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Role of gas density in the stability of single-bubble sonoluminescence
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Recent full hydrodynamic simulations of a sonoluminescing bubble interior have shown that the bubble
content is compressed to a very dense state during the violent collapse. In this paper, we numerically studied
the shape stability of a radially oscillating gas bubble by using Hilgenfeldtet al. theoretical model with
corrections taking into account the gas density effect. Our results show that gas density variations not only
significantly suppress the Rayleigh-Taylor instability, but also enhance the threshold of the parametric insta-
bility under sonoluminescence conditions.
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I. INTRODUCTION

Since the first report of single bubble sonoluminesce
~SBSL! by Gaitanet al. @1#, the phenomenon has been e
tensively and carefully studied, and numerous models h
been proposed to explain its mechanism@2#. Recent mea-
surements of the light pulse of SBSL revealed that the
widths at half maximum range from 40 to 380 ps in vario
experimental conditions@3# and put constraints on model
However, they still seem to be consistent with a wide ran
of hydrodynamic scenarios including shock wave@2,4#, con-
tinuous compression wave@5,6#, or even adiabatic heating o
the bubble content@7,8#. Aside from the light-emitting
mechanism and related hydrothermal scenarios, anothe
markable feature of SBSL is that it can be stable for millio
of cycles. In most of the previous models, a spherically sy
metric collapse is assumed, even though this seeming
tradicts the long known fact that the spherical shape of
cillating gas bubbles can be unstable@9,10#.

The remarkable stability of SBSL have been explain
partially by several authors based on, most notably,
argon-rectification hypothesis@11# and the analysis of shap
and diffusive instabilities@12–14#. These works have estab
lished that stable SBSL only occurs in a narrow parame
window of large driving pressure amplitude and low d
solved gas concentration, resulting from instabilities
shape, diffusion, and chemical reactions for molecular ga
However, their studies about the regions in which sta
SBSL may exist map out a stability threshold for the eq
librium bubble radius (R0) that lies well below those found
in experiments@15#. The boundary layer approximatio
~BLA ! used in these studies for evaluating the destabiliz
role of the vorticity field has been controversial@16,17#. Re-
cently Hao and Prosperetti@18# conducted a full numerica
simulation considering the viscous nonlocal effects to co
pare with the BLA. While noting a satisfactory agreement
low driving pressure amplitudesPa,0.6– 0.7 bars, they
found that the BLA underpredicted the parametric instabi
~PI! threshold atPa.1 bar. As regard to another type o
shape instability, namely, the short time-scale Raylei
Taylor ~RT! instability, there are no agreed threshold up
now and discrepancies about whether the RT instability
1063-651X/2001/64~1!/016317~6!/$20.00 64 0163
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the main collapse of single sonoluminescing bubbles i
major concern exist even in very recent studies@19,20#.
Therefore, further theoretical clarifications are desirable.

The objective of this paper is to improve the shape sta
ity analysis of a radially oscillating gas bubble by consid
ing the variation of the gas density inside the bubble and
evaluate its role in stable SBSL. This is motivated by so
full numerical simulations of the bubble interior@21#. Figure
1 shows typical density profiles at the moment of minimu
bubble radiusRmin for three driving pressure amplitudesPa
calculated using our full hydrodynamic model@6# and a re-
alistic equation of state@22# taking into account the ioniza
tion processes in the bubble interior. The average densit
the bubble content becomes comparable to or even la
than that of the surrounding water at high driving pressure
direct effect of this is to reduce the difference between
gas densityrg and the liquid densityrw , which is expected
to suppress the RT instability. During the course of our
vestigation, we note that recently Augsdo¨rfer et al. @19# also
studied the gas density effect in the spherical RT instabi

FIG. 1. Calculated spatial profiles of gas density of an arg
bubble at the moment when the bubble radius attains its minim
at Pa51.275, 1.35, and 1.45 atm, respectively. The driving sou
has a frequencyf 526.5 kHz, and the bubble equilibrium radius
R054.5 mm.
©2001 The American Physical Society17-1
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by exemplifying its influence on the coefficients of the equ
tion for the distortion amplitude. Our work differs from Re
@19# mainly in that we use a different approach; specifica
we track the evolution of initial distortions rather than that
ad hoc thermal fluctuations@19#. Our approach is simpler
computationally less intensive, and able to make use of
Floquet theory of Hill’s equation for determining the par
metric instability~see the details given in Sec. II A!. Another
difference is that we adopt a different form of the Rayleig
Plesset equation~RP! that leads to stronger collapse. Th
resulting higher density seems closer to that obtained f
full hydrodynamic simulations. Furthermore, we studied a
the effect of gas density variations on the parametric in
bility.

