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Role of gas density in the stability of single-bubble sonoluminescence
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Recent full hydrodynamic simulations of a sonoluminescing bubble interior have shown that the bubble
content is compressed to a very dense state during the violent collapse. In this paper, we numerically studied
the shape stability of a radially oscillating gas bubble by using Hilgenfeldil. theoretical model with
corrections taking into account the gas density effect. Our results show that gas density variations not only
significantly suppress the Rayleigh-Taylor instability, but also enhance the threshold of the parametric insta-
bility under sonoluminescence conditions.
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[. INTRODUCTION the main collapse of single sonoluminescing bubbles is a
major concern exist even in very recent studjd®,2q.
Since the first report of single bubble sonoluminescencé& herefore, further theoretical clarifications are desirable.
(SBSL) by Gaitanet al. [1], the phenomenon has been ex- The objective of this paper is to improve the shape stabil-
tensively and carefully studied, and numerous models havidy analysis of a radially oscillating gas bubble by consider-
been proposed to explain its mechanif?l. Recent mea- ing the variation of the gas density inside the bubble and to
surements of the light pulse of SBSL revealed that the fullevaluate its role in stable SBSL. This is motivated by some
widths at half maximum range from 40 to 380 ps in variousfull numerical simulations of the bubble interi21]. Figure
experimental condition§3] and put constraints on models. 1 shows typical density profiles at the moment of minimum
However, they still seem to be consistent with a wide rangdubble radiusRy,;, for three driving pressure amplitud&s,
of hydrodynamic scenarios including shock w4g2ed], con-  calculated using our full hydrodynamic modél] and a re-
tinuous compression wayé,6], or even adiabatic heating of alistic equation of statg22] taking into account the ioniza-
the bubble conten{7,8]. Aside from the light-emitting tion processes in the bubble interior. The average density of
mechanism and related hydrothermal scenarios, another réhe bubble content becomes comparable to or even larger
markable feature of SBSL is that it can be stable for millionsthan that of the surrounding water at high driving pressure. A
of cycles. In most of the previous models, a spherically symdirect effect of this is to reduce the difference between the
metric collapse is assumed, even though this seeming cogas densityp, and the liquid density,,, which is expected
tradicts the long known fact that the spherical shape of osto suppress the RT instability. During the course of our in-
cillating gas bubbles can be unstab®%10]. vestigation, we note that recently Augsfiw et al. [19] also
The remarkable stability of SBSL have been explainedstudied the gas density effect in the spherical RT instability
partially by several authors based on, most notably, the
argon-rectification hypothesjd 1] and the analysis of shape -
and diffusive instabilitie$12—14. These works have estab- 3000
lished that stable SBSL only occurs in a narrow parameter -
window of large driving pressure amplitude and low dis-
solved gas concentration, resulting from instabilities of
shape, diffusion, and chemical reactions for molecular gases.
However, their studies about the regions in which stable
SBSL may exist map out a stability threshold for the equi-
librium bubble radius R,) that lies well below those found
in experiments[15]. The boundary layer approximation
(BLA) used in these studies for evaluating the destabilizing
role of the vorticity field has been controversiab,17]. Re- - 1.275 atm
cently Hao and Prosperefti8] conducted a full numerical
simulation considering the viscous nonlocal effects to com- % : 0'2 : 0'4 : ols
pare with the BLA. While noting a satisfactory agreement at ' ’ R(um) ) '
low driving pressure amplitude®,<0.6—0.7 bars, they
found that the BLA underpredicted the parametric instability FiG. 1. Calculated spatial profiles of gas density of an argon
(PI) threshold atP,>1 bar. As regard to another type of pubble at the moment when the bubble radius attains its minimum
shape instability, namely, the short time-scale Rayleighat P,=1.275, 1.35, and 1.45 atm, respectively. The driving sound
Taylor (RT) instability, there are no agreed threshold up tohas a frequenc§=26.5 kHz, and the bubble equilibrium radius is
now and discrepancies about whether the RT instability irRy,=4.5 um.
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by exemplifying its influence on the coefficients of the equa-where B,,=(n—1)(n+1)(n+2), dots denote time deriva-
tion for the distortion amplitude. Our work differs from Ref. tives, v,o are the kinematic viscosity and surface tension of
[19] mainly in that we use a different approach; specifically,the liquid, andé is the boundary layer thickness. There are
we track the evolution of initial distortions rather than that of several observations on E¢R.2): (i) if the density ratio
ad hocthermal fluctuationg19]. Our approach is simpler, pg/pw=0, one recovers the formula §12]; (i) although a
computationally less intensive, and able to make use of théinite density ratio may reduce the magnitude of the second
Floguet theory of Hill's equation for determining the para- term inB,(t) (the damping it changes the contribution &
metric instability(see the details given in Sec. 1) AAnother A,(t) far more significantly19]. The net effect is to en-
difference is that we adopt a different form of the Rayleigh-pance shape stability, which will be shown latéiii) the
Plesset equatioiRP) that leads to stronger collapse. The boundary layer thicknesé=min(\»/w,R/2n) proposed in
resulting higher_density seems closer to that obtain_ed frorf'lz,lg_l, though reasonable qualitatively, notably overesti-
full hydrodynamic simulations. Furthermore, we studied alSyaie5' the destabilizing role of the vorticity field quantita-

