〈R(t) −X0,R(t)〉 (17a)

≈ 〈R(t) −X0,D(R(t))〉
〈R(t) −X0,R(t) −X0〉 (17b)

≈ 〈R(t) −X0,D(R(t))〉
nvt

(17c)

≈ 1

n

∑

i,j

∂D(R(t))i,j

∂R
(t)
i,j

=
1

n
div(D(R(t))) (17d)

where (17b) follows from Z(t) = D(R(t)) and 〈R(t) −
X0,X0〉 ≈ 0, (17c) follows from the Assumption 2 that the
elements of R(t) −X0 are i.i.d. Gaussian with zero mean and
variance vt, (17d) follows from Stein’s lemma [31] since we ap-
proximate the entries ofR(t) −X0 as i.i.d. Gaussian distributed.

C. State Evolution

We now characterize the performance of TARM for low-rank
matrix recovery based on Assumptions 1 and 2.

We first consider the MSE behavior of Module A. Denote the
output MSE of Module A at iteration t by

MSE
(t)
A =

1

n
‖R(t) −X0‖2F . (18)

The following theorem gives the asymptotic MSE of Module A
when the dimension of X0 goes to infinity, with the proof given
in Appendix C.

Theorem 1: Assume that Assumption 1 holds, and let μ =
n
m . Then,

MSE
(t)
A

a.s.−→ f(τt) (19)

as m,n → ∞ with m
n → δ, where 1

n‖X(t−1) −X0‖2F → τt as
n → ∞. For partial orthogonal ROIL operator A,

f(τ) =

(
1

δ
− 1

)
τ + σ2 (20a)

and for Gaussian ROIL operator A,

f(τ) =
1

δ
τ + σ2. (20b)

We now consider the MSE behavior of Module B. We start
with the following useful lemma, with the proof given in
Appendix D.

Lemma 2: Assume that R(t) satisfies Assumption 2,
‖X0‖2F = n, and the empirical distribution of eigenvalue θ of
1
n2

XT
0 X0 converges almost surely to the density function p(θ)

as n1, n2, r → ∞ with n1

n2
→ ρ, r

n2
→ λ. Then,

αt
a.s.−→ α(vt) (21a)

ct
a.s.−→ c(vt) (21b)

as n1, n2, r → ∞ with n1

n2
→ ρ, r

n2
→ λ, where

α(v) =

∣∣∣∣1−
1

ρ

∣∣∣∣λ+
1

ρ
λ2 + 2

(
min

(
1,

1

ρ

)
− λ

ρ

)
λΔ1(v)

(22a)

c(v)=
1 + λ(1+ 1

ρ )v+λv2Δ2 − α(v)(1+v)

(1− 2α(v))(1+λ(1 + 1
ρ )v + λv2Δ2) + α(v)2(1 + v)

(22b)

with Δ1 and Δ2 defined by

Δ1(v) =

∫ ∞

0

(v + θ2)(ρv + θ2)

(
√
ρv − θ2)2

p(θ)dθ (23a)

Δ2 =

∫ ∞

0

1

θ2
p(θ)dθ. (23b)

Denote the output MSE of Module B at iteration t by

MSE
(t)
B =

1

n
‖X(t) −X0‖2F . (24)

The output MSE of Module B is characterized by the following
theorem.

Theorem 2: Assume that Assumption 2 holds, and let
‖X0‖2F = n. Then, the output MSE of Module B

MSE
(t)
B

a.s.−→ g(vt) (25)

as n1, n2, r → ∞ with n1

n2
→ ρ, r

n2
→ λ, where

g(vt) �
vt − λ

(
1 + 1

ρ

)
vt − λv2tΔ2

vt−λ(1+ 1
ρ )vt−λv2

tΔ2

1+λ(1+ 1
ρ )vt+λv2

tΔ2
α(vt)2 + (1− α(vt))2

− vt

(26)

α and Δ2 are given in Lemma 2, and 1
n‖R(t) −X0‖2F a.s.−→ vt.

Remark 3: Δ1 and Δ2 in (23) may be difficult to obtain
since p(θ) is usually unknown in practical scenarios. We now
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TABLE I
μt CALCULATED BY (10A) FOR THE 1ST TO 8TH ITERATIONS OF ONE RANDOM REALIZATION OF THE ALGORITHM WITH A PARTIAL ORTHOGONAL ROIL

OPERATOR. n1 = n2 = 1000, r = 30, σ = 10−2

introduce an approximate MSE expression that does not depend
on p(θ):

g(vt) ≈ ḡ(vt) �
vt − λ(1 + 1

ρ )vt

(1− α)2
− vt (27)

where α = α(0) = |1− 1
ρ |λ− 1

ρλ
2 + 2min(1, 1

ρ )λ. Com-
pared with g(vt), ḡ(vt) omits two terms −λv2tΔ and
vt−λ(1+ 1

ρ )vt−λv2
tΔ

1+λ(1+ 1
ρ )vt+λv2

tΔ
α(vt)

2 and replaces α(vt) by α. Recall

that vt is the mean square error at the t-iteration. As the
iteration proceeds, we have vt � 1, and hence g(vt) can be
well approximated by ḡ(vt), as seen later from Fig. 3.

Combining Theorems 1 and 2, we can characterize the MSE
evolution of TARM by

vt = f(τt) (28a)

τt+1 = g(vt). (28b)

The fixed point of TARM’s MSE evolution in (28) is given by

τ ∗ = g(f(τ ∗)). (29)

The above fixed point equation can be used to analysis the phase
transition curves of the TARM algorithm. It is clear that the fixed
point τ ∗ of (29) is a function of {δ, ρ, λ,Δ, σ}. For any given
{δ, ρ, λ,Δ, σ}, we say that the TARM algorithm is successful if
the corresponding τ ∗ is below a certain predetermined threshold.
The critical values of {δ, ρ, λ,Δ, σ} define the phase transition
curves of the TARM algorithm.

