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Partially Coherent Compressive Phase Retrieval for
Millimeter-Wave Massive MIMO Channel Estimation

Chen Hu , Xiaodong Wang , Linglong Dai , and Junjie Ma

Abstract—Channel estimation is challenging for millimeter-wave
(mmWave) massive MIMO systems. Leveraging the spatial sparsity
of mmWave channels, compressive sensing (CS) based channel
estimation been extensively studied. However, the mmWave hard-
ware imperfections may introduce random phase distortions to
the received pilots, which makes the conventional CS methods fail
to estimate the channel. The compressive phase retrieval (CPR)
method can be employed to solve this challenging problem. In this
paper, we exploit the partial coherence in hybrid mmWave systems,
i.e., the pilots sent from different radio frequency (RF) chains share
the same phase distortion in the same time frame, while the phase
distortions are different across different time frames. Based on
this property, we propose an on-grid partially coherent CPR (PC-
CPR) algorithm for mmWave channel estimation in the presence
of severe phase distortions. Unlike the existing coherent channel
estimation schemes that require perfect phase information or the
noncoherent channel estimation schemes that ignore the phases of
measurements, the proposed on-grid PC-CPR algorithm exploits
the partial coherence property to estimate the sparse angle-domain
channel vector. Furthermore, to solve the resolution limitation of
the on-grid PC-CPR algorithm, we propose an off-grid PC-CPR
algorithm that directly estimates the parameters of channel paths.
The proposed partially coherent channel estimation framework
subsumes the existing coherent and noncoherent channel estima-
tion methods as special cases. Simulation results show that under
the presence of random phase distortions, the proposed PC-CPR
algorithms outperform noncoherent channel estimation methods
with higher reliability and lower pilot overhead by leveraging the
partial coherence.

Index Terms—Millimeter-Wave (mmWave), massive MIMO,
hybrid precoding, sparse channel estimation, compressive phase
retrieval, partial coherence.

I. INTRODUCTION

M ILLIMETER-WAVE (mmWave) communication is rec-
ognized as one of the key technologies to support the
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ever-increasing wireless data traffic, since it has the potential to
increase both per-user and network capacity by several orders
of magnitude [1]. In a mmWave massive multiple input mul-
tiple output (MIMO) system, the base station (BS) is usually
equipped with an array with a large number of antennas. The
large array is used to achieve high array gains to compensate
for the severe path loss in mmWave band, and to form nar-
row beams to separate different users in space. To reduce the
hardware cost and energy consumption in mmWave massive
MIMO systems, hybrid precoding is regarded as a promising
architecture [2], where hundreds of antennas are connected to a
much smaller number of radio frequency (RF) chains via analog
phase shifters [3]. To realize the potential gain of mmWave
massive MIMO, estimating the channel state information is of
great importance. In a hybrid precoding system, the BS needs to
manipulate the analog precoders to broadcast pilots to different
directions [3]. It takes multiple time frames to transmit enough
pilots for a reliable channel estimation, which results in a high
training overhead [4]. Thus, the channel estimation problem for
mmWave massive MIMO is challenging.

A. Prior Works

To reduce the training overhead, several compressive sensing
(CS) based channel estimation schemes have been proposed [5]–
[9]. These schemes exploit the property that mmWave channels
typically have a small number of dominant paths, thus the
channel is sparse in the angle domain. They collect the complex-
valued pilot measurements with reduced dimensionality, and
estimate the sparse channel vector based on CS techniques. With
the help of CS, the required number of pilot measurements can
be much smaller than that of antennas. To acquire the complex-
valued pilot measurements with both amplitudes and phases
for channel estimation, the transmitter and receiver should be
coherent during the entire training period. In this paper, coherent
channel estimation means that the transceivers are synchronized
in the process of channel estimation, particularly the phases at
the transmitter and receiver are synchronized. However, due
to the large carrier frequency offset (CFO) and random phase
drift caused by the hardware imperfections, the received pilots
are usually corrupted by random phase offsets in different time
frames [10]. Moreover, it is not easy to compensate for the offset
before the channel is estimated and the link is established. It has
been reported that when the random phase offset is significant
but not considered, the CS-based channel estimation schemes
will fail to work [10], [11]. Thus, it is practically important to
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study the problem of estimating the sparse mmWave channel in
the presence of phase offsets.

Very recently, there have been several works on noncoherent
channel estimation or beam alignment in the presence of phase
offsets for mmWave massive MIMO systems [12]–[17]. Non-
coherent channel estimation means that the channel estimation
is realized without perfect synchronization, and thus phase off-
sets exist in the received pilots. Specifically, in [12], [13], the
phase offsets and the mmWave channel are jointly estimated.
These schemes are based on recovering high-dimensional sparse
tensors, which have high computational complexity. In [14]–
[17], all phase information in the received pilots is assumed
unavailable. The mmWave channel is estimated only based on
the amplitudes of received pilots. For example, [15] designs
a set of special beam patterns for channel measurements, and
the beam alignment problem is formulated as a coding-and-
decoding problem. The directions and the magnitudes of the
path gains can be efficiently recovered with a small number of
samples. In [17], a two-stage method is proposed to recover the
phase information at first and then estimate the sparse channel,
but its performance degrades severely when the signal-to-noise
ratio (SNR) is low.

Another straightforward approach is to estimate the channel
using the compressive phase retrieval (CPR) technique by simply
ignoring all phases of the received pilots. CPR is an emerg-
ing signal processing technique that has attracted increasing
research interests in signal processing [18]–[22]. It studies the
problem of how to recover a sparse signal if we have only the
amplitudes of the complex measurements. However, CPR has
not been considered for mmWave channel estimation.

B. Contributions

In this paper, we study the mmWave channel estimation
problem under the presence of severe phase offsets.

Firstly, we exploit the partial coherence in hybrid mmWave
systems and formulate the on-grid partially coherent channel
estimation problem. In this paper, on-grid channel estimation
means that we assume the channel power distributes only on
a few discrete angle-domain grids so that the angle-domain
channel vector can be estimated as a sparse vector. The partial
coherence refers to the property that the pilots sent from different
RF chains share the same phase shift in the same time frame
but have different phase shifts across different time frames.
We design a novel on-grid partially coherent CPR (PC-CPR)
algorithm to solve the problem. Different from the coherent
channel estimation that requires all the phase information and
the noncoherent channel estimation that ignores all the phases
of the measurements, the proposed on-grid PC-CPR algorithm
makes use of the partial coherence property. To be specific, in the
initialization stage, we propose new test statistics. We prove that
the reliability of the initialization can be significantly improved
by exploiting the partial coherence. In the iterative refinement
stage, we estimate the phase offsets shared by each time frame
rather than estimating the phases of all measured pilots.

Secondly, since the real path angles of the channel are con-
tinuously distributed, the on-grid assumption may result in a
resolution loss that limits the channel estimation accuracy. To

solve this problem, we further formulate the off-grid partially
coherent channel estimation problem and propose an off-grid
PC-CPR algorithm. Different from the on-grid channel estima-
tion, the off-grid method estimates the continuous mmWave path
parameters. The off-grid PC-CPR consists of an initialization
stage and an iterative refinement stage. The initialization stage
employs a successive path estimation and cancelation scheme,
and the iterative refinement stage alternately updates the phase
offset estimates and refines the channel parameter estimates
using gradient descent.

A salient feature of the proposed partially coherent channel
estimation framework is that it subsumes the conventional co-
herent and noncoherent channel estimation methods as special
cases. To be specific, when there is only one RF chain, the partial
coherence vanishes, so the performance of the proposed on-grid
PC-CPR is reduced to that of the existing noncoherent CPR
algorithm. When the number of RF chains becomes large, more
pilot measurements share the same phase offset within the same
time frame. Consequently, the partial coherence approaches full
coherence, so the performances of the PC-CPR are close to those
of existing coherent channel estimation algorithms. Simulation
results1 show that under the presence of random phase offset,
the proposed PC-CPR algorithms outperform the existing non-
coherent channel estimation methods by leveraging the partial
coherence. Besides, the off-grid PC-CPR algorithm can achieve
higher channel estimation accuracy than the on-grid PC-CPR
algorithm at the expense of higher computational complexity.

