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Optimization-Based AMP for Phase Retrieval: The
Impact of Initialization and �2 Regularization

Junjie Ma , Ji Xu, and Arian Maleki

Abstract— We consider an �2-regularized non-convex optimiza-
tion problem for recovering signals from their noisy phaseless
observations. We design and study the performance of a message
passing algorithm that aims to solve this optimization problem.
We consider the asymptotic setting m, n → ∞, m/n → δ and
obtain sharp performance bounds, where m is the number of
measurements and n is the signal dimension. We show that for
complex signals, the algorithm can perform accurate recovery
with only m = ((64/π2) − 4)n ≈ 2.5n measurements. Also,
we provide a sharp analysis on the sensitivity of the algorithm
to noise. We highlight the following facts about our message
passing algorithm: 1) adding �2 regularization to the non-convex
loss function can be beneficial and 2) spectral initialization has
a marginal impact on the performance of the algorithm. The
sharp analyses, in this paper, not only enable us to compare the
performance of our method with other phase recovery schemes
but also shed light on designing better iterative algorithms for
other non-convex optimization problems.

Index Terms— Phase retrieval, Wirtinger flow, amplitude flow,
approximate message passing, phase transition.

I. INTRODUCTION

A. Informal Statement of Our Results

PHASE retrieval refers to the task of recovering a signal
x∗ ∈ Cn×1 from its m phaseless linear measurements:

ya =
�
�
�
�

n
�

i=1

Aai x∗,i
�
�
�
�
+wa, a = 1, 2, . . . ,m, (I.1)

where x∗,i is the i th component of x∗, and wa ∼ CN (0, σ 2
w)

a Gaussian noise. Throughout this paper, we assume that
Aai ∼ CN (0, 1/m) and {Aai} are independent identically
distributed (i.i.d). The recent surge of interest [1]–[23] has
led to a better understanding of the theoretical aspects of
this problem. Thanks to such research we now have access
to several algorithms, inspired by different ideas, that are
theoretically guaranteed to recover x∗ exactly in the noiseless
setting. Despite all this progress, there is still a gap between
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the theoretical understanding of the recovery algorithms and
what practitioners would like to know. For instance, for many
algorithms, including Wirtinger flow [4], [5] and amplitude
flow [6], [7], the exact recovery is guaranteed with either
cn log n or cn measurements, where c is often a fixed but large
constant that does not depend on n. In both cases, it is often
claimed that the large value of c or the existence of log n is an
artifact of the proving technique and the algorithm is expected
to work with cn for a reasonably small value of c. However,
such claims do not address the following questions:

Q.1 Which algorithm should we use? Since the theoretical
analyses are not sharp, they do not shed any light on the
relative performance of different algorithms. Answering
this question through simulations is very challenging
too, since many factors including the distribution of the
noise, the true signal x∗, and the number of measure-
ments may have impact on the answer.

Q.2 When can we trust the performance of these algorithms
in the presence of noise? Suppose for a moment that
we know the minimum number of measurements that
is required for the exact recovery through simulations.
Should we collect the same number of measurements in
the noisy settings too?

Q.3 What is the impact of initialization schemes, such as
spectral initialization? Can we trust these initialization
schemes in the presence of noise? How should we
compare different initialization schemes?

Researchers have developed certain intuition based on a
combination of theoretical and empirical results, to give
heuristic answers to these questions. However, as demonstrated
in a series of papers in the context of compressed sensing,
such heuristics are sometimes inaccurate [24]. To address
Question Q.1, several researchers have adopted the asymptotic
framework m, n → ∞, m/n → δ, and provided sharp
analyses for the performance of several algorithms [20]–[22].
This line of work studies recovery algorithms that are based on
convex optimization. In this paper, we adopt the same asymp-
totic framework and study the following popular non-convex
problem, known as amplitude-based optimization [7], [6]:

min
x

m
�

a=1

(ya − |(Ax)a|)2 + μ

2
�x�2

2. (I.2)

where (Ax)a denotes the a-th entry of Ax. Note that com-
pared to the optimization problem discussed in [6] and [7],
(I.2) has an extra �2-regularizer. Regularization is known to
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reduce the variance of an estimator and hence is expected to
be useful when w �= 0. However, as we will try to clarify later
in this section, since the loss function

�m
a=1 (ya − |(Ax)a|)2

is non-convex, regularization can help the iterative algorithm
that aims to solve (I.2) even in the noiseless settings.

Since (I.2) is a non-convex problem, the algorithm to solve
it matters. In this paper, we study a message passing algorithm
that aims to solve (I.2). As a result of our studies we

1) present sharp characterization of the mean square error
(even the constants are sharp) in both noiseless and noisy
settings.

2) present a quantitative characterization of the gain initial-
ization and regularization can offer to our algorithms.

Furthermore, the sharpness of our results enables us to
present a quantitative and accurate comparison with convex
optimization based recovery algorithms [20]–[22] and give
partial answers to Question Q.1 mentioned above. Below we
introduce our message passing algorithm and informally state
some of our main results. The careful and accurate statements
of our results are postponed to Section II.

Following the steps proposed in [25], we obtain the fol-
lowing algorithm, called Approximate Message Passing for
Amplitude-based optimization (AMP.A). Starting from an ini-
tial estimate x0 ∈ Cn×1, AMP.A proceeds as follows for t ≥ 0:

pt = Axt − λt−1

δ
· g( pt−1, y)
−divp(gt−1)

,

xt+1 = λt ·
�

xt + AH g( pt , y)
−divp(gt)

�

.

In these iterations

g(p, y) = y · p

|p| − p,

and

λt = −divp(gt)

−divp(gt)+ μk
�

τt + 1
2

� ,

τ t = 1

δ

τ t−1 + 1
2

−divp(gt−1)
· λt−1.

In the above, p/|p| at p = 0 can be any fixed number
and does not affect the performance of AMP.A. Further,
the “divergence” term divp(gt ) is defined as

divp(gt)
�= 1

m

m
�

a=1

1

2

�
∂g(pt

a, ya)

∂pR
a

− i
∂g(pt

a, ya)

∂pI
a

�

= 1

m

m
�

a=1

ya

2|pt
a|

− 1, (I.3)

where pR
a and pI

a denote the real and imaginary parts of pt
a

respectively (i.e., pt
a = pR

a + ipI
a ). The derivations of AMP.A

can be found in Appendix A of the ArXiv preprint [26].
The first point that we would like to discuss here is the

effect of the regularizer on AMP.A. For the moment suppose
that the noise w is zero. Does including the regularizer in
(I.2) benefit AMP.A? Clearly, any regularization may introduce
unnecessary bias to the solution. Hence, if the final goal is
to obtain x∗ exactly we should set μ = 0. However, the

optimization problem in (I.2) is non-convex and iterative
algorithms intended to solve it can get stuck at bad local
minima. In this regard, regularization can still help AMP.A to
escape bad local minima through continuation. Continuation is
popular in convex optimization for improving the convergence
rate of iterative algorithms [27]. In continuation we start with
a value of μ for which AMP.A is capable of finding the global
minimizer of (I.2). Then, once AMP.A converges we will
either decrease or increase μ a little bit (depending on the final
value of μ for which we want to solve the problem) and use the
previous fixed point of AMP.A as the initialization for the new
AMP.A. We continue this process until we reach the value of
μ we are interested in. For instance, if we would like to solve
the noiseless phase retrieval problem then μ should eventually
go to zero so that we do not introduce unnecessary bias. The
rationale behind continuation is the following. Let μ and μ
 be
two different values of the regularization parameter, and they
are close to each other. Suppose that the global minimizer of
(I.2) with regularization parameter μ
 is x(μ
) and is given to
the user. Suppose further that the user would like to find the
global minimizer of (I.2) with μ. Then, it is conceivable that
the global minimizer of the new problem is close to x(μ
).1
Hence, the user can initialize AMP.A with x(μ
) and hope that
the algorithm may converge to the global minimizer of (I.2)
for μ.

A more general version of the continuation idea we dis-
cussed above is to let μ change at every iteration (denoted
as μt ), and set λt according to μt :

λt = −divp(gt )

−divp(gt)+ μt
�

τt + 1
2

� , (I.4)

This way we can not only automate the continuation process,
but also let AMP.A decide which choice of μ is appropriate
at a given stage of the algorithm. Our discussion so far has
been heuristic. It is not clear whether and how much the
generalized continuation can benefit the algorithm. To give
a partial answer to this question we focus on the following
particular continuation strategy: μt = 1+2divp(gt )

1+2τt
and obtain

the following version of AMP.A:

pt = Axt − 2

δ
g( pt−1, y), (I.5a)

xt+1 = 2
	

−divp(gt ) · xt + AHg( pt , y)



. (I.5b)

Below we informally discuss some of the results we will
prove in this paper.

Informal Result 1: Consider the AMP.A algorithm for
complex-valued models (where both A and x	 are complex-
valued) with μt = 1+2divp(gt )

1+2τt
. Under the noiseless setting,

if δ > 64
π2 − 4 ≈ 2.5, then xt “converges to” x∗ as long as the

initial estimate x0 is not orthogonal to x∗ and �x0� = �x∗�.
When 2 < δ < 64

π2 − 4, AMP.A has a fixed point at x∗.
However, it has to be initialized very carefully to reach x∗.

Before we discuss and explain the implications of this result,
let us expand the scope of our results. This extension enables
us to compare our results with existing work [20]–[22]. So far,

1Given the sometimes complex geometry of non-convex problems, this
might not always be the case.

Authorized licensed use limited to: Harvard Library. Downloaded on April 16,2020 at 00:48:19 UTC from IEEE Xplore.  Restrictions apply. 



3602 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

we have discussed the case x∗ ∈ Cn . However, in some
applications, such as astronomical imaging, we are interested
in real-valued signals x∗ ∈ Rn . In Section III, we will
introduce a real-valued version of AMP.A. The following
informal result summarizes the performance of this algorithm.

Informal Result 2: Consider the AMP.A algorithm for real-
valued signals with μt = 2+2divp(gt )

1+2τt
. Under the noiseless

setting, if δ > π2

4 − 1 ≈ 1.5, then xt “converges to” x∗
as long as the initialization is not orthogonal to x∗. When
1+ 4

π2 < δ < π2

4 −1, AMP.A has a fixed point at x∗. However,
it has to be initialized very carefully to reach x∗.

We would like to make the following remarks about these
two results:

1) As is clear from our second informal result, when δ <
1 + 4

π2 , AMP.A cannot converge to x∗. This value of δ
is different from the information theoretic lower bound
δ = 1 [28]. This discrepancy is in fact due to the type
of continuation we used in this paper. Note that this
issue does not happen in the complex-valued AMP.A.
The search for a better continuation strategy for the real-
valued AMP.A is left as future research.

2) Simulation results presented in our forthcoming
paper [29] show that for real-valued signals, AMP.A
with μ = 0 can only recover when δ > 2.5. As men-
tioned in our second informal result, continuation has
improved the threshold of correct recovery to δ ≈ 1.5.

3) How much does spectral initialization improve the per-
formance of AMP.A? To answer this question, let us
focus on the real-valued signals. As discussed in our sec-
ond Informal result, two values of δ are important for
AMP.A: δ = π2

4 − 1 ≈ 1.5 and δ = 1 + 4
π2 ≈ 1.4.

If δ > 1.5, then AMP.A recovers x∗ exactly as long as
the initialization is not orthogonal to x∗. In this case
spectral method helps, since it offers an initialization
that is not orthogonal to x∗. However, if the mean of x∗
is not zero, a simple initial estimate 1 = [1, 1, . . . , 1]T

can work as well as the spectral initialization. Hence,
in this case spectral initialization does not offer a major
improvement. A more important question is whether
spectral initialization can help AMP.A to perform exact
recovery for δ < 1.5. Our forthcoming paper [29] shows
that the answer to this question is negative. Hence,
as long as the final estimate of AMP.A is concerned,
the impact of spectral initialization seems to be marginal.

Now let us discuss the performance of AMP.A under noisy
settings. We assume that the measurement noise is Gaussian
and small. Clearly, in this setting exact recovery is impossible,
hence we study the asymptotic mean square error defined as
the following almost sure limit (θt

�= � 1
n �x∗, xt )

AMSE(δ, σ 2
w) � lim

t→∞ lim
n→∞

�xt − eiθt x∗�2
2

n
, (I.6)

Informal Result 3: Consider the AMP.A algorithm
for complex-valued signals with μt = 1+2divp(gt )

1+2τt
.

Let δ > 64
π2 − 4 ≈ 2.5, then

lim
σ 2
w→0

AMSE(δ, σ 2
w)

σ 2
w

= 4

1 − 2
δ

. (I.7)

Notice that the above result was derived based under the
assumption E[|Aai |2] = 1/m. To interpret the above result
correctly, we should discuss the signal to noise ratio of each
measurement. Suppose that 1

n �x∗�2 = 1. Then the signal to

noise ratio of each measurement is E
� �
�
�

i Aai x∗,i
�
�
2 �
/σ 2
w =

1
δσ 2
w

. In other words, as we increase the number of measure-
ments or equivalently δ, then we reduce the signal to noise
ratio of each measurement too. This causes some issues when
we compare the AMSE(δ, σ 2

w) for different values of δ. One

easy fix is to assume that the variance of the noise is σ 2
w = σ̃ 2

w
δ ,

where σ̃ 2
w is a fixed number. Then we can define the noise

sensitivity as

NS(σ̃ 2
w, δ) = AMSE(δ, σ 2

w)

σ̃ 2
w

.

It is straightforward to use (I.7) to show that NS(σ̃w, δ) = 4
δ−2 .

Note that if we use AMP.A with δ ≈ δAMP, then the noise
sensitivity is approximately 8. If this level of noise sensitivity
is not acceptable for an application, then the user should col-
lect more measurements to reduce the noise sensitivity. Noise
sensitivity can also be calculated for real-valued AMP.A:

Informal Result 4: Consider the AMP.A algorithm for real-
valued signals with μt = 2+2divp(gt )

1+2τt
. Let δ > π2

4 − 1 ≈ 1.5,
then

lim
σ 2
w→0

AMSE(δ, σ 2
w)

σ 2
w

= 1


1 + 4
π2

�−1 − 1
δ

.

B. Related Work

1) Existing Theoretical Work: Early theoretical results on
phase retrieval, such as PhaseLift [1] and PhaseCut [30],
are based on semidefinite relaxations. For random Gaussian
measurements, a variant of PhaseLift can recover the signal
exactly (up to global phase) in the noiseless setting using
O(n) measurements [31]. However, PhaseLift (or PhaseCut)
involves solving a semidefinite programming (SDP) and
is computationally prohibitive for large-scale applications.
A different convex optimization approach for phase retrieval,
which has the same O(n) sample complexity, was indepen-
dently proposed in [8] and [9]. This method is formulated
in the natural signal space and does not involve lifting, and
is therefore computationally more attractive than SDP-based
counterparts. However, both methods require an anchor vector
that has non-zero correlation with the true signal, and the
quality of the recovery highly depends on the quality of the
anchor.

Apart from convex relaxation approaches, non-convex
optimization approaches attract considerable recent inter-
ests. These algorithms typically consist of a carefully
designed initialization step (usually accomplished via a spec-
tral method [2]) followed by iterations that refine the estimate.
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An early work in this direction is the alternating minimization
algorithm proposed in [2], which has sub-optimal sample
complexity. Another line of work includes the Wirtinger
flow algorithm [4], [32], truncated Wirtinger flow algo-
rithm [5], and other variants [6], [7], [10], [12]. Other
approaches include Kaczmarz method [16], [17], [33], [34],
trust region method [11], coordinate decent [18], prox-linear
algorithm [13], Polyak subgradient method [15], block coor-
dinate descent [35] and PhaseLin algorithm [36].

Most of the above theoretical results guarantee successful
recovery with m = δn measurements (or more) where δ
is a fixed often large constant. However, such theories are
not capable of providing fair comparison among different
algorithms. To resolve this issue researchers have started
studying the performance of different algorithms under the
asymptotic setting m/n → δ and n → ∞. In [8], it is
proved that the PhaseMax algorithm succeeds when δ > 4

α
(for complex-valued models), where α is a constant that
depends on the angle between of anchor vector and the true
signal vector. An interesting iterative projection method was
proposed in [37], whose dynamics can be characterized exactly
under this asymptotic setting. However, [37] does not analyze
the number of measurements required for this algorithm to
work. The work in [14] provides sharp characterization of
the spectral initialization step (which is a key ingredient to
many of the above algorithms). The analysis in [14] reveals
a phase transition phenomenon: spectral method produces an
estimate not orthogonal to the signal if and only if δ is larger
than a threshold (called “weak threshold” in [19]). Later,
Mondelli and Montanari [19] derived the information-
theoretically optimal weak threshold (which is 0.5 for the
real-valued model and 1 for the complex-valued model) and
proved that the optimal weak threshold can be achieved by
an optimally-tuned spectral method. Using the non-rigorous
replica method from statistical physics, Dhifallah and Lu [20]
analyze the exact threshold of δ (for the real-value set-
ting) above which the PhaseMax method in [8] and [9]
achieves perfect recovery. The analysis in [20] shows that
the performance of PhaseMax highly depends on initialization
(see [20, Fig. 1]), and the required δ is lower bounded by 2
for real-valued models. On the other hand, AMP.A proposed in
this paper achieves perfect recovery for δ > 1.5 under the same
setting. The analysis in [20] was later rigorously proved in [21]
via the Gaussian min-max framework [38], [39], and a new
algorithm called PhaseLamp was proposed. The PhaseLamp
method has superior recovery performance over PhaseMax,
but again it does not work when δ < 2 for real-valued models.
Further, Dhifallah and Lu [20] and Dhifallah et al. [21] focus
on the noiseless scenario, while in this paper we also analyze
the noise sensitivity of AMP.A. Finally, a recent paper [22]
derived an upper bound of δ such that PhaseLift achieves
perfect recovery. The exact value of this upper bound can
be derived by solving a three-variable convex optimization
problem and empirically [22] shows that δ ≈ 3 for real-valued
models.

2) Existing Work Based on AMP: Our work in this paper
is based on the approximate message passing (AMP) frame-
work [40], [41], in particular the generalized approximate

message passing (GAMP) algorithm developed and analyzed
in [25] and [42]. A key property of AMP (including GAMP)
is that its asymptotic behavior can be characterized exactly via
the state evolution platform [25], [40]–[42].

