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On Orthogonal AMP in Coded
Linear Vector Systems

Junjie Ma , Lei Liu , Member, IEEE, Xiaojun Yuan , Senior Member, IEEE, and Li Ping , Fellow, IEEE

Abstract— Linear minimum mean square error (LMMSE)
estimation based turbo detection has been extensively studied
for coded linear systems since the seminal work of Wang and
Poor (WP). The WP algorithm operates iteratively between a
linear detector (LD) and a nonlinear detector (NLD): the LD
suppresses the interference based on LMMSE filtering, and the
NLD decodes the data by treating the output of the LD as
an observation from an additive white Gaussian noise (AWGN)
channel. In WP, the messages exchanged between LD and
NLD are required to be extrinsic. For the NLD, the extrinsic
message comes from the constraint imposed on feedforward error
correction (FEC) codes. Therefore, WP does not work in an
un-coded linear system. Recently, we proposed an orthogonal
approximate message passing (OAMP) algorithm, which only
requires the input/output error terms of LD and NLD to be
orthogonal. We conjectured that for un-coded linear systems that
involve certain large random matrices, the dynamics of OAMP
can be accurately characterized by state evolution (SE). In this
paper, we consider a coded linear system and develop an extrinsic
message aided OAMP (EMA-OAMP) algorithm. Similar to the
un-coded case, EMA-OAMP relaxes the requirements on output
messages to be orthogonal instead of extrinsic. We derive an SE
procedure to characterize the performance of OAMP in coded
systems. We conjecture that this SE procedure is accurate, which
is verified by simulation results. Under this conjecture, we show
that EMA-OAMP can outperform WP under certain standard
assumptions for iterative decoding. Extensive simulations results
are provided to verify the advantages of OAMP in coded MIMO
systems.

Index Terms— Approximate message passing (AMP), state
evolution, massive MIMO, expectation propagation (EP),
orthogonal AMP (OAMP).
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I. INTRODUCTION

L INEAR vector channels cover a wide range of commu-
nication channel models, including frequency-selective

fading channels and, in particular, multiple access channels
and multiple-input multiple-output (MIMO) channels [2].
Such models have become increasingly important due to
their potential applications in 5G cellular systems and
beyond. Following the invention of turbo codes [3], turbo
detection [4]–[8] has been extensively studied for communi-
cation systems over linear vector channels involving forward
error control (FEC) codes.

A typical turbo receiver [4] consists of two local proces-
sors that exchange extrinsic information iteratively: one for
the FEC code and another for the linear vector channel.
The former is usually realized via maximum a posteriori
(MAP) detection. This is, however, not for the latter since
the computational complexity of MAP scales exponentially
with the dimension for a linear vector channel. To reduce
complexity, the Wang-Poor (WP) algorithm employs linear
minimum mean square error (LMMSE) detection for the local
processor handling the channel effect [9]–[11]. The inputs to
a communication channel are typically discrete. WP reduces
detection complexity using Gaussian approximation on chan-
nel inputs. This is accomplished by matching the means and
variances of the estimates for different distributions [10]. Due
to its excellent performance, WP has been widely studied
for various applications; see [12]–[16] and the references
therein.

The performance of a turbo detection algorithm can be ana-
lyzed by density evolution [17]. Extrinsic transfer information
(EXIT) chart [18] analysis provides a relatively simple, though
approximate, tool for this purpose. The EXIT technique is
useful for visualizing the convergence behavior of a receiver.
For WP, a semi-analytic SINR-variance evolution technique,
which is a variant of the EXIT method, has been developed
in [14], [15].

Recently, approximate message passing (AMP) [19]–[21]
has attracted intensive interests in the context of compressed
sensing. AMP is derived from belief-propagation (BP) [22]
(and therefore closely related to turbo detection) based on
Gaussian approximation and first order Taylor approximation.
Remarkably, the asymptotic performance of AMP can be
described by a scalar recursion called state evolution (SE)
[19], [20]. SE is very similar to density evolution, except
that SE is developed for dense graphs while density evolution
is only accurate for sparse graphs. Although derived in the
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context of compressed sensing, AMP can be readily applied
to communications systems [23]–[27].

AMP was originally proposed for channel matrices
(or sensing matrices in the compressed sensing context [19])
with independent identically distributed (IID) entries, and val-
idated under this condition [20]. For matrices with correlated
entries, AMP may perform poorly or even diverge [28]–[30].
To handle this difficulty, an orthogonal AMP (OAMP) algo-
rithm was proposed in [31]; see also closely-related earlier
works in [32]–[37].

In OAMP, an orthogonality constraint is imposed such
that the so-called Onsager term [19], [20] in AMP van-
ishes. It was conjectured in [31] that OAMP can be char-
acterized by an SE recursion for general unitarily-invariant
matrices (which includes IID Gaussian matrices as special
cases). OAMP involves two local processors (a so-called
linear detector (LD) and a non-linear detector (NLD)). These
two local processors can be constructed in various ways,
provided that they meet certain orthogonality constraints.
(See Section III.B for details.) In particular, an MMSE-
derived OAMP (MMSE-OAMP) can be constructed based on
the locally optimal MMSE principle. Such MMSE-OAMP
is related to a variant of expectation propagation (EP)
algorithm [38] (called diagonally-restricted expectation con-
sistent inference in [32] or scalar-EP in [39]), as observed
in [40]–[43]. A closely related algorithm, an MMSE derived
vector AMP (VAMP) [41], is equivalent to EP in its
diagonally-restricted form [32]. The accuracy of SE for such
EP type algorithms (including VAMP and MMSE-OAMP) was
proved in [40], [41].

OAMP was developed for un-coded linear systems. In this
paper, we investigate an extrinsic-message-aided OAMP
(EMA-OAMP) for FEC coded system. Our emphasis is on the
comparison between EMA-OAMP and WP. The followings are
the main contributions of this paper.

• In a message passing process, the so-called a posteri-
ori probability (APP) messages are locally optimal, but
they may lead to a correlation problem [44]. Extrinsic
messages used by WP are less accurate than APP ones
but can avoid the correlation problem. EMA-OAMP
employs the so-called orthogonal messages. The latter
are better estimates than extrinsic ones while, at the same
time, avoid the correlation problem of APP ones. Thus
EMA-OAMP provides a new approach to receiver design
for coded linear vector systems.

• We outline an SE procedure to characterize the behavior
of EMA-OAMP in coded systems, based on which we
show that EMA-OAMP can potentially outperform WP.
We are still unable to prove the SE procedure rigorously,
but we observed from simulations that the proposed
SE is accurate for large unitarily-invariant channel matri-
ces. The works in [40], [41] provide a promising way
towards this direction.

• We will provide extensive simulation results to show that
EMA-OAMP can outperform WP. As the two approaches
have roughly the same complexity, EMA-OAMP offers
an attractive new solution to a wide range of applications
that was formally treated by WP. We will also provide

comparisons of EMA-OAMP and AMP in coded sys-
tems [25]. The latter may not work well in correlated
channels whose channel matrices are not IID. We will
show by simulations that EMA-OAMP is robust in vari-
ous channel environments.

• We will discuss the similarity and difference between
OAMP and EP.1 As proved in [40], MMSE-OAMP
can be expressed in an equivalent form of EP. How-
ever, an MMSE processor can be very costly. For
example, linear MMSE detection involves the inver-
sion of a matrix with complexity O(N3), where N is
the signal length. (Such complexity order also applies to
VAMP due to the singular value decomposition involved.)
When N is large, low-cost alternatives become neces-
sary even though they are not MMSE. As an example,
OAMP can be constructed using a low-cost matched filter
structure with performance not far away from the MMSE
version. Such OAMP, that is different from EP in its
straightforward form, provides an attractive option for
complexity-performance trade-off.