th(_a effect of gas density variations on the parametric instaﬁve|y at both low and high driving amplitudd26,18. In
bility. view of the complexity of accurate methods for evaluating

the viscous nonlocal effecf48], and because our test results
show that the RT instability is hardly affected whether the
BLA is used, we prefer to consider the limiting case of a thin
A. Shape stability layer associated with the least destabilizing effect of the vor-
We concentrate on pure argon bubbles for which nd.iCity field, namely5—>0. However, we also use differeft
chemical instability can occur, and we ignore the translat0o demonstrate its impact on the PI threshold.
tional movement of the bubble for which no Bjerknes force  Three kinds of shape instabilities hidden inside Exj1)
instability will appear. The later assumption is justified for were distinguished by Hilgenfeld¢t al. [12], namely, the
P,<1.6 atm[23]. To examine the regime where stable parametric, the RT and the afterbounce, acting on different
SBSL exists in the experimental control parameterdime scales and differeR,-R, parameter regions. We here
(Pa.f,c../Co,T.), where f=w/27 is the external driving focus on the first two kinds. IR(t) and thusA,(t) andBy(t)
frequency,c.. is the gas concentration far away from the are periodic with period, Eq.(2.1) is a Hill's equation and
bubble,c, is the saturation concentration, afigl is the am- @ pure parametric instability can be rigorously analyzed. The
bient temperature, we follow Hilgenfeldt al. approact12] Floquet transition matrix is numerically computed by evolv-
to analyze parametric and diffusive instabilities, but startingd small perturbations through one peridd12]. Paramet-
from Prosperetti’s formulf24] that takes into account of the fic instability occurs whenever the maximal eigenvalue of

viscosity of the surrounding water and the density of thethe Floquet transition matrix of E¢2.1) is larger than one.
bubble content. As a result of incremental search in tiRg-R, space, we

Let the bubble radius be perturbed tdR(t) obtain a Pl borderline that divides the stable and unstable
+a,(t)Yn(6,¢), whereR is the undistorted bubble radius, domains. N _ .
ay(t) is the distortion amplitude, and, is a spherical har-  The RT instability happens in a short time scale when the
monics of degrem_ In the linear regime, the dynamica' bubble rebounds from the minimum bubble radius. Up to
equation fora,(t) can be obtained from EqéL7), (23), and ~ Now, there is no established quantitative threshold for the RT

(25) in [24] by settingu; =0, retainingp,(pg) and pa(py), instability [2,12,16. In the literature, there is basically two
and adopting the BLA12]: approaches to study the RT instability numerically. One is to

add either a random displacement to the distoréig(t) after
each integration time stgfi2] or a random force of molecu-
lar fluctuationd 19] to the right-hand side of E@2.1) during

the whole cycle, another is to compute the amplification fac-

II. BUBBLE DYNAMICS

a,+B,(t)a,+As(t)a,=0 (2.2)

with tor of an initial distortion of microscopic sizes only during
the primary collapsd20]. Our experience shows that the
n(n+2)?|2v latter approach is computationally cheaper, and it is thus
3R Bt 1+25/R Q usgd in this paper. We define the primary collap§e as the
B.(t)= — + period from the moment of maximum bubble radiiys
(V) R n+1p ' . max
T—g when an initial perturbationaﬁ,aﬂ) starts to grow to the
Pw moment in the first rebounce when the distortiap(t)
ceases to grow. We adopt the approximate criteficj that
(n+1)(n+2) py R Bno the distortion can overwhelm the bubble radR@) within
A=y —( (- g+ —— the collapse stage
Pw puwR
: |an(t)]
n(n—1)(n+2)|2vR n+1 pg max R(1 =1, (2.3
AT T 2eR R Sl owl’ (tr,, <1 =tr,, tert | Y