For phase retrieval, a Bayesian GAMP algorithm has been
proposed in [43]. However, [43] did not provide rigorous
performance analysis, partly due to the heuristic treatments
used in the algorithm (such as damping and restart). Another
work related to ours is the recent paper [28] (appeared on
Arxiv while we were preparing this paper), which analyzed
the phase transitions of the Bayesian GAMP algorithms for a
class of nonlinear acquisition models. For the phase retrieval
problem, a phase transition diagram was shown in [28, Fig. 1]
under a Bernoulli-Gaussian signal prior. The numerical results
in [28] indeed achieve state-of-the-art reconstruction results
for real-valued models. However, [28] did not provide the
analysis of their results and in particular did not mention
how they handle a difficulty related to initialization. Further,
the algorithm in [28] is based on the Bayesian framework
which assumes that the signal and the measurements are
generated according to some known distributions. Contrary
to [28] and [43], this paper considers a version of GAMP
derived from solving the popular optimization problem (I.2).
We provide rigorous performance analysis of our algorithm for
both real and complex-valued models. Note that the advantages
and disadvantages of Bayesian and optimization-based tech-
niques have been a long debate in the field of Statistics. Hence,
we do not repeat those debates here. Given our experience in
the fields of compressed sensing and phase retrieval, it seems
that the performance of Bayesian algorithms are more sensitive
to their assumptions than the optimization-based schemes.
Furthermore, performance analyses of Bayesian algorithms are
often very challenging under “non-ideal” situations which the
algorithms are not designed for.

Here, we emphasize another advantage of our
approach. Given the fact that the most popular schemes
in practice are iterative algorithms derived for solving
non-convex optimization problems, the detailed analyses of
AMP.A presented in our paper may also shed light on the
performance of these algorithms and suggest new ideas to
improve their performances.

3) Fundamental Limits: It the literature of phase retrieval,
it is well known that to make the signal-to-observation map-
ping injective one needs at least m = 4n measurements [44]
(or m = 2n [45] in the case of real-valued models). On the
other hand, the measurement thresholds obtained in this paper
are δ = 64

π2 − 4 ≈ 2.5 and δ = π2

4 − 1 ≈ 1.5 respectively.
In fact, our algorithm can in principle recover the signal when
δ > 2 and δ > 1 + 4

π2 (or δ > 1 if continuation is not
applied) for complex and real-valued models, provided that the
algorithm is initialized close enough to the signal (though no
known initialization strategy can accomplish this goal). Hence,
our threshold are even smaller than the injectivity bounds.
We emphasize that this is possible since the injectivity bounds
derived in [44] and [45] are defined for all x∗ (which can
depend on A in the worst case scenario). This is different
from our assumption that x∗ is independent of A, which is
more relevant in applications where one has some freedom
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to randomize the sampling mechanism. In fact, several papers
have observed that their algorithm can operate at the injectivity
thresholds δ = 2 for real-valued models [6], [13]. These two
different notions of thresholds were discussed in [46]. In the
context of phase retrieval, the reader is referred to the recent
paper [47], which showed that by solving a compression-based
optimization problem, the required number of observations for
recovery is essentially the information dimension of the signal
(see [47] for the precise definition). For instance, if the signal
is k-sparse and complex-valued, then 2k measurements suffice.

C. Organization of the Paper

The structure of the rest of the paper is as follows: Section II
mentions the asymptotic framework of the paper, and summa-
rizes our main results on the asymptotic analysis of AMP.A.
Section III discusses the real-valued AMP.A algorithm and its
analysis. Section IV explains what have been discussed in the
conference version of this paper [48], and points out several
possible future directions. Sections V and VI present the
proofs of our main results. Finally, the appendix summarizes
some properties of elliptic integrals that are used throughout
this paper.

D. Notations

ā denotes the conjugate of a complex number a. � a denotes
the phase of a. We use bold lower-case and upper case
letters for vectors and matrices respectively. For a matrix
A, AT and AH denote the transpose of a matrix and its
Hermitian respectively. Throughout the paper, we also use the
following two notations: 1 �= [1, . . . , 1]T and 0 �= [0, . . . , 0]T.
φ(x) and �(x) are used for the probability density function
and cumulative distribution function of the standard Gaussian
random variable. A random variable a said to be circularly-
symmetric Gaussian, denoted as a ∼ CN (0, σ 2), if a =
aR + iaI and aR and aI are two independent real Gaussian
random variables with mean zero and variance σ 2/2. Finally,
we define �a, b �= �

i=1 āi bi for a, b ∈ Cd .

II. ASYMPTOTIC ANALYSIS OF AMP.A

In this section, we present the asymptotic platform under
which AMP.A is studied, and we derive a set of equations,
known as state evolution (SE), that capture the performance
of AMP.A under the asymptotic analysis.

A. Asymptotic Framework and State Evolution

Our analysis of AMP.A is carried out based on a standard
asymptotic framework developed in [41] and [49]. In this
framework, we let m, n → ∞, while m/n → δ. Within this
section, we will write x∗, xt , w and A as x∗(n), xt (n), w(n)
and A(n) to make explicit their dependency on the signal
dimension n. In this section we focus on the complex-valued
AMP. We postpone the discussion of the real-valued AMP
until Section III. Following [50], we introduce the following
definition of converging sequences.

Definition 1: The sequence of instances {x∗(n), A(n),
w(n)} is said to be a converging sequence if the following
hold:

– m
n → δ ∈ (0,∞), as n → ∞.

– A(n) has i.i.d. Gaussian entries where Ai j ∼ CN
(0, 1/m).

– The empirical distribution of x∗(n) ∈ Cn converges
weakly to a probability measure pX with bounded second
moment. Further, 1

n �x∗(n)�2 → κ2 where κ2 ∈ (0,∞) is
the second moment of pX . For convenience and without
loss of generality, we assume κ = 1.2

– The empirical distribution of w(n) ∈ Cn converges
weakly to CN (0, σ 2

w).
Under the asymptotic framework introduced above,

the behavior of AMP.A can be characterized exactly. Roughly
speaking, the estimate produced by AMP.A in each iteration
is approximately distributed as the (scaled) true signal +
additive Gaussian noise; in other words, xt can be modeled
as αt x∗ + σt h, where h behaves like an iid standard complex
normal noise. We will clarify this claim in Theorem 1 below.
The scaling constant αt and the noise standard deviation σt

evolve according to a known deterministic rule, called the state
evolution (SE), defined below.

Definition 2: Starting from fixed (α0, σ
2
0 ) ∈ C×R+\(0, 0),

the sequences {αt }t≥1 and {σ 2
t }t≥1 are generated via the

following recursion:

αt+1 = ψ1(αt , σ
2
t ),

σ 2
t+1 = ψ2(αt , σ

2
t ; δ, σ 2

w), (II.1)

where ψ1 : C × R+ �→ C and ψ2 : C × R+ �→ R+ are
respectively given by

ψ1(α, σ
2) = 2 · E

�

∂z g(P,Y )
� = E

�
Z̄ P

|Z | |P|
�

,

ψ2(α, σ
2; δ, σ 2

w) = 4 · E

	

|g(P,Y )|2



= 4 · E

	

(|P| − |Z | − W )2



.

In the above equations, the expectations are over all random
variables involved: Z ∼ CN (0, 1/δ), P = αZ + σ B where
B ∼ CN (0, 1/δ) is independent of Z , and Y = |Z |+W where
W ∼ CN (0, σ 2

w) is independent of both Z and B. Further,
the partial Wirtinger derivative ∂z g(p, |z| +w) is defined as:

∂z g(p, |z|+w) �= 1

2

�
∂

∂zR
g(p, |z| + w)− i

∂

∂zI
g(p, |z|+w)

�

,

where zR and zI are the real and imaginary parts of z
(i.e., z = zR + izI ).

Remark 1: The functions ψ1 and ψ2 are well defined except
when both α and σ 2 are zero.

Remark 2: Most of the analysis in this paper is concerned
with the noiseless case. For brevity, we will often write
ψ2(α, σ ; δ, 0) (where σ 2

w = 0) as ψ2(α, σ ; δ). Further, when

2Otherwise, we can introduce the following normalized variables: ỹ = y/κ ,
x̃ = x/κ , w̃ = w/κ , x̃t = xt/κ and p̃t = pt/κ . One can verify that
the AMP.A algorithm defined in (I.5) for these normalized variables remains
unchanged. Therefore, we can view that our analyses are carried out for these
normalized variables; we don’t need to actually change the algorithm though.
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our focus is on α and σ 2 rather than δ, we will simply write
ψ2(α, σ

2; δ) as ψ2(α, σ
2).

In [26, Appendix B], we simplify the functions ψ1(·) and
ψ2(·) into the following expressions (with θα being the phase
of α):

ψ1(α, σ
2) = eiθα ·

� π
2

0

|α| sin2 θ
�|α|2 sin2 θ + σ 2

� 1
2

dθ, (II.2a)

ψ2(α, σ
2; δ, σ 2

w) (II.2b)

= 4

δ

⎛

⎝|α|2 + σ 2 + 1 −
� π

2

0

2|α|2 sin2 θ + σ 2

�|α|2 sin2 θ + σ 2
� 1

2

dθ

⎞

⎠ + 4σ 2
w.

(II.2c)

The above expressions for ψ1 and ψ2 are more convenient for
our analysis.

The state evolution framework for generalized AMP
(GAMP) algorithms [25] was first introduced and analyzed
in [25] and later formally proved in [42]. As we will show
later in Theorem 1, SE characterizes the macroscopic behavior
of AMP.A. To apply the results in [25] and [42] to AMP.A,
however, we need two generalizations. First, we need to extend
the results in [25] and [42] to complex-valued models. This
is straightforward by applying a complex-valued version of
the conditioning lemma introduced in [25] and [42]. Second,
existing results in [25] and [42] require the function g to
be smooth. Our simulation results in case of complex-valued
AMP.A show that SE predicts the performance of AMP.A
despite the fact that g is not smooth. Since our paper is long,
we postpone the proof of this claim to another paper. Instead
we use the smoothing idea discussed in [24] to connect the
SE equations presented in (II.1) with the iterations of AMP.A
in (I.5). Let � > 0 be a small fixed number. Consider the
following smoothed version of AMP.A:

pt = Ax�
t − 2

δ
g�( pt−1, y),

x�
t+1 = 2

	

−divp(gt,�) · x�
t + AHg�( pt , y)




,

where g�( pt−1, y) refers to a vector produced by applying
g� : C × R+ �→ C below component-wise:

g�(p, y)
�= y · h�(p)− p,

where for p = p1 + ip2, h�(p) is defined as

h�(p)
�= p1 + ip2

�

p2
1 + p2

2 + �
.

Note that as � → 0, gt,� → gt and hence we expect the
iterations of smoothed-AMP.A converge to the iterations of
AMP.A.

Theorem 1 (Asymptotic Characterization): Let {x∗(n),
A(n), w(n)} be a converging sequence of instances. For each
instance, let x0(n) be an initial estimate independent of A(n).
Assume that the following hold almost surely

lim
n→∞

1

n
�x∗, x0 = α0 and lim

n→∞
1

n
�x0�2 = σ 2

0 + |α0|2.

Let xt
�(n) be the estimate produced by the smoothed AMP.A

initialized by x0(n) (which is independent of A(n)) and
p−1(n) = 0. Let �1, �2, . . . denote a sequence of smoothing
parameters for which �i → 0 as i → ∞ Then, for any
iteration t ≥ 1, the following holds almost surely

lim
j→∞ lim

n→∞
1

n

n
�

i=1

|xt
� j ,i (n)− eiθt x∗,i |2

= E

	

|Xt − eiθt X∗|2



= �
�1 − |αt |

�
�2 + σ 2

t , (II.3)

where θt = � αt , X t = αt X∗ + σt H and X∗ ∼ pX is
independent of H ∼ CN (0, 1). Further, {α}t≥1 and {σ 2

t }t≥1
are determined by (II.1) with initialization α0 and σ 2

0 .
Proof: Since the proof of the real-valued and complex

valued signals look similar, for the sake of notational simplic-
ity we present the proof for the real-valued signals. First note
that according to [19, Lemma 13]3 for the smoothed AMP.A
algorithm we know that almost surely

lim
n→∞

1

n

n
�

i=1



xt+1
� j ,i
(n)− sign(αt ) · x∗,i

�2

= E(Xt+1
� j

− sign(αt ) · X∗)2,

where Xt
� = α�,t X∗ + σ�,t H and X∗ ∼ pX is independent of

H ∼ N (0, 1), and α�,t and σ�,t satisfy the following iterations:

α�,t+1 = E
�

∂z g�(P
t ,Y )

�

,

σ 2
�,t+1 = E[g2

� (P
t ,Y )],

where Y = |Z | + W , Pt = α�,t Z + σ�,t B , where B ∼
N (0, 1/δ) is independent of Z ∼ N (0, 1/δ) and W ∼
N (0, 1/δ). It is also straightforward to use an induction step
similar to the one presented in the proof of [24, Th. 1] and
show that (α�,t , σ 2

�,t ) → (αt , σ
2
t ) as i → ∞, where (αt , σ

2
t )

satisfy

αt+1 = E
�

∂z g(Pt ,Y )
�

,

σ 2
t+1 = E[g2(Pt ,Y )].

�

B. Convergence of the SE for Noiseless Model

We now analyze the dynamical behavior of the SE. Before
we proceed, we point out that in phase retrieval, one can only
hope to recover the signal up to global phase ambiguity [1],
[2], [4], for generic signals without any structure. In light
of (II.3), AMP.A is successful if |αt | → 1 and σ 2

t → 0 as
t → ∞.

Let us start with the following interesting feature of the state
evolution, which can be seen from (II.2).

Lemma 1: For any (α0, σ
2
0 ) ∈ C × R+\(0, 0), ψ1 and ψ2

satisfy the following properties:

(i) ψ1(α, σ
2) = ψ1(|α|, σ 2) ·eiθα , with eiθα being the phase

of α;
(ii) ψ2(α, σ

2) = ψ2(|α|, σ 2).

Hence, if θt denotes the phase of αt , then θt = θ0.

3The proof for a more general result was first presented in [42]. However,
we found [19] easier to follow. The reader may also find [25, Claim 1] and
related discussions useful, although no formal proof was provided.
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In light of this lemma, we can focus on real and nonnegative
values of αt . In particular, we assume that α0 ≥ 0 and we are
interested in whether and under what conditions can the SE
converge to the fixed point (α, σ 2) = (1, 0). The following
two values of δ will play critical roles in the analysis of SE:

δAMP
�= 64

π2 − 4 ≈ 2.5,

δglobal
�= 2.

Our next theorem reveals the importance of δAMP. The proof
of this theorem detailed in Section V.

Theorem 2 (Convergence of SE): Consider the noiseless
model where σ 2

w = 0. If δ > δAMP, then for any 0 < α0 ≤ 1
and σ 2

0 ≤ 1, the sequences {αt }t≥1 and {σ 2
t }t≥1 defined in

(II.1) converge to

lim
t→∞αt = 1 and lim

t→∞σ
2
t = 0.

There are a couple of points that we would like to emphasize
here:

1) 0 < α0 ≤ 1 and σ 2
0 ≤ 1 is a pessimistic condition for

Theorem 2. In particular, when δ > 4, this condition
could be relaxed to α0 �= 0 and σ 2

0 < ∞. In this paper,
we did not try to optimize this condition since it is fairly
loose and can be achieved by the spectral method in the
noiseless case. In other words, if δ > δAMP the issue
of initialization becomes minor. We will report more
details of this claim in [29]. Alternatively, 0 < α0 ≤ 1
and σ 2

0 ≤ 1 can also be achieved for the noiseless setting
if the signal of interest has nonzero mean. To see this,
consider the initialization x0 = 1. (In the general case
where κ �= 1, we initialize as x0 = κ1. Note that κ2 =
�x�2/n can be accurately estimated in the noiseless set-
ting [14].) Such initialization ensures that α2

0 + σ 2
0 = 1.

Further, α0 = E[X∗] �= 0. Therefore, α0 ∈ (0, 1) and
σ 2

0 ∈ (0, 1).
2) α0 �= 0 is essential for the success of AMP.A. This

can be seen from the fact that α = 0 is always a
fixed point of ψ1(α, σ

2) for any σ 2 > 0. From our
definition of α0 in Theorem 1, α0 = 0 is equivalent
to 1

n �x∗, x0 = 0. This means that the initial estimate
x0 cannot be orthogonal to the true signal vector x∗,
otherwise there is no hope to recover the signal no matter
how large δ is.

3) In the current paper, we did not analyze the convergence
rate of the state evolution. Empirically, we observed
that typically the SE converges exponentially fast after
a few iterations. Rigorously proving this finding is left
as possible future work.

The following theorem describes the importance of δglobal
and its proof can be found in Section VI.

Theorem 3 (Local Convergence of SE): When σ 2
w = 0,

then (α, σ 2) = (1, 0) is a fixed point of the SE in (II.2).
Furthermore, if δ > δglobal, then there exist two constants
�1 > 0 and �2 > 0 such that the SE converges to this fixed
point for any α0 ∈ (1 − �1, 1) and σ 2

0 ∈ (0, �2). On the other
hand if δ < δglobal, then the SE cannot converge to (1, 0)
except when initialized there.

Fig. 1. The regions below the curves exhibit the basin of attraction of
(α, σ 2) = (1, 0). From left to right δ = 2.45, δ = 2.4, δ = 2.35. The
results are obtained by running the state evolution (SE) of AMP.A (complex-
valued version) with α0 and σ 2

0 chosen from 100 × 100 values equispaced in
[0, 1] × [0, 1]. The iteration number is T = 5000 and the reconstruction is
considered successful is |αT − 1| < 10−5 and σ 2

T < 10−10.

According to Theorem 3, with proper initialization, SE can
potentially converge to (α, σ 2) even if δglobal < δ < δAMP.
However, there are two points we should emphasize here:
(i) we find that when δ < δAMP, standard initialization
techniques, such as the spectral method, do not help AMP.A
converge to x∗. We refer the reader to the conference version
of this paper [48] for details. Hence, the question of finding
initialization in the basin of attraction of (α, σ 2) = (1, 0)
(when δ < δAMP) remains open for future research. (ii) As
δ decreases from δAMP to δglobal the basin of attraction
of (α, σ 2) = (1, 0) shrinks. Check the numerical results
in Figure 1.

C. Noise Sensitivity

So far we have only discussed the performance of AMP.A in
the ideal setting where the noise is not present in the measure-
ments. In general, one can use (II.1) to calculate the asymptotic
MSE (AMSE) of AMP.A as a function of the variance of the
noise and δ. However, as our next theorem demonstrates it
is possible to obtain an explicit and informative expression
for AMSE of AMP.A in the high signal-to-noise ratio (SNR)
regime.

Theorem 4 (Noise Sensitivity): Suppose that δ > δAMP =
64
π2 − 4 and 0 < |α0| ≤ 1 and σ 2

0 < 1. Then, in the high SNR
regime the asymptotic MSE defined in (I.6) behaves as

lim
σ 2
w→0

AMSE(σ 2
w, δ)

σ 2
w

= 4

1 − 2
δ

.