Overall, the concept of extrinsic messages lies at the core
of the celebrated turbo principle. WP employing extrinsic
messages has been regarded as the de facto solution to coded
linear channels. It has been widely reported that WP is nearly
optimal in various applications [6]–[8], [13]. It is natural to
ask whether there is still room for improvement from WP. The
findings in this paper give a positive answer: the improvement
is still considerable. The concept of orthogonal messages in
EMA-OAMP provides a new perspective to the problem.

Part of the results in this paper have been published in [1].
In this paper, we provide more detailed analysis and numerical
results.

This paper is organized as follows. In Section II,
the coded linear system and WP algorithm are introduced. The
EMA-OAMP for the coded linear systems is introduced in
Section III. In section IV, a conjectured SE is proposed for
EMA-OAMP involving linear MMSE estimation, based on
which we prove that EMA-OAMP outperforms WP. Numerical
results are provided in Section V to demonstrates the advan-
tage of EMA-OAMP over WP.

Notations: Boldface lowercase letters represent vectors and
boldface uppercase symbols denote matrices. 〈a, b〉 denotes
the inner product of the vectors a, b ∈ R. I for the iden-
tity matrix with a proper size, aT for the conjugate of a,
‖a‖ for the �2-norm of the vector a, tr(A) for the trace of A,
[η (a, b)]j ≡ η (aj , bj), ai for the ith entry of a, [A]ij ≡ aij

for the ith-row and jth-column element of A. diag{A} for
the diagonal part of A, N (μ,C) for Gaussian distribution
with mean μ and covariance C, E[·] for the expectation
operation over all random variables involved in the brackets,
except when otherwise specified. E[a|b] for the expectation

of a conditional on b, var[a] for E
[
(a− E[a])2

]
, var[a|b]

for E
[
(a− E[a|b])2 |b

]
.

1Throughout this paper, EP refers to the diagonally-restricted form
of EP [32]. See a comparison of diagonally-restricted EP (or scalar-EP) and
standard EP in [39].
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Fig. 1. FEC coded linear system: transmitter and iterative receiver, where red“DEC”, “NLD” and “LD” in (b) correspond to “ENC”, “modulate” and “Ax+n”
in (a) respectively.

II. CODED LINEAR SYSTEM AND

WANG-POOR ALGORITHM

A. System Model

Consider an M ×N linear system modeled by

y = Ax + n, (1)

where y ∈ R
M×1 is a received signal vector, A ∈ R

M×N

the channel matrix, n ∼ N (0, σ2I) an independent Gaussian
noise, and x the signal vector to be estimated. The block dia-
gram in Fig. 1 (a) shows the overall system model. In addition,
d denotes the information vector, c the corresponding coded
data, and x the modulated signals. The entries of x are con-
strained over a discrete constellation X = {s1, s2, · · · , sK}
which we assume to have zero mean and unit variance. Let
the singular value decomposition (SVD) of A be A = UΣV,
where U ∈ RM×M and V ∈ RN×N are orthogonal matrices,
and Σ is a diagonal matrix [31], [41]. We assume that A is
unitarily-invariant, i.e., U, V , and Σ are mutually independent,
and U, V are Haar-distributed. We assume that A is known
at receiver. For simplicity, we only discuss a real-valued
system, based on which the complex version can be easily
extended [40].

B. Basic Principles of the Wang-Poor (WP) Algorithm

It is well known that the MAP or ML detector for the above
problem is computationally prohibitive when M is large. The
linear MMSE based turbo detection algorithm [9], referred to
as Wang-Poor (WP) algorithm in this paper, provides a good
tradeoff between complexity and performance. WP operates
iteratively between two local detectors, namely, linear detector
(LD) and non-linear detector (NLD) as follows:

• The LD handles the linear constraint, and NLD handles
the coding-modulation constraint;

• The messages exchanged between LD and NLD are
means and variances associated with the variables to be
estimated.

Starting with s0 = 0, WP proceeds as

LD : rt = fWP(st), (2a)

NLD : st+1 = ηWP(rt), (2b)

where t = 0, 1, . . . denotes the iteration index. At the last
iteration, the NLD generates an APP estimate of d.

The use of extrinsic messages in WP avoids the correla-
tion problem during the iterative process. These messages,

i.e., rt and st, are generated by fWP and ηWP in (2). Here
fWP is “extrinsic” in that its ith output is not a function of
its ith input. This follows the turbo-principle developed in [3].
Specifically, the extrinsic LD is defined as

rt
i = [fWP(st)]i ≡ f(st

∼i), ∀i, (3)

where [fWP(st)]i denotes the ith entry of fWP(st), and st
∼i

denotes a vector formed by st with the ith entry excluded. The
extrinsic NLD ηWP(rt) is defined similarly. In the following
subsections, we discuss the detailed operations of LD and
NLD for WP.

C. Linear Detector for WP

The linear MMSE detection involving a priori information
has many equivalent forms. The exposition below is based on
[6, Section II-D]. Let st and vt be the a priori mean and
variance of x, respectively. The linear MMSE estimate of x is

r̂t ≡ fMMSE(st) = st + WMMSE(y − Ast), (4a)

where r̂t = [r̂t
1, · · · , r̂t

N ] and

WMMSE ≡ vtAT(vtAAT + σ2I)−1. (4b)

The corresponding covariance matrix is

Vt = vtI − (vt)2AT(vtAAT + σ2I)−1A. (4c)

The direct use of (4) in an iterative receiver may lead to
the correlation problem. The following are some treatments
inspired by the turbo processing principles [4], [11].

In linear MMSE, we treat r̂t
i and st

i as two Gaussian
observations of xi, and their variances are given by V t

ii and vt.
In turbo detection, we compute the extrinsic estimate to ensure
that the output rt

i is independent of the input st
i. For the ith

entry, the extrinsic estimate rt
i is computed as [6], [10]:

rt
i = τ t

i ·
(
r̂t
i

V t
i,i

− st
i

vt

)
, (5a)

with

τ t
i =

(
1
V t

i,i

− 1
vt

)−1

, (5b)

where V t
i,i is (i, i)th entry of Vt in (4c). Let Vt

diag be a
diagonal matrix that has the same diagonal elements as Vt.
Furthermore, we define

ΛWP =
(

I − (vt)−1
Vt

diag

)−1

. (6)
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The extrinsic linear MMSE estimate in (5) can be written more
concisely as

fWP(st) = ΛWP fMMSE(st) +
(
I − ΛWP

)
st. (7)

Denote WWP = ΛWPWMMSE. From (7) and (4a), we have

fWP(st) = st + WWP
(
y − Ast

)
. (8)

D. Nonlinear Detector for WP

The extrinsic decoder generates the following probabilities:

ut
i (k) ≡ PSM (Xi = sk|rt

∼i), (9)

where i ∈ N = {1, 2, · · · , N}, k ∈ K = {1, 2, · · · ,K}, sk is
the kth constellation point, as defined below (1). The subscript
“SM” denotes an approximate posterior probability using sum-
product decoding. The decoder calculates the conditional prob-
abilities in (9) based on the coding constraint by using message
passing algorithms [45], [46]. Let ut = [ut

1, · · · , ut
N ], where

ut
i = [ut

i(1), · · · , ut
i(K)]T . In this paper, we will assume that

ut
i and rt

i are two independent information sources of xi. Such
approximation was widely used in turbo-type processors [47].