C. Organization and Notations

The remainder of the paper is organized as follows. In
Section II, we formulate the signal model and the partially co-
herent channel estimation problem in mmWave massive MIMO
systems with hybrid precoding. In Section III, we propose the
on-grid PC-CPR algorithm by leveraging the partially coherent
phase structure. The off-grid PC-CPR algorithm is presented in
Section IV. Simulation results are provided in Section V, and
finally conclusions are drawn in Section VI.

Notation: In this paper, light symbols, boldface lower-case
symbols and upper-case symbols denote scalars, vectors and
matrices, respectively. For a vector x, we use xi for its i-th
element. For a matrix X, X(i, :) and X(:, j) denote its i-th
row and j-th column respectively. Given an index set S , xS is
the sub-vector that consists of xi’s for all i ∈ S , and X(S, :)
is the sub-matrix that consists of rows whose indices are in
S . (·)∗, | · | and ∠(·) denote the conjugate, the amplitude and
the angle of a complex number, while ‖ · ‖0 and ‖ · ‖ denote
the �0-norm and the �2-norm of a vector, respectively. (·)T
and (·)H are the transpose and the conjugate transpose of a
matrix, respectively. ⊗ is the Kronecker product, while ◦ is the
Hadamard product. IK is the K ×K identity matrix. diag(x)
is the diagonal matrix with the vector x on its diagonal. Finally,
|S| denotes the cardinality of the set S .

1Simulation codes are provided to reproduce the results presented in this
paper: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. MmWave Massive MIMO

Due to the high sampling rate and the large array size in
mmWave massive MIMO, it is not practical to apply the fully-
digital system where each antenna is driven by an independent
RF chain. As an alternative to the costly fully-digital structure,
the hybrid precoding architecture connects the antennas to a
much smaller number of RF chains via analog phase shifters.
In the hybrid precoding mmWave massive MIMO system with
N BS antenna and NRF RF chains, the BS transmits NS data
streams to K single-antenna users, the downlink signal model
can be written as [2]

r = HHPAPDs+ n, (1)

where r ∈ C
K×1 is the received signal at the users, H ∈ C

N×K

is the channel matrix, PA ∈ C
N×NRF is the analog precoder,

PD ∈ C
NRF×NS is the digital precoder, s ∈ C

NS×1 is the trans-
mitted data streams, and n ∈ C

K×1 is the noise. The channel
matrix H = [h1,h2, . . . ,hK ] consists of the channel vectors of
all K users. The channel model of a specific user is described
as follows.

For a typical uniform planar array (UPA) with N1 columns
and N2 rows of antenna elements, the total number of antennas
N = N1N2. We follow the widely adopted three-dimensional
channel model as [1]

h =

√
1

κ+ L− 1

L∑
l=1

ᾱlā (θl, φl) , (2)

where L is the number of paths, κ is the ratio of line-of-sight
(LoS) path power to non-line-of-sight (NLoS) path power. ᾱl,
θl and φl are the normalized complex path gain, the physical
azimuth angle, and the physical elevation angle of the l-th path,
respectively. ᾱ1ā(θ1, φ1) is the LoS path, and ᾱlā(θl, φl) for
2 ≤ l ≤ L denote the NLoS components. The normalized path
gains ᾱl for 2 ≤ l ≤ L are assumed to be circularly symmetric
complex Gaussian, i.e., ᾱl ∼ CN (0, 1), and the LoS component
ᾱ1 ∼ CN (0, κ). The azimuth angles θl are uniformly distributed
in [0, 2π), and the elevation angles φl are uniformly distributed
in (−π/2, π/2). The array steering vector ā(θl, φl) ∈ C

N×1 is
given by

ā(θl, φl) =
1√
N

[
ej2π

0d sinθl cosφl
λ , . . . , ej2π

(N1−1)d sinθl cosφl
λ

]T

⊗
[
ej2π

0d sinφl
λ , ej2π

1d sinφl
λ , . . . , ej2π

(N2−1)d sinφl
λ

]T
,

(3)

where d is the antenna spacing, λ is the carrier wavelength. In
this paper, d = λ/2. By defining αl = ᾱl

√
1

κ+L−1 , the spatial
direction (ϑl, ϕl) = ( 2πd sin θl cosφl

λ , 2πd sinφl

λ ) and a(ϑl, ϕl) =
ā(θl, φl), we can rewrite (2) as

h =

L∑
l=1

αla (ϑl, ϕl) . (4)

Note that ϑl, ϕl ∈ [−π, π] according to their definitions,
and a(ϑl, ϕl) = a(ϑl + 2π, ϕl) = a(ϑl, ϕl + 2π) is a periodic
function, so we equivalently assume ϑl, ϕl ∈ [0, 2π) for conve-
nience.

Thanks to the form of the UPA steering vector, we can express
the channel vector in the angle domain. Specifically, the angle-
domain channel vector h̃ is defined by [5]

h = FH h̃ = (FN1×N1
⊗ FN2×N2

)H h̃, (5)

where FN1×N1
and FN2×N2

are discrete Fourier transform
(DFT) matrices of sizes N1 ×N1 and N2 ×N2, respectively.
The ((i− 1)N2 + j)-th element of h̃, h̃(i−1)N2+j , is the channel
component at the spatial direction of (2π(i− 1)/N1, 2π(j −
1)/N2) (1 ≤ i ≤ N1, 1 ≤ j ≤ N2). These discrete spatial di-
rections are called angle-domain grids in this paper. Due to the
fact that the mmWave channels are made up of a few paths, and
only the angle-domain components that are close to the channel
path directions have large values, the angular channel vector h̃
is approximately sparse [1].

B. Traditional Coherent Pilot Transmission

To compensate for the severe path loss in the mmWave
band, the precoding matrices in (1) must be carefully designed
based on the knowledge about the channel H. To acquire the
channel information for beamforming, most existing channel
estimation works [3]–[6] are based on traditional coherent pilot
transmission, which means that the transceivers are perfectly
synchronized during the pilot transmission phase.

In this paper, we consider the downlink channel estimation,
where the BS broadcasts pilots to all users, and the users estimate
their channels and feedback them to the BS. The reason why
we choose the downlink channel estimation is that the channel
estimation accuracy is sensitive to the power of the received
pilots. Since the BS typically has a larger transmit power than the
users, the power of the received pilots in the downlink channel
estimation can be larger compared to that in the uplink channel
estimation, so the downlink channel estimation can be more
practical under the severe path loss.

For a specific user, the traditional coherent downlink pilot
transmission in the t-th time slot can be modeled by

ȳ = hHPAPDs+ n̄

= hHPAx+ n̄, (6)

where ȳ ∈ C is the received pilot, h ∈ C
N×1 is the channel vec-

tor of the user,PA,PD, and s are the analog precoder, the digital
precoder, and the transmitted pilot, respectively. n̄ ∼ CN (0, σ2

n)
is the noise. x = PDs is the equivalent transmit pilots at the RF
chains.

In a hybrid mmWave system, the analog precoder cannot be
reconfigured for each time slot, e.g., phase-shifters need around
64 time slots to be updated for a new configuration [12]. During
the b-th time frame with the analog precoder PA,b, we spend
NTS ≥ NRF time slots to transmit orthogonal pilot sequences
in different RF chains, which can be modeled by

ȳH
b = hHPA,bX+ n̄H

b , (7)
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where ȳH
b = [ȳb,1, ȳb,2, . . . , ȳb,NTS

] contains the received pilots
in NTS time slots, X = [x1,x2, . . . ,xNTS

] is the orthogonal pi-
lot matrix such thatXXH = NTSPTINRF

,PT is the transmitted
power of each RF chain, and n̄H = [n̄1, n̄2, . . . , n̄NTS

].
Though we can receiveNTS pilots, the number of independent

measurements isNRF becausePA has onlyNRF columns. Then
the NRF-dimensional effective received pilots are given by

yb =
1√

NTSPT

Xȳb =
1√

NTSPT

(
XXHPH

A,bh+Xn̄b

)

=
√
NTSPTP

H
A,bh+ nb, (8)

where yb ∈ C
NRF×1 consists of NRF independent effective

received pilots, nb =
1√

NTSPT
Xn̄b, and thus we have nb ∼

CN (0, σ2
nINRF

). We can equivalently write

yb = WH
b h+ nb = AH

b h̃+ nb, (9)

where Wb =
√
NTSPTPA,b, and Ab = FWb according to (5). In

order to receive more independent pilots, we repeat (7)–(9) for
1 ≤ b ≤ B, where B is the number of time frames. Thus the
number of independent pilots is M = BNRF. When there are
no phase offsets, we have:

y = WHh+ n = AH h̃+ n, (10)

where y = [yH
1 ,yH

2 , . . . ,yH
B ]H ∈ C

M ,W = [W1,W2, . . . ,
WB ] ∈ C

N×M ,A = [A1,A2, . . . ,AB ] ∈ C
N×M , and n =

[nH
1 ,nH

2 , . . . ,nH
B ]H ∈ C

M×1. The measurement matrices Wb

for b = 1, 2, . . . , B should be different from one another because
the BS needs to collect uncorrelated measurements to estimate
the channel [5].