The proof of this theorem can be found in [26, Appendix E].

III. EXTENSION TO REAL-VALUED SIGNALS

Until now our focus is on complex-valued signals. In this
section, our goal is to extend our results to real-valued signals.
Since most of the results are similar to the complex-valued
case, we will skip the details and only emphasize on the main
differences.
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A. AMP.A Algorithm

In the real-valued case, AMP.A uses the following
iterations:

xt+1 = −divp(gt) · xt + ATg( pt , y),

pt = Axt − 1

δ
g( pt−1, y), (III.1a)

where g(p, y) : R × R+ �→ R is given by

g(p, y)
�= y · sign(p)− p, (III.1b)

where sign(p) denotes the sign of p. We emphasize that the
divergence term divp(gt) contains a Dirac delta at 0 due
to the discontinuity of the sign function. This makes the
calculation of the divergence in the AMP.A algorithm tricky.
One can use the smoothing idea we discussed in Section II-A.
Alternatively, there are several possible approaches to estimate
the divergence term. These practical issues will be discussed
in details in our follow-up paper [29].

B. Asymptotic Analysis

Our analysis is based on the same asymptotic framework
detailed in Section II-B. The only difference is that the mea-
surement matrix is now real Gaussian with Aij ∼ N (0, 1/m)
and wa ∼ N (0, σ 2

w). In the real-valued setting, the state
evolution (SE) recursion of AMP.A in (III.1) becomes the
following.

Definition 3: Starting from fixed (α0, σ
2
0 ) ∈ R × R+\(0, 0)

the sequences {αt }t≥1 and {σ 2
t }t≥1 are generated via the

following iterations:

αt+1 = ψ1(αt , σ
2
t ),

σ 2
t+1 = ψ2(αt , σ

2
t ; δ, σ 2

w), (III.2)

where, with some abuse of notations, ψ1 : R × R+ �→ R and
ψ2 : R × R+ �→ R+ are now defined as

ψ1(α, σ
2) = E[∂z g(P, |Y |)] = E[sign(Z P)],

ψ2(α, σ
2; δ, σ 2

w) = E[g2(P, |Y |)] = E

	

(|Z | − |P| + W )2



.

The expectations are over the following random variables:
Z ∼ N (0, 1/δ), P = αZ + σ B where B ∼ N (0, 1/δ) is
independent of Z , and Y = |Z | + W where W ∼ N (0, σ 2

w)
independent of both Z and B.

In [26, Appendix D], we derived the following closed-form
expressions of ψ1 and ψ2:

ψ1(α, σ
2) = 2

π
arctan

α

σ

�

, (III.3a)

ψ2(α, σ
2; δ, σ 2

w) = 1

δ

�

α2 + σ 2 + 1 − 4σ

π
− 4α

π
arctan

α

σ

��

+ σ 2
w. (III.3b)

As in the complex-valued case, we would like to study
the dynamics of these two equations. The following lemma
simplifies the analysis.

Lemma 2: ψ1
�

α, σ 2
�

and ψ2(α, σ
2) in (III.3) and (III.3b)

have the following properties:

(i) ψ1(α, σ
2) = ψ1(|α|, σ 2) · sign(α).

(ii) ψ2(α, σ
2) = ψ2(|α|, σ 2).

Again the following two values of δ play a critical role in
the performance of AMP:

δAMP = π2

4
− 1 ≈ 1.47,

δglobal = 1 + 4

π2 ≈ 1.40.

The following two theorems correspond to
Theorems 2 and 3 that explain the dynamics of SE for
complex-valued signals. The proofs can be found in
[26, Appendix D].

Theorem 5 (Convergence of SE): Suppose that δ >

δAMP = π2

4 − 1 and σ 2
w = 0. For any α0 ∈ R\0 and σ 2

0 < ∞,
the sequences {αt }t≥1 and {σ 2

t }t≥1 defined in (III.2) converge:

lim
t→∞ |αt | = 1 and lim

t→∞ σ
2
t = 0.

Note that in Theorem 5 the sequences converge for any
σ 2

0 < ∞. This result is stronger than the complex-valued
counterpart, which requires 0 < |α0| ≤ 1 and σ 2

0 ≤ 1 (see
Theorem 2).

Theorem 6 (Local Convergence of SE): For the noiseless
setting where σ 2

w = 0, (α, σ 2) = (1, 0) is a fixed point of
the SE in (II.2). Furthermore, if δ > δglobal, then there exist
two constants �1 > 0 and �2 > 0 such that the SE converges
to this fixed point for any α0 ∈ (1 − �1, 1) and σ 2

0 ∈ (0, �2).
On the other hand if δ < δglobal, then the SE cannot converge
to (1, 0) except when initialized there.

Note that δglobal here is different from the information
theoretic limit δ = 1. We should emphasize that if we had
not used the continuation discussed in (I.4), then the basin of
attraction of (α, σ ) = (1, 0) would be non-empty as long as
δ > 1.

Finally, we discuss the performance of AMP.A in the high
SNR regime. See [26, Appendix E] for its proof.

Theorem 7 (Noise Sensitivity): Suppose that δ > δAMP =
π2

4 − 1 and α0 ∈ R\0 and σ 2
0 < ∞. Then, in the high SNR

regime we have

lim
σ 2
w→0

AMSE(σ 2
w, δ)

σ 2
w

= 1


1 + 4
π2

�−1 − 1
δ

.

IV. DISCUSSIONS AND FUTURE RESEARCH

A. Simulation Results of AMP.A

In Sections II and III, we analyzed the performance of
AMP.A under the asymptotic setting m, n → ∞, m/n →
δ ∈ (0,∞). For empirical performance of AMP.A and
comparisons to existing algorithms, the reader is referred
to the conference version of this paper [48].4 Simulation
results in [48] confirmed that AMP.A achieves state-of-the-art
performance for optimization-based (for both intensity-based
and amplitude-based loss functions) phase retrieval algorithms.
In [48], we also investigated the impact of spectral initial-
ization (based on the carefully tuned nonlinearity proposed
in [19]) on the performance of AMP.A. Numerical results
in [48] show that, for the complex-valued case, using the

4The Matlab codes for the simulation results in [48] are available at
https://github.com/junjiema2/AMP-for-amplitude-loss-based-phase-retrieval.
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spectral initialization in [19] can only provide marginal gain
in terms of improving the reconstruction threshold. Similar
finding was also observed for the real-valued setting; although
we did not provide simulation results in [48] due to space
limitation.

After the first submission of this paper, we noticed a
recent ArXiv paper [51] in which a successive and incremen-
tal algorithm was proposed (termed IncrePR). Intriguingly,
simulation results of [51] (see Fig. 1) show that the recon-
struction thresholds of the IncrePR algorithm are very close
to δAMP for both the complex and real-valued models. It is
an interesting future work to investigate whether this is a
pure coincidence or there are some fundamental connections
between AMP.A and IncrePR.

B. Future Research

As already mentioned in previous sections, we are working
on a rigorous proof for combining spectral initialization and
AMP.A in a future paper [29]. We also plan to discuss issues
related to the discontinuity of g(p, y), and the consequence
for state evolution.

There are several other possible directions. First, although
we focused on the amplitude-based loss in this paper, it is
also possible to study the intensity-based loss (which was
proposed in [4]) based on a similar AMP framework. Second,
the AMP.A algorithm and the theory developed in this paper
relies crucially on the i.i.d. Gaussian assumption on A. The
results of this paper cannot be directly extended to more prac-
tically relevant models (which involve Fourier matrices [52]).
The extension of AMP.A to Fourier-based measurements is
an interesting future work. To this end, the reader is referred
to [53]–[58] for related recent progress.

V. PROOF OF THEOREM 2: CONVERGENCE OF THE SE

The goal of this section is to prove Theorem 2. Since
the proof is very long, we summarize the organization of
this section to help the reader navigate through the complete
proof.

1) Section V-A is a proof sketch. The reader can skip
the remaining sections if he or she is only interested
in the main idea of our proof. This section contains
Lemmas 3-6 with proofs postponed in later sections
(except for Lemma 4).

2) Section V-B analyzes the properties of the SE maps ψ1
and ψ2. This section contains Lemma 7 and Lemma 8,
as well as their proofs.

3) Section V-C analyzes the properties of F1 and F2, which
are introduced in Section V-A and formally defined in
Lemma 7.

4) Section V-D proves Lemma 3. This section contains
Lemma 9 and its proof.

5) Section V-E proves Lemma 5 that is introduced in
Section V-A.

6) Section V-F proves Lemma 6. This section contains
Lemma 10-16 and their proofs.

Fig. 2. Top: plot of ψ1(α, σ
2) against α. σ 2 = 0.3. Bottom: plot of

ψ2(α, σ
2; δ) against σ 2. α = 0.3 and δ = δAMP.

A. Roadmap of the Proof

Our main goal is to study the dynamics of the iterations:

αt+1 = ψ1(αt , σ
2
t ),

σ 2
t+1 = ψ2(αt , σ

2
t ; δ). (V.1)

Notice that according to the assumptions of Theorem 2,
we assume that we initialized the dynamical system with
α0 > 0. Our first hope is that this dynamical system will not
oscillate and will converge to the solutions of the following
system of nonlinear equations:

α = ψ1(α, σ
2),

σ 2 = ψ2(α, σ
2; δ). (V.2)

Hence, the first step is to characterize and understand the
fixed points of the solutions of (V.2). Toward this goal, we
should study the properties of ψ1(α, σ

2) and ψ2(α, σ
2; δ).

In particular, we would like to know how the fixed points of
ψ1(α, σ

2) behave for a given σ 2 and how the fixed points of
ψ2(α, σ

2; δ) behave for a given value of α and δ. The graphs
of these functions are shown in Figure 2. We list some of
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Fig. 3. Plots of F−1
1 (α) and F2(α; δ) for different values of δ. When

δ = δAMP, F−1
1 (α) and F2(α; δ) intersect at α = 0.

the important properties of these two functions. We refer the
reader to Section V-B to see more accurate statement of these
claims.

1) ψ1
�

α, σ 2
�

is a concave and strictly increasing function
of α > 0, for any σ 2 > 0: This implies that ψ1

�

α, σ 2
�

can have two fixed points: one at zero and one at α > 0.
Also, as is clear from the figure, the second fixed point
is the stable one.

2) If δ > δAMP, then ψ2 has always one stable fixed point.
It may have one unstable fixed point (as a function of
σ 2). See Fig. 5 for an example of this situation.

For the moment, let us assume that the unstable fixed point
does not affect the dynamics of AMP.A. Let F1(σ

2) denote
the non-zero fixed point of ψ1 and F2(α; δ) the stable fixed
point of ψ2.5 We will prove in Lemma 9 that F1(σ

2) is a
decreasing function and hence F−1

1 (α) is well-defined on 0 <
α ≤ 1. Moreover, we will show that by choosing F−1

1 (0) =
π2

16 , F−1
1 (α) is continuous on [0,1].

F−1
1 (α) and F2(α; δ) are shown in Fig. 3. Note that the

places these curves intersect correspond to the fixed points
of (V.2). Depending on the value of δ, the two curves show
the following different behaviors:

1) When δ > δAMP, the dashed curve (see Fig. 3) is entirely
below the solid curve except at (α, σ 2) = (1, 0). δAMP
is the critical value of δ at which F2(0; δ) = F−1

1 (0).
Formally, we will prove the following lemma:
Lemma 3: If δ ≥ δAMP = 64

π2 − 4, then F−1
1 (α) >

F2(α; δ) holds for any α ∈ (0, 1).
The proof of this lemma can be found in Section V-D.
Intuitively speaking, in this case we expect the state
evolution to converge to the fixed point (α, σ 2) = (1, 0),
meaning that AMP.A achieves exact recovery.

5In the literature of dynamical systems, these functions are sometimes called
nullclines. Nullclines are useful for qualitatively analyzing local dynamical
behavior of two-dimensional maps (which is the case for the SE in the present
paper).

Fig. 4. Illustration of the three regions in Definition 4. Note that R2 also
includes the region below F2(α; δ).

2) When 2 < δ < δAMP, the two curves intersect at
multiple locations, but F2(α; δ) < F−1

1 (α) for the values
of α that are close to one. This implies that AMP.A
can still exactly recover x∗ if the initialization is close
enough to x∗. However, this does not happen with
spectral initialization [48]. We will discuss this case in
Theorem 3.

So far, we have studied the solutions of (V.2). However, our
ultimate goal is to analyze the dynamical behavior of (V.1).
In particular, we are interested to see under what conditions
will the estimates (αt , σ

2
t ) converge to (1, 0) (and do not

oscillate). Unfortunately, the dynamics of (αt , σ
2
t ) do not

always monotonically move toward the fixed point (1, 0),
which makes the analysis of SE complicated.

We will first consider the case δ > δAMP. The following
lemma shows that (αt , σ

2
t ) lies within a bounded region if the

initialization falls into that region.
Lemma 4: Suppose that α0 > 0 and σ 2

0 ≤ 1. If δ > δAMP =
64
π2 − 4, then the sequences {αt }t≥1 and {σ 2

t }t≥1 generated by
(II.1) satisfy

0 ≤ αt ≤ 1 and 0 ≤ σ 2
t ≤ σ 2

max, ∀t ≥ 1,

where σ 2
max

�= max
�

1, 4
δ

�

.
Proof: As discussed in Lemma 1, the assumption α0 > 0

implies that αt > 0, ∀t ≥ 1. Further, from the property that
0 < ψ1(α, σ

2) < 1 for α > 0 and σ 2 > 0 (see Lemma 7 (ii)),
we readily have 0 ≤ αt ≤ 1. Similarly, Lemma 8 (iii) shows
that if δ > δAMP, α ∈ [0, 1] and σ 2 ∈ [0, σ 2

max], then
0 ≤ ψ2(α, σ

2; δ) ≤ σ 2
max. From our assumption, we have

σ 2
0 ≤ 1 ≤ σ 2

max. Then, a simple induction argument proves
0 ≤ σ 2

t ≤ σ 2
max. �

Due to the above lemma, we only need to under-
stand the dynamics of the SE in the region R �=
�

(α, σ 2)
�
�0 < α ≤ 1, 0 < σ 2 ≤ σ 2

max

�

. Since the dynamic of
AMP.A is complicated, we further divide this region into
smaller regions. See Fig. 4 for an illustration.
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Definition 4: We divide R �=
�

(α, σ 2)
�
�0 < α ≤ 1, 0 <

σ 2 ≤ σ 2
max

�

into the following three sub-regions:

R0
�=

�

(α, σ 2)
�
�0 < α ≤ 1,

π2

16
< σ 2 ≤ σ 2

max

�

,

R1
�=

�

(α, σ 2)
�
�0 < α ≤ 1, F−1

1 (α) < σ 2 ≤ π2

16

�

,

R2
�=

�

(α, σ 2)
�
�0 < α ≤ 1, 0 ≤ σ 2 ≤ F−1

1 (α)
�

. (V.3)

Our next lemma shows that if (αt , σ
2
t ) is in R1 or R2 for

t ≥ 1, then (αt , σ
2
t ) converges to the desired fixed point (1, 0).

In other words, if we initialize the SE in R1 or R2, then
after only one iteration, the estimates will lie inside of the
“attraction basin” of (1, 0).

Lemma 5: Suppose that δ > δAMP. If (αt0, σ
2
t0) is in

R1 ∪ R2 at time t0 (where t0 ≥ 1), and {αt }t≥t0 and {σ 2
t }t≥t0

are obtained via the SE in (II.1), then

(i) (αt , σ
2
t ) remains in R1 ∪ R2 for all t > t0;

(ii) (αt , σ
2
t ) converges:

lim
t→∞αt = 1 and lim

t→∞ σ
2
t = 0.

This claim will be proved in Section V-E. Notice that the
condition t0 ≥ 1 is important for part (i) to hold: if (α0, σ

2
0 ) is

close to the origin (and thus in R2), then (α1, σ
2
1 ) can move

to R0. However, this cannot happen when t ≥ 1. In the proof
given in Section V-E, we showed that for any (α0, σ

2
0 ) ∈ R the

possible locations of (α1, σ
2
1 ) are bounded from below by a

curve, and once (α, σ 2) is above this curve and also in region
R1 or R2, then it cannot go to R0. The following lemma,
together with Lemma 5, completes the proof of Theorem 2.

Lemma 6: Suppose that δ > δAMP. Let {αt }t≥1 and {σ 2
t }t≥1

be the sequences generated according to (II.1) from any
(α0, σ

2
0 ) ∈ R0. Then, there exists a finite number T ≥ 1 such

that (αT , σ
2
T ) ∈ R1 ∪ R2.

The proof of this result is detailed in Section V-F.
Combining the above two lemmas, it is straightforward to see
that (αt , σ

2
t ) → (1, 0), and hence the proof is complete.

In the following subsections, we present the details that are
missing in the above proof sketch.

B. Properties of ψ1 and ψ2

In this section we derive all the main properties of ψ1 and
ψ2 that are used throughout the paper.

Lemma 7: ψ1
�

α, σ 2
�

has the following properties (for
α ≥ 0):

(i) ψ1
�

α, σ 2
�

is a concave and strictly increasing function
of α > 0, for any given σ 2 > 0.

(ii) 0 < ψ1(α, σ
2) ≤ 1, for α > 0 and σ 2 > 0.

(iii) If 0 < σ 2 < π2

16 , then there are two nonnegative
solutions to α = ψ1(α, σ

2): α = 0 and α = F1(σ
2) > 0.

Further, F1(σ
2) is strongly globally attracting, meaning

that

α < ψ1(α, σ
2) < F1(σ

2), α ∈ (0, F1(σ
2)), (V.4a)

and

F1(σ
2) < ψ1(α, σ

2) < α, α ∈ (F1(σ
2),∞). (V.4b)

On the other hand, if σ 2 ≥ π2

16 , then α = 0 is the
unique nonnegative fixed point and it is strongly globally
attracting.

Proof:
Part (i): From (II.2), it is easy to verify that ψ1(α, σ

2) is
an increasing function of α > 0. We now prove its concavity.
To this end, we calculate its first and second partial derivatives
(∀α > 0, σ 2 > 0):

∂ψ1(α, σ
2)

∂α
=

� π
2

0

sin2 θ · σ 2

(α2 sin2 θ + σ 2)
3
2

dθ, (V.5a)

∂2
1ψ1(α, σ

2)

∂α2 =
� π

2

0

−3 sin4 θ · σ 2α

(α2 sin2 θ + σ 2)
5
2

dθ < 0, (V.5b)

Hence, ψ2(α, σ
2) is a concave function of α for α > 0.

