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Abstract: A lattice BGK method for nonlinear chemical react,ions is described. Since the 
equation does not possess the convect terms, we can easily get the equilibrium distribution 
functions of the lattice BGK models. Using this model, we consider the scales- E’ patterns, 
find two types of pattern: mosaic structure and the Turing pattern. 
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Introduction 

The chemical oscillation and chemical waves are the chemical system of the order structures 
decided by the nonlinear features far from the state of equili‘brium. If we consider the effect 
of the diffusion and nonlinear reaction, then we can find two types of chemical phenomena: 
Turing pattern and nonlinear chemical waves [lp31. Turing pattern is the periodic structure in 
the spatial distribution. In 1952, Turing pointed out that the structure exists. The character of 
the Turing pattern is that the stable spatial structure is distorted from the state of equilibrium. 
It relies on some parameters, such as diffusion coefficient, the densities of the species, reaction 
speeds, etc. Nevertheless, it is difficult to produce the Turing patterns by experiments. There 
are three reasons for the difficulty: (1) we cannot control the reaction conditions, (2) we can 
not remove the convect effect, (3) we cannot find the multiscale of the Turing pattern. 

We have much interest on the Turing patterns and dynamical behavior that can be used 
to study and comprehend the complicate phenomena. In this Ipaper, we focus on the following 
problems: (1) a lattice BGK model for the nonlinear chemical reaction, (2) the behavior of the 
Turing patterns, (3) the resolution of sharp gradient region. 

It is known that self-organization phenomena are statistical behaviors of their associated 
microscopic system. This system seems to be thermodynamically described by the Boltzmann 
equation. Fortunately, due to the non-unique correspondence between a self-organization system 
and microscopic system, an artificial system we called “mesoscopic system”, may be constructed 
which is simple enough to be simulate on a computer. According to this idea, a computational 
approach called lattice BGK method has recently been developed[4-7]. The main idea of lat- 
tice BGK model is to get available macroscopic physical equations by using the BGK type 
Boltzmann equation. In general, time, space and velocity are discrete on one lattice, and then 
choose the equilibrium distribution function to fit some requirements which can be obtained 
with multiscale technique and Chapman-Enskog expansion[*-“‘1. 

1 Lattice BGK model 

In this lattice BGK model, we discrete the velocity of the particles into b directions. The 
lattice with unit spacing is used which each node has b nearest neighbors connected with b links. 
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These particles’ velocities are e,. The macroscopic quality u is defined by 

‘1L = ~.foW) 
Q 

where fa is the single-particle distribution function at time 1, node x with velocity e,. The 
lattice Boltzmann equation may read[8*g3111 

fo(x + Ax,t + At) - fdx, t) = -$-r(x, t) - .f:q(x, t)] + w(x, t) 

where fzq(x, t) is the local equilibrium distribution function at time t, node x, with velocity eO, 
7 is the single relaxation time factor, and w is the additional term. 

We select a small parameter E as the time unit in numerical simulation, it also can play the 
role of the Knudsen number[lOl. By using multi-s tale method and Chapman-Enskog expansion, 
we get a series of lattice Boltzmann equations on different time scales and a conservation law 
on the first time scale to [9JOl. It is suitable to use an assumption w = E~$(u), thus we obtain 

where X = D/E(T - 0.5), c = je,l, d is the dimensional numbe:r, D the diffusion coefficients. In 
conclusion, the macroscopic equation is 

$ = DV2u + (b + 1)&$(u) + O(E’) 

2 Numerical simulation 

2.1 The Schlogl model and its mosaic structure 

According to Eq. (1)) we select 

(b + 1)&4(u) = -Ic(u3 - 1.5~~ + 0.6875~ - 0.09375) 

where k = 0.01 [lll. This equation is the Schlogl model with bistable regions[11-‘31. By simple 
algebra, the higher density ‘llH = 0.75, and lower density ~1, = 0.25. Now, we express the 
density u as multi-scale expansion 

