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Abstract

The supercritical flow states of the spherical Couette flow between two concentric

spheres with the inner sphere rotating are investigated via direct numerical simulation

using a three-dimensional finite difference method. For comparison with experiments of

Nakabayashi et al. and Wimmer, a narrow gap and a medium gap with clearance ratio

β = 0.06 and 0.18 respectively are considered for the Reynolds number range covering the

first Hopf bifurcation point. With adequate initial conditions and temporary imposition of

small wave-type perturbation, multiple periodic flow states with three different pair num-

bers of spiral Taylor-Görtler (TG) vortices have been simulated successfully for β = 0.06,

of which the 1-pair and 2-pair of spiral TG vortices are newly obtained. Three different

periodic flow states with shear waves, Stuart vortices or wavy outflow boundary, have been

obtained for β = 0.18. Analysis of the numerical results reveals these higher flow modes

in terms of fundamental frequency, wave number and spatial structure.

keywords: spherical Couette flow, non-unique flow solutions, spiral Taylor-

Görtler vortices, shear waves, Stuart vortices.

1 Introduction

The spherical Couette flow (SCF) between two concentric rotating spheres gives rise to a rich

variety of flow structures and instability mechanisms in the laminar-turbulent transition. Ge-

ometrically, a spherical shell can be considered as a combination of two other simpler systems

with parallel disks in the pole region and cylindrical annulus near the equator, hence SCF is

similar to the classical circular Couette flow near the equator, and to the flow between two

rotating disks in a stationary casing near the pole. The study of SCF is of basic importance in

providing insight into the physical mechanisms for the laminar-turbulent transition of a closed
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rotating fluid, and is also relevant to astrophysical, geophysical and engineering applications

due to spherical geometry and rotating motion [1].

In this paper we consider SCF with the inner sphere rotating and the outer sphere stationary.

There are two control parameters that determine various flow regimes: a Reynolds number

Re = Ω1R
2
1/ν and a clearance ratio β = (R2 − R1)/R1 , with ν the kinematic viscosity,

Ω1 the angular velocity of the inner sphere, and R1 and R2 the radii of the inner and outer

sphere. Various types of disturbance (flow structures, such as spiral TG vortices and travelling

waves on toroidal vortices) and their characteristics (wavenumber, fundamental and rotational

frequencies) strongly depend on the clearance ratio β [2, 3]. The Taylor instability in a form of

axisymmetric toroidal Taylor vortices occurs as the first instability for narrow and medium gaps

(0 < β ≤ 0.3, as divided by Nakabayashi [3]), while the cross-flow instability in a form of periodic

spiral waves (vortices) occurs as the first instability for wide gaps (β > 0.3 ) [4, 5]. An fascinating

feature of SCF is that a variety of distinct unsteady disturbances with different wavenumbers

or modulation patterns occurs as Re is increased, and some of which can exist at the same

higher supercritical Re, in addition to the coexistence of multiple steady-state Taylor-vortex

flows with different numbers of TG vortices at the same lower supercritical Re. This is related

to bifurcation solutions of the Navier-Stokes equations in an enclose domain. In experimental

studies of SCF, multiple flow states such as multiple steady TG vortex flows [6], multiple

travelling waves on TG vortices [7, 8], and multiple shear waves with different wavenumbers

and rotational frequencies [9], have been observed. In the numerical studies, on the other hand,

multiple steady TG vortex flows have been simulated via time-marching calculations [10, 11, 12]

or continuation methods [13, 14]. Numerical simulations of nonaxisymmetric disturbances such

as spiral TG vortices and spiral waves were also conducted recently [5, 15, 16, 17]. The structure

and formation mechanism of spiral TG vortices for β = 0.14 have been studied numerically

recently by Sha and Nakabayashi [17]. However, simulations of multiple periodic disturbances

with different pair numbers of spiral vortices or different wavenumbers have not been conducted

for SCF.

The objective of the present study is to investigate the interesting multiple periodic flow

solutions for narrow and medium gap cases that were observed in experiments [6, 8]. Particu-

larly, three different periodic flow states with pair number of spiral TG vortices SP = 1, 2 and

3, are simulated at the same supercritical Re for β = 0.06, where only the branch SP = 3 was

experimentally observed by Nakabayashi [3] and numerically simulated by Dumas [15]. We will

show that the multiple spiral vortex flows can be easily calculated by temporary imposition of

a wave-type perturbation. To further explore the structures of the multiple periodic solutions,

a medium gap case with clearance ratio β = 0.18 is also studied, which corresponds to the

experiment of Wimmer [6]. Shear waves, Stuart vortices and wavy outflow boundary at the

equator were obtained in our simulation.

