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Turbo Compressed Sensing with Partial
DFT Sensing Matrix
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Abstract—In this letter, we propose a turbo compressed sensing
algorithm with partial discrete Fourier transform (DFT) sensing
matrices. Interestingly, the state evolution of the proposed algo-
rithm is shown to be consistent with that derived using the replica
method. Numerical results demonstrate that the proposed algo-
rithm outperforms the well-known approximate message passing
(AMP) algorithm when a partial DFT sensing matrix is involved.

Index Terms—Approximate message passing (AMP), com-
pressed sensing, partial DFT matrix, replica method, state
evolution.

I. INTRODUCTION

P ARTIAL discrete Fourier transform (DFT) sensing
matrices have found many applications [1] and an effi-

cient signal recovery algorithm is highly desirable for related
compressed sensing problems. Approximate message passing
(AMP) [2]–[4] is an iterative algorithm for this purpose. The
state evolution of AMP with independent and identically
distributed (i.i.d.) Gaussian sensing matrices is shown to be
consistent with that derived using the replica method [4]. This
implies that AMP can potentially provide near-optimal per-
formance when i.i.d. Gaussian sensing matrices are involved.
However, the situation is different for partial DFT sensing
matrices whose entries are not independently drawn. Recent
results in [5], [6] pointed out that, using the replica method,
the optimal reconstruction performance of a system based on
a partial DFT matrix is different from that based on an i.i.d.
Gaussian matrix.
In this letter, we propose a turbo-type iterative algorithm [7]

for the problem. The proposed algorithm involves two local pro-
cessors. One processor handles the information related to a par-
tial DFT sensing matrix using the linear minimum mean-square
error (LMMSE) principle. The other processor handles the spar-
sity information. Our main contribution is a novel way to com-
pute extrinsic messages related to the sparsity information. The
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state evolution of the proposed algorithm coincides with that
predicted by the replica method [5], [6]. This indicates the po-
tentially excellent performance of the proposed algorithm, as
confirmed by Monte Carlo simulations.

II. PROBLEM DESCRIPTION

Consider the following linear system

(1)

where is a sparse signal to be estimated,
the received signal, and the Gaussian noise.

consists of randomly selected and reordered rows of
the unitary DFT matrix , where the th entry
of is given by with . The
entries of the sparse signal is assumed to be i.i.d., with the th
entry of following the Bernoulli-Gaussian distribution [4]:

(2)

In (2), the variance of each is normalized, i.e., .
The partial DFT matrix in (1) can be rewritten as

(3)

where is a selectionmatrix consisting of randomly selected
and reordered rows of the identity matrix. Define

(4)

Together with (3), we rewrite the system model in (1) as

(5)

A. Standard Turbo Algorithm

The proposed algorithm is based on the turbo principle in it-
erative decoding [7]. Before introducing the proposed solution,
we will first discuss a standard algorithm and explain its poten-
tial problem.
For the problem in (1), the block diagram of a standard turbo

detector is illustrated in Fig. 1(a). It consists of two modules:
module A is an LMMSE estimator and module B a sparsity
combiner. The LMMSE estimator produces a coarse extrinsic
estimate of based on the observation . The sparsity combiner
refines the estimate using the sparse distribution in (2). Here, the
extrinsic output [7] of a module is fed to the other module as the
a priori input. The two modules are executed iteratively until
convergence. At the end of the iteration, the final estimate of
is based on the a posteriori output of the sparsity combiner. We
next discuss the detailed operations of the algorithm in Fig. 1(a).
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Fig. 1. Block diagrams of a standard turbo algorithm and the proposed turbo algorithm. “ext” represents extrinsic information computation. (a) A standard turbo
detector (b) The proposed turbo detector.

Module A:
Assumption 1: The entries of are i.i.d. with a priorimean
and variance .

The a priori information about is obtained from the feed-
back of the sparsity combiner, which will be discussed later.
With Assumption 1, the a priori mean of is given by

(6)

and the variance is . From (5), the LMMSE estimator and
the mean-square error (MSE) matrix of are respectively given
by [8]

(7a)

(7b)

From , the LMMSE estimator of is

(8)

The associated MSE matrix is

(9)

It can be verified that the diagonals of , which are
the a posteriori MSEs, are identical and given by

(10)

Using the concise formulas in [9], [10], the extrinsic LMMSE
estimate and the MSE of can be computed by

(11a)

(11b)

Module B: The LMMSE estimator effectively makes a
Gaussian assumption on and ignores the sparsity information

of . The function of the sparsity combiner is to refine the
LMMSE estimate of by combining the sparsity information
in (2).

Assumption 2: is modeled as an additive white
Gaussian noise (AWGN) observation of , i.e.,

(12)

where and is independent of . Here,
and are updated by the extrinsic output of module A, i.e.

(13)

Based on Assumption 2, the minimum mean-square error
(MMSE) estimator of conditioned on is a compo-
nent-wise operation and given by

(14)

where and denote the th entry of and
respectively. is with respect to the joint distribution of and

characterized by (12). The detailed operations of the above
MMSE estimation can be found in, e.g., [6]. The conditional
variance corresponding to (14) is given by

(15)

where .
We next compute the extrinsic estimate of each by ex-

cluding the contribution of . Under Assumption 2, the
MMSE estimation in (14) is a component-wise operation.
Excluding the contribution of , the extrinsic estimate of
becomes

(16)

where is obtained from by excluding the th entry

. The extrinsic estimate of module B will be treated as a
priori mean for module A in the next iteration.
The following observations are useful:
• The LMMSE operation ensures that module A in Fig. 1(a)
is optimal (in the LMMSE sense) if the sparsity informa-
tion is ignored and no iteration is involved. Note that AMP
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cannot make such a claim due to the distributive nature of
message passing.