Part (ii): Positivity of ψ1 is obvious. Also, note that

ψ1(α, σ
2) =

� π
2

0

sin2 θ

(sin2(θ)+ σ 2

α2 )
1
2

dθ ≤
� π

2

0
sin θdθ = 1.

Part (iii): The claim is a consequence of the concavity of
ψ1 (with respect to α) and the following condition:

∂ψ1(α, σ
2)

∂α

�
�
�
�
α=0

= 1 ⇐⇒ σ 2 = π2

16
.

The detailed proof is as follows. First, it is straightforward
to verify that α = 0 is always a solution to α = ψ1(α, σ

2).
Define

�1(α, σ
2)

�= ψ1(α, σ
2)− α.

Since �1(α, σ
2) is a concave function of α (as ψ1(α, σ

2) is
concave), ∂�1(α,σ

2)
∂α is decreasing. Let’s first consider σ 2 > π2

16 .
In this case we know that

∂�1(α, σ
2)

∂α
≤ ∂�1(α, σ

2)

∂α

�
�
�
α=0

= ∂ψ1(α, σ
2)

∂α

�
�
�
α=0

− 1

= π

4σ
− 1 < 0, (V.6)

where the second equality can be calculated from (V.5a). Since
�1(α, σ

2) is a decreasing function of α and is equal to zero
when α = 0, it follows that �1(α, σ

2) = 0 does not have any
other solution except for α = 0. Now, consider case σ 2 < π2

16 .
It is straightforward to confirm that

∂�1(α, σ
2)

∂α

�
�
�
α=0

= ∂ψ1(α, σ
2)

∂α

�
�
�
α=0

− 1 = π

4σ
− 1 > 0.

Furthermore, from (V.5a) we have ∂ψ1(α,σ
2)

∂α

�
�
�
α→∞ = 0, and

so

∂�1(α, σ
2)

∂α

�
�
�
α→∞ → −1.

Hence, �1(α, σ
2) = 0 has exactly one more solution for

α > 0. Note that since from part (ii) ψ1(α, σ
2) < 1, the solu-

tion of α = ψ1(α, σ
2) also satisfies α ≤ 1.

Finally, the strong global attractiveness follows from the fact
that ψ1 is a strictly increasing function of α. �
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Lemma 8: ψ2
�

α, σ 2; δ� has the following properties:

(i) If δ < 2, then σ 2 = 0 is a locally unstable fixed point
to σ 2 = ψ2

�

α, σ 2; δ�, meaning that

∂ψ2(α, σ
2; δ)

∂σ 2

�
�
�
α=1,σ 2=0

> 1.

(ii) For any δ > 2, σ 2 = ψ2
�

α, σ 2; δ� has a unique fixed
point, denoted as F2(α; δ), in σ 2 ∈ [0, 1] for any α ∈
[0, 1]. Further, F2(α; δ) is (weakly) globally attracting
in σ 2 ∈ [0, 1]:

σ 2 < ψ2(α, σ
2; δ), σ 2∈ (0, F2(α; δ)), (V.7a)

and

ψ2(α, σ
2) < σ 2, σ 2 ∈ (F2(α; δ), 1). (V.7b)

(iii) If δ ≥ δAMP, then for any α ∈ [0, 1], we have

0 ≤ ψ2(α, σ
2; δ) ≤ σ 2

max, σ 2 ∈ [0, σ 2
max],

where σ 2
max

�= max{1, 4/δ}.
(iv) If δ ≥ δAMP, then for any α ∈ [0, 1], F2(α; δ) is the

unique (weakly) globally attracting fixed point of σ 2 =
ψ2(α, σ

2; δ) in σ 2 ∈ [0, σ 2
max]. Namely,

σ 2 < ψ2(α, σ
2; δ), σ 2∈ (0, F2(α; δ)), (V.8a)

and

ψ2(α, σ
2) < σ 2, σ 2∈ (F2(α; δ), σ 2

max). (V.8b)

(v) For any δ > 0, ψ2(α, σ
2; δ) is an increasing function of

σ 2 > 0 if

α > α∗
�= 1

2
�

1 + s2∗
E

�
1

1 + s2∗

�

≈ 0.53, (V.9)

where s2∗ is the unique solution to

2E

�
1

1 + s2∗

�

= K

�
1

1 + s2∗

�

.

Here, K (·) and E(·) denote the complete elliptic inte-
grals introduced in (A.1). Further, when α > α∗ and
δ > δAMP, then F2(σ

2; δ) is strongly globally attracting
in [0, σ 2

max]. Specifically,

σ 2 < ψ2(α, σ
2; δ) < F2(α; δ), σ 2 ∈ (0, F2(α; δ)),

and

F2(α; δ) < ψ2(α, σ
2) < σ 2, σ 2 ∈ (F2(α; δ), σ 2

max).
Proof: First note that the partial derivative of ψ2 w.r.t. σ 2

is given by

∂ψ2(α, σ
2; δ)

∂σ 2 = 4

δ

�

1 − 1

2

� π
2

0

σ 2

(α2 sin2 θ + σ 2)
3
2

dθ

�

.

(V.10)

Part (i): Before we proceed, we first comment on the
discontinuity of the partial derivative ∂ψ2(α,σ

2;δ)
∂σ 2 at σ 2 = 0.

Note that the formula in (V.10) was derived for non-zero values
of σ 2. Naively, one may plug in σ 2 = 0 in the equation
and assume that ∂ψ2(α,σ

2;δ)
∂σ 2

�
�
�
α=1,σ 2=0

= 4
δ . This is not the

case since the integral
 π/2

0
dθ

sin θ is divergent. It turns out that

the derivative ∂ψ2(α,σ
2;δ)

∂σ 2 is a continuous function of σ 2. The
technical details can be found in [26, Appendix C].

Since ∂ψ2(α,σ
2;δ)

∂σ 2 is continuous at σ 2 = 0, we have

∂ψ2(α, σ
2; δ)

∂σ 2

�
�
�
α=1,σ 2=0

= lim
σ 2→0

∂ψ2(1, σ 2; δ)
∂σ 2 .

Note that if we set m = 1/σ 2, then from (A.5) we have

∂ψ2(1, σ 2; δ)
∂σ 2 = 4

δ

�

1 − 1

2

� π
2

0

σ 2

(sin2 θ + σ 2)
3
2

dθ

�

= 4

δ

�

1 − 1

2

!
m

1 + m
E

�
m

m + 1

��

.

It is then straightforward to use Lemma 18 to prove that

lim
m→∞

4

δ

�

1 − 1

2

!
m

1 + m
E

�
m

m + 1

��

= 2

δ
.

Hence, ∂ψ2(α,σ
2;δ)

∂σ 2

�
�
�
α=1,σ 2=0

> 1 for δ < 2.

Part (ii): We first prove that the following equation has at least
one solution for any α ∈ [0, 1] and δ > 2:

σ 2 = ψ2(α, σ
2; δ), σ 2 ∈ [0, 1].

It is straightforward to verify that

ψ2(α, σ
2; δ)|σ 2=0 = 4

δ
(1 − α)2 ≥ 0. (V.11)

We next prove our claim by proving

ψ2(α, σ
2; δ)|σ 2=1 < 1, ∀α ∈ [0, 1] and δ > 2. (V.12)

From (II.2c), we have

ψ2(α, σ
2; δ)|σ 2=1 < 1 ⇐⇒

� π
2

0

2α2 sin2 θ + 1

(α2 sin2 θ + 1)
1
2

dθ − α2

" #$ %

g(α2)

> 2 − δ

4
. (V.13)

We next show that g(α2) in (V.13) is a concave function of α2.
The first two derivatives w.r.t. α2 are given by:

dg(α2)

dα2 =
� π

2

0

sin2 θ
�

α2 sin2 θ + 3
2

�

(α2 sin2 θ + 1)
3
2

dθ − 1,

and

d2g(α2)

d(α2)2
= −

� π
2

0

sin4 θ


1
2α

2 sin2 θ + 5
4

�

(α2 sin2 θ + 1)
5
2

dθ < 0.

The concavity of g(α2) implies that its minimum happens at
either α = 0 or α = 1. Hence, to prove (V.13), it suffices to
prove that

g(0) = π

2
> 2 − δ

4
and g(1) ≈ 1.509 > 2 − δ

4
,

which holds for δ > 2. Hence, (V.13) holds. By combining
(V.11) and (V.12) we conclude that ψ2(α, σ

2; δ) has at least
one fixed point between σ 2 = 0 and σ 2 = 1. The next step
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is to prove the uniqueness of this fixed point. For the rest
of the proof, we discuss two cases separately: a) δ > 4 and
b) 2 < δ ≤ 4.
(a) δ > 4. Define

�2(α, σ
2; δ) �= ψ2(α, σ

2; δ)− σ 2. (V.14)

From (V.10), if δ > 4, then ∂ψ2(α,σ
2;δ)

∂σ 2 < 1, ∀σ 2 > 0.
This means that �2(α, σ

2; δ) defined in (V.14) is
monotonically decreasing in σ 2 > 0. Hence, the solution
to �2(α, σ

2; δ) = 0 is unique. Furthermore, the following
property is a direct consequence of the monotonicity of
�2(α, σ

2; δ):
�2(α, σ

2; δ) < 0, ∀0 < σ 2 < F2(α; δ), (V.15a)

and

�2(α, σ
2; δ) > 0 > σ 2, ∀F2(α; δ) < σ 2 < 1, (V.15b)

where F2(α; δ) denotes the solution to �2(α, σ
2; δ) = 0.

(b) 2 < δ ≤ 4. In this case, we will prove that there exists
a threshold on σ 2, denoted as σ 2

	 (α; δ) below, such that
the following hold:

∂ψ2(α, σ
2; δ)

∂σ 2 < 1, ∀σ 2 < σ 2
	 (α; δ) (V.16a)

and
∂ψ2(α, σ

2; δ)
∂σ 2 > 1, ∀σ 2 ∈ (σ 2

	 (α; δ),∞). (V.16b)

This means that �2(α, σ
2; δ) = ψ2(α, σ

2; δ) − σ 2 is
strictly decreasing on σ 2 ∈ (0, σ 2

	 (α; δ)) and increas-
ing on σ 2 ∈ (σ 2

	 (α; δ),∞). Note that since we have
proved that �2(α, σ

2; δ) = 0 has at least one solution,
we conclude that there exist exactly two solutions to
�2(α, σ

2; δ) = 0, one in (0, σ 2
	 (α; δ)) and the second

in (σ 2
	 (α; δ),∞), if �2(α, σ

2; δ)|σ 2=σ 2
	 (α;δ) < 0. This is

the case since �2(α, σ
2; δ)|σ 2=1 < 0 (see (V.12)), and

that �2(α, σ
2; δ)|σ 2=1 < �2(α, σ

2; δ)|σ 2=σ 2
	 (α;δ) (since

the latter is the global minimum of �2(α, σ
2; δ) in

σ 2 ∈ (0,∞)).
Also, it is easy to prove (V.15). In fact, the following
holds:

�2(α, σ
2; δ) < 0, ∀0 < σ 2 < F2(α; δ),

and

�2(α, σ
2; δ) > 0 > σ 2, ∀F2(α; δ) < σ 2 < F̂2(α; δ),

where F̂2(α; δ) > 1 denotes the larger solution to
�2(α, σ

2; δ) = 0. See Fig. 5 for an illustration.
From the above discussions, it remains to prove (V.16).
To this end, it is more convenient to express (V.10) using
elliptic integrals defined in Section VI-B:

∂ψ2(α, σ
2; δ)

∂σ 2

= 4

δ

�

1 − 1

2

� π
2

0

σ 2

(α2 sin2 θ + σ 2)
3
2

dθ

�

(V.17a)

= 4

δα

�

α − 1

2
√

1 + s2
E

�
1

1 + s2

�

" #$ %

f (s)

�

, (V.17b)

Fig. 5. Plot of ψ2(α, σ
2; δ) for α = 0.7 and δ = 2.1.

where we introduced a new variable s
�= σ

α and the last
step is derived using the identities in Lemma 19. Based
on (V.17) we can now rewrite (V.16) as

f (s) > α

�

1 − δ

4

�

, ∀s <
σ	(α; δ)
α

(V.18a)

and

f (s) < α

�

1 − δ

4

�

, ∀s ∈
�
σ	(α; δ)
α

,∞
�

. (V.18b)

To prove this, we first show that there exists s∗ such that
f (s) is strictly increasing on (0, s∗) and decreasing on
(s∗,∞), namely,

f 
(s) > 0, for s < s∗, and f 
(s) < 0, for s > s∗.
(V.19a)

s∗ is in fact the unique solution to the following equation:

2E

�
1

1 + s2∗

�

= K

�
1

1 + s2∗

�

. (V.19b)

This can be seen from f 
(s) derived below:

f 
(s) = d

ds

1

2
√

1 + s2
E

�
1

1 + s2

�

= s

2(1 + s2)
3
2

�

K

�
1

1 + s2

�

− 2E

�
1

1 + s2

��

.

Further noting that E(·) is strictly decreasing in (0, 1)
while K (·) is increasing, we proved (V.19).
Based on the above discussions, we can finally turn to
the proof of (V.18). From (V.17b), it is straightforward
to verify that f (0) = 1

2 . Therefore, when δ > 2, we have

α

�

1 − δ

4

�

≤ 1 − δ

4
<

1

2
= f (0),

∀δ > 2 and 0 ≤ α ≤ 1.

Hence, the following equation admits a unique solution
(denoted as s	(α; δ) below):

f (s) = α

�

1 − δ

4

�

, ∀δ > 2 and 0 ≤ α ≤ 1.
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Fig. 6. A plot of f (s).

See Fig. 6 for an illustration. Also, from our above dis-
cussions on the monotonicity of f (s) it is straightforward
to show that

f (s) > α

�

1 − δ

4

�

, ∀s < s	(α; δ)
and

f (s) < α

�

1 − δ

4

�

, ∀s ∈ (s	(α; δ),∞) ,

which proves (V.18) by setting σ	(α; δ) �= α · s	(α; δ).
This proves (V.16), which completes the proof.

Part (iii): We will prove a stronger result: ψ2 ≤ 4/δ. From
(II.2c), ψ2(α, σ

2; δ) ≤ 4/δ is equivalent to

α2 + σ 2 −
� π

2

0

2α2 sin2 θ + σ 2

(α2 sin2 θ + σ 2)
1
2

dθ ≤ 0,

which can be further reformulated as

α2 ≤
� π

2

0

2α2 sin2 θ

(α2 sin2 θ + σ 2)
1
2

dθ

+ σ 2

�
� π

2

0

1

(α2 sin2 θ + σ 2)
1
2

dθ − 1

�

. (V.20)

For 0 ≤ α ≤ 1 and σ 2 ≤ σ 2
max we have

� π
2

0

1

(α2 sin2 θ + σ 2)
1
2

dθ

≥
� π

2

0

1
�

sin2 θ + σ 2
max

� 1
2

dθ,

(a)=
� π

2

0

1


sin2 θ + 4
δAMP

� 1
2

dθ

≈ 1.09 > 1, (V.21)

where step (a) from σ 2
max = max {1, 4/δ} ≥ max

{1, 4/δAMP} = 4/δAMP ≈ 1.6. Due to (V.21), to prove (V.20),
it suffices to prove

α2 ≤
� π

2

0

2α2 sin2 θ

(α2 sin2 θ + σ 2)
1
2

dθ,

or

1 ≤
� π

2

0

2 sin2 θ

(α2 sin2 θ + σ 2)
1
2

dθ,

which, similar to (V.21), can be proved by the following
inequality

� π
2

0

2 sin2 θ

(α2 sin2 θ + σ 2)
1
2

dθ ≥
� π

2

0

2 sin2 θ


sin2 θ + 4
δAMP

� 1
2

dθ

≈ 1.02 > 1.

Part (iv): We bound the partial derivative of ψ2(α, σ
2; δ)

for σ 2 ∈ [0, σ 2
max] as:

ψ2(α, σ
2; δ)

∂σ 2 = 4

δ

�

1 − 1

2

� π
2

0

σ 2

(α2 sin2 θ + σ 2)
3
2

dθ

�

(a)≤ 4

δ

�

1 − 1

2

� π
2

0

σ 2

(θ2 + σ 2)
3
2

dθ

�

(b)= 4

δ

�

1 − 1

2

� π
2σ

0

1

(θ̃2 + 1)
3
2

dθ̃

�

(c)≤ 4

δAMP

⎛

⎝1 − 1

2

�
π

2
!

4
δAMP

0

1

(θ̃2 + 1)
3
2

dθ̃

⎞

⎠

≈ 0.98 < 1, (V.22)

where step (a) follows from the constraint 0 ≤ α ≤ 1 and
the inequality sin θ ≤ θ ; (b) is due to the variable change
θ̃ = θ/σ ; (c) is a consequence of the constraint σ 2 ≤ σ 2

max =
max{1, 4/δ} ≤ max{1, 4/δAMP} = 4/δAMP. As a result of
(V.22), �2(α, σ

2; δ) = ψ2(α, σ
2; δ)−σ 2 is decreasing in σ 2 ∈

[0, σ 2
max]. It is easy to verify that ψ2(0, α; δ) ≥ 0 for α ∈

[0, 1]. Further, Lemma 8 (iii) implies that

ψ2(σ
2
max, α; δ)− σ 2

max ≤ 0.

Hence, there exists a unique solution (which we denote as
F2(α; δ)) to the following equation:

ψ2(σ, α; δ) = σ 2, 0 ≤ σ 2 ≤ σ 2
max.

Finally, the property in (V.8) is a direct consequence of the
fact that �2(α, σ

2; δ) = ψ2(α, σ
2; δ) − σ 2 is a decreasing

function of σ 2 ≤ σ 2
max.

Part (v): In (V.17), we have derived the following:

ψ2(α, σ
2; δ)

∂σ 2 = 4

δα
(α − f (s)) ,

where s
�= σ

α . From (V.17b), we see that ψ2(α, σ
2; δ) is an

increasing function of σ 2 if the following holds:

α > f (s).

Further, (V.19) implies that the maximum of f (s) happens at
s∗, i.e.,

max
s>0

f (s) = 1

2
�

1 + s2∗
E

�
1

1 + s2∗

�

�= α∗, (V.23)
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where s2∗ is the unique solution to

2E

�
1

1 + s2∗

�

= K

�
1

1 + s2∗

�

. (V.24)

Clearly, α > α∗ immediately implies α > f (s), which further
guarantees that ψ2(α, σ

2; δ) is monotonically increasing on
σ 2 > 0. Finally, the strong global attractiveness of F2(α; δ) is
a direct consequence of part (iv) of this lemma together with
the monotonicity of ψ2. �

C. Properties of F1 and F2

In this section we derive the main properties of the functions
F1 and F2 introduced in Section V-A. These properties play
major roles in the results of the paper.