D. Numerical Results

Simulation settings are as follows. For the case of partial
orthogonal ROIL operators, we generate a partial orthogonal
ROIL operator with the matrix form

A = SWΘ (30)

where S ∈ Rm×n is a random selection matrix, W ∈ Rn×n is a
discrete cosine transform (DCT) matrix, andΘ is a diagonal ma-
trix with diagonal entries being 1 or−1 randomly. For the case of
Gaussian ROIL operators, we generate an i.i.d. Gaussian random
matrix of size m× n with elements drawn from N (0, 1

n ). The
rank-r matrix X0 ∈ Rn1×n2 is generated by the product of two
i.i.d. Gaussian matrices of size n1 × r and r × n2.

1) Verification of the Assumptions: We first verify Assump-
tion 1 using Table I. Recall that if Assumption 1 holds, the
approximations in the calculation of μt in (15) become accurate.
Thus, we compare the value of μt calculated by (12a) with
μt =

n
m by (15). We record the μt of the first 8 iterations of

TARM in Table I for low-rank matrix recovery with a partial

Fig. 2. The QQplots of the output error of Module B in the 2nd iteration of
TARM. Left: A is a Gaussian ROIL operator. Right: A is a partial orthogonal
ROIL operator. Simulation settings:n1 = 100, n2 = 120, m

n1n2
= 0.3, r

n2
=

0.25, σ2 = 0.

Fig. 3. Left: State evolution of TARM for partial orthogonal ROIL opera-
tor. r = 40,m/n = m/(n1n2) = 0.35, σ2 = 0. The size of X0 is shown
in the plot. Right: State evolution of TARM for Gaussian ROIL operator.
r = 4,m/n = 0.35, σ2 = 0. The size of X0 is shown in the plot.

orthogonal ROIL operator. As shown in Table I, the approxi-
mation μt =

n
m is close to the real value calculated by (12a)

which serves as an evidence of the validity of Assumption 1.
We then verify Assumption 2 using Fig. 2, where we plot the
QQplots of the input estimation errors of Module A with partial
orthogonal and Gaussian ROIL operators. The QQplots show
that the output errors of Module A closely follow a Gaussian
distribution, which agrees with Assumption 2.

2) State Evolution: We now verify the state evolution of
TARM given in (28). We plot the simulation performance of
TARM and the predicted performance by the state evolution
in Fig. 3. From the two subfigures in Fig. 3, we see that the
state evolution of TARM is accurate when the dimension of
X0 is large enough for both partial orthogonal and Gaussian
ROIL operators. We also see that the state evolution with g(·)
replaced by the approximation in (27) (referred to as “Approx-
imation” in Fig. 3) provides reasonably accurate performance
predictions. This makes the upper bound very useful since it
does not require the knowledge of the singular value distribution
of X0.

3) Performance Comparisons: We compare TARM with the
existing algorithms for low-rank matrix recovery problems with
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Fig. 4. Comparison of algorithms. Top left: A is a partial orthogonal ROIL
operator with n1 = n2 = 1000, r = 50,m/n = 0.39, σ2 = 10−5. Top right:
A is a Gaussian ROIL operator with n1 = n2 = 80, r = 10, p = (n1 + n2 −
r)× r,m/p = 3, σ2 = 10−5. Bottom left: A is a partial orthogonal ROIL op-
erator with n1 = n2 = 1000, r = 20,m/n = 0.07, σ2 = 0. Bottom right: A
is a partial orthogonal ROIL operator with n1 = n2 = 1000, r = 20,m/n =
0.042, σ2 = 0.

partial orthogonal and Gaussian ROIL operators.4 The following
algorithms are involved: Normalized Iterative Hard Thresh-
olding (NIHT) [13], Riemannian Gradient Descent (RGrad)
[14], Riemannian Conjugate Gradient Descent (RCG) [14],
and ALPS [18]. We compare these algorithms under the same
settings. We plot the per iteration normalized mean square error
(NMSE) defined by ‖Xout−X0‖F

‖X0‖F whereXout is the output of an
algorithm in Fig. 4. From Fig. 4, we see that TARM converges
much faster than NIHT, RGrad, and ALPS for both Gaussian
ROIL operators and partial orthogonal ROIL operators. More-
over, from the last plot in Fig. 4, we see TARM converges under
extremely low measurement rate while the other algorithms
diverge. More detailed performance comparisons are given in
Section V.

4) Empirical Phase Transition: The phase transition curve
characterized the tradeoff between measurement rate δ and the
largest rank r that an algorithm succeeds in the recovery of
X0. Throughout the paper, we consider an algorithm to be
successful in recovering the low-rank matrix X0 when the fol-
lowing conditions are satisfied: 1) the normalized mean square

error ‖X(t)−X0‖2F
‖X0‖2F

≤ 10−6; 2) the iteration number t < 1000.
The dimension of the manifold of n1 × n2 matrices of rank r is
r(n1 + n2 − r) [32]. Thus, for any algorithm, the minimal num-
ber of measurements for successful recovery is r(n1 + n2 − r),
i.e., m ≥ r(n1 + n2 − r). Then, an upper bound for successful

recovery is r ≤ n1+n2−
√

(n1+n2)2−4m

2 . In Fig. 5, we plot the
phase transition curves of the algorithms mentioned before.
From Fig. 5, we see that the phase transition curve of TARM
is the closest to the upper bound and considerably higher than
the curves of NIHT and RGrad.

4The code of TARM is available at https://github.com/xuezhp/tarm.

Fig. 5. The phase transition curves of various low-rank matrix recovery
algorithms with a partial orthogonal ROIL operator. n1 = n2 = 200, σ2 = 0.
The region below each phase transition curve corresponds to the situation that
the corresponding algorithm successfully recovers X0.

Fig. 6. The QQplots of the output error of Module A in the 5th iteration of
TARM for matrix completion. Simulation settings: n1 = 800, n2 = 800, r =
50, m

n1n2
= 0.3, σ2 = 0.