In the present study we utilized an artificial compressibility method in conjunction with a

dual-time stepping technique for solving the unsteady 3D incompressible Navier-Stokes equa-
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tions [18]. A third-order upwind compact finite difference scheme is used for the advective

terms in this study. The resulting discretized equation is solved by a diagonalized ADI scheme.

The method was tested to reproduce very well the steady-state TG-vortex flows with vortex

cell number N = 0, 2 and 4 for β = 0.18 [12]. In this paper we specifically focus on multiple

periodic flow states at higher Re.

2 Mathematical Formulation and Numerical Method

Consider an annulus between two concentric spheres filled with an incompressible Newtonian

fluid of constant density and kinematic viscosity ν. The inner sphere is constrained to rotate

about the vertical axis with a prescribed angular velocity Ω1. To implement the artificial

compressibility method, the incompressible Navier-Stokes equations are written in conservative

form in generalized coordinate system with pseudo-time derivatives added:

∂Q̂

∂τ
+ Im

∂Q̂

∂t
+

∂(Ê− Êν)

∂ξ
+

∂(F̂ − F̂ν)

∂η
+

∂(Ĝ− Ĝν)

∂ζ
= 0, (1)

where Q̂ = Q/J = (p, u, v, w)T/J, Im = diag(0, 1, 1, 1)T, J is the Jacobian of the coordinate

transformation, p is the pressure, u, v and w are the Cartesian velocity components, τ and t

are the pseudo-time and physical time, respectively, Ê, F̂, Ĝ are the inviscid flux vectors, and

Êν , F̂ν , Ĝν are the viscous flux vectors ( cf.ref.[19]). Note that a subiteration is needed at

each physical time step to drive the artificial compressibility terms toward zero to satisfy the

continuity equation.

Applying an implicit backward difference to the pseudotime derivatives , a second-order,

three point backward difference to the physical time derivatives, a first-order flux-difference

splitting to the advective terms of the LHS, and the diagonalized Beam-Warming scheme, one

obtains [18]

Tξ

[

D + δ−ξ Λ+

ξ + δ+

ξ Λ−

ξ − δξA
′

ν δ̄ξ

]

T−1

ξ D−1Tη

[

D + δ−η Λ+
η + δ+

η Λ−

η − δηB
′

ν δ̄η

]

×T−1
η D−1Tζ

[

D + δ−ζ Λ+

ζ + δ+

ζ Λ−

ζ − δζC
′

ν δ̄ζ

]

T−1

ζ ∆Qn+1,m = −
[

∂ξÊ + ∂ηF̂+

∂ζĜ − δξÊν − δηF̂ν − δζĜν

]n+1,m

−
Im

∆t

(

1.5Q̂n+1,m − 2Q̂n + 0.5Q̂n−1
)

, (2)

where D =
1

J

(

1

∆τ
+

1.5

∆t

)

I, I is the identity matrix, δ+, δ− and δ (δ̄) are forward, backward

and central (midpoint central) differences, respectively, A′
ν = 1

Re
(▽ξ · ▽ξ)I is the modified

orthogonal part of viscous terms, T−1

ξ ,Tξ and Λξ are the left and right eigenvector matrices

and eigenvalues of the Jacobian A ≡ ∂Ê/∂Q, and Λ±

ξ = 1

2
(Λξ ± |Λξ|) (cf.ref.[18]). The third-

order upwind compact scheme is applied to the discretization of the advective terms in the RHS

of Eq.(2) dimension by dimension:

∂ξÊ + ∂ηF̂ + ∂ξĜ = A∂ξQ + B∂ηQ + C∂ζQ, (3)
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where A∂ξQ = A+(∂ξQ)+ + A−(∂ξQ)−,A± = TξΛ
±

ξ T−1

ξ , and the upwind-biased difference

(∂ξQ)± can be computed by a third-order upwind compact finite difference scheme [12].

In the calculation, the computational domain of the spherical shell is divided into a number

of grids in the radial (r), meridional( θ) and azimuthal (φ) directions, respectively. The grids

are uniform in θ and φ directions, but are clustered near the wall of two spheres in the radial

direction. Referring a recent finite-difference simulation of the spiral TG vortex flow for β = 0.14

[17] where a grid of 22 × 361 × 91 was found sufficient to resolve the spiral TG vortex flow,

a grid with 21 × 361 × 89 grid points is used for the narrow gap (β = 0.06), and that with

31×361×129 is used for the medium gap (β = 0.18) in this work. For subcritical Re numbers,

the calculations were initiated from the Stokes flow and marched in pseudo-time only. For

supercritical Re numbers, however, low-Re flow fields were used for initialization in order to

avoid excessive computational times for initial transients. For all unsteady simulations the

physical time step is ∆t = 0.01Ω−1
1 . The subiteration for unsteady computation is thought

as converged when L2 norm of the residuals has been reduced 10−2 from its initial value [18].