We first consider the MMSE NLD, which will be used in
the APP iterative receiver (see discussions in Section V-A).
From the extrinsic probabilities in (9), the MMSE estimate
and variance are calculated as

ηMMSE(rt
i , u

t
i) = E

[
xi|rt

i , u
t
i

]
=
∑
k∈K

skβ
t
i (k), (10a)

var
[
xi|rt

i , u
t
i

]
=
∑
k∈K

(
sk − ηMMSE(rt

i , u
t
i)
)2
βt

i (k), (10b)

where ut
i denotes the extrinsic probability defined in (9), and

βt
i (k) the APP of the decoder

βt
i (k) ≡ P

(
xi = sk|rt

i , u
t
i

)
=

ut
i(k)α

t
i (k)∑

k∈K
ut

i(k)α
t
i (k)

, (10c)

and αt
i(k) denotes the a priori probability:

αt
i (k) ≡ P

(
rt
i |xi = sk

)
. (10d)

In WP, the MMSE estimate is not directly feedback to
the LD. Instead, the NLD generates the following extrinsic
estimate and variance (for xi):

st+1
i = ηWP(ut

i) = E
[
xi|ut

i

]
, (11a)

vt+1 =
1
N

N∑
i=1

var
[
xi|ut

i

]
, (11b)

where ut
i is defined in (9), and the expectation and variance

are calculated as

E
[
xi|ut

i

]
=
∑
k∈K

sku
t
i(k), (11c)

var [xi|ui] =
∑
k∈K

(
sk − E

[
xi|ut

i

])2
ut

i(k). (11d)

Fig. 2. LD and extrinsic-message-aided NLD process.

E. Discussions

From (4)-(7), we could verify that WWP satisfies

[I − WWPA]ii = 0, ∀i. (12)

For the NLD, since rt
i is excluded from computing [ηWP(rt)]i,

we have

∂[ηWP(rt)]i
∂rt

i

= 0, ∀rt
i . (13)

In the next section, we will compare the above properties to
those imposed on W and η for an OAMP algorithm.

Finally, we noted that the extrinsic information ui does not
exist for an uncoded system. In this case, we would have

ηWP(ut
i) = 0, ∀i, t. (14)

This implies that the iterative cannot provide any improvement
for uncoded systems. Recently, it is shown that meaningful
iterative detection can be devised for uncoded systems using
AMP and the related OAMP algorithms [19], [31]. In what
follows, we will generalize the results in [31] to coded systems
and show that the new approach can noticeably outperform WP
in some situations.

III. EXTRINSIC-MESSAGE-AIDED OAMP

As shown in Section II, an iterative receiver for the coded
linear system consists of two components: LD with a linear
constraint y = Ax + n and NLD with a non-linear code
constraint x ∈ C. In Fig. 2, LD is represented by a function
fOAMP(s) and NLD is by ηOAMP(r, u), where zf

in and zf
out

represent respectively, the input and output errors of LD, and
zη
in and zη

out are defined similarly for NLD.
We now extend the original OAMP principle [31] to coded

systems. The main difference here is that the NLD exploits the
extrinsic messages generated by the decoder, hence the name
extrinsic message aided OAMP (EMA-OAMP).
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A. Orthogonality Property

Definition 1 (Orthogonality): We say that fOAMP(·) and
ηOAMP(·) are orthogonal detectors if

E
[

1
N

〈zf
in, z

f
out〉

]
= E

[
1
N

〈zη
in, z

η
out〉

]
= 0, (15)

i.e., the input and output errors are statistically uncorre-
lated, or simply orthogonal.

B. EMA-OAMP Algorithm

Starting with s0 = 0, a general EMA-OAMP is given by

LD : rt = fOAMP(st), (16a)
NLD : st+1 = ηOAMP

(
rt, ut

)
, (16b)

where ut is the output extrinsic information at the decoder.
Here, “extrinsic” means that ut

i is a function of {rt
j , j 	= i}.

fOAMP can be written as

fOAMP(st) = st + W
(
y − Ast

)
(16c)

with the de-correlated constraint
1
N

Tr(I-WA) = 0, (16d)

and ηOAMP is subject to the divergence-free constraint:

1
N

N∑
i=1

∂ηOAMP(rt
i , u

t
i)

∂rt
i

= 0. (16e)

The LD in (16c) is the same as that in the uncoded
OAMP [31], i.e. W = N

tr(ŴA)
Ŵ with Ŵ = VT GUT , where

G can be any matrix with proper size. Therefore, we obtain

fOAMP(xt) = st +
N

tr(ŴA)
Ŵ(y − Ast). (17a)

The NLD in (16b) with constraint (16e) can be constructed as2

ηOAMP
(
rt, ut

)
=Ct

(
η(rt, ut)−

(
1
N

N∑
i=1

∂η(rt
i , u

t
i)

∂rt
i

)
· rt

)
,

(17b)

where η is an arbitrary function in a general OAMP
framework. A general EMA-OAMP algorithm is presented
in Algorithm 1.

Note that the matrix Ŵ can depend on the parameter vt (e.g.,
the linear MMSE detector), and the function η will depend on
the parameter τ t in general. For notational brevity, we do not
explicitly write Ŵ and η as functions of vt and τ t. This paper
focuses on communication systems with FEC codes, and we
will only consider an η function that is an extrinsic-message
aided MMSE decoder (including approximate versions of it).
More specifically, we will focus on the following choices
of Ŵ , η(rt, ut), and Ct in (16c) and (16b):

Ŵ = WMMSE and η(r, u) = ηMMSE(r, u), (18a)

Ct =
τ t

τ t − 1
N

N∑
i=1

var [xi|rt
i , u

t
i]
, (18b)

2This is true under a heuristic assumption that 1
N

�N
i=1

∂η(rt
i ,ut

i)

∂rt
i

con-

verges to a constant invariant to each individual rt
i .

Algorithm 1 General EMA-OAMP

1: Require: A, y, σ2, Ŵ
t
, T , Decext(·), η(·), ct

2: Initialization: s0 = 0
3: for t = 0, 1, . . . , T do
4: vt = ‖y−Ast‖2−M·σ2

Tr(ATA)

5: τ t = Tr(BBT)
N

· vt + Tr(ŴŴT
)

N
σ2, B := I − ŴA

6: rt = st + N

tr(ŴtA)
Ŵ

t
(y − Ast) //LD

7: ut = Decext(rt) //EXT DEC

8: st+1 = ct
�
η(rt, ut) −

�
1
N

�N
i=1

∂η(rt
i ,ut

i)

∂rt
i

�
· rt
�

//NLD
9: end for

10: Return: x̂ = η(rt, ut).

where WMMSE and ηMMSE(r, u) are defined in (4) and (10)
respectively.

In this paper, the EMA-OAMP algorithm with the above
choices of Ŵ , η(rt, ut), and Ct in (16c) is referred to as the
MMSE-derived OAMP (MMSE-OAMP).

C. Assumptions and Properties

The following propositions establish the orthogonal proper-
ties of EMA-OAMP.

1) Assumptions and Properties of LD:
Assumption 1: For the LD, zf

in has IID entries with
E[(zf

in,i)
2] = v, ∀i.

Proposition 1: If Assumption 1 holds, LD in (16c) has the
following properties:

a) E
[

1
N 〈zf

in, z
f
out〉

]
= 0,

b) the entries of zf
out are mutually uncorrelated with zero-

mean and identical variance, and
c) the entries of zf

out are uncorrelated with those of x.