IV. MATRIX COMPLETION

In this section, we consider TARM for the matrix completion
problem, where the linear operator A is a selector which selects
a subset of the elements of the low-rank matrix X0. With such
a choice of A, the two assumptions in Section III for low-rank
matrix recovery do not hold any more; see, e.g., Fig. 6. Thus, μt

given in (15) andαt in (17) cannot be used for matrix completion.
We next discuss how to designμt andαt for matrix completion.5

A. Determining μt

The TARM algorithm is similar to SVP and NIHT as afore-
mentioned. These three algorithms are all SVD based and a
gradient descent step is involved at each iteration. The choice
of descent step size μt is of key importance. In [13], [14], μt

are chosen adaptively based on the idea of the steepest descent.
Due to the similarity between TARM and NIHT, we follow the

5We emphasize that the approaches described in Subsection IV-A and IV-B
can also be used to determine the algorithm parameters for low-rank matrix
recovery when A is not a ROIL operator.

Authorized licensed use limited to: Harvard Library. Downloaded on April 16,2020 at 00:49:13 UTC from IEEE Xplore.  Restrictions apply. 



XUE et al.: TARM: A TURBO-TYPE ALGORITHM FOR AFFINE RANK MINIMIZATION 5737

methods in [13], [14] and choose μt as

μt =
‖P(t)

S (AT (y −A(X(t))))‖2F
‖A(P(t)

S (AT (y −A(X(t)))))‖22
(31)

where P(t)
S : Rn1×n2 → S denotes a projection operator with

S being a predetermined subspace of Rn1×n2 . The subspace S
can be chosen as the left singular vector space of X(t), the right
singular vector space of X(t), or the direct sum of the two sub-
spaces [14]. Let the SVD of X(t) be X(t) = U (t)Σ(t)(V (t))T .
Then, the corresponding three projection operators are given
respectively by

P(t)
S2

(X) = XV (t)(V (t))T (32a)

P(t)
S1

(X) = U (t)(U (t))TX (32b)

P(t)
S3

(X) = U (t)(U (t))TX +XV (t)(V (t))T

−U (t)(U (t))TXV (t)(V (t))T . (32c)

By combining (32) with (31), we obtain three different choices
of μt. Later, we present numerical results to compare the impact
of different choices of μt on the performance of TARM.

B. Determining αt and ct

The linear combination parameters αt and ct in TARM is
difficult to evaluate since Assumptions 1 and 2 do not hold
for TARM in the matrix completion problem. Recall that ct is
determined by αt through (12c). So, we only need to determine
αt. In the following, we propose three different approaches to
evaluate αt.

The first approach is to choose αt as in (17):

αt =
div(D(R(t)))

n
. (33)

We use the Monte Carlo method to compute the divergence.
Specifically, the divergence ofD(R(t)) can be estimated by [23]

div(D(R(t))) = EN

[〈D(R(t) + εN)−D(R(t))

ε
,N

〉]

(34)

where N ∈ Rn1×n2 is a random Gaussian matrix with zero
mean and unit variance entries, and ε is a small real number.
The expectation in (34) can be approximated by sample mean.
When the size of R(t) is large, one sample is good enough
for approximation. In our following simulations, we choose
ε = 0.001 and use one sample to approximate (34).

We now describe the second approach. Recall that we choose
ct according to (12c) to satisfy Condition 2: 〈R(t) −X0,X

(t) −
X0〉 = 0. Since X0 is unknown, finding αt to satisfy Condition
2 is difficult. Instead, we try to find αt that minimizes the
transformed correlation of the two estimation errors:

∣∣∣〈A(R(t) −X0),A(X(t) −X0)〉
∣∣∣ (35a)

=
∣∣∣〈A(R(t))− y,A(X(t))− y〉

∣∣∣ (35b)

Fig. 7. Comparison of the TARM algorithms for matrix completion with
different choices of μt. n1 = n2 = 1000, σ2 = 0.

=

∣∣∣∣∣

〈
〈Z(t) − αtR

(t),R(t)〉
‖Z(t) − αtR(t)‖2F

A(Z(t) − αtR
(t))

−y,A(R(t))− y

〉∣∣∣∣∣ . (35c)

The minimization of (35d) over αt can be done by an exhaus-
tive search over a small neighbourhood of zero.

The third approach is to setαt as the asymptotic limit given in
(21a). We next provide numerical simulations to show the impact
of the above three different choices of αt on the performance of
TARM.

C. Numerical Results

In this subsection, we compare the performance of TARM
algorithms with different choices of μt and αt. We also compare
TARM with the existing matrix completion algorithms, includ-
ing RCG [14], RGrad [14], NIHT [13], ALPS [18], LMAFit [21],
and LRGeomCG [32].6 The matrix form A ∈ Rm×n of the
matrix completion operator A is chosen as a random selection
matrix (with randomly selected rows from a permutation ma-
trix). The low-rank matrix X0 ∈ Rn1×n2 is generated by the
multiplication of two random Gaussian matrices of size n1 × r
and r × n2.

1) Non-Gaussianity of the Output Error of Module A: In
Fig. 6, we plot the QQplot of the input estimation errors of
Module A of TARM for matrix completion. The QQplot shows
that the distribution of the estimation errors of Module A is
non-Gaussian. Thus, Assumption 2 does not hold for matrix
completion.

2) Comparisons of Different Choices of μt: We compare the
TARM algorithms with μt in (31) and the subspace S given by
(32), as shown in Fig. 7. We see that the performance of TARM

6The codes of these algorithms are available at https://
github.com/xuezhp/tarm. All these codes are implemented purely on Matlab
2018 platform for a fair comparison. Specifically, compared with the publicly
available codes for LMAFit and LRGeomCG, our codes do not use MEX
files to speed up low-rank factorizations. This will slow down the LMAFit
and LRGeomCG algorithms by approximately an order of magnitude in the
simulation results presented later in Table III.
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Fig. 8. Comparison of the TARM algorithms for matrix completion with
different choices of αt. n1 = n2 = 1000, r = 50, m

n1n2
= 0.39, σ2 = 0.