21 = uo + &Ul + E2U2 + O(E3) 

where ~0 is the solution of the equation $(u) = 0. Thus, 

u - uo ‘11 - uo - &ill 
211 = - 

& ' 
u2 = 

&2 - 

In this paper, we simulate a two-dimensional reaction using lattice BGK method. By 
selecting two diffusion coefficients, we find the width of sharp gradient (resolution) relies on D. 
We plot the numerical simulation results (Fig. 1). The lattice size is 50 x 50 with random 
initial conditions and Vu = 0 boundary conditions. The diffusion coefficient is D = 1.0 x 10e3. 
We find these Turing patterns have three regions, higher density, UH (gray), lower density, UL 
(black), and sharp gradient (bright) (see Fig. la). In this situation, the diffusive effect offsets 
generated effect, the lower density region exists when T > 15OOAt. We also examine the case 
T > 106At, find the lower density region still exists. In Fig. lb, we give the Turing patterns 
of ~1. It shows a mosaic structure. The physical meaning is that two ~0% generate two ~1’s. 
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Fig. 1 (a) Turing pattern of the Schlogl model at time step T q = lOOOOAt, higher density (gray) 
UH = 0.75, lower density (black) UL = 0.25, and region of sharp gradient (bright). Lattice size is 
50 x 50. Parameters: r = l/1.2, c = 3.0, b = 4, d = 2, D = 1.0 :< 10e3, Ax = 0.02, At = Ax/c. 

(b) A mosaic structure in the Schlogl reaction within the black region (see (a)) at time step 
T = 10000At. Parameters the same els (a) 

2.2 The Belousov-Zhabotinskii reaction 

The Belousov-Zhabotinskii reaction has six species, four steps reactions[12], 

AZ x, B+X $Y+D, 2X+Y%X, X3E 

The reaction equations are 

du 
dt = I - (q + 1)~ + u2w + D1V2u 

dV 
- = rp - u2v + D2V2v 
at 

In this paper, we select the parameters as < = 2.0, n = 5.45 for l;he reaction terms. The diffusion 
coefficients are D1 = 8.0 x 10e3, D2 = 4.0 x 10m3. Parameters in the lattice Boltzmann equation: 
c = 3.0, l/r = 1.2, b = 4. For this test, we use two layers lattice to simulate. These additional 
terms in layers lattice u and v are given aa follows: 

with boundary conditions Vu = Vu = 0 and random initial values. 
In Fig. 2, we give two-dimensional numerical simulation result by using lattice BGK method. 

The lattice size is 100 x 100 with random initial condition and Vu = Vu = 0 boundary condi- 
tions. It shows that results have multi-scale structures. In Fig. 2a, we plot the density gray pic- 
ture in the scale E, which appears a target wave. The reason is that the diffusion effect is greater 
than the reaction effect. In Fig. 2b and 2c, we give two E’ scale gray pictures, i. e., pattern 
of ui. Fig. 2b (40 gray-levels), Fig. 2c (300 gray-levels) show periodic spatial structures. Ac- 
cording to the definition of the Turing pattern, Fig. 2b and 2c are Turing patterns with periodic 
structures. 
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Fig. 2 (a) Target wave in the Belousov-Zhabotinskii reaction at time steps T = 2000At. Parameters 
for the reaction terms: A = 2.0, B = 5.45 and L = 1.0. The diffusion coefficients: D1 = 8.0 x 10m3; 
D2 = 4.0 x 10p3. Parameters in the lattice Boltzmann equation: c = 3.0, l/~ = 1.2, b = 4, d = 2, 

Ax = 0.01, At = Ax/c, gray levels = 8. (b), (c) Turing patterns of the Belousov-Zhabotinskii 
reaction in scale E’ at time steps T = 2000At. Parameters the same as (a) but (b) with 

gray-levels = 40, (c) with gray-levels := 300 

2.3 The resolution of sharp gradient 

We are interested in the resolution of sharp gra- 
dient. Let S(z) is the Boolean variable, S(z) = 1, 
if IV4 > (IVulmax + (VUl,i,)/2; S(Z) =O, other- 

wise. Then Hamming length H= 5 S(zi) is the 
i=l 

cell number of the resolution on sharp gradient, 
where i is the footnote of lattice note CC~. Our re- 
sult is 3-5 cells (see Fig. 3). We find the resolution 
relies on the diffusion coefficient. This idea can be 
used to examine other problems, e. g., shock wave 
and contact interface. 

3 Conclusions 

In this paper, we present a lattice BGK model 
for nonlinear chemical reactions, and get the mo- 
saic structure and spatial periodic structure. We 
also give a method to find the resolution of sharp 
gradient regions. An important result is that the 
Turing patterns appear in scale-E2. These numer- 
ical results may be new things. In summary, the 
nonlinear chemical waves possess multi-scale struc- 
tures, which have different patterns. 
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Fig. 3 Scatter graphics of the cell 
numbers (resolution) about the 

sharp gradient vs diffusion 
coefficient D, at line y = 0.5. 

Parameters the same as 
Fig. la 
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