Lemma 9: The following hold for F1(σ
2) and F2(α; δ) (for

δ > 2):

(i) F1(0) = 1 and lim
σ 2→ π2

16

− F1(σ
2) = 0. Further,

by choosing F1(
π2

16 ) = 0, we have F1(σ
2) is continuous

on
	

0, π
2

16




and strictly decreasing in


0, π
2

16

�

;

(ii) F2 is a continuous function of α ∈ [0, 1] and δ ∈ (2,∞).

F2(1; δ) = 0, and F2(0; δ) =
�

−π+
√
π2+4(δ−4)
δ−4

�2

for

δ �= 4 and F2(0; 4) = 4
π2 .

Proof:
Part (i): We first verify F1(0) = 1 and lim

σ 2→ π2
16

−

F1(σ
2) = 0. First, F1(0) = 1 can be seen from the following

facts: (a) ψ1(α, 0) = 1 for α > 0, see (II.2a); and (b) By
definition, F1(0) is the non-zero solution to α = ψ1(α, 0).
Then, by Lemma 7 (iii) and continunity of ψ1, we know F1

is continuous on [0, π2

16 ), and further lim
σ 2→ π2

16

− F1(σ
2) = 0

since σ 2 = π2

16 corresponds to a case where the non-negative
solution to ψ1(α, σ

2) = α decreases to zero. Next, we prove
the monotonicity of F1. Note that

F1(σ
2) = ψ1(F1(σ

2), σ 2),

Differentiation w.r.t. σ 2 yields

F 

1(σ

2) = ∂2ψ1(F1(σ
2), σ 2)+ ∂1ψ1(F1(σ

2), σ 2) · F 

1(σ

2),

where ∂2ψ1(F1(σ
2), σ 2)

�= ∂ψ1(α,σ
2)

∂σ 2

�
�
�
α=F1(σ 2)

and

∂1ψ1(F1(σ
2), σ 2)

�= ∂ψ1(α,σ
2)

∂α

�
�
�
α=F1(σ 2)

. Hence,

	

1 − ∂1ψ1(F1(σ
2), σ 2)




· F 

1(σ

2) = ∂2ψ1(F1(σ
2), σ 2).

(V.25)

We have proved in (V.6) that ∂ψ1(α,σ
2)

∂α

�
�
�
α=0

< 1 when

σ 2 < π2

16 . Together with the concavity of ψ1 w.r.t. α
(cf. Lemma 7 (i)), we have

∂ψ1(α, σ
2)

∂α

�
�
�
α=F1(σ 2)

<
∂ψ1(α, σ

2)

∂α

�
�
�
α=0

< 1, ∀σ 2 <
π2

16
.

(V.26)

Further, from (II.2a), it is straightforward to see that ψ1 is a
strictly decreasing function of σ 2, and thus

∂2ψ1(F1(σ
2), σ 2) = ∂ψ1(α, σ

2)

∂α

�
�
�
α=F1(σ 2)

< 0. (V.27)

Substituting (V.26) and (V.27) into (V.25), we obtain

F 

1(σ

2) < 0, ∀σ 2 <
π2

16
.

Proof of (ii): By Lemma 8 (ii) and continuity of ψ2, it is
straightforward to check that F2 is continuous. Moreover,
we have proved that σ 2 = F2(α; δ) is the unique solution
to the following equation (for δ > 2 and σ 2 ∈ [0, 1]):

σ 2 = 4

δ

�

α2 + σ 2 + 1−
� π

2

0

2α2 sin2 θ + σ 2

(α2 sin2 θ + σ 2)
1
2

dθ

�

. (V.28)

When α = 0, (V.28) reduces

σ 2 = 4

δ



σ 2 + 1 − π

2
σ
�

, σ 2 ∈ [0, 1],
which has two possible solutions (for δ �= 4):

σ1 = −π + �

π2 + 4(δ − 4)

δ − 4

and

σ2 = −π − �

π2 + 4(δ − 4)

δ − 4
.

(For the special case δ = 4, σ1 = 2/π .) However, σ2 is invalid
due to our constraint 0 < σ 2 < 1. This can be seen as follows.
First, σ2 < 0 for δ > 4 and hence invalid. When 2 < δ < 4,
we have

σ2 = π + �

π2 − 4(4 − δ)

4 − δ
>

π

4 − δ
> 1.

Hence, F2(0; δ) = σ1. When α = 1, (V.28) becomes:

σ 2 = 4

δ

�

2 + σ 2 −
� π

2

0

2 sin2 θ + σ 2

(sin2 θ + σ 2)
1
2

dθ

�

, σ 2 ∈ [0, 1].

It is straightforward to verify that σ 2 = 0 is a solution. Also,
from Lemma 8 (ii), σ 2 = 0 is a also the unique solution.
Hence, F2(1; δ) = 0. �

D. Proof of Lemma 3: F−1
1 (α) > F2(α; δ) for δ > δAMP

In Lemma 8, we have proved that F2(α; δ) is the unique
globally attracting fixed point of ψ2 in σ 2 ∈ [0, 1] (for δ > 2),
and from (V.7) we have

σ 2 > F2(α; δ) ⇐⇒ ψ2(α, σ
2; δ) < σ 2, σ 2 ∈ [0, 1].

(V.29)

Here, our objective is to prove that F−1
1 (α) < F2(α; δ) holds

for any α ∈ (0, 1) when δ ≥ δAMP. From (V.29) and noting
that F−1

1 (α) ≤ π2/16 < 1 (from Lemma 9), our problem
can be reformulated as proving the following inequality (for
δ > δAMP):

ψ2(α, F−1
1 (α); δ) < F−1

1 (α), ∀α ∈ (0, 1). (V.30)
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Since ψ2(α, F−1
1 (α); δ) is a strictly decreasing function of

δ (see (II.2c)), it suffices to prove that (V.30) holds for
δ = δAMP:

ψ2(α, F−1
1 (α); δAMP) < F−1

1 (α), ∀α ∈ (0, 1). (V.31)

We now make some variable changes for (V.31). From
(II.2a), ψ1 in can be rewritten as the following for α > 0:

ψ1(α, σ
2) =

� π
2

0

sin2 θ


sin2 θ + σ 2

α2

� 1
2

dθ.

By definition, F1(σ
2) is the solution to α = ψ1(α, σ

2), and
hence the following holds:

α =
� π

2

0

sin2 θ
�

sin2 θ + F−1
1 (α)

α2

� 1
2

dθ.

At this point, it is more convenient to make the following
variable change:

s
�=

�

F−1
1 (α)

α
, (V.32)

from which we get

α = φ1(s)
�=
� π

2

0

sin2 θ
�

sin2 θ + s2
� 1

2

dθ. (V.33)

Notice that φ1 : R+ �→ [0, 1] is a monotonically decreasing
function, and it defines a one-to-one map between α and s.
From the above definitions, we have

F−1
1 (α) = s2α2 = s2φ2

1(s), (V.34)

where the first equality is from (V.32) and the second step from
(V.33). Using the relationship in (V.34), we can reformulate
the inequality in (V.31) into the following equivalent form:

ψ2(φ1(s), s2φ2
1(s); δAMP) < s2φ2

1(s), ∀s > 0. (V.35)

Substituting (V.33) and (II.2c) into (V.35) and after some
manipulations, we can finally write our objective as:
� π

2

0

sin2 θ

(sin2 θ + s2)
1
2

dθ

·
� π

2

0

(1 − γ s2) sin2 θ + s2

(sin2 θ + s2)
1
2

dθ > 1, ∀s > 0, (V.36)

where we defined

γ
�= 1 − δAMP

4
= 2 − 16

π2 . (V.37)

In the next two subsections, we prove (V.36) for s2 > 0.07
and s2 ≤ 0.07 using different techniques.
(i) Case I: We make another variable change:

t
�= 1

s2 .

Using the variable t , we can rewrite (V.36) into the
following:

G(t)
�= g1(t)

g2(t)
− 1

g2
2(t)

≥ γ, ∀t ∈ [0, 14.3), (V.38a)

where γ is defined in (V.37), and

g1(t)
�=

� π
2

0
(1 + t sin2 θ)

1
2 dθ, (V.38b)

g2(t)
�=

� π
2

0

sin2 θ

(1 + t sin2 θ)
1
2

dθ. (V.38c)

Notice that if we could prove (V.38a) for t < 14.3,
we would have proved (V.36) for s2 > 0.07, since
14.3 > 1/0.07 ≈ 14.28. For the ease of later discussions,
we define

g3(t)
�=

� π
2

0

sin4 θ

(1 + t sin2 θ)
3
2

dθ,

g4(t)
�=

� π
2

0

sin6 θ

(1 + t sin2 θ)
5
2

dθ.

The following identities related to {g1(t), g2(t), g3(t),
g4(t)} will be used in our proof:

g

1(t) = 1

2
g2(t),

g

2(t) = −1

2
g3(t),

g

3(t) = −3

2
g4(t). (V.39)

We now prove (V.38a). First, it is straightforward to verify
that equality holds for (V.38a) at t = 0, i.e.,

G(0) = γ. (V.40)

Hence, to prove that G(t) ≥ γ for t ∈ [0, 14.3), it is
sufficient to prove that G(t) is an increasing function of
t on t ∈ [0, 14.3). To this end, we calculate the derivative
of G(t):

G
(t) = g

1(t)g2(t)− g1(t)g


2(t)

g2
2(t)

−
�

−2 g

2(t)

g3
2(t)

�

(a)=
1
2 g2

2(t)+ 1
2 g1(t)g3(t)

g2
2(t)

− g3(t)

g3
2(t)

= 1 + 1

2

g1(t)g3(t)

g2
2(t)

− g3(t)

g3
2(t)

= 1

2

g3(t)

g3
2(t)

�
g3

2(t)

g3(t)
" #$ %

G1(t)

+ g1(t)g2(t)
" #$ %

G2(t)

−2

�

,

where step (a) follows from the identities listed in (V.39).
Since g3(t) > 0, we have

G
(t) > 0 ⇐⇒ G1(t)+ G2(t)− 2 > 0.

It remains to prove that G1(t) + G2(t) − 2 > 0 for
t < 14.3. Our numerical results suggest that G1(t) +
G2(t) is a monotonically decreasing function for t > 0,
and G1(t) + G2(t) → 2 as t → ∞. However, directly
proving the monotonicity of G1(t) + G2(t) seems to
be quite complicated. We use a different strategy here.
We will prove that (at the end of this section)

– G1(t) is monotonically increasing;
– G2(t) is monotonically decreasing.
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As a consequence, the following hold true for any
c2 > c1 > 0:

G1(t)+G2(t)−2 ≥ G1(c1)+G2(c2)−2, ∀t ∈ [c1, c2].

Hence, if we verify that G1(c1)+G2(c2)−2 > 0, we will
be proving the following:

G1(t)+ G2(t)− 2 > 0, ∀t ∈ [c1, c2].

To this end, we verify that G1(c1) + G2(c2) − 2 >
0 hold for a sequence of c1 and c2: [c1, c2] =
[0, 0.49], [c1, c2] = [0.49, 1.08], [c1, c2] = [1.08, 1.78],
[c1, c2] = [1.78, 2.56], [c1, c2] = [2.56, 3.47],
[c1, c2] = [3.47, 4.47], [c1, c2] = [4.47, 5.56],
[c1, c2] = [5.56, 6.77], [c1, c2] = [6.67, 8.08], [c1, c2] =
[8.08, 9.5], [c1, c2] = [9.5, 11], [c1, c2] = [11, 12.6],
[c1, c2] = [12.6, 14.3]. Combining all the above results
proves

G1(t)+ G2(t)− 2 > 0, ∀t ∈ [0, 14.3].

From the above discussions, it only remains to prove the
monotonicity of G1(t) and G2(t). Consider G1(t) first:

G

1(t) =

�

g3
2(t)

g3(t)

�


= 3g2
2(t)g



2(t)g3(t)− g3

2(t)g


3(t)

g2
3(t)

= − 3
2 g2

2(t)g
2
3(t)+ 3

2 g3
2(t)g4(t)

g2
3(t)

= −3

2
g2

2(t)+ 3

2

g3
2(t)g4(t)

g2
3(t)

= 3

2

g2
2(t)

g2
3(t)

· [−g2
3(t)+ g2(t)g4(t)]. (V.41)

Applying the Cauchy-Schwarz inequality yields:

g2(t)g4(t)

=
� π

2

0

sin2 θ

(1 + t sin2 θ)
1
2

dθ
� π

2

0

sin6 θ

(1 + t sin2 θ)
5
2

dθ

≥
�
� π

2

0

sin4 θ

(1 + t sin2 θ)
3
2

dθ

�2

= g2
3(t). (V.42)

Combining (V.41) and (V.42), we proved that G

1(t) ≥ 0,

and therefore G1(t) is monotonically increasing. For
G2(t), we have

G

2(t) = g


1(t)g2(t)+ g1(t)g


2(t)

= 1

2
g2

2(t)+ g1(t)

�

−1

2
g3(t)

�

= 1

2
[g2

2(t)− g1(t)g3(t)].

Again, using Cauchy-Schwarz we have

g1(t)g3(t)

=
� π

2

0
(1 + t sin2 θ)

1
2 dθ ·

� π
2

0

sin4 θ

(1 + t sin2 θ)
3
2

dθ

≥
�
� π

2

0

sin2 θ

(1 + t sin2 θ)
1
2

dθ

�2

= g2
2(t).

Combining the previous two equations leads to
G


2(t) ≥ 0, which completes our proof.
(ii) Case II: We next prove (V.36) for s2 ≤ 0.07, which is

based on a different strategy. Some manipulations of the
RHS of (V.36) yields:
� π

2

0

sin2 θ

(sin2 θ + s2)
1
2

dθ ·
� π

2

0

�

1 − γ s2
�

sin2 θ + s2

(sin2 θ + s2)
1
2

dθ

= E(x)T (x)

x
− γ (1 − x)T 2(x)

x2 , (V.43a)

where E(·), K (·) and T (·) are elliptic integrals defined
in (A.1), γ is a constant defined in (V.37), and x is a new
variable:

x
�= 1

1 + s2 . (V.43b)

From our reformulation in (V.43), the inequality in (V.36)
for s2 < 0.07 becomes

E(x)T (x)

x
− γ

(1 − x)T 2(x)

x2 > 1, x ∈ [0.93, 1).

(V.44)

Note that 0.93 < 1/(1+0.07) and thus proving the above
inequality for x ∈ [0.93, 1) is sufficient to prove the
original inequality for s2 ≤ 0.07 (note that x

�= 1/(1+s2),
see (V.43b)).
With some further calculations, (V.44) can be reformu-
lated as

x

T 2(x)

E(x)T (x)− x

(1 − x)
> γ, x ∈ [0.93, 1). (V.45)

The following inequality is due to [59, eq. (1)]

T (x) < x < 1, ∀x ∈ (0, 1).

Hence,
x

T 2(x)

E(x)T (x)− x

(1 − x)
>

E(x)T (x)− x

1 − x
, ∀x ∈ (0, 1),

and to prove (V.45) it suffices to prove the following

E(x)T (x)− x

1 − x
> γ, ∀x ∈ [0.93, 1). (V.46)

To this end, we will prove that the LHS of (V.46) is a
strictly increasing function of x ∈ [0.93, 1). If this is true,
we would have

E(x)T (x)− x

1 − x

>
E(x)T (x)− x

1 − x
|x=0.93 ≈ 0.385

> γ = 2 − 16

π2 ≈ 0.3789, x ∈ [0.93, 1).
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We next prove the monotonicity of E(x)T (x)−x
1−x . From the

identities in Lemma 18, we derive the following

[E(x)T (x)− x]


= E2(x)− 2(1 − x)E(x)K (x)+ (1 − x)K 2(x)

2 x
− 1.

Hence, to prove that E(x)T (x)−x
1−x is monotonically increas-

ing, it is sufficient to prove the following inequality

�
E2(x)− 2(1 − x)E(x)K (x)+ (1 − x)K 2(x)

2x
− 1

�

(1 − x)− [E(x)T (x)− x](−1) > 0. (V.47)

Now, substituting T (x) = E(x)−(1−x)K (x) into (V.47)
and after some manipulations, we finally reformulate the
inequality to be proved into the following form:

T (x)2 > 2 x − x E2(x).

It can be verified that equality holds at x = 1. We next
prove that T (x)2 + x E(x)2 − 2 x is monotonically
decreasing on [0.93, 1). We differentiate once more:

(T (x)2 + x E(x)2 − 2 x)


= 2 E(x)2 − (1 − x)K (x)2 − 2.

Our problem boils down to proving 2 E(x)2 − (1 − x)
K (x)2 − 2 < 0 for x ∈ [0.93, 1). We can verify that
2 E(x)2 − (1 − x)K (x)2 − 2 = 0 holds at x = 1.
We finish by showing that 2 E(x)2 − (1 − x)K (x)2 − 2
is monotonically increasing in x ∈ [0.93, 1). To this end,
we differentiate again:

[2E(x)2 − (1 − x)K (x)2 − 2]


= K (x)2 − 3E(x)K (x)+ 2E(x)2

x

=
�

K (x)− 3
2 E(x)

�2 − 1
2 E(x)2

x
. (V.48)

We note that K (x)−


3
2 + 1√

2

�

E(x) is a monotonically
increasing function in (0,1) since K (x) is monotonically
increasing and E(x) is monotonically decreasing. We ver-
ify that K (x) −


3
2 + 1√

2

�

E(x) > 0 when x ≥ 0.93.
Hence,

K (x)−
�

3

2
+ 1√

2

�

E(x) > 0, ∀x ∈ [0.93, 1),

and therefore
�

K (x)− 3

2
E(x)

�2

>
1

2
E(x)2, ∀x ∈ [0.93, 1).

(V.49)

Substituting (V.49) into (V.48), we prove that [2 E(x)2 −
(1−x)K (x)2−2]
 > 0 for x ∈ [0.93, 1), which completes
the proof.

E. Proof of Lemma 5: Behavior of the SE in R1 ∪ R2

First, we introduce a function that will be crucial for our
proof.