Fig. 9. Comparison of algorithms for matrix completion. Left: n1 = n2 =
1000, r = 50,m/n = 0.39, σ2 = 10−5. Middle: n1 = n2 = 1000, r =
20,m/n = 0.12, σ2 = 0. Right: n1 = n2 = 1000, r = 20, m/n = 0.045,
σ = 0.

is not sensitive to the three choices of S in (32). In the following,
we always choose μt with S given by (32a).

3) Comparisons of Different Choices of αt: We compare
the TARM algorithms with αt given by the three different
approaches in Subsection B. As shown in Fig. 8, the first two
approaches perform close to each other; the third approach
performs considerably worse than the first two. Note that the
first approach involves the computation of the divergence in
(34), which is computationally demanding. Thus, we henceforth
choose αt based on the second approach in (35).

4) Performance Comparisons: We compare TARM with the
existing algorithms for matrix completion in Fig. 9. We see that
in the left and middle plots (with measurement ratem/n = 0.39
and 0.12), TARM performs close to LRGeomCG and RCG,
while in the right plot (with m/n = 0.045), TARM significantly
outperforms the other algorithms. More detailed performance
comparisons are given in Section V.

5) Empirical Phase Transition: Similar to the case of low-
rank matrix recovery. We consider an algorithm to be success-
ful in recovering the low-rank matrix X0 when the following
conditions are satisfied: 1) the normalized mean square error
‖X(t)−X0‖2F

‖X0‖2F
≤ 10−6; 2) the iteration number t < 1000. In Fig. 5,

we plot the phase transition curves of the algorithms mentioned
before. From Fig. 10, we see that the phase transition of TARM

Fig. 10. The phase transition curves of various matrix completion algorithms.
n1 = n2 = 200, σ2 = 0. For each algorithm, the region below the phase tran-
sition curve corresponds to the successful recovery of X0.

is the closest to the upper bound and considerably higher than
the curves of NIHT and RGrad.

V. MORE NUMERICAL RESULTS

We now compare the performance of TARM with other exist-
ing algorithms including LMAFit [21], RCG [14], ALPS [18],
LRGeomCG [32], BARM [19], and IRLS0 [20] for low-rank ma-
trix recovery and matrix completion problems. In our compar-
isons, we set n1 = n2, n = n1n2, and σ = 0. All experiments
are conducted in Matlab on an Intel 2.3 GHz Core i5 Quad-core
processor with 16 GB RAM on MacOS. The implementation
of ALPS, BARM, and IRLS0 are from public sources and the
implementation of LMAFit, RCG, RGrad, LRGeomCG, and
NIHT are from our own codes (available for downloading at
GitHub). For a fair comparison, all the codes are realized in a
pure Matlab environment without using MEX files for accelera-
tion. The comparison results are shown in Tables II–IV. In these
tables, “#iter” denotes the average iteration times of a successful
recovery, “NS” denotes the number of successful recovery out
of 10 trials for each settings and “Time” denotes the average
running time of successful recoveries.

A. Low-Rank Matrix Recovery

1) Algorithm Comparison: In Table II we compare the per-
formance of algorithms for low-rank matrix recovery with dif-
ferent settings. The linear operator is chosen as the partial
orthogonal operator in (30). LRGeomCG is not included for
that it only applies to matrix completion. From Table II, we see
that TARM has the best performance (with the least running time
and the highest success rate), and LMAFit does not work well
in the considered settings. It is worth noting that TARM works
well at low measurement rates when the other algorithms fail in
recovery.

2) Impact of the Singular Value Distribution of the Low-Rank
Matrix on TARM: The low-rank matrix generated by the product
of two Gaussian matrices has a clear singular-value gap, i.e., the
smallest singular σr is not close to zero. We now discuss the
impact of the singular value distribution of the low-rank matrix
on the performance of TARM.
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TABLE II
COMPARISONS OF ALGORITHMS FOR LOW-RANK MATRIX RECOVERY

TABLE III
COMPARISONS OF TARM WITH LMAFIT, RCG AND ALPS FOR MATRIX COMPLETION

TABLE IV
COMPARISONS OF TARM WITH BARM AND IRLS0 FOR MATRIX COMPLETION

To this end, we generate two matrices G1 ∈ Rn1×r and G2 ∈
Rr×n2 with the elements independently drawn from N (0, 1).
Let the SVDs of G1 and G2 be G1 = U1Σ1V

T
1 , G2 =

U2Σ2V
T
2 , where U i ∈ Rni×r and V i ∈ Rr×ni are the left and

right singular vector matrices respectively, andΣi ∈ Rr×r is the
singular value matrix for i = 1, 2. The low-rank matrix X0 is
then generated as

X̃ = U1diag(exp(−k), exp(−2 k), . . . , exp(−rk))UT
2 (36)

where k controls the rate of decay. The matrix X̃ is normalized

to yield X0 =
√
nX̃

‖X̃‖F . It is readily seen that the singular values

of X0 do not have a clear gap away from zero, provided that k
is sufficiently large.

In simulation, we consider the low-rank matrix recovery
problem with the following three decay rates: k = 0.1, k = 0.5,
andk = 1. We choose matrix dimensionsn1 = n2 = 1000, rank
r = 20, and measurement rate m

n = 0.08. The singular value
distributions of low-rank matrix X0 in the three cases are given
in the left figure of Fig. 11. We see that the singular values for
k = 0.1 have a clear gap away from 0, while the singular values
for k = 0.5 and 1 decay to 0 rapidly. In TARM, the target rank

Fig. 11. The performance of the TARM algorithm when the low-rank matrices
to be recovered do not have a clear singular-value gap away from zero.

is set to the real rank value of X0. The NMSE of TARM against
the iteration number is plotted on the right part of Fig. 11. We
see that TARM converges the fastest for k = 0.1, and it works
still well for k = 0.5 and 1 but with reduced convergence rates.
Generally speaking, the convergence rate of TARM becomes
slower as the increase of k.
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B. Matrix Completion

In Table III, we compare the performance of algorithms
for matrix completion in various settings. The linear opera-
tor is chosen as the random selection operator. We see from
Table III that LMAFit runs the fastest when the measurement rate
m/n is relatively high (say, m/n = 0.2 with n1 = n2 = 500);
LRGeomCG performs the best when the measurement rate is
medium (say, m/n = 0.06 with n1 = n2 = 1000); and TARM
works the best when the measurement rate is relatively low (say,
m/n = 0.026 with n1 = n2 = 1000).