II. BUBBLE DYNAMICS

A. Shape stability

We concentrate on pure argon bubbles for which
chemical instability can occur, and we ignore the trans
tional movement of the bubble for which no Bjerknes for
instability will appear. The later assumption is justified f
Pa<1.6 atm @23#. To examine the regime where stab
SBSL exists in the experimental control paramet
(Pa , f ,c` /c0 ,T`), where f 5v/2p is the external driving
frequency,c` is the gas concentration far away from th
bubble,c0 is the saturation concentration, andT` is the am-
bient temperature, we follow Hilgenfeldtet al.approach@12#
to analyze parametric and diffusive instabilities, but start
from Prosperetti’s formula@24# that takes into account of th
viscosity of the surrounding water and the density of
bubble content.

Let the bubble radius be perturbed toR(t)
1an(t)Yn(u,f), whereR is the undistorted bubble radius
an(t) is the distortion amplitude, andYn is a spherical har-
monics of degreen. In the linear regime, the dynamica
equation foran(t) can be obtained from Eqs.~17!, ~23!, and
~25! in @24# by settingm150, retainingr1(rg) andr2(rw),
and adopting the BLA@12#:

än1Bn~ t !ȧn1An~ t !an50 ~2.1!

with

Bn~ t !5
3Ṙ

R
1

F2bn1
n~n12!2

112d/RG2n

R2

11
n11

n

rg

rw

,

An~ t !5H F ~n11!~n12!

n

rg

rw
2~n21!G R̈

R
1

bns

rwR3

1Fbn2
n~n21!~n12!

112d/R G2nṘ

R3 J Y S 11
n11

n

rg

rw
D ,

~2.2!
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where bn5(n21)(n11)(n12), dots denote time deriva
tives,n,s are the kinematic viscosity and surface tension
the liquid, andd is the boundary layer thickness. There a
several observations on Eq.~2.2!: ~i! if the density ratio
rg /rw50, one recovers the formula of@12#; ~ii ! although a
finite density ratio may reduce the magnitude of the sec
term inBn(t) ~the damping!, it changes the contribution ofR̈
in An(t) far more significantly@19#. The net effect is to en-
hance shape stability, which will be shown later;~iii ! the
boundary layer thicknessd5min(An/v,R/2n) proposed in
@12,13#, though reasonable qualitatively, notably overes
mates the destabilizing role of the vorticity field quantit
tively at both low and high driving amplitudes@16,18#. In
view of the complexity of accurate methods for evaluati
the viscous nonlocal effects@18#, and because our test resul
show that the RT instability is hardly affected whether t
BLA is used, we prefer to consider the limiting case of a th
layer associated with the least destabilizing effect of the v
ticity field, namelyd→0. However, we also use differentd
to demonstrate its impact on the PI threshold.

Three kinds of shape instabilities hidden inside Eq.~2.1!
were distinguished by Hilgenfeldtet al. @12#, namely, the
parametric, the RT and the afterbounce, acting on differ
time scales and differentPa-R0 parameter regions. We her
focus on the first two kinds. IfR(t) and thusAn(t) andBn(t)
are periodic with periodT, Eq. ~2.1! is a Hill’s equation and
a pure parametric instability can be rigorously analyzed. T
Floquet transition matrix is numerically computed by evo
ing small perturbations through one periodT @12#. Paramet-
ric instability occurs whenever the maximal eigenvalue
the Floquet transition matrix of Eq.~2.1! is larger than one.
As a result of incremental search in thePa-R0 space, we
obtain a PI borderline that divides the stable and unsta
domains.