After the initial transients have died out, this level of convergence is achieved within 5-15

subiterations per physical time step.

Non-slip conditions are applied to velocities, and the pressure is obtained by the momentum

equation in the radial direction on both spheres. The polar boundary is treated as in ref.[18].

A reference pressure is taken at a specified point in the interior domain.

3 Routes to supercritical non-unique flow states

The solution of the incompressible Navier-Stokes equations for an arbitrary bounded fluid is

unique and unconditionally stable only at low Re (cf. [20]), whereas bifurcation solutions may

occur for Re ≥ Rec with Rec being the first critical Reynolds number. This is generally true

for rotating fluid in an enclosed cavity volume. A branch of bifurcation solutions is either

stable or unstable, and can exist only within a certain subset of control parameter space. In

experiments it was observed that the formation of multiple flow states strongly depends on the

initial flow state and on the control parameter evolution history [6, 8]. In numerical computation

of bifurcation solutions via time marching scheme, it is found that other factors can also affect

the development of multiple flow states. These factors include the form of artificial perturbation

added, its magnitude and imposing duration. It is a rule of thumb that while arbitrarily large

perturbation may be imposed in calculating steady-state flow where physical dissipation is

sufficiently large to dampen out artifacts, small perturbation must be used as shortly as possible

in calculating unsteady flow state. The temporary imposition of small artificial perturbation is

reasonable in a sense that actual flow system usually may experience some imperfection such

as rotation whim in SCF. The perturbation often plays an important role in receptivity of flow

instability or mode selection among bifurcation solutions, due to sensitivity of bifurcation. It

accelerates the instability for linearly instability or helps selection of flow mode for nonlinear
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instability. To get a whole picture of bifurcation solutions, a genetic bifurcation method such as

the continuation method is necessary, but it is computationally expensive for obtaining time-

dependent bifurcation solutions. In this paper, a wave-form perturbation that was used by

Schroeder and Keller [21] to trigger travelling waves in circular Couette flow,

vr = −4ǫ1
(r − R1)(r − R2)

β2
cos

[

π

(

1 −
2z

G
− ǫ2α

)]

vθ = ǫ1 sin

[

π

2

(r − R1)(r − R2)

β2

]

sin

[

π

(

1 −
2z

G
− ǫ2α

)]

R1

β
(4)

with z = R2(
π

2
− θ), α = sin(maφ), G ≈ 2β, ǫ2 = 0.4

is imposed for a period of viscous diffusion time defined as td = (R2 − R1)
2/ν. The viscous

diffusion time is related to the development of the TG vortices, because that development

is due to diffusion of the vorticity produced by the inner-sphere rotation. The amplitude of

perturbation ǫ1 in Eq.(4) in the range of 10−4 ∼ 10−6 is found to lead to sufficient instability

yet not artificially distort the flowfield much.

4 Results

The clearance ratios for the narrow gap and the medium gap, β = 0.06 and 0.18, are the

same as those in experiments [2] and [6], respectively. The Reynolds number is confined to

Re ≤ 3800 for β = 0.06 and Re ≤ 8000 for β = 0.18. For convenience of discussion, notations

used by Nakabayashi [3] is adopted here. The flow regime is characterized by “flow region I, II,

III and IV” + “kinds of disturbances”, where the flow region I is a laminar basic-flow region,

region II is TG vortex-flow region, region III is a transition region, and IV is a turbulent flow

region. The kinds of disturbances refer to vortices and waves of the flow, such as TG vortex

(T), spiral vortex (S), travelling waves (W), shear waves (Sh), Stuart vortices (Su), etc. The

flow regime is classified by the flow state expressed by the cell number of toroidal TG vortices

N (the pair number N/2), the pair number of spiral TG vortices SP and the wavenumber of

travelling waves on TG vortices m, that of shear waves SH or Stuart vortices SU. For example,

IITS(N = 2, SP = 3) refers to the spiral TG vortex flow. Present attention is focused on

multiple periodic flow states in flow regime II that occurs after Hopf bifurcation.

4.1 Narrow gap β = 0.06

For this narrow gap case, cylinder-like disturbances such as spiral TG vortices and travelling

waves on TG vortices play an important role [3]. We will show that both multiple steady-state

solutions and multiple periodic solutions exist for β = 0.06.