C. Partially Coherent Pilot Transmission

The model (10) is the coherent pilot transmission. However,
the coherence does not hold under severe hardware imperfec-
tions in mmWave communication systems [11], [16]. Before
we proceed, we briefly explain the causes of the non-coherence.
Due to the imperfect oscillators, there is a large CFO between the
transmitter and the receiver, particularly in the high-frequency
mmWave band [14]. It has been found that the received mmWave
pilots are distorted by random phase offsets due to the CFO,
which is not easy to compensate during the pilot training time.
As a result, there are random phase offsets among the measured
pilots.

The phase offset between two pilot measurements can be
calculated by ε = 2πTΔf [26]. The CFOΔf is typically as large
as several parts per millions (ppm) of the carrier frequencyf .T is
the time interval between two pilot measurements. On one hand,
the phase offset between adjacent time slots within the same time
frame can be neglected, because the sampling period is short
(e.g., 1 nanosecond) due to the large bandwidth in mmWave
communications. So we can still calculate the effective received
pilots according to (8). On the other hand, the phase offset
between adjacent time frames can not be neglected, because
the time duration of a frame is much longer than the sampling
period. [12] reported that the phase-shifters need around 64
samples to be updated for a new configuration, which means
that T is on the order of tens to hundreds of nanoseconds. For

example, assuming the carrier frequency f = 73 GHz, a CFO
as small as 5 ppm can cause a phase shift as large as 0.25 rad
between two adjacent measurements in 100 nanoseconds. [10]
also reported that in a system operating at 28 GHz, the standard
deviation of the random phase offset can be up to 0.27 rad within
0.5 microsecond. Such large phase offsets across frames can
distort the complex value of the efficient received pilots, so they
can no longer be neglected. The 802.11ad standard [24] also
assumes phase coherence within a frame, but cannot maintain
phase coherence across time frames. Therefore, the phase non-
coherence across time frames is a serious issue that has to be
dealt with in practical mmWave communication systems.

In traditional communication systems, such offsets can be
compensated by carrier synchronization [25]. For data trans-
mission in mmWave systems, given the estimated channel, by
choosing fixed analog precoders, we can also insert synchro-
nization reference signals into each data frame to compensate
for the phase offset. However, it is challenging to synchronize
during the pilot transmission period in mmWave systems. One
reason is that we cannot optimize the analog precoders without
knowing the channel. Without directional beamforming, we
cannot ensure that the synchronization signal is heard to all
users. Another reason is that the downlink pilots are broadcasted
with different analog precoders in different time frames in (9).
Both the changing precoders and the random phase offset can
change the phases of the received synchronization signal, so it
is non-trivial to remove the random phase offset during the pilot
transmission. Consequently, we have to first estimate the spatial
channel under the existence of the phase offsets, and only after
that can we adopt fixed precoders to successfully transmit signals
to the users.

On the other hand, in a hybrid mmWave massive MIMO
system, there are NRF RF chains that transmit pilot simulta-
neously. In the same time frame, the effective received pilots
corresponding to different transmitter RF chains are polluted by
the same phase offset because the offset is caused by the same
CFO [12]. Therefore, the pilot model (9) should be modified to

yb = WH
b hejωb + nb = AH

b h̃ejωb + nb, b = 1, . . . , B,
(11)

where ωb ∼ U [0, 2π) represents the phase offset in time frame
b. Moreover, (10) becomes

y =

⎡
⎢⎢⎢⎣
ejω1INRF

ejω2INRF

. . .
ejωBINRF

⎤
⎥⎥⎥⎦WHh+ n

=

⎡
⎢⎢⎢⎣
ejω1INRF

ejω2INRF

. . .
ejωBINRF

⎤
⎥⎥⎥⎦AH h̃+ n. (12)

We call this model partially coherent pilot transmission in this
paper, which means the phase coherence holds between the
effective received pilots corresponding to different transmitter
RF chains within the same time frame, but the coherence is
lost across different time frames. Note that this model subsumes
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the noncoherent pilot transmission and the coherent pilot trans-
mission. When NRF = 1, each element of y is distorted by an
independent phase offset, so the received pilots become fully
noncoherent; while when B = 1, (12) becomes the coherent
pilot transmission model (10) distorted by an overall phase
offset.

D. Channel Estimation Problem Formulations

Due to the fact that the mmWave channels only contain a
small number of dominant paths, the angular channel vector h̃
in (5) is approximately sparse. By keeping only the k largest
elements, h̃ can be treated as a k-sparse vector to be estimated.
Since k is usually unknown in mmWave channel estimation, we
can set k to a multiple of the average number of paths. To solve
the sparse channel estimation problem under the random phase
offsets ω1, . . . , ωB based on the model in (12), one could simply
ignore all phase information of the received pilots, and estimate
the channel by using only the magnitudes |y|. As a result, the
sparse channel estimation with phase offsets can be formulated
as the standard “compressive phase retrieval” (CPR) problem,
which is given by [19]:

min
h̃∈CN

∥∥∥|y| − ∣∣∣AH h̃
∣∣∣∥∥∥2 s.t.

∥∥∥h̃∥∥∥
0
≤ k. (13)

Compared with the classical CS problem, the CPR problem (13)
is much more difficult due to the lack of phase information in the
measurements [27]. Several typical CPR algorithms [20]–[22]
have been recently proposed to solve this problem. Moreover, by
imposing the nonlinear absolute operator on the received pilots,
the additive noise becomes more difficult to handle, which makes
the �2 loss function suboptimal.

As an alternative, we consider the partial coherence in the
received pilots, and formulate the sparse channel estimation
problem by

min
h̃∈CN ,ω1,...,ωB∈[0,2π)

B∑
b=1

∥∥∥yb − ejωbAH
b h̃
∥∥∥2 , s.t.

∥∥∥h̃
∥∥∥
0
≤ k.

(14)
Since the non-zero elements of h̃ are the channel gains in the
corresponding angle-domain grids defined in (5), this problem
is an on-grid partially coherent channel estimation problem.
Note that (13) can be subsumed as a special case of (14) with
NRF = 1.

However, the real path directions can take any continuous
values, and they do not always match well with the angle-domain
grids. As a result, the on-grid channel estimation leads to un-
avoidable estimation error [28], [29]. To further improve the
channel estimation accuracy by estimating the off-grid spatial
directions, we formulate the off-grid partially coherent channel
estimation problem by

min
α1,...,αL∈C,

ϑ1,...,ϑL,ϕ1,...,ϕL,ω1,...,ωB∈[0,2π)

B∑
b=1

∥∥yb − ejωbWH
b h
∥∥2 ,

s.t.h =

L∑
l=1

αla (ϑl, ϕl) . (15)

Note that the number of paths L is usually unknown. As an
alternative, we replace L by L̄ such that L̄ > L in most cases.

III. PROPOSED ON-GRID PC-CPR CHANNEL

ESTIMATION ALGORITHM

In this section, we will propose an on-grid partially coherent
compressive phase retrieval (PC-CPR) algorithm for the on-grid
partially coherent channel estimation problem (14). To make it
more clear, we will introduce the proposed on-grid PC-CPR
algorithm by modifying the compressive reweighted amplitude
flow (CRAF) algorithm [20] recently proposed for solving the
standard CPR problem (13). However, CRAF does not leverage
the phase offset structure in the signal model of the hybrid
mmWave system, thus it requires a large number of measure-
ments and has poor channel estimation performance. In contrast,
the proposed on-grid PC-CPR can leverage the phase structure
in hybrid mmWave systems, which has not been considered in
existing CPR algorithms.

Both the proposed on-grid PC-CPR algorithm and CRAF
consist of two stages: the initialization and the iterative refine-
ment, which will be discussed in detail in Section III-A and
Section III-B respectively. We will show how the proposed
on-grid PC-CPR algorithm leverages the phase structure and
estimates the mmWave channel with lower overhead and better
accuracy compared with CRAF.