(2.2

wheretRmm is the moment of minimum bubble radius, and
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try is set to 10 ns to cover the moment when the distortiorwhere P¢(t) = — P, sin(wt) is the acoustic driving pressure.
ceases to grow. It should be emphasized that both the dighe gas pressure and temperature inside the bubble vary ac-
placement and velocity of an initial perturbation will affect cording to

the location of the RT borderline determined by E8.3).

Since our main concern is to study the effects of the density o Rg— h3\”

ratio under otherwise the same conditions, we assume that PIR(D]={ Pot R_o W ' 2.7)
when an initial perturbation adi®=10 nm,a’=0 can grow

to overwhelm the bubble radiu(t), the RT instability will (RS— h3)r-1

disrupt the bubble. In view of the fact that the 10 nm size is T[R(t)]=Tmm, (2.8
less than 1%R, anda® has not been taken into account, we (R*=h%)

think that the above initial perturbation is typical of practical TR

imperfections that may occur. Our numerical results showand the gas densily, Is computed from

that the calculated RT borderline lies just above the experi- pgRyT

mental upper boundary iR, with very low gas concentra- p= m, (2.9

tion [15]. Even though the exact position of the predicted RT

threshold is affected by the size af, the amplification fac- whereh=R,/8.86 is the hard core van der Waals radius for
tor a,(t)/a; is independent o&) because Eq2.1) is linear.  argon bubblesR, is the gas constant, armis the excluded

As we will show in Sec. lll, the density ratio has a significantyan der Waals hard core volume, and for argbn
effect on the stability threshold. =0.032 19/mole. The polytropic exponeny includes the
effects of heat transfer between the bubble and the liquid in a
simplified way. In doing soy=1 is used for radii larger than

R, and y=5/3 is used for smaller radii2]. We want to

To obtain a phase diagram with experimental control pacompare with the experiments of Holt and Gaifds], and
rameters, we also consider diffusive instability according tohence other parameters af,=1 atm, T,.=20°C, f

Fyrillas and Szeri25]. The equilibrium radius follows from =206 kHz, 0=0.0728 kg/8, v=1.008<10"% m%s, p,
the dynamical condition that the mass outflow and inflow=998 kg/n?, c,,=1483 m/s.
during a driving cycle are balanced

B. Diffusive stability

c., <p(t)>t,4 Ill. RESULTS AND DISCUSSIONS
Co Py '’ 24 We study the parameter range 0.65 &R, ,<1.5 atm,
1 um=Ry=<20 um. The computational resolution in the
. . : ' P.-Ry parameter space is AP,=0.025 atm,AR,
where the weighted time averagg , is defined as =0.25 um. The quadrupole modenE 2) is most unstable
for Ry<<10 um and is considered here. Before discussing
T 4 the effects of gas density, let us first show how the boundary
Jo fORY (D)t layer thicknesss and polytropic exponeny affect the nu-
FOha=—7— (2.5  merical results.
f R4(t)dt Figure 2 shows the borderlines of the parametric and RT
0 instabilities in theP,-R, parameter space obtained using

various 8. Below the Pl line the bubble is parametric stable.
To the left of the RT line the bubble is RT stable. &s
increases from=0 to min(\/»/w,R/2n) the location of the
maximumR, deviates more from the experimental threshold
[15], and the margin between =0 and §
=min(\»/w,R/2n) can be nearly 2um for P,>1.1 atm.
We note the quantitative agreement of the location of the PI
C. The Rayleigh-Plesset equation line for 5=min(y/»/w,R/2n) between the present result and