For the proof of Proposition 1, see [31].
2) Assumptions and Properties of NLD:
Assumption 2: The input of the NLD is an observation

of x from an additive Gaussian channel, i.e. r = x+zη
in, where

zη
in ∼ N (0, τI) is independent of x.

Proposition 2: If Assumption 2 holds, the EMA orthogonal
NLD given in (17b) satisfies E

[
1
N 〈zη

in, z
η
out〉
]

= 0, as N → ∞.
Proof: From Assumption 2 and Stein’s lemma [48],

we have

1
N

E
[〈zη

in, η
OAMP(r, u)〉] =

τ

N

N∑
i=1

E
[
∂ηOAMP(ri, ui)

∂ri

]
.

(19)

The law of large numbers implies that η asymptotically
satisfies

1
N

N∑
i=1

∂η(ri, ui)
∂ri

→ 1
N

N∑
i=1

E
[
∂η(ri, ui)

∂ri

]
(20)

as N goes to infinity, where the expectation is taken over ri
and ui. Substituting (20) and (17b) into (19), we obtain

1
N

E
[〈

ηη
in, η

OAMP(r, u)
〉]

= 0, (21)
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as N → ∞. Since zη
in is independent of x, we have

E
[

1
N

〈zη
in, z

η
out〉

]
= E

[
1
N

〈
zη
in, η

OAMP(r, u − x)
〉]

(22)

= E
[

1
N

〈
zη
in, η

OAMP(r, u)
〉]

= 0. (23)

This proves the proposition.
The orthogonal properties of EMA-OAMP are guaran-

teed by Propositions 1 and 2, which respectively rely on
Assumptions 1 and 2. We are currently working on rigorous
justifications of Assumptions 1 and 2.

D. Connections of WP and EMA-OAMP

Comparing (2) and (16), we can see that WP and EMA-
OAMP have the same LD and NLD expressions but are subject
to different constraints. WP is a special case of OAMP since:

• for LD, the constraint of WP in (12) (i.e.
[I − WWPA]ii = 0, ∀i) is a special case of that of
EMA-OAMP (16d) (i.e. 1

N tr(I − WA) = 0); and
• for NLD, the constraint of WP in (13) (i.e.
∂[ηWP(rt)]i/∂rt

i = 0, ∀i and ∀rt
i ) is a special case of

that of EMA-OAMP (16e) (i.e. 1
N

N∑
i=1

∂ηOAMP(rt
i , u

t
i)/

∂rt
i = 0).

From the above discussions, OAMP is less restrictive than WP,
so OAMP can potentially achieve lower MSE (and so better
performance) than WP. However, we should carefully treat the
correlation issue, which will be discussed in Section IV.

E. Connections of OAMP and EP

OAMP is closely related to the expectation propagation
(EP) algorithm [38], [40]. In this paper, we will compare
OAMP with the diagonally-restricted version of EP introduced
in [32] (see the first bullet point on page 2184), referred to as
scalar-EP (S-EP) [39]. S-EP was independently re-discovered
in [33]–[36] under certain heuristic Gaussian message passing
approximations. S-EP was originally presented as a heuristic
algorithm. It was shown in [33]–[36] that this S-EP algo-
rithm (for signal detection under a linear channel model)
could be described by a state evolution (SE) recursion for
certain channel matrices. Further, the dynamics of the SE was
analyzed in [31], [35] which was recently rigorously proved
in [40], [41]. In the rest of this paper, S-EP will be simply
called “EP” for notational simplicity.

The MMSE derived EP and OAMP (i.e., MMSE-EP and
MMSE-OAMP) are identical when the local processors are
derived using MMSE principles, as detailed in Appendix B-A.
OAMP is more general than S-EP in that the LD and NLD
in OAMP do not have to be Bayesian estimators; they only
need to satisify certain orthogonality conditions. Such general
OAMP algorithms have been considered in [44] for non-scalar
denoising and in [49] for low-rank matrix recovery.

IV. ANALYSIS AND COMPARISON

FOR WP AND EMA-OAMP

We now consider the analysis and comparison of
WP and OAMP based on the state evolution (SE)

technique [20], [40], [41]. SE is a recursive procedure that
tracks the MSE of local processors during iterative process-
ing. The SE formulas developed below are based on the
assumptions that the input and output errors of a local
processor are independent of each other. Such independence
might be justified for WP in which the output message of
xi is calculated by excluding the input message of xi. The
problem is more complicated for OAMP. It boils down to the
justification for Assumptions 1 and 2 in Section III-B. In what
follows, the accuracy of the SE for OAMP will be stated as a
conjecture.

A. State Evolution of WP and EMA-OAMP

SE was developed in [19], [20] for the analysis of AMP.
SE is in principle similar to density evolution [17],
EXIT-chart [18] or SINR-variance evolution [14], [15] for the
semi-analytical performance evolution for iterative detections.
Denote the MSE of rt and st as τ t and vt, respectively:

τ t ≡ 1
N E

[∥∥rt − x
∥∥2
]
, vt ≡ 1

N E
[∥∥st − x

∥∥2
]
. (24)

SE refers to the following recursions of {τ t} and {vt}:

τ t = φ(vt), vt+1 = ψ(τ t). (25)

The transfer functions φ(·) and ψ(·) for WP and EMA-OAMP
are respectively given by (WP)

φWP(v) =
1
N

N∑
i=1

(
1
Vi,i

− 1
v

)−1

, (26a)

ψWP(τ) =
1
N

N∑
i=1

mmse (xi|ui). (26b)

and (EMA-OAMP)3

φOAMP(v) =
(

1
1
N tr(V)

− 1
v

)−1

, (27a)

ψOAMP(τ) =

⎛
⎜⎜⎝ 1

1
N

N∑
i=1

mmse (xi|ri, ui)
− 1
τ

⎞
⎟⎟⎠

−1

. (27b)

In the above, mmse(xi|ui) ≡ E[var[xi|ui]] and
mmse(xi|ui) ≡ E[var[xi|ri, ui]], where ri is the ith
entry of r = x + N (0, τI) and ui represents the extrinsic
information (generated by the decoder) for xi. Note that
mmse(xi|ui) and mmse(xi|ri, ui) are implicit functions of
τ because ui is a function of ri whose noise variance is τ .
The transfer function (27a) has been derived in [31]. The
derivations of (27b) can be found in Appendix A.

B. Discussions

It is straightforward to verify that the SE procedure in
Section IV-A holds for both WP and OAMP, provided that
Assumptions 1 and 2 in Section III-B hold. These assumptions,
however, require careful scrutiny. The results in [40], [41], [50]

3Notice that mmse(xi|ri, ui) can be zero when τ is smaller than the
decoding threshold. In such cases, it is understood that ψOAMP(τ) = 0.
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provide useful tools for this purpose, but a detailed treatment
is beyond the scope of this paper. Instead, we will present the
rest of this paper based on the following conjecture.

Conjecture 1: The SE based on (26) and (27) are, respec-
tively, accurate for WP and OAMP.

Based on the above conjecture, we will compare the per-
formances of WP and OAMP using numerical results in
Section V-B. Our numerical results show that the SE is very
accurate for both WP and OAMP for certain large dense
random matrices.

C. Performance Comparison of WP and EMA-OAMP

Theorem 1 below states that the transfer functions of EMA-
OAMP outperform those of WP. This means that EMA-OAMP
outperforms WP if the SE predictions of EMA-OAMP and WP
are accurate (Conjecture 1).

Theorem 1: For any τ > 0, we have φOAMP(τ) < φWP(τ),
and ψOAMP(τ) < ψWP(τ). Further, under Conjecture 1,
the final BER of EMA-OAMP is lower than that of WP.