A. Initialization Methods

In general, CPR is a non-convex problem [30]. As a result,
most CPR algorithms require careful initialization to avoid local
minimizers [21]. In the family of all algorithms for CPR as well
as the ordinary phase retrieval for recovering non-sparse vec-
tors, “spectral initialization” is a popular initialization method.
“Spectral initialization” refers to the category of methods that
calculate the initial value of the vector by finding the principal
direction of a matrix.

1) The Initialization Method in CRAF: In [20], a variant of
spectral initialization was proposed. There are three steps in this
initialization method, including determining the initial support,
constructing the initialization matrix, and calculating the initial
value by eigenvalue decomposition.

Consider the problem in (13). Firstly, given the preset sparsity
level k, CRAF detects k indices as the initial guess of the support
set. The initial support set Ŝ is determined by indices of the k
largest elements in the test statistics {ζi}Ni=1:

ζi =
1

M

∥∥∥|A (i, :)|T ◦ |y|
∥∥∥2 , i = 1, . . . , N, (16)

Ŝ =
{
i1, i2, . . . , ik|ζi1 > · · · > ζik > ζik+1

> · · · > ζiN
}
.

(17)

Secondly, the initialization matrix DŜ is formed as

DŜ = A
(
Ŝ, :
)
diag ([T (|y1| ; r) , . . . , T (|yM | ; r)])

×
(
A
(
Ŝ, :
))H

, (18)
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where T is called the “pre-processing function,” r �√
1
M

∑M
m=1 |ym|2. In [20], the pre-processing function is defined

as follows: first the indices of measurements {1, . . . ,M} are
divided into two sets:

I− �
{
1 ≤ m ≤M : |ym|2 ≤ r2/2

}
, (19)

I+ �
{
1 ≤ m ≤M : |ym|2 > r2/2

}
. (20)

Then, the empirical pre-processing function is given by

TCRAF (|ym| ; r) =
{

λ−

|I−| , m ∈ I−,
λ+

|I+| , m ∈ I+,
(21)

where λ+ > 0 and λ− < 0 are preselected coefficients. There
are also some theoretical works about the optimal design of
the pre-processing function for the ordinary phase retrieval
problem (not the compressive PR problem), which can be found
in [31], [32].

Thirdly, the direction of the initial value h̃(0) of the sparse
channel vector h̃ is estimated by the dominant eigenvector of
DŜ :

d = arg max
‖z‖=1

zHDŜz. (22)

And the magnitude of h̃(0) is estimated as

r̂ = argmin
r′∈R

∥∥∥∥r′
∣∣∣∣
(
A
(
Ŝ, :
))H

d

∣∣∣∣− |y|
∥∥∥∥
2

=

∣∣∣∣
(
A
(
Ŝ, :
))H

d

∣∣∣∣
T

|y|
∥∥∥∥
(
A
(
Ŝ, :
))H

d

∥∥∥∥
2 . (23)

Finally the initial estimate h̃(0) is given by [20]{
h̃
(0)

Ŝ = r̂d,

h̃
(0)

[1:N ]\Ŝ = 0.
(24)

2) The Proposed Initialization Method in PC-CPR: Differ-
ent from CRAF, the proposed on-grid PC-CPR algorithm uti-
lizes the partial coherence property. The proposed initialization
method also consists of three steps, and it differs from the
CRAF initialization only in the initial support detection. That is,
instead of (16)–(17), the proposed on-grid PC-CPR computes
the following test statistics based on (11):

Zi =
1

M

B∑
b=1

|Ab (i, :)yb|2 , i = 1, . . . , N (25)

and then the initial support set is determined by

Ŝ =
{
i1, i2, . . . , ik|Zi1 > · · · > Zik > Zik+1

> · · · > ZiN

}
.

(26)

Note that compared with ζi in (16), our proposed statistic
Zi in (25) exploits the fact that the measurements in yb are in
the same time frame, thus these measurements have the same
phase offset. We can further compare Zi with ζi as follows.

Assume that the entries of A are zero-mean independently and
identically distributed, whose second-order moment and fourth-
order moments are E{|a|2} and E{|a|4}, respectively. Then we
have

E (ζi) =
∥∥∥h̃∥∥∥2 E2

{
|a|2

}
+
∣∣∣h̃i

∣∣∣2 [E{|a|4}− E
2
{
|a|2

}]

+ E

{
|a|2

}
σ2
n, (27)

E (Zi) =
∥∥∥h̃∥∥∥2 E2

{
|a|2

}
+
∣∣∣h̃i

∣∣∣2 [E{|a|4}

+(NRF − 2)E2
{
|a|2

}]
+ E

{
|a|2

}
σ2
n. (28)

The derivations of (27)–(28) can be found in Appendices A-B.
Denote S as the support set of h̃. Note that since E{|a|4} ≥
E
2{|a|2}, E(ζi) and E(Zi) will have larger values for i ∈ S

than for i /∈ S .
We have the following remarks about (27)–(28). Firstly, the

second terms on the right-hand sides of (27)–(28) represent the
gap between the statistics corresponding to i ∈ S and i /∈ S .
The larger is the gap, the better is the support detection result.
Secondly, since NRF > 1, it is clear that the gap for Z is larger
than that for ζ. As a result, the proposed method achieves
higher reliability for the initial support detection. Thirdly, [20]
assumes that the entries of A are complex Gaussian random
variables, so that E{|a|4} = 2E2{|a|2}, and the gap of ζ equals
to |h̃i|2E2{|a|2}which is strictly positive. But for other sensing
matrices, the gap of ζ may not be large enough. For example,
if all entries have unit modulus, E{|a|4} = E

2{|a|2}, then the
gap of ζ is zero. In contrast, the gap for Z is strictly positive for
all distributions of A. This means by exploiting the phase offset
structure, the proposed method offers robust performance under
different sensing matrices.

After the initial support is determined, the proposed on-grid
PC-CPR algorithm follows the same procedure as CRAF to
construct the initialization matrixDŜ according to (18) and (21),
and then to obtain the initial value h̃(0) according to (22)–(24).

In Algorithm 1, the proposed initialization method is de-
scribed in Steps 1–3. However, the initialization results h̃(0)

is only a coarse estimate. We then iteratively refine the estimate
of the sparse channel vector, which is discussed in the next
subsection.

B. Iterative Refinement

1) The Iterative Refinement in CRAF: In CRAF [20], given
the estimate of the sparse angle-domain channel vector in the
(t− 1)-th iteration, h̃(t−1), in the t-th iteration, the phase esti-
mate and the sparse channel estimate are performed. First, the
phase of each received sample is estimated as

y(t)m = argmin
y∈C

∣∣∣y − (A (:,m))H h̃(t−1)
∣∣∣ s.t. |y| = |ym|

= |ym|
(A (:,m))H h̃(t−1)∣∣∣(A (:,m))H h̃(t−1)

∣∣∣ , m = 1, 2, . . . ,M. (29)
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Algorithm 1: On-grid PC-CPR Channel Estimation Algo-
rithm.
Input: Partially coherent noisy received pilots y in (12),

equivalent sensing matrix A, the number of coherent
blocks B, the size of coherent block NRF, the number of
iterations T , the preset sparsity level k, the preset
coefficients λ+, λ−, μ, τw, and β in (21), (31) and (32),
and the termination threshold ε.

Output: Estimated sparse angle-domain channel vector
h̃est.

Stage 1 (initialization):
1: Determine the initial support Ŝ by (16)–(17).
2: Form the matrix DŜ according to (18) and (21).
3: Calculate the initial estimate h̃(0) by the

eigen-decomposition based method in (22)–(24).
Stage 2 (iterative refinement):

4: y(0) = y, t = 0.
5: while ‖y(t) −Ah̃(t)‖ > ε do
6: t← t+ 1.
7: y

(t)
b =

yby
H
b Abh̃

(t−1)

|yH
b Abh̃(t−1)| , b = 1, . . . , B.

8: y(t) = [(y
(t)
1 )H , (y

(t)
2 )H , . . . , (y

(t)
B )H ]H .

9: Calculate h̃(t) according to (31)–(32).
10: if t ≥ T then break
11: end while
12: return h̃est = h̃(t)

Given the above phase estimates, the sparse channel estima-
tion then becomes a standard CS problem:

h̃(t) = arg min
h̃∈CN

∥∥∥y(t) −AH h̃
∥∥∥ s.t.