The RT instability happens in a short time scale when
bubble rebounds from the minimum bubble radius. Up
now, there is no established quantitative threshold for the
instability @2,12,16#. In the literature, there is basically tw
approaches to study the RT instability numerically. One is
add either a random displacement to the distortionan(t) after
each integration time step@12# or a random force of molecu
lar fluctuations@19# to the right-hand side of Eq.~2.1! during
the whole cycle, another is to compute the amplification f
tor of an initial distortion of microscopic sizes only durin
the primary collapse@20#. Our experience shows that th
latter approach is computationally cheaper, and it is th
used in this paper. We define the primary collapse as
period from the moment of maximum bubble radiustRmax

when an initial perturbation (an
0 ,ȧn

0) starts to grow to the
moment in the first rebounce when the distortionan(t)
ceases to grow. We adopt the approximate criterion@12# that
the distortion can overwhelm the bubble radiusR(t) within
the collapse stage

max
$tRmax

,t,tRmin
1tRT%

S uan~ t !u
R~ t ! D>1, ~2.3!

where tRmin
is the moment of minimum bubble radius, an
7-2
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tRT is set to 10 ns to cover the moment when the distort
ceases to grow. It should be emphasized that both the
placement and velocity of an initial perturbation will affe
the location of the RT borderline determined by Eq.~2.3!.
Since our main concern is to study the effects of the den
ratio under otherwise the same conditions, we assume
when an initial perturbation ofan

0510 nm, ȧn
050 can grow

to overwhelm the bubble radiusR(t), the RT instability will
disrupt the bubble. In view of the fact that the 10 nm size
less than 1%R0 and ȧn

0 has not been taken into account, w
think that the above initial perturbation is typical of practic
imperfections that may occur. Our numerical results sh
that the calculated RT borderline lies just above the exp
mental upper boundary inPa with very low gas concentra
tion @15#. Even though the exact position of the predicted R
threshold is affected by the size ofan

0 , the amplification fac-
tor an(t)/an

0 is independent ofan
0 because Eq.~2.1! is linear.

As we will show in Sec. III, the density ratio has a significa
effect on the stability threshold.

B. Diffusive stability

To obtain a phase diagram with experimental control
rameters, we also consider diffusive instability according
Fyrillas and Szeri@25#. The equilibrium radius follows from
the dynamical condition that the mass outflow and infl
during a driving cycle are balanced

c`

c0
5

^p~ t !& t,4

P0
, ~2.4!

where the weighted time average^ & t,4 is defined as

^ f ~ t !& t,45

E
0

T

f ~ t !R4~ t !dt

E
0

T

R4~ t !dt

. ~2.5!

Thus we can plot̂ p& t,4 /P0 ;R0 for different Pa . The in-
tersections of a constantc` /c0 line with the ^p& t,4 /P0;R0
curve correspond to equilibrium points, and a diffusive
stable point is indicated byd^p(t)& t,4 /dR0.0.

C. The Rayleigh-Plesset equation

To provide Eqs.~2.1! and~2.4! with R(t) andp(R,t), we
use the RP equation that describes the dynamics of
bubble wall. A simpler form@2,12,14# is used:

RR̈1
3

2
Ṙ25

1

rw
@p~R,t !2Ps~ t !2P0#1

R

rwcw

3
d

dt
@p~R,t !2Ps~ t !#24n

Ṙ

R
2

2s

rwR
,

~2.6!
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where Ps(t)52Pa sin(vt) is the acoustic driving pressure
The gas pressure and temperature inside the bubble var
cording to

p@R~ t !#5S P01
2s

R0
D S R0

32h3

R32h3D g

, ~2.7!

T@R~ t !#5T`

~R0
32h3!g21

~R32h3!g21
, ~2.8!

and the gas densityrg is computed from

p5
rgRgT

12br
, ~2.9!

whereh5R0/8.86 is the hard core van der Waals radius
argon bubbles,Rg is the gas constant, andb is the excluded
van der Waals hard core volume, and for argonb
50.032 19l /mole. The polytropic exponentg includes the
effects of heat transfer between the bubble and the liquid
simplified way. In doing so,g51 is used for radii larger than
R0 and g55/3 is used for smaller radii@2#. We want to
compare with the experiments of Holt and Gaitan@15#, and
hence other parameters areP051 atm, T`520 °C, f
520.6 kHz, s50.0728 kg/s2, n51.00831026 m2/s, rw
5998 kg/m3, cw51483 m/s.

III. RESULTS AND DISCUSSIONS

We study the parameter range 0.65 atm<Pa<1.5 atm,
1 mm<R0<20 mm. The computational resolution in th
Pa-R0 parameter space is DPa50.025 atm,DR0
50.25 mm. The quadrupole mode (n52) is most unstable
for R0,10 mm and is considered here. Before discuss
the effects of gas density, let us first show how the bound
layer thicknessd and polytropic exponentg affect the nu-
merical results.

