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Abstract: It is known that the standard lattice Boltzmann method has near-vacuum limit, 
i. e., when the density is near zero, this method is invalid. In this letter, we propose a simple 
lattice Boltzmann model for one-dimensional flows. It possesses the ability of simulating near- 
vacuum area by setting a limitation of the relaxation factor. Thus, the model overcomes the 
disadvantage of non-physical pressure and the density. The numerical examples show these 
results are satisfactory. 
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Introduction 

The Lattice Boltzmann method (LBM) can play a major role in solving fluid flows. In 
particular, the lattice ga&l and the lattice Boltzmann method have been implemented suc- 
cessfully in the simulation of incompressible flows, magnetohydrodynamics, chemically reacting 
flows, flow through porous media, turbulent flows et al. ~1 Many results show that the lattice 
Boltzmann method has three advantages: Firstly, the convection operator of LBM is linear. 
Secondly, the incompressible Navier-Stokes equations can be obtained in the incompressible 
limit. Thirdly, LBM uses a minimal set of velocities. Since only a few moving directions are 
used, if we fix the direction, say CX, the lattice Boltzmann equations is one-dimensional iteration, 
and the code is greatly simplified. As an important progress, the simple collision model of BGK 
is applied to the lattice Boltzmann equation, yielding the lattice BGK mode1[3-51. However, 
this method is limited to a range of low Mach numbers as an image ga& 71. This concerns 
three aspects of the reason: (1) there exist nonlinear deviations (see Ref. [7]), (2) this model 
can cause a so-called ideal limitation[81, (3) this model is limited to near-vacuum case. It is 
known that density and pressure always take positive value. Some numerical methods have 
no ability to handle the difficulty of near-zero density. From the viewpoint of the gas kinetic 
theory, the media are not continuous, and the Navier-Stokes equation fails. But the Boltzmann 
equation resulting from the particle level may be turned into the particle flux equation, i. e.; 
without the collision term. In the view point of computational fluid dynamics, the scheme must 
have the ability of handling the difficulty of the medium near vacuum. Recently, we have de- 
veloped a simple lattice Boltzmann model for compressible flow with shock waves and contact 
interfaces. But this model cannot simulate the flows with near-vacuum area. In this paper, we 
introduce a limit of relaxation factor, when density p < O.O1pl,=o, then the collision vanishes. 
This assumption agrees with the gas kinetic theory. 

In Section 1 of this paper, based on standard lattice Boltzmann method, a new lattice 
Boltzmann model is proposed. In Section 2, two Hoe’s tests are calculated to check this model. 
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1 The lattice Boltzmann model 

Consider the one-dimensional model. We assume that the particles moving along the link 
with velocity e, are divided into two types, lea] = c and ]e,] = 0, with two different energy 
levels sA and sg, and the particle at rest possesses energy level &D. The single particle dis- 
tribution in the state at site z and time t is denoted by fa = fa(z, t) ((Y = 0, 1, . . . ,4). The 
density p, the momentum pu, and the total energy per site pu2/2 + pE are defined as 

p=Cf,, pu=Cfd+, ;pu2 + pE = c fan, (1) 
a a a 

In Eqs. (l), pE is the internal energy per site, E, = &A, EB, &g. 
The Lattice Boltzmann equation takes the form 

fa(z + AZ, t + At) - f&r, t) = -;[rac,, t) - f:‘(z, t)] 

where r is the relaxation time, f, eq is the local equilibrium distribution, which possesses the 
expressions 

i 

Dop + D5pu2, CY = 0 

fzq = Aop + Anpue, + A5pu2eE + Agpu2, a = 1,2 (2) 
&p + B2puea + &pu2e2, + B5pu2, a = 3,4 

In Eq. (2), parameters Do, D5, Ai, Bi (i = 0,2,5) can be determined by the conservation 
laws of mass, momentum, energy and flux conditions of momentum and energyIgl. This local 
equilibrium distribution function differs from the expressions in Ref. [9], for we are considering 
an one-dimensional model. The pressure of the perfect gas p is defined as, p = (y - 1)pE. 

By simple algebra, we obtain these coefficients 

Do=l-p D5=--$ 
PC2 ’ 

A 
0 

= EBp(p&2)-l - (E - D,+D) , 

~(EB - &A) 

B. = -&AP(pc2)-’ + (E - Do’D) 
~(EB - &A) 

EBC 
-2 

A2 x - c-~(O.~U~ + YE) 
, B2= 

-&Ac-2 + ~-~(0.521~ + YE) 

2(&l? -&A) 2(&B - &A) 

A 
5 

= &B - 0.5(c2 + 2&D) 
2(sB - EA)(C4 + c2)’ 

B = -&A + 0.5(c2 +2&D) 
5 2(&B - &A)(& + c”) 

Using the multi-scale method, i. e., multi-scale time expansion and Chapman-Enskog ex- 
pansion, we get the Euler equations with the first order accuracy of the truncation errorslgl 

g + g = O(E) 

dPU 
at+ 

?PU2 +I-4 = qE) 
8X 

where E is the Knudsen number, its value being equalized to At in this paper. We found 
that this model has no chosen parameter X, which differs from Ref. [9]. The reason is that X 
disappears when the number of spatial dimensions reduces from two to one. 