∥∥∥h̃∥∥∥
0
≤ k. (30)

A hard thresholding method using reweighted gradients is
proposed in [20], given by

h̃(t) = Hk

(
h̃(t−1) − μ

M
Adiag

([
w

(t)
1 , · · · , w(t)

M

])

×
(
AH h̃(t−1) − y(t)

))
, (31)

where

w(t)
m = max

⎧⎨
⎩τw,

∣∣∣(A (:,m))H h̃(t−1)
∣∣∣∣∣∣(A (:,m))H h̃(t−1)

∣∣∣+ β |ym|

⎫⎬
⎭ ,

m = 1, 2, . . . ,M. (32)

Here Hk : CN → C
N is the hard thresholding operator that

keeps the k largest elements, and sets other elements to zeros.
The step size μ, the threshold τw, the weight β are all preset
parameters. The new estimate h̃(t) is calculated by the gradient
method based on the previous estimate h̃(t−1). Hk ensures the
sparsity level ‖h̃(t)‖0 ≤ k, and the weight w(t)

m is designed to
increase the efficacy of the method [20]. This method is able
to find a better estimate h̃(t) in the neighborhood of h̃(t−1) that
makes the objective function in (30) smaller.

2) The Proposed Iterative Refinement in PC-CPR: Similar to
CRAF, each iteration of the proposed iterative refinement also

consists of phase estimation and sparse channel estimation. The
difference is in the phase estimation step, where we leverage
the phase structure. Since every NRF measurements share the
same phase offset as in (11), we can estimate this common
phase offset from yb instead of estimating an independent phase
offset for each scalar sample ym. To be specific, we solve the
phase estimation problem for block b as follows:

ω
(t)
b = arg min

ωb∈[0,2π)

∥∥∥yb − ejωbAbh̃
(t−1)

∥∥∥2

= arg min
ωb∈[0,2π)

{
yH
b yb +

(
Abh̃

(t−1)
)H

Abh̃
(t−1)

−2Re
(
ejωbyH

b Abh̃
(t−1)

)}

= arg max
ωb∈[0,2π)

Re
(
ejωbyH

b Abh̃
(t−1)

)

= ∠
(
yb

HAbh̃
(t−1)

)∗
, b = 1, . . . , B. (33)

With the estimated phase offsets, we can compensate them by

ejω
(t)
b =

(
yH
b Abh̃

(t−1)
)∗

∣∣∣yH
b Abh̃(t−1)

∣∣∣ , b = 1, . . . , B. (34)

y
(t)
b = ybe

−jω(t)
b =

yby
H
b Abh̃

(t−1)∣∣∣yH
b Abh̃(t−1)

∣∣∣ , b = 1, . . . , B. (35)

And we let

y(t) =

[(
y
(t)
1

)H
,
(
y
(t)
2

)H
, . . . ,

(
y
(t)
B

)H]H
. (36)

Then, we adopt the same hard thresholding method using
reweighted gradients in (31)–(32) to update the estimate of
the sparse channel vector. Note that the proposed on-grid PC-
CPR subsumes the conventional noncoherent CPR as a special
case with NRF = 1. In Algorithm 1, the proposed iterative
refinement is in steps 4–11. The computational complexity
of Algorithm 1 is mainly determined by the matrix-vector
multiplications in Step 7 and Step 9, which is O(MNT ) =
O(MN log(1/ε)).

IV. EXTENSION TO OFF-GRID PARTIALLY COHERENT

CHANNEL ESTIMATION

A. Off-Grid PC-CPR

Formulated in (15), the off-grid PC-CPR estimates the chan-
nel parameters including the off-grid spatial directions and the
path gains of L̄ paths. Similar to the on-grid PC-CPR, the
off-grid PC-CPR algorithm also alternately refines the phase
offset estimates and the channel estimates in an iterative pro-
cess. Rather than refining the estimate of the sparse angular
channel vector h̃ in the on-grid PC-CPR, the off-grid method
refines the estimate of all the channel parameters, i.e., p �
[α1, . . . , αL̄, ϑ1, . . . , ϑL̄, ϕ1, . . . , ϕL̄]

T .
The main idea of the proposed off-grid PC-CPR method

is to iteratively perform phase offsets estimate and channel
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parameter estimate. In particular, given the channel estimate
in the (t− 1)-th iteration, we estimate and compensate for
the phase shifts following the similar method as in (35)–(36),
except that AH

b h̃(t−1) is replaced by WH
b h(t−1). Then, given

the updated measurementsy(t) and the path parameter estimates
in the previous iteration p(t−1), we update the path parameters
by solving

min
α1,...,αL̄∈C,

ϑ1,...,ϑL̄,ϕ1,...,ϕL̄∈[0,2π)

g
(
p;y(t)

)
�
∥∥∥y(t) −WHh

∥∥∥2 ,

s.t. h =

L̄∑
l=1

αla (ϑl, ϕl) , (37)

where the new estimate p(t) are found in the neighborhood of
p(t−1). A simple yet effective approach is the gradient descent
method by repeating the following refinement for τ = 1, . . . , T1:

p(t,τ) = p(t,τ−1) − μ∇p∗g
(
p(t,τ−1);y(t)

)
, (38)

where T1 is the number of inner iterations, p(t,0) = p(t−1),
p(t) = p(t,T1), and ∇p∗ is the conjugate gradient operator,
whose expression can be found in Appendix C. The gradient
descent refinement (38) should be repeated for a large number
of iterations before it converges to the solution of (37). However,
y(t) contains estimated phase offsets, which is not accurate.
Thus, it is not efficient to spend a large number of inner iterations
to find the accurate solution of (37). As an alternative, we
perform (38) only once rather than a number of inner iterations,
which is written as

p(t) = p(t−1) − μ∇p∗g
(
p(t−1);y(t)

)
. (39)

After the gradient descent refinement of path parameters, the
t-th iteration is ended with updating the channel vector h(t)

according to the channel model (4). The above phase-offset
compensation and gradient descent refinement need to be re-
peated for T times before we get the accurate estimates of the
channel. In Algorithm 2, the iterative process is summarized
in Stage 3, Steps 11–19. The computational complexity of
Algorithm 2 is much higher than that of Algorithm 2, because
the gradient descent refinement need to calculate the partial
derivatives to all the parameters of L̄ paths. The computational
complexity to calculate such a partial derivative is O(MN),
and the computational complexity of Algorithm 2 is thus
O(MNL̄T ) = O(MNL̄ log(1/ε)). To compare Algorithm 2
with Algorithm 1, it is clear that there is a tradeoff between the
channel estimation accuracy and the computational complexity.
Algorithm 2 achieves higher accuracy with a higher cost of
computation.

B. Initialization for Off-Grid PC-CPR

We next discuss how to detect L̄ paths to get the initial values
of p. We solve this problem in two stages. Firstly, we find initial
estimates of the phase shifts. Secondly, the channel parameters
of all paths are initialized by a successive path estimation and
cancelation method.

Algorithm 2: Off-grid PC-CPR Channel Estimation Algo-
rithm.
Input: Partially coherent noisy received pilots y,

combining matrix W, equivalent sensing matrix A, the
number of coherent blocks B, the size of coherent block
NRF, the preset initialization sparsity level k, the preset
number of paths L̄, the number of refinements in the path
parameter initialization T0, the gradient descent step size
μ, the number of iterations in the third stage T , and
termination threshold ε.

Output: Estimated channel vector ĥ.
Stage 1 (phase initialization):
1: Run steps 1–3 of Algorithm 1 to get a k-sparse initial

angle-domain channel estimate h̃(0).

2: y
(1)
b =

yby
H
b WH

b h(0)

|yH
b WH

b h(0)| , b = 1, . . . , B.

3: y(1) = [(y
(1)
1 )H , (y

(1)
2 )H , . . . , (y

(1)
B )H ]H .

Stage 2 (channel parameters initialization):
4: for l = 1 : L̄ do
5: Detect the l-th path and determine α

(0)
l , ϑ

(0)
l , ϕ

(0)
l

according to (40)–(43).
6: for t = 1 : T0 do
7: Calculate α

(t)
l , ϑ

(t)
l , ϕ

(t)
l by the refinement method

in (44).
8: end for
9: end for

10: Calculate the estimate of the channel vector h(T0)

according to (4).
Stage 3 (iterative process):
11: y(T0) = y(1), t = T0.
12: while ‖y(t) −WHh(t)‖ > ε do
13: t← t+ 1.
14: y

(t)
b =

yby
H
b WH

b h(t−1)

|yH
b WH

b h(t−1)| , b = 1, . . . , B.