Since both BARM and IRLS0 involves matrix inversions,
these algorithms cannot handle the ARM problem with a rel-
atively large size. Therefore, we set a relatively small size in our
comparisons. The comparison results of TARM with BARM and
IRLS0 on matrix completion are presented in Table IV. From the
table, we see that TARM generally requires a shorter recovery
time and has a higher recovery success rate than the other two
counterparts.

VI. CONCLUSIONS

In this paper, we proposed a low-complexity iterative al-
gorithm termed TARM for solving the stable ARM problem.
The proposed algorithm can be applied to both low-rank matrix
recovery and matrix completion. For low-rank matrix recovery,
the performance of TARM can be accurately characterized by the
state evolution technique when ROIL operators are involved. For
matrix completion, we showed that, although state evolution is
not accurate, the parameters of TARM can be carefully tuned to
achieve good performance. Numerical results demonstrate that
TARM has competitive performance compared to the existing
algorithms for low-rank matrix recovery problems with ROIL
operators and random selection operators.

APPENDIX A
PROOF OF LEMMA 1

We first determine μt. We have

〈R(t) −X0,X
(t−1) −X0〉

= 〈X(t−1) + μtAT (y −A(X(t−1)))−X0,X
(t−1) −X0〉

(37a)

= 〈X(t−1) + μtAT (A(X0) + n−A(X(t−1)))

−X0,X
(t−1) −X0〉 (37b)

= 〈X(t−1) −X0,X
(t−1) −X0〉+ μt〈n,A(X(t−1) −X0)〉

− μt〈A(X(t−1) −X0),A(X(t−1) −X0)〉 (37c)

where step (37a) follows by substituting R(t) in Line 3 of
Algorithm 1, and step (37c) follows by noting

〈A(B), c〉 = 〈B,AT (c)〉 (38)

for any matrix B and vector c of appropriate sizes. Together
with Condition 1, we obtain (12a).

We next determine αt and ct. First note

‖X(t) −R(t)‖2F = ‖X(t) −X0‖2F + ‖X0 −R(t)‖2F
+ 2〈X(t) −X0,X0 −R(t)〉 (39a)

= ‖X(t) −X0‖2F + ‖X0 −R(t)‖2F (39b)

where (39b) is from Condition 2 in (10). Recall that in the
t-th iteration R(t) is a function of μt but not of αt and ct.
Thus, minimizing ‖X(t) −X0‖2F over αt and ct is equivalent
to minimizing ‖X(t) −R(t)‖2F over αt and ct. For any given
αt, the optimal ct to minimize ‖X(t) −R(t)‖2F = ‖ct(Z(t) −
αtR

(t))−R(t)‖2F is given by

ct =
〈Z(t) − αtR

(t),R(t)〉
‖Z(t) − αtR(t)‖2F

. (40)

Then,

〈X(t) −X0,R
(t) −X0〉

= 〈ct(Z(t) − αtR
(t))−X0,R

(t) −X0〉 (41a)

=

〈
〈Z(t) − αtR

(t),R(t)〉
‖Z(t) − αtR(t)‖2F

(Z(t)−αtR
(t))−X0,R

(t)−X0

〉

(41b)

where (41a) follows by substituting X(t) in Line 5 of Algorithm
1, and (41b) by substituting ct in (40). Combining (41) and
Condition 2, we see that αt is the solution of the following
quadratic equation:

atα
2
t + btαt + dt = 0 (42)

where at, bt, and dt are defined in (13). Therefore, αt is given
by (12b). With the above choice of ct, we have

〈X(t) −R(t),X(t)〉
= 〈ct(Z(t) − αtR

(t))−R(t), ct(Z
(t) − αtR

(t))〉 = 0.
(43)

This orthogonality is useful in analyzing the performance of
Module B.

APPENDIX B
CONVERGENCE ANALYSIS OF TARM BASED ON RIP

Without loss of generality, we assume n1 ≤ n2 in this ap-
pendix. Following the convention in [13], we focus our discus-
sion on the noiseless case, i.e., n = 0.

Definition 2: (Restricted Isometry Property). Given a linear
operator A : Rn1×n2 → Rm, a minimum constant called the
rank restricted isometry constant (RIC) δr(A) ∈ (0, 1) exists
such that

(1− δr(A))‖X‖2F ≤ ‖γA(X)‖22 ≤ (1 + δr(A))‖X‖2F
(44)

for all X ∈ Rn1×n2 with rank(X) ≤ r, where γ > 0 is a con-
stant scaling factor.

We now introduce two useful lemmas.
Lemma 3: Assume that αt+1 and ct+1 satisfy Condition 2

and Condition 3. Then,

‖X(t) −R(t)‖2F =
‖R(t) −Z(t)‖2F

‖R(t)−Z(t)‖2F
‖Z(t)‖2F

α2
t + (1− αt)2

. (45)

Lemma 4: LetZ(t) be the best rank-r approximation ofR(t).
Then,

‖R(t) −Z(t)‖2F ≤ ‖X0 −R(t)‖2F . (46)
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The proof of Lemma 3 is given in Appendix E. Lemma 4 is
straightforward from the definition of the best rank-r approxi-
mation [25, p. 211–218].

