A Lattice Boltzmann Method for the Chemical Clock in the Belousov–Zhabotinskii Reaction * 

YAN Guang-Wu(严广武)*1,2, YUAN Li(袁礼)1
1LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080
2Department of Mathematics, Jilin University, Changchun 130023

(Received 23 December 2000)

A lattice Boltzmann method for the Belousov–Zhabotinskii reaction is proposed to simulate the chemical clock. Applying the Chapman–Enskog expansion and multiscale technique, we obtain a series of lattice Boltzmann equations in different timescales, the conservation law in timescale t0 and coefficients of macroscopic equations to find the equilibrium distribution functions. A simple numerical scheme is designed to simulate the reaction systems. The numerical example shows that the proposed method can be used to simulate chemical systems with the chemical clock.

PACS: 47.10.+g

In the past decade, the lattice Boltzmann method (LBM) has attracted great attention as an alternative numerical method for simulation of fluid flows.1–3 The main idea of the LBM is to obtain available macroscopic physical equations by using the discrete Bhatnagar–Gross–Krook-type Boltzmann equations.4 Generally, one uses the equilibrium distribution function to fit some requirements which can be obtained with the multiscale technique and Chapman–Enskog expansion. Recently, there have been some studies that applied the LBM to reaction systems.5–8 and it is shown that the method is suitable for simulating chemical reactions. In this letter, we construct an appropriate LBM to simulate the Belousov–Zhabotinskii reactions, where there exist six species (A, B, D, E, X and Y) and four step reactions:1,2

\[ A \xrightarrow{k_1} X, \ B + X \xrightarrow{k_2} Y + D, \ 2X + Y \xrightarrow{k_3} 3X, \ X \xrightarrow{k_4} E. \]

The Belousov–Zhabotinskii reaction has a wide range of physical backgrounds and practical applications, not only in the area of nonlinear dynamics but also in other physical fields. For simulating this reaction system, we expand the distribution function to the order of three by the Chapman–Enskog expansion. Using the conservation law in the timescale t0, we obtain the error term of the equations reaching O(ε2), where ε is the Knudsen number. The numerical results show that our LBM is suitable for simulating the Belousov–Zhabotinskii reaction.

Let us discretize the velocity of particles into b directions in D-dimensional space. The lattice unit spacing is used where each node has b nearest neighbours connected by b links. The distribution function \( f_\alpha^0(\mathbf{x},t) \) is the probability of finding a particle at time t, node x, with velocity \( \mathbf{e}_\alpha \), where \( \alpha = 0,1,\cdots,b \) (\( \alpha = 0 \) is a rest particle). For a one-dimensional lattice, \( D = 1, b = 2 \), the particle velocities are \( \mathbf{e}_\alpha = (0,c,-c) \); for a two-dimensional (2D) lattice, \( D = 2 \) and \( b = 4 \) leads to 2D square models. The macroscopic quantity u is defined by

\[ u^\sigma = \sum_\alpha f_\alpha^0(\mathbf{x},t), \] (1)

and the conservation condition is

\[ \sum_\alpha f_\alpha^{\sigma,eq}(\mathbf{x},t) = u^\sigma(\mathbf{x},t), \] (2)

where \( \sigma = 1,2,\cdots,M \), \( u^\sigma \) is the density of the species \( \sigma \) at time t and position x, and M is the number of species. Here we take \( M = 2 \).

The lattice Boltzmann equation reads5,6

\[ f_\alpha^\sigma(x + \Delta x, t + \Delta t) - f_\alpha^\sigma(x, t) = \Omega_\alpha^\sigma(x, t; x + \omega_\sigma^\sigma(x, t)), \] (3)

In the case of the standard lattice Boltzmann,3–5 the term \( \omega_\sigma^\sigma = 0 \), where \( \Omega_\alpha^\sigma = -(1/\tau)[f_\alpha^\sigma(x, t) - f_\alpha^{\sigma,eq}(x, t)\] is the equilibrium distribution function at t and \( \mathbf{x} \); \( \omega_\sigma^\sigma \) is the additional term; \( \tau \) is the single relaxation time factor.

The small parameter \( \varepsilon \) is selected as the time unit in the numerical simulation, and it can also play the role of the Knudsen number.9 The lattice Boltzmann equation in physical units is

\[ f_\alpha^\sigma(x + \varepsilon \mathbf{e}_\alpha, t + \varepsilon) - f_\alpha^\sigma(x, t) = -\frac{1}{\tau}[f_\alpha^\sigma - f_\alpha^{\sigma,eq}] + \omega_\sigma^\sigma. \] (4)

We apply the Taylor expansion, Chapman–Enskog expansion,10 and multiscale technique to Eq. (4), and assume

\[ \omega_\sigma^\sigma = \varepsilon^2 \phi_\sigma^0, \] (5)

* Supported by the National Key Programme for Developing Basic Sciences (No. GI9903028001), the National Natural Science Foundation of China under Grant No. 10072023, and the Foundation of State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences.