15: y(t) = [(y
(i)
1 )H , (y

(t)
2 )H , . . . , (y

(t)
B )H ]H .

16: Refine the parameters of the all paths according to
(39), and update the current channel estimate h(t)

according to (4).
17: if t ≥ T0 + T then break
18: end while
19: return hest = h(t)

The first stage is the initialization of the phase shifts. We
use the on-grid PC-CPR algorithm which has been discussed
in Section III-A, to find an initial estimate h̃(0) of the angle-
domain channel vector. Then, we calculate the initial estimates
of the phase offsets ω(1)

1 , . . . , ω
(1)
B by (33). We can get the phase

compensated measurements y(1) according to (35)–(36). The
first stage is Steps 1–3 in Algorithm 2.

In the second stage, the path parameters of each path are
successively estimated. Given the already estimated parameters
of the 1st, . . ., (l − 1)-th paths, i.e., α1

(T0), ϑ1
(T0), ϕ1

(T0), . . . ,

α
(T0)
l−1 , ϑ

(T0)
l−1 , ϕ

(T0)
l−1 , we need to estimate αl, ϑl, ϕl. We subtract

the contribution of the l − 1 already estimated paths from the
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phase-compensated measurements y(1):

yl = y(1) −WH

(∑
l′<l

α
(T0)
l′ a

(
ϑ
(T0)
l′ , ϕ

(T0)
l′

))
. (40)

Then, we estimate the l-th path by solving

αl, ϑl, ϕl = arg min
α∈C,

ϑ,ϕ∈[0,2π)

f (α, ϑ, ϕ;yl)

�
∥∥yl −WHαa (ϑ, ϕ)

∥∥2 . (41)

Given ϑl, ϕl, the optimal value of αl can be expressed as:

αl =
aH (ϑl, ϕl)Wyl

‖WHa (ϑl, ϕl)‖2
. (42)

We exhaustively search through the angle-domain dense grids
to get the initial estimates:

α
(0)
l , ϑ

(0)
l , ϕ

(0)
l =arg max

ϑ∈{π(i−1)
N1

|1≤i≤2N1},
ϕ∈{π(i−1)

N1
|1≤j≤2N2}

f(α, ϑ, ϕ;yl), s.t. (42).

(43)

The reason why we choose the 2N1 × 2N2 dense grid rather
than the standard N1 ×N2 grid defined in (5) is that we can get
more accurate values of α

(0)
l , ϑ

(0)
l , ϕ

(0)
l by searching through

the denser one. After that, we perform the conjugate gradient
descent refinement to the parameter estimates of the single path
for a few iterations:

⎡
⎢⎣
αl

ϑl

ϕl

⎤
⎥⎦
(t)

=

⎡
⎢⎣
αl

ϑl

ϕl

⎤
⎥⎦
(t−1)

− μ

⎡
⎢⎣

∂f(αl,ϑl,ϕl;yl)
∂α∗l

∂f(αl,ϑl,ϕl;yl)
∂ϑl

∂f(αl,ϑl,ϕl;yl)
∂ϕl

⎤
⎥⎦
(t−1)

, (44)

whereμ is the step size. The first element of the derivative term is
the conjugate derivative because αl ∈ C. The expressions of the
first-order partial derivatives in (44) are provided in Appendix D.
Since we do not need very accurate initial estimates, T0 is set
to be a small number, e.g., T0 = 5 in our simulations. After
estimating the parameters of the l-th path, we move forward to
initialize the parameter estimates of the next path until we get
the initial estimates of all the L̄ paths. We can find this stage in
Steps 4–10 of Algorithm 2.

V. SIMULATION RESULTS

In this section, simulation results are provided to demonstrate
the performance of our proposed PC-CPR channel estimation
algorithms.

A. Simulation Setup

In our simulations, we consider the 32× 16 UPA, so the size
of the channel vector is N = 512. Each data point is drawn by
running 1000 Monte-Carlo instances, and for each Monte-Carlo
test, we randomly generate a channel vector. To be specific, the
mmWave channel is composed of 1 LoS path and (L− 1)NLoS
paths, where the random number of NLoS paths (L− 1) follows
Poisson distribution with parameterλ = 5. Then, the normalized

path gains are generated by ᾱ1 ∼ CN (0, κ) and ᾱl ∼ CN (0, 1)
for 2 ≤ l ≤ L, where κ = 10. The azimuth angles {θl}Ll=1 are
uniformly distributed in [0, 2π), and the elevation angles{φl}Ll=1

are uniformly distributed in (−π/2, π/2). The phase offsets
{ωb}Bb=1 are uniformly distributed in [0, 2π). Each element of the
combining matrix is generated by Wi,j = 1/

√
Nejγi,j , where

γi,j is uniformly distributed in [0, 2π). The angular dictionary F
defined in (5) is of the size 512× 512. Based on the signal model
(12), we can define the SNR by SNR = 10 log10

NTSPT

σ2
n

dB,
which is the ratio of the expected power of effective received
pilots to the power of additive noise in the effective received
pilots.

Since L is random, we choose the sparsity level k = 20
for problems (13)–(14), and L̄ = 10 for problem (15). In
Algorithm 1, the maximum number of iterations T = 20. We
set the algorithm parameters λ+ = 1, λ− = −1 in (21), and
μ = 0.2, τw = 0.1, β = 0.1 in (31)–(32). In Algorithm 2, the
number of refinements in the path parameter initialization is
T0 = 5, and the maximum number of iterations T = 100. The
step size in (39) is μ = 10−6. The termination threshold is
ε = 10−8.

B. Performance Metrics

We evaluate several performance metrics of channel estima-
tion, including the normalized mean squared error (NMSE), the
average beamforming loss, and the channel estimation success
rate. In this paper, due to the phase noncoherence problem, the
definition of NMSE is slightly different from the conventional
definition in literature. According to (12), for any ω ∈ [0, 2π),

y =

⎡
⎢⎢⎢⎣
ejω1A1

ejω2A2

...
ejωBAB

⎤
⎥⎥⎥⎦ h̃+

⎡
⎢⎢⎢⎣
n1

n2

...
nB

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ej(ω1−ω)A1

ej(ω2−ω)A2

...
ej(ωB−ω)AB

⎤
⎥⎥⎥⎦ h̃′ +

⎡
⎢⎢⎢⎣
n1

n2

...
nB

⎤
⎥⎥⎥⎦ ,

(45)
where h̃′ = h̃ejω is another angle-domain channel vector. This
equation means that both h̃ and h̃′ can result in the same
measurement vector y, thus we cannot distinguish them from
our measurements with phase offsets. Hence, the channel vector
can be estimated subject to an ambiguity phase rotation term
ejω . This phase ambiguity will not influence the beamforming
SNR gain. In the data frames, this phase ambiguity and the phase
offset in each data frame lead to a phase rotation on the data.
To remove the phase rotation, we can insert a single reference
signal into each data frame, so the phase rotation can thereby be
estimated and compensated for. So the phase ambiguity will not
bring problems in data transmission. To take into account the
phase ambiguity in evaluating the estimation error, the squared
error between the estimated channel ĥ and the true channel h is
defined as

E
(
ĥ,h

)
� min

ω∈[0,2π)

∥∥∥ĥejω − h
∥∥∥2

=

∥∥∥∥∥∥ĥ
ĥHh∣∣∣ĥHh

∣∣∣ − h

∥∥∥∥∥∥
2

. (46)
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Fig. 1. NMSE for different number of RF chains, with M = BNRF = 256.

Then, we can define the NMSE by

NMSE =
E

{
E
(
ĥ,h

)}
E ‖h‖2

. (47)

After the channel vector is estimated, the users feed the
estimated channel back to the BS. Given the estimated chan-
nel vector hest, the analog precoding vector is determined by
maximizing the beamforming gain

w (hest) = arg max
w∈CN

∣∣wHhest

∣∣ s.t. |w1| , . . . , |wN |=
1√
N

=
1√
N

exp∠ (hest). (48)

The beamforming loss is calculated by subtracting the achieved
beamforming gain based on the estimated channel from the
maximal beamforming gain given the perfect channel knowl-
edge, i.e., loss = 10log|[w(h)]Hh| − 10log|[w(hest)]

Hh|. We
calculate the mean beamforming loss as a performance index.
Similar to [14], if the beamforming loss is smaller than 3 dB,
we call this channel estimation is “successful”. The channel
estimation success rate is also calculated to show the reliability
of the channel estimation methods.