Definition 5: Define

L(α; δ) �= 4

δ

⎛

⎝1 − φ2
2(φ

−1
1 (α))

4
	

1 + (φ−1
1 (α))2




⎞

⎠ , α ∈ (0, 1),

(V.50)

where φ1 : R+ �→ [0, 1] and φ2 : R+ �→ R+ below:

φ1(s)
�=

� π
2

0

sin2 θ
�

sin2 θ + s2
� 1

2

dθ, (V.51a)

φ2(s)
�=

� π
2

0

2 sin2 θ + s2

�

sin2 θ + s2
� 1

2

dθ, (V.51b)

where φ−1
1 is the inverse functions of φ1. The existence of

φ−1
1 follows from its monotonicity, which can be seen from its

definition.
In the following, we list some preliminary properties of

L(α; δ). The main proof for Lemma 5 comes afterwards.
• Preliminaries:

The following lemma helps us clarify the importance of
L in the analysis of the dynamics of SE:
Lemma 10: For any α > 0, σ 2 > 0 and δ > 0,
the following holds:

L
	

ψ1(α, σ
2); δ




≤ ψ2(α, σ
2; δ), (V.52)

where ψ1 and ψ2 are the SE maps defined in (II.2), and
L(α; δ) is defined in (V.50).

Proof: Define X �= {(α, σ 2)|α > 0, σ 2 > 0}. Let Y
be the image of X under the SE map in (II.2). We will
prove that the following holds for an arbitrary C ∈ [0, 1]:

L (C; δ) = min
(α̂,σ̂ 2)∈X

ψ2(α̂, σ̂
2; δ), (V.53)

where (α̂, σ̂ 2) satisfies the constraint

ψ1(α̂, σ̂
2) = C.

If (V.53) holds, we would have proved (V.52). To see
this, consider arbitrary (α, σ 2) such that ψ1(α, σ

2) = C .
Then, we have

L
	

ψ1(α, σ
2); δ



(a)= min

(α̂,σ̂ 2)
ψ2(α̂, σ̂

2; δ) (b)≤ ψ2(α, σ
2; δ),

where step (a) follows from (V.53) and ψ1(α, σ
2) = C ,

and step (b) holds since the choice α̂ = α and σ̂ 2 = σ 2 is
feasible for the constraint ψ1(α̂, σ̂

2) = ψ1(α, σ
2). This

is precisely (V.52).
We now prove (V.53). From (II.2a) we have

ψ1(α, σ
2) =

� π/2

0

α sin2 θ

(α2 sin2 θ + σ 2)1/2
dθ.

Furthermore, from the definition of φ1 in (V.51a) we have

ψ1(α̂, σ̂
2) = φ1

�
σ̂

α̂

�

= C �⇒ s
�= σ̂

α̂
= φ−1

1 (C).

(V.54)
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Similarly, from (II.2c), i.e. the definition of ψ2, and
the definition of φ2 in (V.51b), we can express
ψ2(α̂, σ̂

2; δ) as

ψ2(α̂, σ̂
2; δ) = 4

δ

�

α̂2 + σ̂ 2 + 1 − α̂ · φ2

�
σ̂

α̂

��

= 4

δ

	

(1 + s2)α̂2 + 1 − α̂ · φ2(s)



.

From (V.54), we see that fixing ψ1(α̂, σ̂
2) = C is

equivalent to fixing s = φ−1
1 (C). Further, for a fixed s,

ψ2(α̂, σ̂
2) is a quadratic function of α̂, and the minimum

is achieved at

α̂min = φ2(s)

2(1 + s2)
= φ2(φ

−1
1 (C))

2

�

1 +


φ−1
1 (C)

�2
� ,

and ψ2(α̂min, σ̂
2; δ) is

ψ2(α̂min, σ̂
2; δ) = 4

δ

�

1 − φ2
2(s)

4(1 + s2)

�

= 4

δ

⎛

⎜
⎜
⎝

1 − φ2
2(φ

−1
1 (C))

4

�

1 +
	

φ−1
1 (C)


2
�

⎞

⎟
⎟
⎠

= L (C; δ) ,
where the last step is from the definition of L is (V.50).
This completes the proof. �
To understand the implication of this lemma, let us
consider the t th iteration of the SE:

αt+1 = ψ1(αt , σ
2
t ),

σ 2
t+1 = ψ2(αt , σ

2
t ; δ).

Note that according to Lemma 10, no matter where
(αt , σ

2
t ) is, (αt+1, σ

2
t+1) will fall above the curve defined

by σ 2 = L(α; δ). This function is a key component
in the dynamics of AMP.A. Before we proceed further,
we discuss two main properties of the function L(α; δ).
Lemma 11: L(α; δ) is a strictly decreasing function of
α ∈ (0, 1).

Proof: Recall from (V.50) that L(α; δ) is defined as

L(α; δ) �= 4

δ

�

1 − φ2
2(φ

−1
1 (α))

4(1 + (φ−1
1 (α))2)

�

= 4

δ



1 − I2[φ−1
1 (α)]

�

,

where I2 : R+ �→ R+ is defined as

I2(s)
�= φ2

2(s)

4(1 + s2)
. (V.55)

From (V.51a), it is easy to see that φ1(s) is a decreasing
function. Hence, to prove that L(α; δ) is a decreasing
function of α, it suffices to prove that I2(s) is strictly
decreasing.

Substituting (V.51b) into (V.55) yields:

I2(s) = φ2
2(s)

4(1 + s2)

= 1

4(1 + s2)

⎛

⎝

� π
2

0

2 sin2 θ + s2

�

sin2 θ + s2
� 1

2

⎞

⎠

2

(a)= 1

4

�

2E

�
1

1 + s2

�

− s2

1 + s2 K

�
1

1 + s2

��2

= 1

4
[2E(x)− (1 − x)K (x)]2 ,

where step (a) is obtained through similar calculations as
those in (A.5), and in the last step we defined x = 1

1+s2 .
Hence, to prove that I2(s) is a decreasing function of
s, it suffices to prove that [2E(x)− (1 − x)K (x)]2 is an
increasing function of x . Further, 2E(x)−(1−x)K (x) =
T (x)+ E(x) > 0 (form the definition of T (x) in (A.1)),
our problem reduces to proving that 2E(x)−(1−x)K (x)
is increasing. To this end, differentiation yields

[2E(x)− (1 − x)K (x)]
 (a)= E(x)− (1 − x)K (x)

2x
(b)= 1

2
T (x)

(c)
> 0,

where (a) is from the differentiation identities in
Lemma 18, (b) is from (A.1), and T (x) > 0 fol-
lows from Lemma 18 (ii) together with the fact that
T (0) = 0. �
The next lemma compares the function L(α; δ) with
F−1

1 (α).
Lemma 12: If δ > δAMP, then

F−1
1 (α) > L(α; δ), ∀α ∈ (0, 1).

Proof: We prove by contradiction. Suppose that
L(α̂; δ) ≥ F−1

1 (α̂) at some α̂ ∈ (0, 1). If this is the case,
then there exists a σ̂ 2 such that

F−1
1 (α̂) ≤ σ̂ 2 ≤ L(α̂; δ). (V.56)

Since F1 is a decreasing function (see Lemma 9), the first
inequality implies that α̂ ≥ F1(σ̂

2). Then, based on the
global attractiveness property in Lemma 7 (iii), we have

ψ1(α̂, σ̂
2) ≤ α̂. (V.57)

Further, Lemma 3 shows that F−1
1 (α̂) > F2(α̂; δ) for

δ > δAMP, and using (V.56) we also have σ̂ 2 ≥ F−1
1 (α̂) >

F2(α̂; δ). Also, from (V.56),

σ̂ 2 ≤ L(α̂; δ) (a)< L(0; δ) = 4

δ

�

1 − π2

16

�

<
4

δ
≤ σ 2

max,

where (a) is due to the monotonicity of L(α; δ) (see
Lemma 11). From the above discussions, F2(α̂; δ) <
σ̂ 2 < σ 2

max. We then have (for δ > δAMP):

ψ2(α̂, σ̂
2; δ) (a)< σ̂ 2 (b)≤ L(α̂; δ) (c)≤ L

	

ψ1(α̂, σ̂
2); δ




,

(V.58)
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where step (a) follows from the global attractiveness
property in Lemma 8 (iv), step (b) is due to the hypoth-
esis in (V.56), step (c) is from (V.57) together with
the monotonicity of L(α; δ) (see Lemma 11). Note
that (V.58) shows that ψ2(α̂, σ̂

2; δ) < L
�

ψ1(α̂, σ̂
2); δ�,

which contradicts Lemma 10, where we proved that
ψ2(α, σ

2; δ) ≥ L
�

ψ1(α, σ
2); δ� for any α > 0, σ 2 > 0

and δ > 0. Hence, we must have that L(α; δ) < F−1
1 (α)

for any α ∈ (0, 1). �
Lemma 13: The following holds for any α ∈ (0, 1) and
δ > 0,

L(α; δ) > 4

δ

�

1 − π2

16
− 1

2
α2

�

, (V.59)

where L(α, δ) is defined in (V.50).
Proof: From (V.50), proving (V.59) is equivalent to

proving:

1 − φ2
2 (φ

−1
1 (α))

4
	

1 + (φ−1
1 (α))2


 > 1 − π2

16
− 1

2
α2, ∀α ∈ (0, 1),

(V.60)

where φ1 : [0,∞) �→ [0, 1] and φ2 : [0,∞) �→ [0,∞)
are defined as (see (V.51a) and (V.51b)):

φ1(s) =
� π

2

0

sin2 θ
�

sin2 θ + s2
� 1

2

dθ, (V.61a)

φ2(s) =
� π

2

0

2 sin2 θ + s2

�

sin2 θ + s2
� 1

2

dθ. (V.61b)

We make a variable change:

α = φ1(s).

Simple calculations show that (V.60) can be reformulated
as the following

1

1 + s2 φ
2
2(s) <

π2

4
+ 2φ2

1(s), s ∈ (0,∞). (V.62)

Let us further define

φ3(s) ≡
� π

2

0
(sin2 θ + s2)

1
2 dθ. (V.63)

From (V.61) and (V.63), we have

φ2(s) = φ1(s)+ φ3(s),

and (V.62) can be reformulated as

[φ1(s)+ φ3(s)]
2 − (1 + s2)

�
π2

4
+ 2φ2

1(s)

�

< 0.

(V.64)

To this end, we can write the LHS of (V.64) into a
quadratic form of φ1(s):

[φ1(s)+ φ3(s)]2 − (1 + s2)

�
π2

4
+ 2φ2

1(s)

�

= φ2
1(s)+ φ2

3(s)+ 2φ1(s)φ3(s)− (1 + s2)

×
�
π2

4
+ 2φ2

1(s)

�

= −(1+2s2)φ2
1(s)+2φ1(s)φ3(s)−π

2

4
(1 + s2)+ φ2

3(s).

Hence, to prove that this quadratic form is negative
everywhere, it suffices to prove that the discriminant is
negative, i.e.,

4φ2
3(s)+ 4(1 + 2s2)

�

−π
2

4
(1 + s2)+ φ2

3(s)

�

< 0,

or

φ2
3 (s) <

π2

8
(1 + 2 s2).

Finally, by Cauchy-Schwarz we have

φ2
3(s) =

(
� π

2

0
(sin2 θ + s2)

1
2 dθ

)2

≤
� π

2

0
1dθ ·

� π
2

0

�

sin2 θ + s2
�2

dθ

= π

2

π

4
+ π

2
s2
�

= π2

8
(1 + 2 s2),

which completes our proof. �
Lemma 14: For any α ∈ [0, 1], ψ2(α, σ

2; δAMP) is an
increasing function of σ 2 on σ 2 ∈ [L(α; δAMP),∞),
where the function L(α; δ) is defined in (5).

Proof: From Lemma 8 (v), the case α > α∗ ≈ 0.53
is trivial since then ψ2(σ

2, α; δAMP) is strictly increasing
in σ 2 ∈ R+. In the rest of this proof, we assume that
α < α∗. We have derived in (V.10) that

∂ψ2(α, σ
2; δ)

∂σ 2 >0⇐⇒α>
1

2
√

1+s2
E

�
1

1+s2

�

= f (s),

(V.65)

where

s
�= σ

α
.

Hence, the result of Lemma 14 can be reformulated as
proving the following:

α > f (s), ∀s ≥
√

L(α; δAMP)

α
, α ∈ [0, α∗).

We proceed in three steps:
(i) In Lemma 13, we proved that the following holds

for any α ∈ [0, 1]:
L(α; δAMP) ≥ L̂(α, δAMP)

�= 4

δAMP

�

1 − π2

16
− 1

2
α2

�

. (V.66)

For convenience, define

ŝ(α)
�=

�

L̂(α; δAMP)

α
. (V.67)

(ii) We prove that f (s) is monotonically decreasing on
s ∈ �

ŝ(α),∞�

for α < α∗.
(iii) We prove that the following holds for α < α∗:

α > f (ŝ(α)).

Clearly, (V.65) follows from the above claims. Here,
we introduce the function L̂ since L̂ has a simple closed-
form formula and is easier to manipulate than L(α).
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We next prove step (ii). From (V.19), it suffices to prove
that

ŝ(α) > s∗, ∀α < α∗,

where s∗ and α∗ are defined in (V.24) and (V.23) respec-
tively. To this end, we note that the following holds for
α < α∗:

ŝ(α) =
�

L̂(α; δAMP)

α
>

�

L̂(α∗; δAMP)

α∗
≈ 1.18,

where the inequality follows from the fact that L̂ in (V.66)
is strictly decreasing in α, and the last step is calculated
from (V.66) and α∗ ≈ 0.527 . Finally, numerical evalua-
tion of (V.24) shows that s∗ ≈ 0.458. Hence, ŝ(α) > s∗,
which completes the proof.
We next prove step (iii). First, simple manipulations
yields

ŝ2(α)
(a)= L̂(α)

α2
(b)= 4

δAMP

��

1 − π2

16

�

· 1

α2 − 1

2

�

,

(V.68)

where (a) is from the definition of ŝ(α) in (V.67) and (b)
is due to (V.66). Using (V.68), we further obtain

α =
*

16 − π2

4δAMPŝ2(α)+ 8
. (V.69)

Now, from (V.69) and (V.17b), we have

α − f (ŝ(α)) > 0 ⇐⇒
*

16 − π2

4δAMPŝ2(α)+ 8

− 1

2
�

1 + ŝ2(α)
E

�
1

1 + ŝ2(α)

�

> 0.

(V.70)

We prove (V.70) by showing that the following stronger
result holds:
*

16 − π2

4δAMPt2 + 8
− 1

2
√

1 + t2
E

�
1

1 + t2

�

>0, ∀t ∈ R+.

(V.71)

For convenience, we make a variable change:

x
�= 1

1 + t2 .

With some straightforward calculations, we can rewrite
(V.71) as

E(x) <

*

16 − π2

δAMP(1 − x)+ 2 x

The following upper bound on E(x) is due to
[60, eq. (1.2)]:

E(x) <
π

2

!

1 − x

2
, ∀x ∈ (0, 1].

Hence, it is sufficient to prove that

π

2

!

1 − x

2
<

*

16 − π2

δAMP(1 − x)+ 2 x
,

which can be reformulated as


1 − x

2

�

(δAMP − (δAMP − 2)x) <
4

π2 (16−π2) = δAMP,

where the second equality follows from the definition
δAMP = 64

π2 − 4. The above inequality holds since 0 <
1 − x

2 < 1 and 0 < δAMP − (δAMP − 2)x < δAMP. This
completes the proof. �
Lemma 15: For any α ∈ [0, 1], ψ2 (α, L(α; δ); δ) is a
strictly decreasing function of δ > 0, where L(α; δ) is
defined in (V.50).

Proof: From the definition of L(α; δ) in (V.50),
we can write

ψ2 (α, L(α; δ); δ) = ψ2

�

α,
1

δ
σ̄ 2; δ

�

,

where (note that σ̄ is not the conjugate of σ )

σ̄ 2 �= 4

⎛

⎝1 − φ2
2(φ

−1
1 (α))

4
	

1 + (φ−1
1 (α))2




⎞

⎠.

A key observation here is that σ̄ 2 does not depend on δ.
Clearly, Lemma 15 is implied by the following stronger
result:

∂ψ2
�

α, 1
δ σ̄

2; δ�
∂δ

< 0, ∀σ̄ 2 > 0, α > 0, δ > 0,

which we will prove in the sequel. For convenience,
we define

s̄
�= σ̄

α
, γ

�= 1

δ
and s = √

γ s̄. (V.72)

Using these new variables, we have

ψ2

�

α,
1

δ
σ̄ 2; δ

�

= ψ2



α, γ σ̄ 2; γ−1
�

= 4γ

⎛

⎝(1 + γ s̄2)α2 + 1 − α

� π
2

0

2 sin2 θ + γ s̄2

�

sin2 θ + γ s̄2
� 1

2

dθ

⎞

⎠,

where the last equality is from the definition of ψ2
in (II.2c). It remains to prove that ψ2

�

α, γ σ̄ 2; γ−1
�

is
an increasing function of γ . The partial derivative of
ψ2(α, σ

2; δ) w.r.t. γ is given by (V.73) (as shown on
the top of the next page), where in step (a) we used
the relationship s2 = γ s̄2 (see (V.72)), and step (b) is
from the identities in (A.5). From (V.73), we see that
∂ψ2

�

α,γ σ̄ 2;γ−1
�

∂γ is a quadratic function of α. Therefore,

to prove
∂ψ2

�

α,γ σ̄ 2;γ−1
�

∂γ > 0, it suffices to show that the
discriminant is negative:
⎛

⎝

(5s2 + 4)E


1
1+s2

�

−2s2K


1
1+s2

�

2
√

1 + s2

⎞

⎠

2

−4(1+2s2)<0.

(V.74)
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∂ψ2
�

α, γ σ̄ 2; γ−1
�

∂γ
= 4(1 + 2γ s̄2)α2 − 4α

�
� π

2

0

2 sin2 θ + γ s̄2

(sin2 θ + γ s̄2)
1
2

dθ + 1

2

� π
2

0

γ 2s̄4

(sin2 θ + γ s̄2)
3
2

dθ

�

+ 4

(a)= (1 + 2s2)α2 − 4α

⎛

⎝

� π
2

0

2 sin2 θ + s2

�

sin2 θ + s2
� 1

2

dθ + 1

2

� π
2

0

s4

(sin2 θ + s2)
3
2

dθ

⎞

⎠+ 4

(b)= 4(1 + 2s2)α2 − 4α

⎛

⎝

(5s2 + 4)E


1
1+s2

�

− 2s2 K


1
1+s2

�

2
√

1 + s2

⎞

⎠ + 4, (V.73)

Further, to prove (V.74), it is sufficient to prove that the
following two inequalities hold:

(5s2 + 4)E

�
1

1 + s2

�

− 2s2 K

�
1

1 + s2

�

> 0, (V.75a)

and

(5s2 + 4)E

�
1

1 + s2

�

− 2s2 K

�
1

1 + s2

�

< 4
�

1 + s2
�

1 + 2s2. (V.75b)

We first prove (V.75a). It is sufficient to prove the
following

(4s2 + 4)E

�
1

1 + s2

�

− 2s2 K

�
1

1 + s2

�

> 0. (V.76)

Applying a variable change x = 1
1+s2 , we can rewrite

(V.76) as

4E(x)− 2(1 − x)K (x)

x
> 0.