We use two methods to analyze the stability, (i) Hirt’s heuristic stability theoryllOl, (ii) the 
consistency criterion. If we set &A = EB = e, then, this model is the standard lattice Boltz- 
mann model, and equilibrium distribution (2) is the standard lattice Boltzmann equilibrium 
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distribution in Refs. [3-51. In our paper, based on method (ii), we obtain the CFL condition of 
the lattice Boltzmann model. Using the condition foq > 0, we have 

D 
c2 > u2 + -a2 

Y 

where a is the speed of sound, a2 = yp/p. 
Now we focus on the difficulty of near-vacuum axea. In the lattice Boltzmann model, the 

mean free path 1 equals to cAt. We assume that the gas is near-vacuum if collision does not 
occur in the range of 1. However, if we delay the time, i. e., increase the collision time, collisions 
will surely occur. Therefore, we define the vacuum as there is no particle collision in the interval 
of t to t + At. Thus, the limitation of relaxation factor may be expressed as follows 

where 6 is the critical density, and 6 = O(E). In numerical simulation, we set 6 = E. 

2 The numerical tests 

In this paper, we choose two Roe’s tests to simulate. It is difficult to simulate Roe’s tests 
by using the traditional method. The reason is the instability and non-physical pressure in the 
near-vacuum region. 

The Roe’s tests with two initial conditions[“l are given by 

Case I (PL,PL, u) = (1.0,0.4, -2.01, (PR,PR,UR) = (1.0,0.4,2.0) 

Case II (PL,PL, WC) = (1.0,1.8, -l.O), (PR,PR,UR) = 0.0,1.8,1.0) 

For the sake of comparison, firstly, we give the numerical results by using the model of 
Ref. [9] (Fig. 1). The numerical results of Case II seem good enough, but we found Case I’s 
numerical pressure value appears negative, and the scheme is unstable when the density tends 
to zero. Obviously, the model of Ref. [9] can be used to simulate Case II but not Case I. 

Fig. 2 shows the numerical results using the relaxation factor Eq. (3). These results show 
that the model is suitable for Case I but not Case II. In Fig. 2a and Fig. 2b, the density 
is near 0 and keeps positive. For Case II, see Fig. 2c, there is a large “tip” in the contact 
interface compared with Fig. lc. The scheme can restrain the negative value automatically in 
the near-vacuum area. 

3 Conclusions 

The Roe’s test is a difficult problem in the simulation for the compressible Euler equations, 
the reason is that scheme relate to the ability of handling near-vacuum area. In this paper, the 
Case I is an example with the near-vacuum region. If Knudsen number becomes large from the 
viewpoint of the gas kinetic theory, the Chapman-Enskog expansion and multi-scales method 
may fail. But, in this paper, we found a simple method to overcome this difficulty, and extend 
the limits of lattice Boltzmann method. 

We also unified differential lattice Boltzmann models, constructed the relationship be- 
tween the compressible lattice Boltzmann model and standard lattice Boltzmann model. When 
energy-levels &A = EB, our model reduces to standard lattice Boltzmann model. Thus, the 
difference between our model and standard lattice Boltzmann model is that the particle in our 
model have three sizes. Our model also handles compressible flows without near-vacuum region. 
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Fig. 1 The numerical results (circles) by using the model in Ref. [9]. (a), (b): Case I, lattice size 
M = 200, time T = sOAt, y = 1.4, c = 8.0, X = 1.65, l/~ = 1.3, &A = 0.65c2, E’S = 0.54c2, ED = 0.1~‘; 
(c), (d): Case II, lattice size M = 200, time T = 50At, y = 1.4, c = 3.0, X = 1.75, l/~ = 1.35, 

&A = 2.0C2, &B = 0.6c2, &D = o.lC2 
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Fig. 2 The numerical results (circles) by using the model in this paper. (a), (b): Case I, lattice size 
M = 100, time T = 50At, y = 1.4, c = 3.0, l/r = 1.31, &A = 6.5c2, EB = 2.0c2, ED = 0.02~~; 

(c), (d): Case II, lattice size M = 1000, time T = 2OOAt, y = 1.4, c = 3.0, l/r = 1.35, &A = 2.0c2, 
&B = 0.6c2, &D = o.lC2 
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