Firstly, we computed the basic flow state IB(N = 0) at Re = 2767. The Reynolds number

was then increased with ∆Re = 100 to detect when Taylor vortex will occur. The simulation

of the 2-vortex flow IIT(N = 4) at Re = 3067 is quite straightforward. It is found that the
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2-vortex flow exists stably for 3020 ≤ Re ≤ 3130. To obtain the 1-vortex flow that may need

symmetry-breaking bifurcation [11], we impose artificial initial condition. In the initial stage

of the diffusion time td long, two artificial radial dividing lines are placed at one gap-width

away from the equator on northern and southern sides respectively, and symmetry condition is

artificially used with respect to each line. A crude “1-vortex” flow state with an inflow boundary

at the equator is thus produced between each dividing line and the equator. After the dividing

line is removed, the flow settles down to steady-state 1-vortex flow IIT(N = 2). Figure 1 shows

these two steady flows. By quasi-statically changing Re, it is found that the 1-vortex flow

exists stably for 2980 ≤ Re < 3080, thus giving a small overlap range 3020 ≤ Re ≤ 3080 where

two steady-state flows coexist. This feature is consistent with that for a medium gap β = 0.18

[11, 12]. The computed first critical Rec = 2980 is very close to 2979 given by empirical formula

[7]: Rec = 41.3(1 + β)β−
3

2 , though larger than 2760 of [2].

Secondly, by using the 1-vortex flow at Re = 3080 as initial flowfield and quasi-statically

increasing Re slightly above Re = 3140, the flow becomes singly periodic due to Hopf bifur-

cation (secondary instability). It undergoes an intermediate stage with axial symmetry but

equatorial asymmetry. The cell number of toroidal TG vortices varies between 2 and 4. The

intermediate state can remain unchanged for several hundred inner-sphere revolutions with-

out artificial perturbation, but it is unstable to the perturbation (4), and ultimately evolves

into the supercritical spiral TG-vortex flow IITS. It is found that Re ≈ 3140 is the second

critical Reynolds number Res for the occurrence of spiral TG vortices. The present value of

R⋆ = Res/Rec = 1.05 is slightly smaller than experimentally estimated value R⋆ = 1.08 [3].

The multiple spiral TG vortex flows IITS with three different pair number of spiral vortices

(SP = 1, 2 and 3) can be simulated using ma = 1, 2 and 3 in Eq.(4). The duration of the

perturbation is the viscous diffusion time τd or shorter. Figure 2 shows the three flow states at

Re = 3300. The existence of SP = 3 flow has been verified by experiment [2]and numerical

simulation [15]. The occurrence of newly simulated SP = 1 and 2 flow states seems reasonable in

the sense that they are obtained with identical condition with SP = 3 except with different ma.

Once the flow states are formed, they are stable in the range 3140 ≤ Re ≤ 3800, and further

imposition of perturbation (4) with different ma does not push them out of the corresponding

state. We have tested using ma = 1 ∼ 11, only the above three flow states can be obtained.

Regarding the structure of the spiral TG vortex flow, it can be seen from Fig. 2 that each

flow consists of one toroidal TG vortex and SP pair of spiral vortices in each hemisphere.

Figure 3 shows the time history of circumferential velocity component vθ at the equator in the

central spherical surface of the gap. The periodicity corresponds to the fundamental frequency

fS, which represents the frequency of the disturbance passing a fixed point in the laboratory

reference frame. The rotational frequency of the branch IITS (SP = 3), defined as fS/SP, is

0.467 Ω1 at Re = 3300, in good agreement with experiment [3] and calculation [15].

As regard to the formation mechanism of spiral vortices, Ref.[17] revealed that the vorticity

tilting is responsible for generating the spiral vortices, and vorticity stretching acts to stretch
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one of the spiral vortices and suppress the stretching of the other in the azimuthal direction. We

do not perform similar analysis and simply presume that their conclusion can also be applied

to the generation of the spiral vortices for β = 0.06. Nevertheless, the vorticity tilting is found

to develop from growth of wave-form perturbation.

4.2 Medium gap β = 0.18

For this medium gap case, disk-like disturbances such as shear waves and Stuart vortices occur

at high Re and exist together with each of the different TG vortex flows near the equator. The

phenomenon that multiple steady-state and unsteady solutions exist was observed in experi-

ments [6, 8] for β = 0.18, but numerical simulation of high-mode disturbances has not been done

before. Our numerical simulation will show that multiple solutions at high Re are variations of

multiple TG vortex flows at low Re superposed by disk-like disturbances such as shear waves

or Stuart vortices.