To provide Eqs(2.1) and(2.4) with R(t) andp(R.t), we Figi %ﬁ in Ref.[18]c.i The.resglt reftleglts thedearliir cotnglut.;siotr;]
use the RP equation that describes the dynamics of th I?A fSV'Sl‘_(':OUS amtElngRl_? Inoa_ yhurélerefsf m:adeb ¥h e
bubble wall. A simpler forn{2,12,14 is used: ) [18]. owever, he In€ 1S hardly aftected by the

choice of 6. Figure 3 shows the influence of the polytropic

exponent on the predicted stability thresholds. The difference
in the PI threshold becomes obvious at lower driving ampli-

Thus we can plo{p), 4/Pg ~R for different P,. The in-
tersections of a constant. /cy line with the (p), 4/Po~Ro
curve correspond to equilibrium points, and a diffusively
stable point is indicated bgi(p(t)); 4/dRy>0.

. 3., 1
RR+ —R2=p—[p(R,t)— Ps(t)—Pol+
w

2 PuCu tudes, with the threshold from the full isothermal model be-
d R 20 ing the most left and that from the full adiabatic one being
xm[p(R,t)—PS(t)]—m}ﬁ—p—R, the most right. However, the difference is very small for

w

P,>1.2 atm that is more relevant to SBSL. The trend in the
(2.6 PI threshold is the same as those predicted by Hao and Pros-
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FIG. 2. Shape stability boundaries of tlne=2 mode in the
P.-Ro parameter space for an argon bubble driven fat
=20.6 kHz. The Pl and RT lines denote the parametric and RT
instability borderlines respectively, obtained using various bound-
ary layer thickness. Solid linegi=min(\/v/w,R/2n); dashed lines:

20 24
102 4 A, (59)
O o meoeo
€ — T

5.0

6=0.1R; dash-dotted lines:5=0. Symbols represent stability g ‘225
thresholds from experiments by Holt and Gaifdrb], where O g- Fa
stands forn=2 mode, A for n=3 mode, andX for unknown 3. 500
shape mode. z e
peretti[18]. The RT instability threshold is also affected by %2 :?fs) 02 e T?Es) 0z

the polytropic exponent, with the full adiabatic model being

the most stable. The margin between different polytropic ex- FIG. 4. (a)—(d) show the time development of the radius, veloc-

ponents will be compared to that caused by gas densityy, and acceleration of the bubble during the brief stage of collapse
and rebounce, foRy,=4 um andP,=1.4 atm.7=0 corresponds

20 to the moment of minimum bubble radiu®) and (f) show com-

I parison between with considerir{golid) and without considering

18 | the gas densitydasheglfor the dynamics oB,(t) andA,(t) in Eq.

16 (2.1). (g and (h) show the magnitudes oB,(t)a,(t) and

i F A,(t)a,(t) respectively.

12 variations later in Fig. 6. The conclusions from the above
T 10 I comparisons ardi) The choice ofé affects the PI threshold
2 7| significantly but not the RT instability thresholdii) The
< 8 choice of the polytropic exponent affects the PI threshold

I only for P,<1 atm, and it is essential to treat thermal con-
6 I duction properly at the low , regime. The following discus-
4 sions are based on the results obtained ugliag@ and the

i simplified polytropic exponent as described in Sec. Il C.
27 - We now turn to discuss the effect of the gas density on the
0 L ! shape stability. In most periods of a cycle or at 18w, the
06 0 7 0 8 0 9 1. 0 1. 1 12 13 14 15 density ratiopg/p,, is negligible. But for largeP, and when

P, (atm) the bubble radius is close to its minimum, it is nontrivial.

FIG. 3. Comparison between the shape stability boundaries 0']l'he density ratio will have important effects 8(t) in Eq.
then=2 mode as computed with various polytropic exponents and2-2 and hence may change the contributionrofa domi-
the same boundary layer thicknegs=min(yv/w,R/2n). Solid ~ hant factor in the RT instability. Figurega—4(d) show the
lines: mixed isothermal-adiabatic model of this paper; dashed linedime history of the bubble’s radius, velocity, acceleration,
full isothermal model §=1); dash-dotted lines: full adiabatic and gas density respectively during the final stage of collapse
model (y=5/3). Symbols represent stability thresholds from ex-and rebounce, and Figs(el—4(h) show the dynamics of
periment[15] as explained in Fig. 2. several quantities in Eq2.1) similar to those in Fig. 2 of
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FIG. 5. Time history of the normalized distortion amplitude of R R R S
the n=2 mode in the vicinity of minimum bubble radius with) 06 07 08 09 10 11 12 13 14 15
considering andb) without considering the gas density. (@ the P, (atm)
RT instability is strongly suppressed. The driving pressure ampli-
tudes are marked in the pld®@,=4 wm, and other conditions are FIG. 6. Phase diagram in th&,-R, parameter space for the case
the same as Fig. 2. as in Fig. 2. The Pl and Rllines are the parametric instability