Theorem 3: Assume that μt, αt, ct satisfy Conditions 1–3,
and the linear operator A satisfies the RIP with rank n1 and RIC
δn1

. Then,

‖X(t) −X0‖2F ≤
(

1

(1− αt)2
− 1

)(
1 + δn1

1− δn1

− 1

)2

× ‖X(t−1) −X0‖2F (47)

TARM guarantees to converge when RIC satisfies αt �= 1, ∀t,
and

δn1
<

1

1 + 2

√
1
ξ

(
1

(1−αmax)2
− 1

) (48)

where the constant ξ satisfies 0 < ξ < 1, and αmax = sup{αt}.
Proof: Since Z(t) is the best rank-r approximation of R(t),

we have ‖R(t)‖2F ≥ ‖Z(t)‖2F . Then, from Lemma 3, we obtain

‖X(t) −R(t)‖2F ≤ ‖R(t) −Z(t)‖2F
(1− αt)2

. (49)

Then, we have

‖X(t) −R(t)‖2F = ‖X(t) −X0 +X0 −R(t)‖2F (50a)

= ‖X(t) −X0‖2F + ‖X0 −R(t)‖2F
+ 2〈X(t) −X0,X0 −R(t)〉 (50b)

= ‖X(t) −X0‖2F + ‖X0 −R(t)‖2F (50c)

where (50c) follows from 〈X(t) −X0,X0 −R(t)〉 = 0 in Con-
dition 2. Combining (4), (49), and (50), we obtain

‖X(t) −X0‖2F ≤
(

1

(1− αt)2
− 1

)
‖R(t) −X0‖2F (51a)

=

(
1

(1− αt)2
− 1

)

‖X(t−1) + μtA∗(y −A(X(t−1)))−X0‖2F (51b)

=

(
1

(1− αt)2
− 1

)
‖(I − μtA∗A)(X(t−1) −X0)‖2F .

(51c)

Since A has RIP with rank n1 and RIC δn1
, we obtain the

following inequality from [18]:

‖(I − μtA∗A)(X(t−1) −X0)‖2F
≤ max

(
(μt(1 + δn1

)− 1)2, (μt(1− δn1
)− 1)2

)

× ‖X(t−1) −X0‖2F . (52)

Recall that μt =
‖X(t−1)−X0‖2F

‖A(X(t−1)−X0)‖22 obtained by letting n = 0

in (12a). From RIP, we have

1

1 + δn1

≤ μt =
‖X(t−1) −X0‖2F

‖A(X(t−1) −X0)‖22
≤ 1

1− δn1

. (53)

Then, combining (52) and (53), we have

‖(I − μtA∗A)(X(t−1) −X0)‖2F ≤
(
1 + δn1

1− δn1

− 1

)2

× ‖X(t−1) −X0‖2F . (54)

Combining (54) and (51), we arrive at (47).
When δn1

satisfies (48), we have

‖X(t) −X0‖2F < ξ‖X(t−1) −X0‖2F (55)

at each iteration t. Then, TARM converges exponentially
to X0. �

We now compare the convergence rate of TARM with those of
SVP and NIHT. Compared with [13, Eq. 2.11–2.14], (47) con-
tains an extra term 1

(1−αt)2
− 1. From numerical experiments,

αt is usually close to zero, implying that TARM converges faster
than SVP and NIHT.

APPENDIX C
PROOF OF THEOREM 1

For a partial orthogonal ROIL operator A, the following
properties hold:

A(AT (a)) = a (56a)

〈AT (a),AT (b)〉 = 〈a, b〉. (56b)

Then as m,n → ∞ with m
n → δ, we have

∥∥∥R(t) −X0

∥∥∥
2

F

=

∥∥∥∥X
(t−1) −X0 − 1

δ
ATA(X(t−1) −X0) +

1

δ
AT (n)

∥∥∥∥
2

F

(57a)

= ‖X(t−1) −X0‖2F +
1

δ2
‖A(X(t−1) −X0)‖2F

− 2

δ
‖A(X(t−1) −X0)‖2F +

1

δ2
‖n‖22 (57b)

= ‖X(t−1) −X0‖2F +
1

δ
‖X(t−1) −X0‖2F

− 2‖X(t−1) −X0‖2F +
1

δ2
‖n‖22 (57c)

=

(
1

δ
− 1

)
‖X(t−1) −X0‖2F + nσ2 (57d)

where (57a) is obtained by substituting R(t) = X(t−1) +
μtAT (y −A(X(t−1))) and y = A(X0) + n with μt = δ−1,
(57b) is obtained by noting that n is independent of A(X(t) −
X0) (ensured by Assumption 1) and (56b), and (57c) fol-

lows from ‖A(X(t−1)−X0)‖22
‖X(t−1)−X0‖2F

→ δ (see (15)). When 1
n‖X(t−1) −

X0‖2F → τ , we have

1

n
‖R(t) −X0‖2F →

(
1

δ
− 1

)
τ + σ2. (58)
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We now consider the case of Gaussian ROIL operators. As
m,n → ∞ with m

n → δ, we have

∥∥∥R(t) −X0

∥∥∥
2

F

=

∥∥∥∥X
(t−1) −X0 − 1

δ
ATA(X(t−1) −X0) +

1

δ
AT (n)

∥∥∥∥
2

F

(59a)

= ‖X(t−1) −X0‖2F +
1

δ2
‖ATA(X(t−1) −X0)‖2F

− 2

δ
‖A(X(t−1) −X0)‖2F +

1

δ2
‖n‖22 (59b)

= ‖X(t−1) −X0‖2F +
1

δ2
‖ATAvec(X(t−1) −X0)‖2F

− 2

δ
‖A(X(t−1) −X0)‖2F +

1

δ2
‖n‖22 (59c)

= ‖X(t−1) −X0‖2F +
1

δ2
‖ATA‖2F

mn
‖vec(X(t−1) −X0)‖22

− 2

δ
‖A(X(t−1) −X0)‖2F +

1

δ2
‖n‖22 (59d)

= ‖X(t−1) −X0‖2F +
1

δ2
Tr((ATA)2)

mn
‖X(t−1) −X0‖2F

− 2

δ
‖A(X(t−1) −X0)‖2F +

1

δ2
‖n‖22 (59e)