Based on the estimated channel, the BS can adopt the clas-
sic hybrid precoding algorithm in [33] to calculate the analog
precoding matrix PA and the digital precoding matrix PD for
a system with multiple users. Let P = PAPD whose columns
{pu}Ku=1 are the hybrid precoding vectors for the K users. The
multi-user sum-rate is calculated by

R =

K∑
u=1

log2

(
1 +

PT

∣∣hH
u pu

∣∣2∑
u′ �=u PT |hH

u pu′ |2 + σ2
n

)
. (49)

C. Results

In Figs. 1–2, the SNR is 10 dB. We fix the number of
measurementsM = BNRF = 256. We compare the NMSE and
the mean SNR loss of different channel estimation algorithms
for different number of RF chains NRF. Note that we do not fix

Fig. 2. Mean SNR losses for different number of RF chains, with M =
BNRF = 256.

the number of time frames B. The reason is, given the same B,
a larger NRF leads to a larger M , then the channel estimation
performances will be significantly better with more measure-
ments. So we fix M rather than B to make the comparison
more fair. Since NRF is the size of a coherent block in the
received pilots, Figs. 1–2 can show how the partial coherence
influences the channel estimation performances. We can see
from these figures that the proposed on-grid PC-CPR algorithm
and off-grid PC-CPR algorithm perform better asNRF increases.
This is because the larger is NRF, the more partial coherence
can we leverage. We also compare the proposed algorithms with
the conventional CPR algorithm CRAF [20] which requires no
coherence, and the standard on-grid algorithm OMP [8] and
off-grid algorithm NOMP [17], both of which require full phase
coherence. When NRF = 1, the partial coherence vanishes, so
the performances of the proposed algorithms are close to those
of the noncoherent CPR algorithm (CRAF). As NRF increases,
the partial coherence approaches full coherence, so the perfor-
mances of the on-grid/off-grid PC-CPR algorithms approach
those of the coherent on-grid/off-grid channel estimation meth-
ods (OMP/NOMP), respectively. The results support that the
proposed partially coherent channel estimation subsumes the
conventional coherent and noncoherent channel estimation as
special cases.

In Fig. 3,NRF = 16, and SNR = 10 dB. We run the proposed
on-grid and off-grid PC-CPR algorithms with different initial-
ization schemes, including the random initialization and the
initialization in [20] without considering the partial coherence
property. It is clear that the performance is poor when we adopt
the random initialization. Moreover, the proposed initialization
scheme is able to improve the channel estimation reliability by
leveraging the partial coherence property. This figure can show
the important role of the initializations in solving the nonconvex
channel estimation problems in the existence of phase offsets.

In Figs. 4–5, SNR = 10 dB. we compare the channel estima-
tion success rate and the NMSE performance against different
number of measurements M . We compare the proposed on-grid
PC-CPR algorithm, off-grid PC-CPR algorithm with CRAF [20]
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Fig. 3. Channel estimation success rate with different initialization schemes.

Fig. 4. Channel estimation success rate against the number of measurements
for UPA.

Fig. 5. NMSE performance against the number of measurements for UPA.

and NOMP [34]. Both the proposed on-grid PC-CPR channel
estimation algorithm and the off-grid version can achieve higher
success rate and lower NMSE than CRAF [20]. This is mainly
because we can fully utilize the phase offset structure. Moreover,

Fig. 6. NMSE performance against SNR for UPA.

Fig. 7. Multiuser sum-rate comparison for UPA.

the success rate under the system with NRF = 16 is higher than
that under NRF = 4.

Fig. 6 shows the NMSE performance of the above phase
retrieval algorithms against the SNR. The number of mea-
surements is M = 256. The NMSE performance gap between
off-grid PC-CPR and on-grid PC-CPR becomes larger as SNR
increases. This is because under high SNR, the NMSE of on-grid
channel estimation is mainly restricted by the angle quantization
caused by the on-grid assumption.

Fig. 7 evaluates the multiuser sum-rate. M = 256. The num-
ber of RF chains and the number of users are NRF = K = 4.
After estimating the channels of the users, the BS can calculate
the analog and digital precoding matrices to transmit data to
the users. We can compare the achieved sum-rate of different
channel estimation schemes against the signal SNR PT/σ

2
n.

We can see that the proposed on-grid and off-grid PC-CPR
algorithms can achieve higher sum-rate than CRAF [20].

Finally, we compare the proposed on-grid and off-grid PC-
CPR algorithm with other noncoherent channel estimation al-
gorithms, including the Fast Beam Alignment (FBA) algorithm
in [14] and the noncoherent channel estimation (Noncoher-
entCE) algorithm in [17]. [14], [17] are proposed for uniform
linear array (ULA). Since ULA can be considered as a reduced
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Fig. 8. Channel estimation success rate comparison for ULA.

UPA with only one row of antennas, our algorithm can also
work under ULA. We simulate for a 128-antenna ULA-based
mmWave massive MIMO system, where NRF = 4, and the
SNR is 10 dB. From Fig. 8, we can observe that our proposed
algorithms has higher success rate under the same number of
measurementsM . To achieve the same success rate, the required
number of measurements of the proposed PC-CPR algorithms
is lower than that of [14], [17].

VI. CONCLUSION

In this paper, we have proposed on-grid and off-grid PC-CPR
algorithms to solve the partially coherent channel estimation
problem in hybrid mmWave massive MIMO systems. Due to
the unavoidable hardware imperfections in mmWave systems,
the pilot measurements in different time frames are corrupted
by random phase offsets; thus most CS techniques are not
applicable. The proposed algorithms can exploit the property
of hybrid mmWave system that the received pilots in different
RF chains share the same phase offset in the same time frame,
which is not considered in existing CPR algorithms. In the
initialization stage of on-grid PC-CPR, we propose new test
statistics to determine the initial support set. We show that the
proposed statistics can significantly improve the initialization
reliability by leveraging the phase structure. In the iterative
refinement stage, the proposed on-grid PC-CPR differs from
existing algorithms in the estimation of phase offsets. Further-
more, we have also proposed off-grid channel estimation to
increase the estimation accuracy further. The proposed partially
coherent channel estimation framework subsumes the conven-
tional coherent and noncoherent channel estimation methods as
special cases. Simulation results show that under the presence
of random phase offsets where the coherent channel estimation
schemes fail to work, the proposed on-grid and off-grid PC-CPR
algorithms outperform noncoherent channel estimation methods
with higher reliability and lower pilot overhead by leveraging
the partial coherence. Besides, the off-grid PC-CPR can achieve
better channel estimation accuracy than the on-grid PC-CPR.

APPENDIX A
PROOF OF (27)

Since the noise is independent to the entries of A, by substi-
tuting (11) into (16), we have

E (ζi) =
1

M

B∑
b=1

E

∥∥∥|Ab (i, :)|T ◦
∣∣∣AH

b h̃ejωb + nb

∣∣∣∥∥∥2

=
1

M

B∑
b=1

NRF∑
j=1

E

{
|Ab(i, j)|2

∣∣∣AH
b (:, j) h̃

∣∣∣2

+ |Ab(i, j)|2 |nb(j)|2
}

=
1

M

B∑
b=1

NRF∑
j=1

E

{
|Ab(i, j)|2

N∑
n1=1

N∑
n2=1

A∗b (n1, j)

× Ab (n2, j) h̃n1
h̃∗n2

}

+ E

{
|a|2

}
σ2
n

=
1

M

B∑
b=1

NRF∑
j=1

N∑
n1=1

N∑
n2=1

h̃n1
h̃∗n2

× E

{
|Ab(i, j)|2 A∗b (n1, j)Ab (n2, j)

}

+ E

{
|a|2

}
σ2
n. (50)

On one hand, when n1 = n2, we have n1 = i or n1 �= i. If
n1 = n2 = i,

E

{
|Ab(i, j)|2 A∗b (n1, j)Ab (n2, j)

}

= E

{
|Ab(i, j)|4

}
= E

{
|a|4

}
. (51)

While if n1 = n2 �= i,

E

{
|Ab(i, j)|2 A∗b (n1, j)Ab (n2, j)

}

= E

{
|Ab(i, j)|2

}
E

{
|Ab (n1, j)|2

}
= E

2
{
|a|2

}
. (52)

On the other hand, when n1 �= n2, we have n1 �= i or n2 �= i.
If n1 �= i,

E

{
|Ab(i, j)|2 A∗b (n1, j)Ab (n2, j)

}

= E

{
|Ab(i, j)|2 Ab (n2, j)

}
E {A∗b (n1, j)} = 0. (53)

While if n2 �= i, for the similar reason we also have
E{|Ab(i, j)|2A∗b(n1, j)Ab(n2, j)} = 0.