The above inequality holds since

4E(x)− 2(1 − x)K (x) > 2E(x)− 2(1 − x)K (x)

= 2T (x) > 0,

where the last equality is from the definition of T (x) in
(A.1).
We next prove (V.75b). Again, applying the variable
change x = 1

1+s2 and after some straightforward manip-
ulations, we can rewrite (V.75b) as

h(x)/x < 0, x ∈ (0, 1),

where

h(x)
�= (5 − x)E(x)− 2(1 − x)K (x)− 4

√
2 − x < 0.

Hence, we only need to prove h(x) < 0 for 0 < x < 1.
First, we note that limx→1− h(x) = 0, from the fact
that E(1) = 1 and limx→1−(1 − x)K (x) = 0 (see
Lemma 18 (i)). We finish the proof by showing that h(x)
is strictly increasing in x ∈ (0, 1). Using the identities in
(A.2), we can obtain

h
(x) = 3

2

(1 − x)(E(x)− K (x))

x
+ 2√

2 − x
.

To prove h
(x) > 0, it is equivalent to prove

4x

3(1 − x)
√

2 − x
> K (x)− E(x)

=
� π

2

0

1

(1 − x sin2 θ)
1
2

dθ −
� π

2

0
(1 − x sin2 θ)

1
2 dθ

=
� π

2

0

x sin2 θ

(1 − x sin2 θ)
1
2

dθ. (V.77)

Noting 0 < x < 1, we can get the following
� π

2

0

x sin2 θ

(1 − x sin2 θ)
1
2

dθ <
� π

2

0

x sin2 θ

1 − x sin2 θ
dθ

= π

2

�
1√

1 − x
− 1

�

.

Hence, to prove (V.77), it suffices to prove

4x

3(1 − x)
√

2 − x
>
π

2

�
1√

1 − x
− 1

�

,

which can be reformulated as

8

3π

1√
2 − x

>

√
1 − x

1 + √
1 − x

.

The inequality holds since

8

3π

1√
2 − x

>
8

3π

1√
2
>

1

2
, ∀x ∈ (0, 1),

and √
1 − x

1 + √
1 − x

<
1

2
, ∀x ∈ (0, 1).

�
• Main proof

We now return to the main proof for Lemma 5. Notice
that by Lemma 10, (αt0, σ

2
t0) cannot fall below the curve

L(α; δ) for t0 ≥ 1. Hence, for R2, we can focus on
the region above L(α; δ) (including L(α; δ)), which we
denote as R2a . See Fig. 7 for illustration.
We will first prove that if (α, σ 2) ∈ R1 ∪ R2a , then
the next iterates ψ1(α, σ

2) and ψ2(α, σ
2) satisfy the

following:

ψ1(α, σ
2) ≥ B1(α, σ

2), (V.78a)

and

ψ2(α, σ
2) ≤ B2(α, σ

2), (V.78b)
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Fig. 7. Illustration of the convergence behavior. R1 and R2 are defined
in Definition 4. For both point A and point B, B1(α, σ

2) and B2(α, σ
2) are

given by the two dashed lines. After one iteration, R2b will not be achievable
and we can focus on R2a .

where B1(α, σ
2) and B2(α, σ

2) are defined as

B1(α, σ
2)

�= min
�

α, F1(σ
2)
�

,

B2(α, σ
2)

�= max
�

σ 2, F−1
1 (α)

�

. (V.79)

Note that when (α, σ 2) is on F−1
1 (i.e., σ 2 = F−1

1 (α)),
equalities in (V.78a) and (V.78b) can be achieved. Further,
this is the only case when either of the equality is
achieved. Also, it is easy to see that if (α, σ 2) is on F−1

1 ,
then (ψ1(α, σ

2), ψ2(α, σ
2)) cannot be on F−1

1 .
Since F−1

1 separates R1 and R2a , (V.79) can also be
written as
�

B1(α, σ
2), B2(α, σ

2)
�

=
+

[F1(σ
2), σ 2] if (α, σ 2) ∈ R1,

[α, F−1
1 (α)] if (α, σ 2) ∈ R2a .

(V.80)

As a concrete example, consider the situation shown
in Fig. 7. In this case, for both point A and point B,
B1(α, σ

2) and B2(α, σ
2) are given by the two dashed

lines. This directly follows from (V.80) by noting that
point A is in region R1 and point B is in region R2a .
Let R2a\F−1

1 (α) be a shorhand for {(α, σ 2)|(α, σ 2) ∈
R2a, α �= F1(σ

2)}. To prove the strict inequality in
(V.78), we deal with (α, σ 2) ∈ R1 and (α, σ 2) ∈
R2a\F−1

1 (α) separately.

1) Assume that (α, σ 2) ∈ R1. Using (V.80),
the inequality in (V.78) can be rewritten as

ψ1(α, σ
2) > F1(σ

2) and ψ2(α, σ
2) < σ 2.

(V.81)

Since (α, σ 2) ∈ R1, we have σ 2 > F−1
1 (α).

Then, applying (V.4) proves ψ1(α, σ
2) > F1(σ

2).
Further, using Lemma 3, we have σ 2 > F−1

1 (α) >
F2(α). Also, Lemma 4 guarantees that σ 2 < σ 2

max.

Hence, F−1
1 (α) < σ 2 < σ 2

max and applying
Lemma 8 (iv) yields ψ2(α, σ

2) < σ 2.
2) We now consider the case where (α, σ 2) ∈

R2a\F−1
1 (α). Similar to (V.81), we need to prove

ψ1(α, σ
2) > α and ψ2(α, σ

2) < F−1
1 (α).

(V.82)

The inequality ψ1(α, σ
2) > α can be proved by the

global attractiveness in Lemma 7 (iii) and the fact
that σ 2 < F−1

1 (α) when (α, σ 2) ∈ R2a\F−1
1 (α).

The proof for ψ2(α, σ
2) < F−1

1 (α) is considerably
more complicated and is detailed in Lemma 16
below.
Lemma 16: For any (α, σ 2) ∈ R2a (see
Definition 4) and δ ≥ δAMP, the following
holds:

ψ2(α, σ
2; δ) < F−1

1 (α), (V.83)

where ψ2 is the SE map in (II.2c) and F−1
1 is the

inverse of F1 defined in Lemma 7.
Proof:

The following holds when (α, σ 2) ∈ R2a :

ψ2(α, σ
2; δ) ≤ max

σ̂ 2∈Dα

ψ2(α, σ̂
2; δ),

where

Dα �=
�

σ̂ 2
�
�L(α; δ) ≤ σ 2 ≤ F−1

1 (α)
�

. (V.84)

Hence, to prove (V.83), it suffices to prove that the
following holds for any δ ≥ δAMP and α ∈ [0, 1]:

max
σ̂ 2∈Dα

ψ2(α, σ̂
2; δ) < F−1

1 (α). (V.85)

We next prove (V.85). We consider the three differ-
ent cases:
(i) α ∈ [α∗, 1] and all δ ∈ [δAMP,∞), where α∗ is

defined in (V.9).
(ii) α ∈ [0, α∗) and δ ∈ [δAMP, 17].

(iii) α ∈ [0, α∗) and δ ∈ (17,∞).
Case (i): Lemma 8 (v) shows that ψ2 is an increas-
ing function of σ 2 in R+. Hence, by noting (V.84),
we have

max
σ̂ 2∈Dα

ψ2(α, σ̂
2; δ) = ψ2(α, F−1

1 (α); δ).
Therefore, proving (V.89) reduces to proving

ψ2(α, F−1
1 (α); δ) ≤ F−1

1 (α). (V.86)

Finally, (V.86) follows from the global attractive-
ness property in Lemma 8 (iv) and the inequality
F−1

1 (α) > F2(α; δ) in Lemma 3.
Case (ii): We will prove that the following holds for
α ∈ [0, α∗) and δ ∈ [δAMP, 17] (at the end of this
proof)

max
σ̂ 2∈Dα

ψ2(α, σ
2; δ)

= max
�

ψ2(α, L(α; δ); δ), ψ2(α, F−1
1 (α); δ)

�

.

(V.87)
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Namely, the maximum of ψ2 over σ 2 is achieved
at either σ 2 = L(α; δ) or σ 2 = F−1

1 (α). Hence,
we only need to prove that the following holds for
any α ∈ [0, α∗) and δ ≥ δAMP:

max
�

ψ2(α, L(α; δ); δ), ψ2(α, F−1
1 (α); δ)

�

≤ F−1
1 (α). (V.88)

In the sequel, we first use (V.87) to prove (V.85),
and the proof for (V.87) will come at the end of this
proof.
Firstly, it is easy to see that ψ2(α, F−1

1 (α); δ)
is a decreasing function of δ, since ψ2(α, σ

2; δ)
is a decreasing function of δ and F−1

1 (α) does
not depend on δ. Further, Lemma 15 shows that
ψ2(α, L(α; δ); δ) is also a decreasing function of δ.
(Notice that unlike F−1

1 (α), L(α; δ) depends on δ,
and thus Lemma 15 is nontrivial.) Hence, to prove
(V.88) for δ ≥ δAMP, it suffices to prove (V.88) for
δ = δAMP, namely,

max
�

ψ2(α, L(α; δ); δAMP), ψ2(α, F−1
1 (α); δAMP)

�

≤ F−1
1 (α). (V.89)

When δ = δAMP, we prove in Lemma 14 that
ψ2 is an increasing function of σ 2 in σ 2 ∈
[L(α; δAMP),∞). (Such monotonicity generally
does not hold if δ is too large.) Further, Lemma 12
shows that F−1

1 (α) > L(α; δAMP). Hence,

ψ2(α, L(α; δ); δAMP) ≤ ψ2(α, F−1
1 (α); δAMP),

and thus proving (V.89) reduces to proving

ψ2(α, F−1
1 (α); δAMP) ≤ F−1

1 (α),

which follows from the same argument as that
for (V.86).
Case (iii): Lemma 8 (iii) shows that ψ2(α; σ 2; δ) ≤
4
δ for any σ 2 ∈ [0, σ 2

max]. It is easy to see that Dα ⊂
[0, σ 2

max], and thus

max
σ 2∈Dα

ψ2(α, σ
2; δ) ≤ 4

δ
≤ 4

17
≈ 0.235. (V.90)

Further, Lemma 9 shows that F−1
1 : [0, 1] �→

[0, π2/16] is monotonically decreasing. Hence,

F−1
1 (α) > F−1

1 (α∗) ≈ 0.415, (V.91)

where the numerical constant is calculated from the
closed form formula F−1

1 (α) = α2 ·
	

φ−1
1 (α)


2
(see

(V.34)) and α∗ ≈ 0.5274 (from (V.9)). Comparing
(V.90) and (V.91) shows that (V.85) holds in this
case.
It only remains to prove (V.87). We have shown in
(V.17) that

∂ψ2(α, σ
2; δ)

∂σ 2 = 4

δα

�

α− 1

2
√

1 + s2
E

�
1

1 + s2

�

" #$ %

f (s)

�

,

(V.92)

where s
�= σ/α. Further, we have proved in (V.19)

that f (s) is strictly increasing on [0, s∗) and strictly
decreasing on (s∗,∞), where s∗ is defined in (V.24).
Hence, when f (0) = 0.5 < α < f (s∗) = α∗, there
exist two solutions to

α = f (s),

denoted as s1(α) and s2(α), respectively. Also, from
(V.92) and noting the definition s = σ/α, we have

∂ψ2(α, σ
2; δ)

∂σ 2 > 0 ⇐⇒ σ 2 ∈
	

0, σ 2
1 (α)

�

∪


σ 2
2 (α),∞

�

,

∂ψ2(α, σ
2; δ)

∂σ 2 ≤ 0 ⇐⇒ σ 2 ∈
	

σ 2
1 (α), σ

2
2 (α)




,

where σ 2
1 (α)

�= α2 s2
1 (α) and σ 2

2 (α)
�= α2 s2

2 (α).
Hence, for fixed α where α ∈ ( f (0), f (s∗)), σ 2

1 (α)
is a local maximum of ψ2 and σ 2

2 (α) is a local
minimum. Clearly, if

L(α; δ) ≥ σ 2
1 (α), (V.93)

then the maximum of ψ2 over σ 2 ∈
[L(α; δ), F−1

1 (α)] can only happen at either
L(α; δ) or F−1

1 (α), which will prove (V.87).
Further, for the degenerate case α ∈ (0, f (0)), ψ2
only has a local minimum, and it is easy to see
that (V.87) also holds. Thus, we only need to prove
that (V.93) holds when δ < 17. This can be proved
as follows:

σ 2
1 (α)

(a)≤ s2∗ · α2 (b)≤ s2∗ · α2∗, (V.94)

where (a) is from the fact that s1(α) ≤ s∗ and
(b) is from our assumption α ≤ α∗. On the other
hand, since L(α) is a decreasing function of α (see
Lemma 11), and thus for α ≤ α∗ we have

L(α; δ) ≥ L(α∗; δ)

= 4

δ

⎛

⎝1 − φ2
2(φ

−1
1 (α∗))

4
	

1 + (φ−1
1 (α∗))2




⎞

⎠, (V.95)

where the last step is from Definition V.50. Based
on (V.94) and (V.95), we see that L(α; δ) > σ 2

1 (α)
for α ≤ α∗ if

δ ≤ 4

s2∗ · α2∗

⎛

⎝1 − φ2
2(φ

−1
1 (α∗))

4
	

1 + (φ−1
1 (α∗))2




⎞

⎠ ≈ 17.04,

where the numerical constant is calculated based on
the definition of α∗ in (V.23), the definition of s∗ in
(V.24), and that of φ1 and φ2 in Definition V.50.
Hence, the condition δ < 17 is enough for our
purpose. This concludes our proof. �

Now we turn our attention to the proof of part (i) of
Lemma 5. Suppose that (α, σ 2) ∈ R1 ∪ R2a .
Then, using (V.78) and based on the fact that
F1(α) is a strictly decreasing function, we know that
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(ψ1(α, σ
2), ψ2(α, σ

2)) ∈ R1 ∪ R2. (See Definition 4.)
Further, Lemma 6 shows that (ψ1(α, σ

2), ψ2(α, σ
2)) /∈

R2b . Hence, (ψ1(α, σ
2), ψ2(α, σ

2)) ∈ R1 ∪R2a . Apply-
ing this argument recursively shows that if (αt0, σ

2
t0) ∈

R1 ∪ R2a , then (αt , σ
2
t ) ∈ R1 ∪ R2a for all t > t0.

An illustration of the situation is shown in Fig. 7.
Now we can discuss the proof of part (ii) of Lemma 5.
To proceed, we introduce two auxiliary sequences
{α̃t+1}t≥t0 and {σ̃ 2

t+1}t≥t0 , defined as:

α̃t+1 = B1(αt , σ
2
t ) and σ̃ 2

t+1 = B2(αt , σ
2
t ), (V.96)

where B1 and B2 are defined in (V.79). Note that the
definitions of B1(α, σ

2) and B2(α, σ
2) require (α, σ 2) ∈

R1 ∪ R2a , and such requirement is satisfied here due
to part (i) of this lemma. Noting the SE update αt+1 =
ψ1(αt , σ

2
t ) and σ 2

t+1 = ψ2(αt , σ
2
t ), and recall the inequal-

ities in (V.78), we obtain the following:

αt+1 ≥ α̃t+1 and σ 2
t+1 ≤ σ̃ 2

t+1, ∀t ≥ t0. (V.97)

Namely, {α̃t+1}t≥t0 and {σ̃ 2
t+1}t≥t0 are “worse” than

{αt+1}t≥t0 and {σ 2
t+1}t≥t0, respectively, at each iteration.

We next prove that

lim
t→∞ α̃t+1 = 1 and lim

t→∞ σ̃
2
t+1 = 0, (V.98)

which together with (V.97), and the fact that αt+1 ≤ 1
and σt+1 > 0 (since (αt , σ

2
t ) ∈ R2a), leads to the results

we want to prove:

lim
t→∞αt+1 = 1 and lim

t→∞ σ
2
t+1 = 0.

It remains to prove (V.98). First, notice that α̃t+1 ≤ 1
and σ̃ 2

t+1 ≥ 0 (∀t ≥ t0), from the definition in (V.79).
We then show that the sequence {α̃t+1}t≥t0 is monotoni-
cally non-decreasing and {σ̃ 2

t+1}t≥t0 is monotonically non-
increasing, namely,

α̃t+2 ≥ α̃t+1 and σ̃ 2
t+2 ≤ σ̃ 2

t+1, ∀t ≥ t0, (V.99)

and equalities of (V.99) hold only when the equalities
in (V.78) hold. Then we can finish the proof by the
fact that α̃ and σ̃ 2 will improve strictly in at most

two consecutive iterations and the ratios α̃t+2
α̃t
,
σ̃ 2

t+2

σ̃ 2
t

are

continuous functions of (αt , σ
2
t ) on [α̃t0, 1] × [0, σ 2

max].
(This is essentially due to the fact that equalities in (V.78)
can be achieved when σ 2 = F−1

1 (α), but this cannot
happen in two consecutive iterations. See the discussions
below (V.79).)
To prove (V.99), we only need to prove the following
(based on the definition in (V.96))

B1 [ψ1, ψ2] ≥ B1(α, σ
2)

and

B2 [ψ1, ψ2] ≤ B2(α, σ
2), ∀(α, σ 2) ∈ R1 ∪ R2a,

where ψ1 and ψ2 are shorthands for ψ1(α, σ
2) and

ψ2(α, σ
2; δ). From (V.79), the above inequalities are

equivalent to

min {ψ1, F1(ψ2)} ≥ B1(α, σ
2), (V.100)

and

max
�

ψ2, F−1
1 (ψ1)

�

≤ B2(α, σ
2). (V.101)

Note that (V.78) already proves the following

ψ1 ≥ B1(α, σ
2) and ψ2 ≤ B2(α, σ

2).

Hence, to prove (V.100) and (V.101), we only need to
prove

F1(ψ2) ≥ B1(α, σ
2) and F−1

1 (ψ1) ≤ B2(α, σ
2).

To prove F1(ψ2) ≥ B1(α, σ
2), we note that

ψ2
(a)≤ B2(α, σ

2)
(b)= max

�

σ 2, F−1
1 (α)

�

(c)= F−1
1



min
�

F1(σ
2), α

��

(d)= F−1
1



B1(α, σ
2)
�

,

where (a) is from (V.78b), (b) is from (V.79), and
(c) is due to the fact that F−1

1 is strictly decreasing, and
(d) from (V.78). Hence, since F1 is strictly decreasing,
we have

F1(ψ2) ≥ F1

	

F−1
1



B1(α, σ
2)
�


= B1(α, σ
2).