= ‖X(t−1) −X0‖2F +

(
1 +

1

δ

)
‖X(t−1) −X0‖2F

− 2

δ
‖A(X(t−1) −X0)‖2F +

1

δ2
‖n‖22 (59f)

= ‖X(t−1) −X0‖2F +

(
1 +

1

δ

)
‖X(t−1) −X0‖2F

− 2‖X(t−1) −X0‖2F +
1

δ2
‖n‖22 (59g)

=
1

δ
‖X(t−1) −X0‖2F + nσ2 (59h)

where (59a) is obtained by substituting R(t) = X(t−1) +
μtAT (y −A(X(t−1))) and y = A(X0) + n with μt = δ−1,
(59b) is obtained by noting that n is independent of A(X(t) −
X0) (from Assumption 1), (59c) follows by utilizing the ma-
trix form A of A, (59d) follows from the fact that VA (i.e.
the right singular-vector matrix of A) is a Haar distributed
orthogonal matrix independent of X(t−1) −X0, (59e) follows
from Tr((ATA)2) = ‖ATA‖2F , (59f) is obtained by noting
that 1

mnTr((A
TA)2) → δ + δ2 since ATA is a Wishart ma-

trix with variance 1
n [34, p. 26], and (59g) follows by noting

‖A(X(t)−X0)‖22
‖X(t)−X0‖2F

→ δ. When 1
n‖X(t) −X0‖2F → τ , we have

1

n
‖R(t) −X0‖2F → 1

δ
τ + σ2. (60)

APPENDIX D
PROOF OF LEMMA 2

We first introduce two useful facts.
Fact 1: When n2 → ∞ with fixed n1/n2 = ρ, the i-th singu-

lar value σi of the Gaussian noise corrupted matrix R(t) is given
by [17, Eq. 9]

1√
n2

σi
a.s.−→

⎧
⎪⎪⎨

⎪⎪⎩

√
(vt + θ2i )(ρvt + θ2i )

θ2i
if i ≤ r and θi > ρ

1
4

√
vt(1 +

√
ρ) otherwise

(61)

where vt is the variance of the Gaussian noise, and θi is the i-th
largest singular value of 1√

n2
X0.

Fact 2: From [33, Eq. 9], the divergence of a spectral function
h(R) is given by

div(h(R)) = |n1 − n2|
min(n1,n2)∑

i=1

hi(σi)

σi
+

min(n1,n2)∑

i=1

h′
i(σi)

+ 2

min(n1,n2)∑

i�=j,i,j=1

σihi(σi)

σ2
i − σ2

j

. (62)

The best rank-r approximation denoiser D(R) is a spectral
function with

{
hi(σi) = σi i ≤ r;

hi(σi) = 0 i > r.
(63)

Combining (62) and (63), the divergence of D(R(t)) is given by

div(D(R(t))) = |n1 − n2|r + r2 + 2
r∑

i=1

min (n1,n2)∑

j=r+1

σ2
i

σ2
i − σ2

j

.

(64)

Further, we have

r∑

i=1

min (n1,n2)∑

j=r+1

σ2
i

σ2
i − σ2

j

a.s.→ (min(n1, n2)− r)

r∑

i=1

σ2
i

σ2
i − (

√
n2vt(1 +

√
ρ))2

(65a)

= (min(n1, n2)−r)

r∑

i=1

n2
(vt+θ2

i )(ρvt+θ2
i )

θ2
i

n2(vt+θ2
i )(ρvt+θ2

i )

θ2
i

−n2vt(1+
√
ρ)2

(65b)

= (min(n1, n2)− r)

r∑

i=1

(vt + θ2i )(ρvt + θ2i )

(
√
ρvt − θ2i )

2
(65c)

a.s.→ (min(n1, n2)− r)r

∫ ∞

0

(vt + θ2)(ρvt + θ2)

(
√
ρvt − θ2)2

p(θ)dθ

(65d)

= (min(n1, n2)− r)rΔ1(vt) (65e)

Authorized licensed use limited to: Harvard Library. Downloaded on April 16,2020 at 00:49:13 UTC from IEEE Xplore.  Restrictions apply. 



XUE et al.: TARM: A TURBO-TYPE ALGORITHM FOR AFFINE RANK MINIMIZATION 5743

where both (65a) and (65b) are from (61), and (65e) follows by
the definition of Δ1(vt). Combining (64) and (65), we obtain
the asymptotic divergence of D(R) given by

div(D(R))
a.s.→ |n1 − n2|r+r2+2(min(n1, n2)− r)rΔ1(vt)

(66)

and

αt =
1

n
div(f(R(t))) (67a)

a.s.→
∣∣∣∣1−

1

ρ

∣∣∣∣λ+
1

ρ
λ2 + 2

(
min

(
1,

1

ρ

)
− λ

ρ

)
λΔ1(vt)

(67b)

= α(vt) (67c)

with λ = r/n2.
Recall that Z(t) is the best rank-r approximation of R(t)

satisfying

‖Z(t)‖2F =

r∑

i=1

σ2
i (68a)

‖R(t)‖2F − ‖Z(t)‖2F =

n1∑

i=r+1

σ2
i . (68b)

Then, when m,n → ∞ with m
n → δ, we have

‖Z(t)‖2F =
r∑

i=1

σ2
i (69a)

a.s.−→ n2

r∑

i=1

(v + θ2i )(ρv + θ2i )

θ2i
(69b)

= n+ λ

(
1 +

1

ρ

)
nv + λnv2

1

r

r∑

i=1

1

θ2i
(69c)

and

‖R(t)‖2F − ‖Z(t)‖2F
= ‖X0‖2F + nvt − ‖Z(t)‖2F (70a)

a.s.−→ nvt − λ

(
1 +

1

ρ

)
nvt − λnv2t

1

r

r∑

i=1

1

θ2i
(70b)

where (69b) is from (61), (70a) is from Assumption 2, and (70b)
is from (69). Then, Eq. (71a)–(71g) shown at bottom of this page,
where (71a) is from (12c), (71c) follows from Assumption 2 that
R(t) = X0 +

√
vtN with ‖X0‖2F = n and the elements of N

independently drawn fromN (0, 1), (71d) is from (68), and (71f)
is from the definition of Δ2.