Proof: First, we proved in Appendix C that φOAMP(τ) <
φWP(τ) and ψOAMP(τ) < ψWP(τ). We next prove that, under
Conjecture 1, the final BER performance of EMA-OAMP
is better than that of WP. It is easy to show that all the
MSE functions φOAMP, ψOAMP, φWP, ψWP, and ψout are
monotonically increasing. (The proof is similar to that of [31,
Lemma 2].) According to the SE process, the BER MSEs of
WP and EMA-OAMP can be expressed as

BERWP

= Γpost
dec

(
φWP

(
ψWP

(
φWP

(· · · (φWP
(
v0
))))))

,

BERopt

= Γpost
dec

(
φOAMP

(
ψOAMP

(
φOAMP

(· · · (φOAMP
(
v0
))))))

.

With the monotonicity of the APP decoding BER functions
Γpost

dec (·), φOAMP(τ) < φWP(τ) and ψOAMP(τ) < ψWP(τ),
we readily have BEROAMP < BERWP. This concludes the
proof of Theorem 1.

Intuitively speaking, WP deals the correlation problem of
an iterative process by requiring the input and output errors to
be independent. On the other hand, OAMP only requires the
input and output errors to be orthogonal. The independence
constraint is more stringent than the orthogonal constraint.
Therefore, we expect that OAMP outperforms WP as it has a
more relaxed constraint.

V. SIMULATION RESULTS

In this section, we will provide simulation results to verify
the findings obtained so far. In particular, we will show the
following:

• OAMP can indeed achieve improved performance com-
pared with WP.

• SE is quite accurate for OAMP in large coded systems.
This provides numerical evidence for Conjecture 1.

The similarity and difference between OAMP and EP are dis-
cussed in different settings. Within this section, “EMA-OAMP”
refers to the MMSE-derived version of OAMP (MMSE-OAMP)
unless when otherwise stated (e.g., in Fig. 8).

A. Simulation Model

Let the singular value decomposition (SVD) of A be
A = UΣV . The system model in (1) can be rewritten as [29],
[31], [41], [51]:

y = UΣVx + n. (28)

Note that UHn has the same distribution as n. Thus, we can
assume U = I without loss of generality. We conjecture that
the SE in (27) is accurate for a Haar distributed V . However,
to reduce the calculation complexity, we approximate a large
random unitary matrix by V = ΠF, where Π is a random
permutation matrix and F is a discrete Fourier transform
(DFT) matrix. Note that the all the algorithms involved here
admit fast implementation for this channel model. Similar
models have been studied in [34], [52] for precoding purposes.
The eigenvalues {di} are generated as [30]: di/di+1 = κ1/N

for i = 1, . . . , N − 1 and
∑N

i=1 di = N . Here, κ ≥ 1 controls
the condition number of A.

For reference, we also include the performance of a heuristic
a posteriori probability (APP) based algorithm (abbreviated as
APP hereafter). Specifically, we keep the linear estimator in
EMA-OAMP unchanged, and replace the update in (16b) by

st+1 = ηMMSE
(
rt, ut

)
, (29a)

and the variance update is changed to

vt+1 =
1
N

N∑
i=1

var
[
xi|rt

i , u
t
i

]
, (29b)

with which we can establish a similar SE procedure for APP.
Note that APP can achieve MMSE if the input message
can be indeed modeled as an observation of x corrupted
with IID Gaussian noise. However, unlike WP and OAMP,
APP does not impose any additional constraint on the inde-
pendency or orthogonality of input and output errors. The
correlation between input and output errors may build up
during iterative processing, which implies the following:

• The performance predicted by SE for APP can be better
than those for WP and OAMP.

• The SE for APP may not be accurate due to the correla-
tion problem.

• Thus the actual performance of APP can be worse than
those of WP and OAMP.

The above will be verified by numerical results below.

B. MSE Transfer Functions for FEC Codes

Fig. 3 compares the transfer functions ψOAMP(τ) and
ψWP(τ):

ψOAMP(τ) =
1
N

N∑
i=1

E
[∣∣ηOAMP(ri, ui) − xi

∣∣2], (30a)

ψWP(τ) =
1
N

N∑
i=1

E
[∣∣ηWP(ui) − xi

∣∣2], (30b)

where r = x + CN (0, τI), and the expectations are approx-
imated via Monte Carlo simulations. We provide simula-
tion results for both a convolutional code (left panel) and
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Fig. 3. Simulated MSE transfer functions for (a) a convolutional code; (b) a regular (3, 6) LDPC code with 30 inner BP iterations. The codeword lengths
are 16384 bits. The number of inner iterations between the binary decoder and the demapper is 15.

Fig. 4. (a): Comparison of simulation and SE predictions for (23, 35)8 convolutional code. The codeword length is 32768. The channel condition number
is 10. The number of iterations is 10. QPSK: M = N = 16384; 16QAM: M = N = 8192. (b): BER performances for condition number κ = 50. The
(23, 35)8 convolutional code is employed with QPSK modulation. Codeword length = 131072. The number of iterations is 15. M = N = 65536.

an LDPC code (right panel). For both figures, we employ
bit-interleaved coded modulation (BICM) with Gray-mapped
QPSK or 16QAM modulation.4 For 16QAM constellations,
the decoder (DEC) involves an inner iteration between the
binary decoder and the demapper.

Fig. 3 shows that ψOAMP(τ) ≤ ψWP(τ) for both
QPSK/16QAM modulations and convolution/LDPC codes,
and this observation is consistent with Theorem 1. We can also
see that the gain of EMA-OAMP over WP is more significant
for 16QAM at a higher transmission rate. Intuitively, as the

4Our previous discussions focus on real-valued systems. For complex-valued
systems, EMA-OAMP can be applied with minor modifications: (i) for the
LD, the matrix transpose involved in W is replaced by conjugate transpose,
and; (ii) for the NLD we assume that rt is an observation of x corrupted
by circularly-symmetric complex Gaussian noise. Based on this assumption,
we can view the input of the decoder [rt

R; rt
I ] as is an AWGN observation

of [xR; xI ] where xR, xI and rt
R, rt

I are the real and imaginary parts of x
and rt respectively. Further, in this paper, we consider square QAM signal
constellations which have symmetric real and imaginary parts. Our discussions
about the NLD for the real-valued case can be extended to the complex-valued
case straightforwardly (by viewing [xR; xI ] as an effective codeword).

coding rate increases, the coding constraint becomes weaker,
and so the reliability of the extrinsic information relative to
the a priori information decreases. In this case, the gain
of relaxing the constraints from “extrinsic” to “orthogonal”
(the latter partially includes a priori information) is more
noticeable.

C. Accuracy of State Evolution

Fig. 4a compares the simulated and predicted BER perfor-
mances for convolutional code. The optimal BCJR decoding
is used at the receiver, i.e., ut

i(k) = P (xi = sk|rt
∼i), ∀i, k.

From Fig. 4a, we have the following observations.

• For both WP and EMA-OAMP, the predicted BERs
(based on SE) agree well with the simulated BERs.
In contrast, the SE for APP deviates noticeably from
simulation.

• EMA-OAMP consistently outperforms WP, and the
performance gain is more noticeable for 16QAM
modulation.
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Fig. 5. BER performances for various algorithms for medium sized MIMO channels. 16QAM is used modulation with random interleaving. m = n = 64.
(a): α = 0 (IID Gaussian channel). (b): α = 0.3. Number of iterations: 15 for WP, APP, and EMA-OAMP, and 30 for AMP. (a) (23, 35)8 convolutional
code, codeword length = 8192. (b) regular (3, 6) LDPC code with 30 inner BP iterations, and codeword length = 4096. WP and APP use symbol-wise
variance update for both the linear estimator and the decoder.