borderlines with and without density ratio respectively, while the

[19]. Although B,(t) is slightly affected by the gas density RT and RT, lines are the corresponding Rayleigh-Taylor instability
[actually no difference can be seen in Fige)4, the value of  borderlines. The solid parts of diffusive equilibria represent stable
An(t) is greatly altered and even becomes posifif&g.  equilibriaRy(P,), and the dashed parts are unstable. Symbols indi-
4(f)], where a postivé\,(t) causes the distortion to decrease. cate experimental dafd5] as explained in Fig. 2.
Our results agree qualitatively with those of Augddo
et al. [19] but show stronger effect of the gas density varia-tensity by degassing the liquid. We note that the Pl line lies
tion due to the use of a different form of the RP equation. Inabout 0.2-0.5 um above the Rl line for P,=1.25
Fig. 5, we compare the evolution a§ /a3 near the minimum ~1.4 atm, implying that the Pl is also suppressed to some
bubble radius between with and without the gas density. Thextent by gas density variations inside the bubble.
figure shows that when the effect of the gas density is in- The results in Fig. 6 also allow us to compare the effect of
cluded, the originally intensive RT instability is strongly sup- the gas density on the shape instabilities with that caused by
pressed: folP,<1.35 atm, the maximal values afz(t)/ag other factors such as the polytropic exponent and the liquid
are now much smaller than those without considering the gagiscosity. It can be seen that the onset of the RT instability
density, while atP,=1.4 atm, the distortiorazlag even occurs atP,~1.3 atm when the gas density is neglected
reverts its sign and increases negatively. However, at stilithe RT, line). However, the onset of the RT instability can
higherP,=1.45 atm, the distortion increases negatively andoe delayed toward®,~1.37 atm when the gas density is
intensive development of the RT instability again occurs.considered(the RT ling. For increased bubble sizes, e.g.,
Thus there is a narrow regime &f,=1.35~1.4 atm(for Ro=3 um, the delay in the driving pressure amplitude can
Ro=4 um) where the RT instability is weakened. be 0.2 atm. The margin between the RT line and thg RiE

As we use Floquet's theorem to determine the PI threshis quite wide compared to that caused by the polytropic ex-
old, and the deformation of a perturbation depends on th@onent as shown in Fig. 3. The relative distort@asVR on
stage of the violent collapse, it is expected that the PI thresithe RT, line is one, but is now less than 0.2 when the gas
old will also be affected by the gas density. Therefore wedensity is considered, implying better sphericity. The,RT
further studied the effect of the gas density on both the Pline could be shifted to around the position of the RT line if
and the RT instability thresholds in the,-R, parameter the water viscosity is artificially increased to three times as
space. Figure 6 shows the borderlines of the shape instabiliarge as its standard value. All these indicate that the effect
ties and diffusive equilibria at several dissolved gas concenef gas density variation is significant.
trations. The fixedt., /cq line corresponds to diffusive equi-
Iibriur_n, vv_here the parts wi_th positive slopaR,/dP,>0) IV. CONCLUSION
are diffusively stable and vice versa. For example, when the
gas concentration is 0.2%, its stable branch intersects with We have revealed the nontrivial role of the gas density
the PI line asP, increases, thus forming a stable line seg-variation in stabilizing the bubble shape against the
ment on which stable SBSL occurs. As the gas concentratioRayleigh-Taylor and parametric instabilities in the SBSL pa-
reduces further, say to 0.035%, a diffusively stable branchiameter region. We show that a perturbation of the size of
will intersect with both the Pl and RT lines. Thus the RT several nanometers can lead to strong RT instability that may
instability sets an upper limit on the increase of the SL in-destroy a bubble if gas density variations are neglected while
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