©2001 Chinese Physical Society and IOP Publishing Ltd
then a series of lattice Boltzmann equations in different timescales are obtained,[11]

\[
\frac{\partial f_{\alpha}^{(0)}}{\partial t} + e_\alpha \frac{\partial f_{\alpha}^{(0)}}{\partial x} = -\frac{1}{\tau} f_{\alpha}^{(1)},
\]

(6)

\[
\frac{\partial f_{\alpha}^{(0)}}{\partial t} - \tau(1 - \frac{1}{2\tau})(\frac{\partial}{\partial t_0} + e_\alpha \frac{\partial}{\partial t_j}) f_{\alpha}^{(0)} = -\frac{1}{\tau} f_{\alpha}^{(1)} + \phi_\alpha(x),
\]

(7)

Taking the summation over \( \alpha \) in Eqs. (6) and (7), and performing (6)+(7) \( \times \varepsilon \), we have

\[
\frac{\partial u_{\alpha}}{\partial t} = \lambda^\alpha \varepsilon(\tau - \frac{1}{2}) \frac{\partial^2 u_{\alpha}}{\partial x_i \partial x_j} + \varepsilon \phi^\alpha(u^\alpha)(b + 1) + O(\varepsilon^2).
\]

(9)

If we choose

\[
\sum_\alpha f_{\alpha}^{(0)} e_{\alpha i} e_{\alpha j} = 0,
\]

(10)

\[
\sum_\alpha f_{\alpha}^{(0)} e_{\alpha i} e_{\alpha j} \lambda^\alpha u^\alpha \delta_{ij},
\]

(11)

where \( \lambda^\alpha = D_\alpha/\varepsilon(\tau - 1/2) \), then Eq. (9) has the truncation error

\[
R = O(\varepsilon^2).
\]

(12)

By simple algebraic operation, we obtain equilibrium distribution functions \( f_{\alpha}^{(0)} \) as follows:

\[
f_0^{(0)} = u^\alpha - \frac{\lambda^\alpha D u^\alpha}{\varepsilon^2},
\]

(13)

\[
f_\alpha^{(0)} = \frac{\lambda^\alpha D u^\alpha}{\varepsilon^2}, \alpha = 1, \cdots, b.
\]

(14)

From Eq. (9), we obtain the following diffusion-reaction equation (\( M=2 \), \( u^1 = u, u^2 = v \)),

\[
\frac{\partial u}{\partial t} = D_1 \nabla^2 u + [A - (B + 1)u + u^2 v],
\]

\[
\frac{\partial v}{\partial t} = D_2 \nabla^2 v + [Bv - u^2 v],
\]

(15)

which can be derived from the Belousov–Zhabotinskii reaction.

Next, we select the parameters as \( A = 2.0, B = 5.45 \) and \( L = 1.0 \) for the reaction terms. The diffusion coefficients are \( D_1 = 8.0 \times 10^{-3} \) and \( D_2 = 4.0 \times 10^{-3} \). The parameters in the lattice Boltzmann equation are: \( c = 3.0, \tau = 1.2, b = 2 \). These additional terms can be given as follows

\[
\phi^1 = \frac{1}{\varepsilon(b + 1)} [A - (B + 1)u + u^2 v],
\]

\[
\phi^2 = \frac{1}{\varepsilon(b + 1)} [Bv - u^2 v],
\]

The boundary conditions can be expressed as \( u|_{x=0-L} = A \) and \( v|_{x=0-L} = B/A \) together with the initial values of

\[
u(x,0) = 2 - \sin(\pi x), \quad u(x,0) = \frac{B}{A} + \varepsilon.
\]

We also simulate this test problem using a finite difference method (FDM) to compare with the LBM results. In the FDM, Eq. (15) is solved with a time step \( \Delta t_{FDM} = 1/12 \), and a spatial step \( \Delta x_{FDM} = L/N \). We find that the LBM results agree very well with the FDM results. In Fig. 1, the evolution of time is from \( t = 5000 \Delta t \) to \( t = 15000 \Delta t \). The numerical results show a periodic oscillation when \( t > 6000 \Delta t \), with a period of 2000 \( \Delta t \). Figure 2 shows the wave and propagation of species \( u \) from time \( t = 6000 \Delta t \) to \( t = 8000 \Delta t \). It is noted that the chemical clock as computed using the LBM is in close agreement with that obtained using the FDM.
In conclusion, we have developed a lattice Boltzmann method for simulating the Belousov–Zhabotinskiĭ reaction, and show that the method can capture the well-known chemical clock of the diffusion-reaction system. Although we only studied the Belousov–Zhabotinskiĭ reaction as an example, it is easy to construct other nonlinear chemical reaction systems by using higher moments of the lattice Boltzmann method. This method may be a viable tool to simulate some patterns of chemical reactions. A key assumption we used in this model is $\omega_{\alpha}^2 = \epsilon^2 \phi_{\alpha}^2$, which may be useful in other applications. The meaning of this assumption is that reaction and diffusion have the same order of scales. Our numerical results show that the assumption is reasonable. Until now, there has been no method that does not use this assumption in the field of the reaction-lattice Boltzmann method. As a numerical method, the lattice Boltzmann method may not be more efficient and more accurate than standard FDM schemes. However, we do find the ability of the LBM to simulate the nonlinear systems and the diffusion-reaction systems.

References

[8] Yan G W and Yun L 2000 Communications in Nonlinear Science and Numerical Simulation 5 61