• APP can outperform WP.

Although APP outperforms WP in Fig. 4a, it can be inferior
in other cases. In Fig. 4b, we consider a larger channel con-
dition number. In this case, WP outperforms APP. Comparing
the results in Fig. 4a and Fig. 4b, we see that the performance
of APP is difficult to predict and not as reliable as WP (which
can be tracked via SE).

D. Applications of EMA-OAMP for MIMO Systems

The SE analysis for EMA-OAMP is developed for a
relatively large A. We now provide simulation results for
applications to medium-sized (smaller than one hundred)
MIMO systems. For such system sizes, there will be noticeable
deviations between the predicted and actual performances
of OAMP; see Fig. 6 of [31]. Nevertheless, we will see that
EMA-OAMP can still provide significant performance gain
over WP, especially for highly correlated MIMO systems.

We assume that a codeword spans L channel uses. The
overall channel can be written as

A = diag {A1,A2, . . . ,AL}, (31a)

where Ai ∈ Cm×n is the channel matrix at the ith channel
use with m = M/L and n = N/L. We model each Ai using
the Kronecker channel model [53]:

Ai = C
1
2
RÃiC

1
2
T , (31b)

where Ãi consists of independent IID Gaussian elements with
zero mean and variance 1/n, and CR and CT are the receive
and transmit correlation matrices, respectively. We use the
following exponential correlation matrix for CR (and also
for CT ): (CR)m,n = α|m−n|, which is a reasonable model
for uniform linear arrays. Here, α ∈ [0, 1) is the correlation
coefficient, and a larger α corresponds to stronger antenna
correlation. For simplicity, we set the correlation coefficients
for CR and CT to be the same.

In Fig. 5, we compare the BER performances of WP,
EMA-OAMP, APP (see (29)), and AMP. For AMP, we replace
η(·) in [19] by a decoder. Fig. 5a shows the simulation results
for convolutional code and Fig. 5b for LDPC code. In both
Fig. 5a and Fig. 5b, the left subfigures are for α = 0 (i.e., IID
Gaussian channel) and the right subfigures are for α = 0.3.
Some comments are in order.

• Accuracy of SE: there exists a noticeable mismatch
between simulation and SE predictions (except for
EMA-OAMP with convolutional codes). This is mainly
due to the fact that the blocks of A are relatively
small (i.e., 64 × 64). (In contrast, the results in Fig. 4
are based on a single large dense matrix.) Please refer
to [31, Fig. 6] for comparison of simulations and
SE predictions of OAMP under different system sizes;

• OAMP versus AMP: in both Fig. 5a and Fig. 5b, AMP
and EMA-OAMP have similar BER performances when
α = 0, corresponding to IID Gaussian channels. Note
that AMP slightly outperforms EMA-OAMP in the left
subfigure of Fig. 5a since a larger number of iterations
are used in AMP. In fact, it can be proved that the fixed
points of the SEs of AMP and EMA-OAMP are the same
for large IID Gaussian channels. A numerical example for
the uncoded system can be found in [31, Fig. 3]. Further,
as shown in the right subfigures of Figs. 5a and 5b,
AMP is not as robust as EMA-OAMP for correlated
MIMO channels. This is consistent with the observations
in [31, Fig. 4];

• OAMP versus WP and APP: EMA-OAMP outperforms
both WP and APP, similar to the results in Fig. 4.
Also, we found that for highly correlated channels
(e.g., α = 0.8), WP outperforms APP (but is still
worse than EMA-OAMP). The situation is similar to that
of Fig. 4b.

Notice that WP and APP in Fig. 5a and 5b use symbol-
wise variance (termed WP-diagonal) update for both the linear
estimator and the decoder. The uniform variance treatment
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Fig. 6. Performances of EMA-OAMP and WP for small MIMO channels. The (3, 6) regular LDPC code with QPSK modulation is used. Number of
EMA-OAMP/WP iterations: 30. Number of inner BP decoding iterations: 30. (a): {Ai}L

i=1 are independent. α = 0.3. L = 512 for the 4×4 MIMO channel,
and L = 256 for the 8 × 8 MIMO channel. (b): The settings are the same as those of (a), except that {Ai}L

i=1 are identical.

Fig. 7. Comparison of simulation and SE predictions for a regular (3, 6) LDPC code with 1 inner BP iteration. QPSK modulation and the memory sub-optimal
decoding with one inner iteration at the decoder per NLD is used. The curves from right to left correspond to iterations t = [1 ∼ 5, 30]. Other parameters
are the same as those in Fig. 4.

(termed WP-scalar) in (29b) is for the purpose of establishing
the connection between WP and EMA-OAMP. For properly
randomized and sufficiently large A (such as that considered
in Figs. 4), WP-diagonal and WP-scalar have indistinguishable
differences. For the medium and small-sized system in Figs. 5,
WP-diagonal outperforms WP-scalar and thus used in Fig. 5.
A comparison of WP-scalar and WP-diagonal will be provided
in Fig. 6.

Fig. 5 shows that EMA-OAMP outperforms WP for
medium-sized MIMO channels. We emphasize that
EMA-OAMP can be worse than WP for small MIMO
channels. Fig. 6 shows the performances of EMA-OAMP and
WP for 4× 4 and 8× 8 MIMO channels. We considered two
different settings: for the figures on the left panel, a codeword
spans L independent channels; for the figures on the right

panel, the L channel matrices are identical. Comparing Fig. 4a
and Fig. 6 we see that the performance gain of EMA-OAMP
over WP reduces for small MIMO channels, and in some
cases (Fig. 6b) WP can even outperform EMA-OAMP.

E. Memory Decoding

All our previous simulation results involving an LDPC
code are based on an inner belief-propagation decoding that
exchange messages between check nodes and variable nodes.
In this approach, the LDPC decoder is re-initialized (namely,
reset all messages to zero) in each outer iteration. In what
follows, we will call this approach non-memory decoding.
Clearly, this strategy has relatively high decoding complexity
since it involves a large number of inner iterations. An alter-
native approach is to initialize the LDPC decoder by the

Authorized licensed use limited to: Harvard Library. Downloaded on April 16,2020 at 00:48:48 UTC from IEEE Xplore.  Restrictions apply. 



5668 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2019

Fig. 8. BER comparisons of MF-OAMP, MF-EP and MMSE-OAMP.
The (3,6) LDPC code with 30 inner BP iterations is used together with
QPSK modulation with random interleaving. The codeword length is 4096.
m = 100, n = 32, and α = 0.3.

previous states and only update the LDPC decoder once at
each outer iteration. This approach has a much lower decoding
complexity than the non-memory decoder, and will be referred
to as memory decoding.

Fig. 7 compares the simulated and predicted BER per-
formances for a regular (3, 6) LDPC code with memory
decoding. We see that the SEs of WP and EMA-OAMP agree
well with the simulated BERs while the SE for APP is not
accurate. Furthermore, EMA-OAMP consistently outperforms
both WP and APP. Importantly, the BER performance of
memory iterative receivers (with a single inner iteration at
decoder) converges to that of non-memory receivers (with
large inner iterations at decoder). Note that the complexity
per iteration of memory decoding is greatly reduced since the
inner iteration at the decoder is set to one.