• However, from (16), the extrinsic estimate of module B
is zero and so iterative processing does not provide any
further improvement.

In what follows, we will develop an alterative processor
in Fig. 1(b) that maintains the advantage but avoids the
disadvantage.

B. Proposed Turbo Compressed Sensing Algorithm

The proposed algorithm is illustrated in Fig. 1(b). Module A
computes extrinsic information of andModule B computes the
extrinsic information of . This is different from the standard
approach in Fig. 1(a) where both modules compute extrinsic
information of the same variable .
Module A: Module A includes the LMMSE estimator of

and two IDFTs. The operations of Module A are roughly the
same as that in Fig. 1(a), except that the input is in Fig. 1(b).
Module B: As discussed in Section II-A, the sparsity com-

biner produces no extrinsic estimate of . In the proposed al-
gorithm, module B now computes the extrinsic estimate of
instead of .

Assumption 3: The a posteriori distributions of condi-
tioned on are Gaussian, i.e.1

(17)

where is the th entry of the following a posteriori mean
vector

(18)

and is the a posteriori variance given by

(19)

where is the variance of in (15).
Intuitively, when is large, Assumption 3 can be justified

by the mixing effect of the DFT and the central limit theorem.
Eqn. (18) is due to . As the entries of are a priori
independent (fromAssumption 2) and the sparsity combiner is a
component-wise operation, the entries of are also a posteriori
independent, and so (19) follows.
From Assumption 2, the a priori estimate is an

AWGN observation of , i.e.

(20)

As is i.i.d. Gaussian with mean zero and variance ,
has the same distribution and we have

(21)

From (20), and are conditionally independent given
. It can then be verified that

(22)

1With slight abuse of notation, here (and also in (21)) denotes a
Gaussian function of with mean and variance .

where denotes equality up to a constant scaling factor inde-
pendent of . Based on (17), (21) and (22), the extrinsic distri-
bution is Gaussian [9], [11] and given by

(23)

where

(24a)

(24b)

The extrinsic mean/variance in (24) will be treated as a priori
mean/variance for module A in the next iteration. Note that in
the standard turbo detector in Section II-A, module B produces
no extrinsic output, as shown in (16). This is the main difference
between the proposed algorithm and the standard detector.
Overall Algorithm: In the first iteration, and
. The operations of module A and module B are executed iter-
atively until convergence.
The DFT/IDFT operations in Fig. 1(b) can be efficiently im-

plemented using the fast Fourier transform (FFT). Also, the
order of the “ext” operations in Fig. 1(b) (see (11) and (24)) and
DFT/IDFT can be changed, and then one pair of DFT/IDFT can
be saved. This is straightforward and we omit the details.

III. STATE EVOLUTION

Following [2]–[4], we analyze the large-system performance
of the proposed scheme by using state evolution.

A. State Evolution

We characterize the performance of the iterative algorithm
by a recursion of two states, and . In the following, for
notational brevity, we define

(25)

We define the following MMSE of the sparse signal estimation
given an AWGN observation (with SNR )

(26)

where is a sparse signal modeled as (2) and .
From (15) and based on Assumption 2,

(27)

Under Assumptions 1-3, we have the following proposition.
Proposition 1: The state evolution of the proposed turbo

compressed sensing algorithm is characterized by

(28a)

(28b)

where the subscript and indicate the iteration indices.
The state evolution in (28) is derived by combining (10), (11b),
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Fig. 2. Comparisons of the proposed algorithm and AMP. ,
, , and dB.

(15), (19), (24b), (25)–(27), together with some straightforward
manipulations.

B. Fixed Point of State Evolution

Denote by the convergence value of . Combining (28a)
and (28b) and eliminating , can be characterized by the fol-
lowing fixed point equation:

(29)
One solution of (29) is given by

(30)
where represents . Note that (29) has two so-
lutions, but it can be shown that the other solution is not a valid
convergence point.
It can be verified that (30) is consistent with that in [5, (17)

and (37)] derived using the replica method. It can also be shown
that (28) is equivalent to [6, (17)–(18)]. We omit the details here
due to space limitation.

IV. NUMERICAL EXAMPLES

In Fig. 2, we compare the MSE performance of the proposed
algorithm with partial DFT matrices and AMP with i.i.d.
Gaussian matrices. For a fair comparison, the variance of each
entry in the i.i.d. Gaussian matrix is normalized to . Here,
the implementation of AMP is based on [4]. In simulation,
MSE is obtained by averaging over 2000 realizations. We see
that the proposed algorithm converges faster than AMP and
also achieves lower convergence MSE. Moreover, the state
evolution analysis agrees well with simulation. We can also
directly apply AMP to the case with a partial DFT sensing ma-
trix. From Fig. 2, we see that AMP with partial DFT matrices
outperforms that with i.i.d. Gaussian matrices. This perfor-
mance difference also indicates that the state evolution of AMP
is not accurate when applied to partial DFT matrices. This is
reasonable because the state evolution of AMP is developed
for i.i.d. Gaussian matrices.
In Fig. 3, we reduce the measurement ratio . ( is set

to sufficiently large to ensure that the simulation performance

Fig. 3. Comparisons of the proposed algorithm and AMP. ,
, , and dB.

agrees well with state evolution.) We see that AMP for partial
DFT performs much worse than the proposed algorithm in this
setup.

V. CONCLUSION AND DISCUSSIONS

The state evolution in Section III-A is developed based on
three assumptions. Numerical results in Section IV demonstrate
that the state evolution developed based on these assumptions is
reasonably accurate. It is an interesting future research topic to
establish more rigorous justifications for the state evolution. The
analysis in [3] for AMP with i.i.d. Gaussian sensing matrices
may shed light on this problem.
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