Therefore, (50) becomes

E (ζi) =
1

M

B∑
b=1

NRF∑
j=1

N∑
n1=1

∣∣∣h̃n1

∣∣∣2

× E

{
|Ab(i, j)|2 A∗b (n1, j)Ab (n1, j)

}

+ E

{
|a|2

}
σ2
n
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=

N∑
n1=1,
n1 �=i

∣∣∣h̃n1

∣∣∣2 E2
{
|a|2

}
+
∣∣∣h̃i

∣∣∣2 E{|a|4}

+ E

{
|a|2

}
σ2
n

=
∥∥∥h̃∥∥∥2 E2

{
|a|2

}
+
∣∣∣h̃i

∣∣∣2 [E{|a|4}− E
2
{
|a|2

}]

+ E

{
|a|2

}
σ2
n. (54)

APPENDIX B
PROOF OF (28)

By substituting (11) into (25), we have

Zi =
1

M

B∑
b=1

∣∣∣Ab (i, :)A
H
b h̃ejωb +Ab (i, :)nb

∣∣∣2 . (55)

Denote Cb = AbA
H
b . Since the noise in independent of the

entries of A, we have

E (Zi) =
1

M

B∑
b=1

E

∣∣∣Cb (i, :) h̃e
jωb

∣∣∣2+ 1

M

B∑
b=1

E |Ab(i, :)nb|2

=
1

M

B∑
b=1

E

{
h̃HCH

b (i, :)Cb (i, :) h̃
}

+
1

M

B∑
b=1

E ‖Ab (i, :)‖2 σ2
n

=
1

M

B∑
b=1

N∑
n1=1

N∑
n2=1

h̃∗n1
h̃n2

E {Cb (n1, i)Cb (i, n2)}

+ E

{
|a|2

}
σ2
n. (56)

On one hand, when n1 = n2, we have n1 = i or n1 �= i. If
n1 = i,

E
{
C2

b(i, i)
}
= E

{[
Ab (i, :)A

H
b (i, :)

]2}

= E

⎧⎨
⎩
⎡
⎣NRF∑

j=1

|Ab(i, j)|2
⎤
⎦
2⎫⎬
⎭

=

NRF∑
j=1

E |Ab(i, j)|4 +
NRF∑

j1,j2=1
j1 �=j2

E |Ab (i, j1)|2 |Ab (i, j2)|2

= NRFE

{
|a|4

}
+NRF (NRF − 1)E2

{
|a|2

}
. (57)

While if n1 �= i,

E {Cb (n1, i)Cb (i, n1)}

= E
{
Ab (n1, :)E

{
AH

b (i, :)Ab (i, :)
}
AH

b (n1, :)
}

= E

{
Ab (n1, :)

(
INRF

E

{
|a|2

})
AH

b (n1, :)
}

= NRFE
2
{
|a|2

}
. (58)

On the other hand, when n1 �= n2, we have n1 �= i or n2 �= i.
If n1 �= i,

E {Cb (n1, i)Cb (i, n2)}

= E
{
Ab (n1, :)A

H
b (i, :)Ab (i, :)A

H
b (n2, :)

}
(a)
= E {Ab (n1, :)}E

{
AH

b (i, :)Ab (i, :)A
H
b (n2, :)

}
= 0, (59)

where the equality (a) results from thatA has i.i.d. entries. In the
same way, if n2 �= i, we also have E{Cb(n1, i)Cb(i, n2)} = 0.

Therefore, (56) becomes

E (Zi) =
1

M

B∑
b=1

∣∣∣h̃i

∣∣∣2 E{C2
b(i, i)

}

+
1

M

B∑
b=1

N∑
n=1
n�=i

∣∣∣h̃n

∣∣∣2 E {Cb(n, i)Cb(i, n)}

+
1

M

B∑
b=1

N∑
n1,n2=1
n1 �=n2

h̃∗n1
h̃n2

E {Cb (n1, i)Cb (i, n2)}

+ E

{
|a|2

}
σ2
n

=
∣∣∣h̃i

∣∣∣2 [E{|a|4}+ (NRF − 1)E2
{
|a|2

}]

+

N∑
n=1
n�=i

∣∣∣h̃n

∣∣∣2 E2
{
|a|2

}

+ E

{
|a|2

}
σ2
n

=
∥∥∥h̃∥∥∥2 E2

{
|a|2

}
+
∣∣∣h̃i

∣∣∣2 [E{|a|4}

+(NRF − 2)E2
{
|a|2

}]

+ E

{
|a|2

}
σ2
n. (60)

APPENDIX C
THE CONJUGATE GRADIENT OF g(p;y) IN (37)

According to the definition of conjugate gradient [35],

∇p∗g =

[
∂g

∂α∗1
, . . . ,

∂g

∂α∗
L̄

,
∂g

∂ϑ1
, . . . ,

∂g

∂ϑL̄

,
∂g

∂ϕ1
, . . . ,

∂g

∂ϕL̄

]T
,

(61)
where

∂g

∂α∗l
= −aH (ϑl, ϕl)W

⎡
⎣y −WH

L̄∑
l′=1

αl′a (ϑl′ , ϕl′)

⎤
⎦ ,

l = 1, . . . , L̄, (62)

∂g

∂ϑl
= 2Re

⎡
⎢⎣
⎛
⎝y −WH

L̄∑
l′=1

αl′a (ϑl′ , ϕl′)

⎞
⎠

H
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· ∂

∂ϑl

⎛
⎝y −WH

L̄∑
l′=1

αl′a (ϑl′ , ϕl′)

⎞
⎠
⎤
⎥⎦

= −2Re

⎡
⎢⎣αl

⎛
⎝y −WH

L̄∑
l′=1

αl′a (ϑl′ , ϕl′)

⎞
⎠

H

×WH ∂a (ϑl, ϕl)

∂ϑl

⎤
⎥⎦ , l = 1, . . . , L̄, (63)

∂g

∂ϕl
= 2Re

⎡
⎢⎣
⎛
⎝y −WH

L̄∑
l′=1

αl′a (ϑl′ , ϕl′)

⎞
⎠

H

· ∂

∂ϕl

⎛
⎝y −WH

L̄∑
l′=1

αl′a (ϑl′ , ϕl′)

⎞
⎠
⎤
⎥⎦

= −2Re

⎡
⎢⎣αl

⎛
⎝y −WH

L̄∑
l′=1

αl′a (ϑl′ , ϕl′)

⎞
⎠

H

×WH ∂a (ϑl, ϕl)

∂ϕl

⎤
⎥⎦ , l = 1, . . . , L̄, (64)

where the partial derivatives of the steering vector is given by

∂a (ϑ, ϕ)

∂ϑ
=
[
0jej0ϑ, . . . , (N1 − 1) jej(N1−1)ϑ

]T

⊗
[
ej0ϕ, . . . , ej(N2−1)ϕ

]T
, (65)

∂a (ϑ, ϕ)

∂ϕ
=
[
ej0ϑ, . . . , ej(N1−1)ϑ

]T

⊗
[
0jej0ϕ, . . . , (N2 − 1) jej(N2−1)ϕ

]T
. (66)

APPENDIX D
THE CONJUGATE GRADIENT OF f(α, ϑ, ϕ;y) IN (41)

Similar to Appendix C, we have

∂f

∂α∗
= −aH (ϑ, ϕ)W

[
y −WHαa (ϑ, ϕ)

]
, (67)

∂f

∂ϑ
= −2Re

[
α
(
y −WHαa (ϑ, ϕ)

)H
WH ∂a (ϑ, ϕ)

∂ϑ

]
,

(68)

∂f

∂ϕ
= −2Re

[
α
(
y −WHαa (ϑ, ϕ)

)H
WH ∂a (ϑ, ϕ)

∂ϕ

]
,

(69)

where ∂a(ϑ,ϕ)
∂ϑ and ∂a(ϑ,ϕ)

∂ϕ follow (65) and (66), respectively.
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