F. Comparisons of MF-OAMP, MF-EP and MMSE-OAMP

Fig. 8 compares the performances of matched filter derived
OAMP (MF-OAMP), matched filter derived EP (MF-EP) and
MMSE derived OAMP (MMSE-OAMP), in a MIMO system
characterized by (31) with m = 100, n = 32 and α = 0.3.
(Detailed discussions on the MF derived approached can be
found in Appendix B.) We can observe the following:

• MMSE-OAMP (which is equivalent to MMSE-EP; see
Appendix B for details) has the best performance. How-
ever, it involves high-complexity matrix inversion.

• The straightforward MF-EP (see Appendix B for details)
does not work well.

• The performance gap between MF-OAMP and
MMSE-OAMP is only about 0.1 dB. The former
does not involve matrix inversion, so it provides an
attractive low-cost alternative in massive MIMO systems.

We noticed that the performance gap between MF-OAMP and
MMSE-OAMP increases when n increases towards m. We are
now working on more computationally efficient solutions for
such system settings.

VI. CONCLUSION AND FUTURE WORK

This paper proposed an extrinsic message aided OAMP
(EMA-OAMP) algorithm for FEC coded linear systems.
Compared with the well-known Wang-Poor (WP) algorithm,
EMA-OAMP relaxes the extrinsic message requirement to
orthogonality one. Based on a conjectured state evolution (SE),
we showed that EMA-OAMP outperforms WP. Numerical
results are provided to confirm the advantages of EMA-OAMP.

The accuracy of SE recursions of WP and EMA-OAMP are
conjectured based on several assumptions. The recent progress
related to AMP and its variants for non-separable denoisers
(with a FEC decoder being a special case) [50], [54], [55]
may shed some light on this issue.

Another interesting future work is to compare the perfor-
mances of the conventional diagonal-EP [56], [57] with scalar-
EP/MMSE-OAMP. In a diagonal-EP algorithm, the variances
produced by the decoder/demapper module can be negative.
This is not a numerical issue and does not disappear even
for very large random systems. A common remedy for the
negative variance problem is to introduce damping and other
heuristic tricks (e.g., no update whenever a negative variance
occurs [56]). On the contrary, the variances in scalar-EP/
MMSE-OAMP are guaranteed to be positive for unitarily-
invariant A in the asymptotic regime. An extensive com-
parison of the performances of diagonal-EP and scalar-EP/
MMSE-OAMP under various channel conditions is interesting
future work.

Finally, a long-memory OAMP (LM-OAMP) algorithm was
proposed in [58]. It showed that AMP is a special case
of LM-OAMP, unveiling deep connections between AMP and
OAMP. Extending the LM-OAMP algorithm to FEC coded
systems is another interesting future direction.

APPENDIX A
APPENDIX: DERIVATION OF (27b)

Denote ŝMMSE = ηMMSE(r, u), where r = x + zin, x is
a codeword, zin ∼ N (0, τI) an IID Gaussian noise, and u =
[u1, . . . , un] represents the extrinsic information. Based on the
law of large numbers, Ct

2 converges to a deterministic constant
almost surely. For notational brevity, we will omit the iteration
index and write Ct

2 as C.
ηOAMP(r, u) in (17b) (with η and C given in (18b)) can be

written as

ηOAMP (r, u) = C · ŝMMSE + (1 − C) · r, (32)

where ŝMMSE = ηMMSE(r, u) denotes the MMSE estimate.
The MSE of ηOAMP(r, u) is given by

1
N

E
[∥∥ηOAMP(r, u) − x

∥∥2
]

(33a)

=
1
N

E
[∥∥∥C (ŝMMSE − x

)
+ (1 − C) (r − x)

∥∥∥2
]

(33b)

=
1
N

E
[∥∥∥C (ŝMMSE − x

)
+ (1 − C) zin

∥∥∥2
]

(33c)

= C2 1
N

N∑
i=1

mmse (xi|ri, ui) + (1 − C)2τ

+ 2C (1 − C)
1
N

E
[
zTin
(

ẑMMSE − x
)]

(33d)
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where zin = r − x, and we have used

1
N

E
[∥∥∥ŝMMSE − x

∥∥∥2
]

=
1
N

N∑
i=1

mmse (xi|ri, ui), (34)

and N−1E[‖zin‖2] = 1. Now consider the last term in (33)

1
N

E
[
zTin
(

ŝMMSE − x
)]

(a)
=

1
N

E
[
zTinŝ

MMSE
] (b)

= τ · 1
N

E

[
N∑

i=1

∂ŝMMSE
i

∂ri

]
(35a)

(c)
=

1
N

E

[
N∑

i=1

var [xi|ri, ui]

]
(d)
=

1
N

N∑
i=1

mmse (xi|ri, ui)

(35b)

where step (a) is from the assumption that x and zin are inde-
pendent, step(b) from the multivariate Stein’s lemma [48], step
(c) from a property of MMSE estimator [21, Eq. (123)], and
step (d) from the identity E [var [zi|ri, ui]] = mmse (xi|ri, ui).
Substituting (35) into (33), we finally have (27b).

APPENDIX B
APPENDIX: COMPARISON BETWEEN EP AND OAMP

The scalar-EP algorithm and OAMP are equivalent when
the optimal MMSE derived LD and NLD are used. For
general non-MMSE LDs and/or NLDs, OAMP and EP can
be different. We will discuss the detailed differences between
EP and OAMP when a matched filter (MF) LD is used.

A. Scalar EP Algorithm

1) Linear Detector: The scalar-EP algorithm [32], [39]
(simply called EP below) can be formulated as an iterative
process involving an LD and an NLD [41]. The MMSE-LD
for EP is given by [41]

fEP(st) = τ t ·
(
fMMSE(st)

1
N Tr(V t)

− st

vt

)
, (36a)

where

τ t =

(
1

1
N Tr(Vt)

− 1
vt

)−1

. (36b)

Using (4a) and after some manipulations, we can express (36a)
into the following equivalent form:

fEP(st) = st + WEP
(
y − Ast

)
, (37)

with WEP = VtATσ−2

1− 1
v · 1

N Tr(Vt)
. Notice that the MMSE derived

LD for WP is equivalent to the LD of a standard EP (instead
of scalar-EP) algorithm. This can be seen by comparing
[6, Eq. (5)] and [56, Eqs. (31) and (32)].

2) Nonlinear Detector: The non-linear constraint defined
below (9) involves symbol-by-symbol modulation over Xi =
{s1, s2, . . . , sK}. The related EP operation is a scalar version
of (36a):

ηEP(rt
i , u

t
i)=

vt+1

1
N

∑N
i=1 var[xi|rt

i , u
t
i]
ηMMSE(rt

i , u
t
i)−

vt+1

τ t
rt
i ,

(38a)

where

vt+1 =

(
1

1
N

∑N
i=1 var[xi|rt

i , u
t
i]
− 1
τ t

)−1

. (38b)

Using the matrix inversion lemma, it can be shown that
fOAMP(·) and fEP(·) are equivalent. It is also straightforward
to show that ηEP(·) and ηOAMP(·) are equivalent. A similar
scheme based on diagonal-EP has been reported in [59].