Further, it is straightforward to see that if both inequalities
are strict in (V.78) then

min {ψ1, F1(ψ2)} > B1(α, σ
2).

This shows that equalities of (V.99) hold only when the
equalities in (V.78) hold.
The proof for F−1

1 (ψ1) ≤ B2(α, σ
2) is similar and

omitted.

F. Proof of Lemma 6: Behavior of the SE in R0

Suppose that (α, σ 2) ∈ R0. From Definition 4, we have

π2

16
< σ 2 ≤ σ 2

max. (V.102)

Further, F−1
1 is monotonically decreasing and hence

(for δ > δAMP)

π2

16
= F−1

1 (0) > F−1
1 (α) ≥ F2(α; δ), (V.103)

where the last inequality is due to Lemma 3. Combining
(V.102) and (V.103) yields

F2(α; δ) < σ 2 ≤ σ 2
max. (V.104)

By the global attractiveness property in Lemma 8 (iv), (V.104)
implies

ψ2(α; σ 2; δ) < σ 2.

From the above analysis, we see that as long as
π2

16 < σ 2
t ≤ σ 2

max (and also 0 < αt < 1), σ 2
t+1 will be strictly

smaller than σ 2
t :

σ 2
t+1 = ψ2(αt ; σ 2

t ; δ) < σ 2
t .
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Hence, there exists a finite number T ≥ 1 such that

σ 2
T −1 >

π2

16
and σ 2

T ≤ π2

16
.

Otherwise, σ 2
t will converge to a σ̄ 2 in R0. This implies that

σ̄ 2 is a fixed point of ψ2 for certain value of 0 < α ≤ 1.
However, we know from part (i) of Lemma 9 and Lemma 3
that this cannot happen.

Based on a similar argument, we also have ψ1(α; σ 2) < α
and so αt+1 < αt for t ≤ T − 1. Further, we can show that
αt > 0 (i.e., αt �= 0) for all 0 ≤ t ≤ T . First, α0 > 0
follows from our assumption. Further, from (II.2a) we see that
αt+1 > 0 if αt > 0. Then, using a simple induction argument
we prove that αt > 0 for all 0 ≤ t ≤ T . Putting things
together, we showed that there exists a finite number T ≥ 1
such that

0 < αT ≤ 1 and σ 2
T ≤ π2

16
.

(Recall that we have proved in Lemma 4 that αT ≤ 1.) From
Definition 4, (αT , σ

2
T ) ∈ R1 ∪ R2.

VI. PROOF OF THEOREM 3: LOCAL CONVERGENCE OF SE

We consider the two different cases separately: (1) δ >
δglobal and (2) δ < δglobal.

A. Case δ > δglobal

In this section, we will prove that when δ > δglobal the
state evolution converges to the fixed point (α, σ 2) = (1, 0)
if initialized close enough to the fixed point. We first prove
the following lemma, which shows that F−1

1 is larger than
F2(α; δ) for α close to one.

Lemma 17: Suppose that δ > δglobal = 2. Then, there exists
an � > 0 such that the following holds:

F−1
1 (α) > F2(α; δ), ∀α ∈ (1 − �, 1). (VI.1)

Proof: In Lemma 3, we proved that F−1
1 (α) > F2(α; δ)

holds for all α ∈ (0, 1) when δ > δAMP ≈ 2.5. Here,
we will prove that F−1

1 (α) > F2(α; δ) holds for α close to
1 when δ > δglobal = 2. Similar to the manipulations given
in Section V-D, the inequality (VI.1) can be re-parameterized
into the following (∀s ∈ (0, ξ)):
� π

2

0

sin2 θ

(sin2 θ + s2)
1
2

dθ ·
� π

2

0

(1 − γ s2) sin2 θ + s2

(sin2 θ + s2)
1
2

dθ > 1,

(VI.2)

where γ
�= 1 − δ/4 and ξ = φ−1

1 (�) (see (V.33) for the
definition of φ1). Again, it is more convenient to express (VI.2)
using elliptic integrals (cf. (V.44))

E(x)T (x)

x
− γ (1 − x)T 2(x)

x2 > 1, ∀x ∈
�

1

1 + ξ
, 1

�

,

(VI.3)

where we made a variable change x
�= 1/(1+s2). To this end,

we can verify that

lim
x→1

E(x)T (x)

x
− γ (1 − x)T 2(x)

x2 = 1.

Fig. 8. Illustration of the local convergence behavior when δ > δglobal. For
all the three points shown in the figure, B1 and B2 are given by the dashed
lines.

To complete the proof, we only need to show that the derivative
of the LHS of (VI.3) in a small neighborhood of x = 1 is
strictly negative when δ > δglobal = 2. Using the formulas
listed in Section VI-B, we can derive the equation shown on
the top of the next page, where the last step is due to the facts
that E(x) = 1 and limx→1(1− x)K (x) = 0. See Section VI-B
for more details. Hence, the above derivative is negative if
γ < 1

2 or δ > 2 by noting the definition γ = 1 − δ/4. �
We now turn to the proof of Lemma 3. The idea of the proof

is similar to that of Theorem 2. There are some differences
though, since now δ can be smaller than δAMP and some results
in the proof of Theorem 2 do not hold for the case considered
here. On the other hand, as we focus on the range α ∈ (1 −
�, 1) > α∗, and under this condition we know that F2(σ

2; δ) is
strongly globally attracting (see Lemma 8-(v)), which means
that ψ2(α, σ

2) moves towards the fixed point F2(α; δ), but
cannot move to the other side of F2(α; δ).

We continue to prove the local convergence of the state
evolution. We divide the region R� �= {(α, σ 2)|1−� ≤ α ≤ 1,
0 ≤ σ 2 ≤ F−1

1 (1 − �)} into the following sub-regions:

R�
1

�=
�

(α, σ 2)
�
�1−� ≤ α ≤ 1, F−1

1 (α) < σ 2 ≤ F−1
1 (1−�)

�

,

R�
2a

�=
�

(α, σ 2)
�
�1 − � ≤ α ≤ 1, F2(α; δ) < σ 2 ≤ F−1

1 (α)
�

R�
2b

�=
�

(α, σ 2)
�
�1 − � ≤ α ≤ 1, 0 ≤ σ 2 ≤ F2(α; δ)

�

.

(VI.4)

Similar to the proof of Lemma 5 discussed in Section V-E,
we will show that if (α, σ 2) ∈ R� then the new states (ψ1, ψ2)
can be bounded as follows (∀(α, σ 2) ∈ R�):

ψ1(α, σ
2) ≥ B1(α, σ

2) and ψ2(α, σ
2) ≤ B2(α, σ

2) (VI.5)

where

B1(α, σ
2) = min

�

α, F1(σ
2)
�

B2(α, σ
2) = max

�

σ 2, F−1
1 (α)

�

.
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d

dx

�
E(x)T (x)

x
− γ (1 − x)T 2(x)

x2

� �
�
�
x→1

= 2γ (x − 4)E(x) · (1 − x)K (x)+ [4γ (1 − x)+ x] · (1 − x)K 2(x)+ [2γ (2 − x)− x]E2(x)

2x3

�
�
�
x→1

= γ − 1

2
,

Based on the strong global attractiveness of ψ1 (Lemma 7-iii)
and ψ2 (Lemma 8-v) and the additional result (V.7), it is
straightforward to show the following:

ψ1(α, σ
2) ≥ F1(σ

2) and ψ2(α, σ
2) ≤ σ 2, ∀(α, σ 2) ∈ R�

1,

ψ1(α, σ
2) ≥ α and ψ2(α, σ

2) ≤ σ 2, ∀(α, σ 2) ∈ R�
2a,

ψ1(α, σ
2) ≥ α and ψ2(α, σ

2) ≤ F2(α; δ), ∀(α, σ 2) ∈ R�
2b,

which, together with the definitions given in (VI.4) and the
fact that F2(α; δ) < F−1

1 (α) (cf. Lemma 17), proves (VI.5).
The rest of the proof follows that in Section V-E. Namely,
we construct two auxiliary sequences {α̃t+1} and {σ̃ 2

t+1} where

α̃t+1 = B1(αt , σ
2
t ) and σ̃ 2

t+1 = B2(αt , σ
2
t ),

and show that {α̃t+1} and {σ̃ 2
t+1} monotonically converge to

1 and 0 respectively. The detailed arguments can be found in
Section V-E and will not be repeated here.

B. Case δ < δglobal

We proved in (V.17) that

∂ψ2(α, σ
2; δ)

∂σ 2 = 4

δα

�

α − 1

2
√

1 + s2
E

�
1

1 + s2

�

" #$ %

f (s)

�

,

where s = σ
α . Hence, we have (note that E(1) = 1)

∂2ψ2(α, 0)
�= ∂ψ2(α, σ

2)

∂σ 2

�
�
�
σ 2=0

= 4

δ

�

1 − 1

2α

�

, ∀α > 0.

(VI.6)

Therefore,

∂2ψ2(α, 0) > 1, ∀α > 2

4 − δ
.

When δ < δglobal = 2, we have 2
4−δ < 1 and therefore there

exists a constant α∗ that satisfies the following:

2

4 − δ
< α∗ < 1,

which together with (VI.6) yields

∂2ψ2(α
∗, 0) > 1.

Further, as discussed in the proof of Lemma 8-(i),
∂2ψ2(α

∗, σ 2) is a continuous function of σ 2. Hence, there
exists ξ∗ > 0 such that

∂2ψ2(α
∗, σ 2) > 1, ∀σ 2 ∈ [0, ξ∗]. (VI.7)

Further, we have shown in (V.10) that

∂ψ2(α, σ
2; δ)

∂σ 2 = 4

δ

�

1 − 1

2

� π
2

0

σ 2

(α2 sin2 θ + σ 2)
3
2

dθ

�

,

and it is easy to see that ∂2ψ2(α, σ
2; δ) is an increasing

function of α ∈ (0,∞). Hence, together with (VI.7) we get
the following

∂2ψ2(α, σ
2; δ) > 1, ∀(α, σ 2) ∈ [α∗, 1] × [0, ξ∗],

which means that ψ2(α, σ
2) − σ 2 is a strictly increasing

function of σ 2 for (α, σ 2) ∈ [α∗, 1] × [0, ξ∗]. Hence,

ψ2(α, σ
2)− σ 2 > ψ2(α, 0) = 4

δ
(1 − α)2 ≥ 0,

for any (α, σ 2) ∈ [α∗, 1]×[0, ξ∗]. This implies that σ 2 moves
away from 0 in a neighborhood of the fixed point (1, 0).

APPENDIX A
BACKGROUND ON ELLIPTIC INTEGRALS

The functions that we have in (II.1) are related to the first
and second kinds of elliptic integrals. Below we review some
of the properties of these functions that will be used throughout
our paper. Elliptic integrals (elliptic integral of the second
kind) were originally proposed for the study of the arc length
of ellipsoids. Since their appearance, elliptic integrals have
appeared in many problems in physics and chemistry, such
as characterization of planetary orbits. Three types of elliptic
integrals are of particular importance, since a large class of
elliptic integrals can be reduced to these three. We introduce
two of them that are of particular interest in our work.

Definition 6: The first and second kinds of complete elliptic
integrals, denoted by K (m) and E(m) (for −∞ < m < 1)
respectively, are defined as [61]

K (m) =
� π

2

0

1

(1 − m sin2 θ)
1
2

dθ, (A.1a)

E(m) =
� π

2

0
(1 − m sin2 θ)

1
2 dθ. (A.1b)

For convenience, we also introduce the following definition:

T (m) = E(m)− (1 − m)K (m). (A.1c)
In the above definitions, we continued to use m, to follow the
convention in the literature of elliptic integrals. Previously, m
was defined to be the number of measurements, but such abuse
of notation should not cause confusion as the exact meaning
of m is usually clear from the context.
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Below, we list some properties of elliptic integrals that will
be used in this paper. The proofs of these properties can be
found in standard references for elliptic integrals and thus
omitted (e.g., [61]).

Lemma 18: The following hold for K (m) and E(m) defined
in (A.1):

(i) K (0) = E(0) = π
2 . Further, for � → 0, E(1 − �) and

K (1 − �) behave as

E(1 − �) = 1 + �

2

�

log
4√
�

− 0.5

�

+ O(�2 log(1/�))

K (1 − �) = log

�
4√
�

�

+ O(� log(1/�)).

(ii) On m ∈ (0, 1), K (m) is strictly increasing, E(m) is
strictly decreasing, and T (m) is strictly increasing.

(iii) For m > −1,

K (−m) = 1√
1 + m

K

�
m

1 + m

�

,

E(−m) = √
1 + m E

�
m

1 + m

�

.

(iv) The derivatives of K (m), E(m) and T (m) are given by
(for m < 1)

K 
(m) = E(m)− (1 − m)K (m)

2m(1 − m)
,

E 
(m) = E(m)− K (m)

2m
,

T 
(m) = 1

2
K (m). (A.2)

Furthermore, we will use a few more elliptic integrals in
our work. Next lemma and its proof connects these elliptic
integrals to Type I and Type II elliptic integrals.

Lemma 19: The following equalities hold for any m ≥ 0:
� π

2

0

cos2 θ
�

1 + m sin2 θ
� 3

2

dθ =
� π

2

0

sin2 θ
�

1 + m sin2 θ
� 1

2

dθ, (A.3a)

� π
2

0

3m cos2 θ

(1 + m sin2 θ)
5
2

dθ +
� π

2

0

1

(1 + m sin2 θ)
3
2

dθ

=
� π

2

0

1 + 2m sin2 θ
�

1 + m sin2 θ
� 1

2

dθ. (A.3b)

Proof: We will only prove (A.3b). (A.3a) can be proved in
the same way. The idea is to express the integrals using elliptic
integrals defined in (A.1), and then apply known properties
of elliptic integrals (Lemma 18) to simplify the results. The
same tricks in proving (A.3b) are used to derive other related
integrals in this paper. Below, we will provide the full details
for the proof of (A.3b), and will not repeat such calculations
elsewhere. The LHS of (A.3b) can be rewritten as:
� π

2

0

3m

(1 + m sin2 θ)
5
2

dθ −
� π

2

0

3m sin2 θ

(1 + m sin2 θ)
5
2

dθ

+
� π

2

0

1

(1 + m sin2 θ)
3
2

dθ =
� π

2

0

1 + 2m sin2 θ
�

1 + m sin2 θ
� 1

2

dθ.

(A.4)

The equality in (A.4) can be proved by combining the
identities shown at the top of the next page together with

straightforward manipulations. In (A.5), as shown at the top
of the next page, K (m) and E(m) denote the complete elliptic
integrals of the first and second kinds (see (A.1)). First,
consider the identity (i) in (A.5):
� π

2

0

sin2 θ

(1 + m sin2 θ)
1
2

dθ

= 1

m

� π
2

0
(1 + m sin2 θ)

1
2 dθ − 1

m

� π
2

0

1

(1 + m sin2 θ)
1
2

dθ

(a)= 1

m
[E(−m)− K (−m)]

(b)= 1

m

�√
1 + m E

�
m

1 + m

�

− 1√
1 + m

K

�
m

1 + m

��

,

(A.6)

where (a) is from the definition of K (m) and E(m) in (A.1),
and (b) is from Lemma 18 (iii).

Identity (ii) can be proved as follows:
� π

2

0

sin2 θ

(1 + m sin2 θ)
3
2

dθ = −2
d

dm

� π
2

0

1

(1 + m sin2 θ)
1
2

dθ

= −2
d

dm
K (−m)

(a)= (1 + m)K (−m)− E(−m)

m(1 + m)

(b)=
K


m

1+m

�

− E


m
1+m

�

m
√

1 + m
, (A.7)

where (a) is due to Lemma 18 (iv) and (b) is from
Lemma 18 (iii).

For identity (iii), we have
� π

2

0

1

(1 + m sin2 θ)
3
2

dθ

=
� π

2

0

1

(1 + m sin2 θ)
1
2

dθ − m ·
� π

2

0

sin2 θ

(1 + m sin2 θ)
3
2

dθ

(a)= K (−m)− m · (1 + m)K (−m)− E(−m)

m(1 + m)

= E(−m)

1 + m
(b)= 1√

1 + m
E

�
m

1 + m

�

, (A.8)

where step (a) follows from the third step of (A.7), and step
(b) follows from Lemma 18 (iii).

Identity (iv) can be proved in a similar way:
� π

2

0

sin2 θ

(1 + m sin2 θ)
5
2

dθ

= −2

3
· d

dm

� π
2

0

1

(1 + m sin2 θ)
3
2

dθ

(a)= −2

3
· d

dm

E(−m)

1 + m
(b)= (1 + m)K (−m)− (1 − m)E(−m)

3m(1 + m)2

(c)=
−(1 − m)E


m

1+m

�

− K


m
1+m

�

3m(1 + m)
3
2

,
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(i):
� π

2

0

sin2 θ

(1 + m sin2 θ)
1
2

dθ =
(m + 1)E


m

1+m

�

− K


m
1+m

�

m
√

1 + m
, (A.5a)

(ii):
� π

2

0

sin2 θ

(1 + m sin2 θ)
3
2

dθ =
K


m

1+m

�

− E


m
1+m

�

m
√

1 + m
, (A.5b)

(iii):
� π

2

0

1

(1 + m sin2 θ)
3
2

dθ = 1√
1 + m

E

�
m

1 + m

�

, (A.5c)

(iv):
� π

2

0

sin2 θ

(1 + m sin2 θ)
5
2

dθ =
−(1 − m)E


m

1+m

�

+ K


m
1+m

�

3m(1 + m)
3
2

, (A.5d)

(v):
� π

2

0

1

(1 + m sin2 θ)
5
2

dθ =
2(m + 2)E


m

1+m

�

− K


m
1+m

�

3(1 + m)
3
2

, (A.5e)

where (a) is from the third step of (A.8), step (b) is from
Lemma 18 (iv) and (c) is from Lemma 18 (iii).

Lastly, identity (v) can be proved as follows:
� π

2

0

1

(1 + m sin2 θ)
5
2

dθ

=
� π

2

0

1

(1 + m sin2 θ)
3
2

dθ − m ·
� π

2

0

sin2 θ

(1 + m sin2 θ)
5
2

dθ

(a)= E(−m)

1 + m
− m · (1 + m)K (−m)− (1 − m)E(−m)

3m(1 + m)2

(b)=
2(m + 2)E


m

1+m

�

− K


m
1+m

�

3(1 + m)
3
2

,

where step (a) follows from the derivations of the previous
two identities and (b) is again due to Lemma 18 (iii). �
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