Figure 2 shows the borderlines of the parametric and
instabilities in thePa-R0 parameter space obtained usin
variousd. Below the PI line the bubble is parametric stab
To the left of the RT line the bubble is RT stable. Asd
increases fromd50 to min(An/v,R/2n) the location of the
maximumR0 deviates more from the experimental thresho
@15#, and the margin between d50 and d
5min(An/v,R/2n) can be nearly 2mm for Pa.1.1 atm.
We note the quantitative agreement of the location of the
line for d5min(An/v,R/2n) between the present result an
Fig. 13 in Ref.@18#. The result reflects the earlier conclusio
that the viscous damping is notably underestimated by
BLA @18#. However, the RT line is hardly affected by th
choice ofd. Figure 3 shows the influence of the polytrop
exponent on the predicted stability thresholds. The differe
in the PI threshold becomes obvious at lower driving amp
tudes, with the threshold from the full isothermal model b
ing the most left and that from the full adiabatic one bei
the most right. However, the difference is very small f
Pa.1.2 atm that is more relevant to SBSL. The trend in t
PI threshold is the same as those predicted by Hao and P
7-3
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L. YUAN, C. Y. HO, M.-C. CHU, AND P. T. LEUNG PHYSICAL REVIEW E64 016317
peretti @18#. The RT instability threshold is also affected b
the polytropic exponent, with the full adiabatic model bei
the most stable. The margin between different polytropic
ponents will be compared to that caused by gas den

FIG. 2. Shape stability boundaries of then52 mode in the
Pa-R0 parameter space for an argon bubble driven atf
520.6 kHz. The PI and RT lines denote the parametric and
instability borderlines respectively, obtained using various bou
ary layer thickness. Solid lines:d5min(An/v,R/2n); dashed lines:
d50.1R; dash-dotted lines:d50. Symbols represent stabilit
thresholds from experiments by Holt and Gaitan@15#, where s

stands forn52 mode,n for n53 mode, and3 for unknown
shape mode.

FIG. 3. Comparison between the shape stability boundarie
then52 mode as computed with various polytropic exponents
the same boundary layer thicknessd5min(An/v,R/2n). Solid
lines: mixed isothermal-adiabatic model of this paper; dashed li
full isothermal model (g51); dash-dotted lines: full adiabati
model (g55/3). Symbols represent stability thresholds from e
periment@15# as explained in Fig. 2.
01631
-
ty

variations later in Fig. 6. The conclusions from the abo
comparisons are:~i! The choice ofd affects the PI threshold
significantly but not the RT instability threshold;~ii ! The
choice of the polytropic exponent affects the PI thresh
only for Pa,1 atm, and it is essential to treat thermal co
duction properly at the lowPa regime. The following discus-
sions are based on the results obtained usingd50 and the
simplified polytropic exponent as described in Sec. II C.

We now turn to discuss the effect of the gas density on
shape stability. In most periods of a cycle or at lowPa , the
density ratiorg /rw is negligible. But for largerPa and when
the bubble radius is close to its minimum, it is nontrivia
The density ratio will have important effects onAn(t) in Eq.
~2.2! and hence may change the contribution ofR̈, a domi-
nant factor in the RT instability. Figures 4~a!–4~d! show the
time history of the bubble’s radius, velocity, acceleratio
and gas density respectively during the final stage of colla
and rebounce, and Figs. 4~e!–4~h! show the dynamics of
several quantities in Eq.~2.1! similar to those in Fig. 2 of

T
-

of
d

s:

-

FIG. 4. ~a!–~d! show the time development of the radius, velo
ity, and acceleration of the bubble during the brief stage of colla
and rebounce, forR054 mm andPa51.4 atm.t50 corresponds
to the moment of minimum bubble radius.~e! and ~f! show com-
parison between with considering~solid! and without considering
the gas density~dashed! for the dynamics ofB2(t) andA2(t) in Eq.