B. MF-OAMP

For convenience of discussions, in this appendix we assume
Tr(AAT) = N . Recall from (4) that the MMSE LD for OAMP
involves inverting an N × N matrix, which has complexity
O(N3). This can be a serious burden when N is large. The
low-cost matched filter (MF) LD, given by W = N

Tr(AAT)
·

AT ≈ AT, can be an useful alternative.
Using an MF detector, the LD of OAMP becomes (see line 5

of Algorithm 1) becomes

rt = st + AT(y − Ast). (39)

The output variance τt, which is treated as the variance of the
“effective noise” in the FEC decoder, is given by [31]:

τ t =
1
N

Tr
(
E
[
B2
]) · vt +

1
N

Tr
(
E
[
AHA

]) · σ2 (40a)

=
1
N

E
[‖B‖2

F

] · vt +
1
N

E[‖A‖2
F ] · σ2, (40b)

where the second step is from the definition B = I − AHA
and vt is the MSE of st. For the special case where Aij ∼
N (0, 1/M), we have

τ t =
N

M
· vt + σ2. (41)

In the general case where we do not know the distributions of
A, we could approximate τ t as

τ̂ t =
1
N

‖B‖2
F · vt +

1
N

‖A‖2
F · σ2. (42)

To evaluate the above expression we need to compute the
matrix B = I − AHA, which has complexity O(N3).
Nevertheless, we only need to compute B once and the
overall complexity of MF-OAMP is still much lower
than LMMSE-OAMP.
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C. MF-EP

To the best of our knowledge, no MF based EP has been
derived in the literature. The key is how to approximate
fMMSE(st) and Tr(Vt) in (36a) without resorting to high
cost matrix inversion. One possible way is to consider the
connection between mismatched linear MMSE detector and
MF detector [60, Section II-C] as follows. We rewrite (36a)
using (4) as

fEP(st) = st +
τ tvt

1
N Tr(Vt)

AT(vtAAT + σ2I)−1(y − Ast),

(43)

where τ t =
(

1
Tr(Vt)/N − 1

vt

)−1

and Vt is defined in (4).
Recall from the beginning of this appendix that we assumed
Tr(AAT) ≈ N in the large system limit. Under this assump-
tion, we have vt/(Tr(V t)/N) → 1 when vt → 0. In this case,
fEP(st) in (43) reduces to the MF detector in (39), i.e.,

rt → st + AT
(
y − Ast

)
. (44)

Thus, fEP(st) in (43) can be seen as an approximation of
the MMSE counterpart in (36a) when vt → 0. It is also
straightforward to verify that

τ t =
(

1
Tr(Vt)/N

− 1
vt

)−1

→ σ2, (45)

which is different from its counterpart in MF-OAMP; see
(40) and (45). Notice that τ t is treated as the variance of the
effective noise by the decoder. The variance τ t produced by
OAMP is close to the true effective noise variance (provided
that our conjecture that the SE of OAMP is accurate).

APPENDIX C
APPENDIX: PROOF OF φOAMP(τ) < φWP(τ)

AND ψOAMP(τ) < ψWP(τ)

First, φOAMP(τ) < φWP(τ) can be proved straightfor-
wardly by applying Jensen’s inequality on (26a) and (27a).
We omit the details here. The proof of ψOAMP(τ) < ψWP(τ)
is more involved. Below, we sketch the basic steps of our
proof:

1) We treat ri as a Gaussian observation of xi, i.e., ri =
xi + zi where zi ∼ N (0, τ).

2) ψOAMP(·) is an increasing function of τi, while ψWP(·)
is independent of τi.

3) When τi → ∞, the contribution of ri is negligible.
In this case, ψOAMP = ψWP.

4) For any 0 < τi < ∞, we have ψOAMP < ψWP from
points 2 and 3.

Next, we give the details of the above steps.

A. Auxiliary Lemmas

We first introduce two technical lemmas that are crucial for
our proof.

Lemma 1: Consider the following Gaussian channel

ri = xi + zi, (46)

where zi ∼ N (0, ρ−1
i ) is independent of {xi}, and {zi} are

mutually independent for different i.5 Let ui be an extrin-
sic statistic of xi, namely, it is a deterministic function of
{rj , j 	= i}. Then, the following holds for all i:

1
mmse (xi|ri, ui)

− ρi ≥ 1
mmse (xi|ui)

. (47)

Proof: Notice that mmse(xi|ri, ui) is a function of all
{ρi}, since ri is a function of ρi and ui is a function of
{ρj, j 	= i}. For convenience of discussions, let us denote
the left hand side of (47) as

g (ρ1, . . . , ρN ) ≡ 1
mmse (xi|ri, ui)

− ρi. (48)

In the following, we keep {ρj, j 	= i} fixed and study the
impact of ρi. We first note that, when ρi → 0, the contribution
of ri in mmse(xi|ri, ui) becomes negligible and thus

g (ρ1, . . . , ρN ) =
1

mmse (xi|ri, ui)
− ρi → 1

mmse (xi|ui)
.

(49)

From (49), we can rewrite our objective in (47) as

g (ρ1, . . . , ρN ) ≥ g (ρi = 0, {ρj , j 	= i}). (50)

To prove (50), it is sufficient to prove that g(ρ1, . . . , ρN ) is
a non-decreasing function of ρi. To this end, we will use the
following identity [61]:

dmmse (x|r, u)
dρ

= −E
[
(var [x|r, u])2

]
, (51)

where r = x + N (0, ρ−1) is an AWGN observation of x,
and u denotes some side information of x whose distribution
is not a function of ρ. As mentioned earlier, the extrinsic
statistic ui is a function of {rj , j 	= i} and does not depend
on ri. Together with the modeling in (46), we see that the
extrinsic information ui in mmse(xi|ri, ui) is not a function
of ρi. Hence, we could apply (51) to get

∂

∂ρi
mmse (xi|ri, ui) = −E

[
(var [xi|ri, ui])

2
]
. (52)

Then, the partial derivative of g(ρ1, . . . , ρN ) is given by

∂g (ρ1, . . . ρN )
∂ρi

(53a)

=
E
[
(var [xi|ri, ui])

2
]
− [mmse (xi|ri, ui)]

2

(mmse (xi|ri, ui))
2 (53b)

=
E
[
(var [xi|ri, ui])

2
]
− (E [var [xi|ri, ui]])

2

(E [var [xi|ri, ui]])
2 (53c)

≥ 0, (53d)

where the second step follows from mmse (xi|ri, ui) =
E [var [xi|ri, ui]], and the inequality in (53d) is due to Jensen’s
inequality.

Lemma 1 considers a set of AWGN channels with different
SNRs. Lemma 2 below is a special case of Lemma 1 with
ρ1 = · · · = ρN = ρ.

5In contrast, {xi} are correlated due to the coding constraint.
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Lemma 2: Consider the following AWGN model:

ri = xi + zi,

where zi ∼ N (0, ρ−1) is independent of {xi}, and {zi} are
mutually independent for different i. Let ui be a deterministic
function of {rj , j 	= i}. Then, the following holds for each i:

1
mmse (xi|ri, ui)

− ρ ≥ 1
mmse (xi|ui)

. (54)

B. Proof of ψOAMP(τ ) < ψWP(τ )

We prove ψOAMP(τ) < ψWP(τ) using Lemma 2 below.
We have

1
1

1
N

N�

i=1
mmse(xi|ri,ui)

− ρ

(a)

≤ 1
N

N∑
i=1

1
1

mmse(xi|ri,ui)
− ρ

(55a)

(b)
<

1
N

N∑
i=1

mmse (xi|ui), (55b)

where step (b) is from Lemma 2, and step (a) is due to
Jensen’s inequality (More specifically, from a basic property
of MMSE [61], we have mmse (xi|ri, ui) < 1

ρ . Then, step (a)
can be proved by applying Jensen’s inequality to the convex
function h(x, ρ) ≡ (x−1 − ρ

)−1
, where x ∈ (0, 1/ρ).)
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