In a previous study for β = 0.18, we have found that steady-state supercritical 0-, 1-, and

2-vortex flows coexist in the range of Re ≥ 1220 [12]. Using the three flow states as initial

conditions, multiple periodic solutions can be obtained at the same supercritical Re number (say

Re = 7200). Figure 4(a) shows the 2-vortex flow with eight shear waves: IITSh(N = 4, SH = 8).

The outflow boundary of the toroidal TG vortex become wavy due to interaction with the shear

waves. The shear waves look like spiral vortices, and are thought to result from the viscous

cross-flow instability [3]. Fig. 4(b) shows 1-vortex flow with five Stuart vortices: IITSu(N =

2, SU = 5). Fig. 4(c) shows the zero-vortex flow with eight shear waves: IITSh(N = 0, SH = 8).

The outflow boundary at the equator is wavy. There is difference between Stuart vortices and

shear waves. The shear waves are similar to spiral vortices in the narrow gap case, as both have

a counterclockwise spirals from high latitude region to the equator when viewing from top of the

north pole, but are different in that the shear waves are more extensive into high latitude region

and more tilted with respect to the azimuthal direction, and most of all, there is no discernible

vortex cell across the whole gap. The shear waves are also found for a wide gap in a previous

study (called spiral waves in [5]). The Stuart vortices in Fig. 4(b) have clockwise spirals and

do not extend to the equatorial region so that the outflow boundary of toroidal TG vortex is

still horizontal. The isosurfaces of the meridional velocity magnitude in Figure 5 reveal that

the shear waves extend from the north polar region to the equatorial region in counterclockwise

direction (Fig. 5(a)), while the Stuart vortices are in clockwise direction (Fig. 5(b)). These

disturbances are essentially periodic at this Re.

5 Conclusions

The non-unique periodic flow states of the spherical Couette flow are simulated by solving the

unsteady three-dimensional incompressible Navier-Stokes equations using a third order upwind

compact finite difference method. The numerical results reveal that two spiral TG vortex flows
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with pair number 1 and 2 coexist in addition to the well known SP = 3 spiral TG vortex flow at

low supercritical Reynolds number for the narrow gap β = 0.06. The development of bifurcation

solutions is shown to depend on the wavenumber of the artificial perturbation, besides on the

number of toroidal vortices in initial flow mode and Reynolds number evolution history. It

is also found that multiple steady Taylor-Görtler vortex flows at low Re evolve into multiple

periodic flow states at higher Re (say 7200) for β = 0.18. The 2-vortex flow and 0-vortex flow

develop shear waves (SH = 8) and both have wavy outflow boundaries, while 1-vortex flow

develops Stuart vortices (SU = 5). The numerical results are in qualitative agreement with

previous experiments.

6 Acknowledgements

This work was supported by state key program for developing basic sciences (G1999032801)

and National Natural Science Foundation of China (G10172089).

References

[1] Wimmer M. Viscous flow and instabilities near rotating bodies. Prog. Aerospace Sci. 1988,

25:43-103.
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(a) 1-vortex flow (b) 2-vortex flow

Figure 1: Meridional streamlines for steady 1- and 2-vortex flows, β = 0.06, Re = 3080. Solid

lines are in counterclockwise while dotted lines are in clockwise directions.
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Figure 2: Radial velocity contours in the (φ − θ) spherical surface at the radial position r =

R1 + 0.5β for the three different spiral TG vortex flows, Re = 3300, β = 0.06. The three flow

states are (a) IITS(SP = 3), (b) IITS(SP = 2) and (c) IITS(SP = 1). Solid lines are for vr ≥ 0,

while dashed lines for vr < 0.
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Figure 3: Time history of the circumferential velocity component at the equator. The funda-

mental period for SP = 1, 2 and 3 are 14.70, 6.825 and 4.483, respectively, and represents time

for each disturbance to pass by a stationary observer. The period of rotation of the spiral TG

vortex flow Ts is counted between three consecutive peak intervals for SP = 3, and between

two peak intervals for SP = 2. The rotation frequency of the spiral TG vortex is obtained as

fS/f0 = TS/T0, where T0 = 2π/Ω1. β = 0.06, Re = 3300
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Figure 4: Radial velocity contours in the (φ − θ) spherical surface at r = R1 + 0.7β for three

periodic flow states in β = 0.18, Re = 7200. Solid lines are for vr ≥ 0, while dashed lines for

vr < 0.
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Figure 5: Isosurfaces of meridional velocity vm =
√

v2
r + v2

θ = 0.114 for (a) 2-vortex flow with

shear waves SH = 8, and (b) 1-vortex flow with Stuart vortices SU = 5, β = 0.18, Re = 7200.
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