APPENDIX E
PROOF OF LEMMA 3

Assume that R(t) =
∑min(m,n)

i=1 σiuiv
T
i , where σi, ui and

vi are the i-th singular value, left singular vector and right
singular vectors respectively. Then,Z(t) =

∑r
i=1 σiuiv

T
i since

that Z(t) is the best rank-r approximation of R(t), and

〈R(t) −Z(t),Z(t)〉 =
〈

min(m,n)∑

j=r+1

σjujv
T
j ,

r∑

i=1

σiuiv
T
i

〉

(72a)

=

r∑

i=1

min(m,n)∑

j=r+1

σiσj〈uiv
T
i ,ujv

T
j 〉 (72b)

=

r∑

i=1

min(m,n)∑

j=r+1

σiσjTr(viu
T
i ujv

T
j ) (72c)

= 0 (72d)

ct =
〈Z(t) − αtR

(t),R(t)〉
‖Z(t) − αtR(t)‖2F

(71a)

=
〈Z(t),R(t)〉 − αt‖R(t)‖2F

‖Z(t)‖2F − 2αt〈Z(t),R(t)〉+ α2
t ‖R(t)‖2F

(71b)

a.s.−→ ‖Z(t)‖2F − αt(n+ vtn)

‖Z(t)‖2F − 2αt‖Z(t)‖2F + α2
t (n+ vtn)

(71c)

=
n+ λ(1 + 1

ρ )nvt + λnv2t
1
r

∑r
i=1

1
θ2
i
− αt(n+ vtn)

(1− 2αt)(n+ λ(1 + 1
ρ )nvt + λnv2t

1
r

∑r
i=1

1
θ2
i
) + α2

t (n+ vtn)
(71d)

=
1 + λ(1 + 1

ρ )vt + λv2t
1
r

∑r
i=1

1
θ2
i
− αt(1 + vt)

(1− 2αt)(1 + λ(1 + 1
ρ )vt + λv2t

1
r

∑r
i=1

1
θ2
i
) + α2

t (1 + vt)
(71e)

a.s.−→
1 + λ(1 + 1

ρ )vt + λv2tΔ2 − α(vt)(1 + vt)

(1− 2α(vt))(1 + λ(1 + 1
ρ )vt + λv2tΔ2) + (α(vt))2(1 + vt)

(71f)

= c(vt) (71g)
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where (72d) follows from that uT
i uj = 0, ∀i, j, and i �= j.

Recall from (43) that:

〈R(t) −X(t),X(t)〉 = 0. (73)

With the above orthogonalities, we have

‖X(t) −R(t)‖2F = ‖R(t)‖2F − ‖X(t)‖2F (74a)

= ‖R(t)‖2F −
∥∥∥ct(Z(t) − αtR

(t))
∥∥∥
2

F
(74b)

= ‖R(t)‖2F − 〈Z(t) − αtR
(t),R(t)〉2

‖Z(t) − αtR(t)‖2F
(74c)

=
‖R(t)‖2F ‖Z(t)‖2F − ‖Z(t)‖4F

‖Z(t) − αtR(t)‖2F
(74d)

=
‖R(t)‖2F ‖Z(t)‖2F − ‖Z(t)‖4F

‖Z(t)‖2F − 2αt〈R(t),Z(t)〉+ α2
t ‖R(t)‖2F

(74e)

=
‖R(t)‖2F ‖Z(t)‖2F − ‖Z(t)‖4F

‖Z(t)‖2F − 2αt‖Z(t)‖2F + α2
t ‖R(t)‖2F

(74f)

=
‖R(t)‖2F − ‖Z(t)‖2F

1− 2αt + α2
t + α2

t
‖R(t)‖2F
‖Z(t)‖2F

− α2
t

(74g)

=
‖R(t)‖2F − ‖Z(t)‖2F

‖R‖2F−‖Z(t)‖2F
‖Z(t)‖2F

α2
t + (1− αt)2

(74h)

=
‖R(t) −Z(t)‖2F

‖R‖2F−‖Z(t)‖2F
‖Z(t)‖2F

α2
t + (1− αt)2

(74i)

where (74a) follows from (73), (74b) follows by substituting
X(t) in Line 5 of Algorithm 1, (74c) follows by substituting ct
in (12c), and (74d)–(74i) follow from (72). This concludes the
proof of Lemma 3.

APPENDIX F
PROOF OF THEOREM 2

From Condition 2 in (10) and Assumption 2, we have7

〈R(t) −X0,X0〉 = 0 (75a)

〈R(t) −X0,X
(t) −X0〉 = 0. (75b)

Then,

‖X(t) −X0‖2F
= ‖X(t) −R(t)‖2F − 2〈R(t) −X(t),R(t) −X0〉
+ ‖R(t) −X0‖2F (76a)

= ‖R(t) −X(t)‖2F − ‖R(t) −X0‖2F (76b)

=
‖R(t)‖2F − ‖Z(t)‖2F

‖R‖2F−‖Z(t)‖2F
‖Z(t)‖2F

α2
t + (1− αt)2

− ‖R(t) −X0‖2F (76c)

7In fact, as n1, n2, r → ∞ with n1
n2

→ ρ and r
n2

→ λ, the approximation

in (16) become accurate, i.e. αt =
1
n div(D(R(t))) asymptotically satisfies

Condition 2. Thus, (75b) asymptotically holds.

a.s.−→
nvt − λ

(
1 + 1

ρ

)
nvt − λnv2tΔ2

vt−λ(1+ 1
ρ )vt−λv2

tΔ2

1+λ(1+ 1
ρ )vt+λv2

tΔ2
(α(vt))2 + (1− α(vt))2

− nvt

(76d)

where (76b) is from (75b), (76c) follows from (74), and (76d)
follows from (69) and (70) and Assumption 2. Therefore, (25)
holds, which concludes the proof of Theorem 2.
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