~2.1!. ~g! and ~h! show the magnitudes ofB2(t)ȧ2(t) and
A2(t)a2(t) respectively.
7-4
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@19#. Although Bn(t) is slightly affected by the gas densit
@actually no difference can be seen in Fig. 4~e!#, the value of
An(t) is greatly altered and even becomes positive@Fig.
4~f!#, where a postiveAn(t) causes the distortion to decreas
Our results agree qualitatively with those of Augsdo¨rfer
et al. @19# but show stronger effect of the gas density var
tion due to the use of a different form of the RP equation.
Fig. 5, we compare the evolution ofa2 /a2

0 near the minimum
bubble radius between with and without the gas density.
figure shows that when the effect of the gas density is
cluded, the originally intensive RT instability is strongly su
pressed: forPa<1.35 atm, the maximal values ofa2(t)/a2

0

are now much smaller than those without considering the
density, while atPa51.4 atm, the distortiona2 /a2

0 even
reverts its sign and increases negatively. However, at
higherPa51.45 atm, the distortion increases negatively a
intensive development of the RT instability again occu
Thus there is a narrow regime ofPa51.35;1.4 atm ~for
R054 mm) where the RT instability is weakened.

As we use Floquet’s theorem to determine the PI thre
old, and the deformation of a perturbation depends on
stage of the violent collapse, it is expected that the PI thre
old will also be affected by the gas density. Therefore
further studied the effect of the gas density on both the
and the RT instability thresholds in thePa-R0 parameter
space. Figure 6 shows the borderlines of the shape insta
ties and diffusive equilibria at several dissolved gas conc
trations. The fixedc` /c0 line corresponds to diffusive equ
librium, where the parts with positive slope (]R0 /]Pa.0)
are diffusively stable and vice versa. For example, when
gas concentration is 0.2%, its stable branch intersects
the PI line asPa increases, thus forming a stable line se
ment on which stable SBSL occurs. As the gas concentra
reduces further, say to 0.035%, a diffusively stable bra
will intersect with both the PI and RT lines. Thus the R
instability sets an upper limit on the increase of the SL

FIG. 5. Time history of the normalized distortion amplitude
the n52 mode in the vicinity of minimum bubble radius with~a!
considering and~b! without considering the gas density. In~a! the
RT instability is strongly suppressed. The driving pressure am
tudes are marked in the plot,R054 mm, and other conditions are
the same as Fig. 2.
01631
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tensity by degassing the liquid. We note that the PI line l
about 0.2;0.5 mm above the PI0 line for Pa51.25
;1.4 atm, implying that the PI is also suppressed to so
extent by gas density variations inside the bubble.

The results in Fig. 6 also allow us to compare the effec
the gas density on the shape instabilities with that caused
other factors such as the polytropic exponent and the liq
viscosity. It can be seen that the onset of the RT instabi
occurs atPa'1.3 atm when the gas density is neglect
~the RT0 line!. However, the onset of the RT instability ca
be delayed towardsPa'1.37 atm when the gas density
considered~the RT line!. For increased bubble sizes, e.g
R0>3 mm, the delay in the driving pressure amplitude c
be 0.2 atm. The margin between the RT line and the RT0 line
is quite wide compared to that caused by the polytropic
ponent as shown in Fig. 3. The relative distortiona2 /R on
the RT0 line is one, but is now less than 0.2 when the g
density is considered, implying better sphericity. The R0
line could be shifted to around the position of the RT line
the water viscosity is artificially increased to three times
large as its standard value. All these indicate that the ef
of gas density variation is significant.

IV. CONCLUSION

We have revealed the nontrivial role of the gas dens
variation in stabilizing the bubble shape against t
Rayleigh-Taylor and parametric instabilities in the SBSL p
rameter region. We show that a perturbation of the size
several nanometers can lead to strong RT instability that m
destroy a bubble if gas density variations are neglected w

i-
FIG. 6. Phase diagram in thePa-R0 parameter space for the cas

as in Fig. 2. The PI and PI0 lines are the parametric instabilit
borderlines with and without density ratio respectively, while t
RT and RT0 lines are the corresponding Rayleigh-Taylor instabil
borderlines. The solid parts of diffusive equilibria represent sta
equilibriaR0(Pa), and the dashed parts are unstable. Symbols in
cate experimental data@15# as explained in Fig. 2.
7-5
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including them can suppress the RT instability significan
and reduce the parametric instability to some extent. It se
that the violent compression of an SL bubble that leads
light emission also stabilizes the bubble shape. Neverthe
further study free from the spherical symmetry assumptio
necessary in the future.
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