\begin{abstract} A refined hydrochemical model for single-bubble sonoluminescence (SBSL) is presented. The processes of water vapor evaporation and condensation, mass diffusion, and chemical reactions are taken into account. Numerical simulations of Xe-, Ar- and He-filled bubbles are carried out. The results show that the trapped water vapor in conjunction with its endothermic chemical reactions significantly reduces the temperature within the bubble so that the degrees of ionization are generally very low. The chemical radicals generated from water vapor are shown to play an increasingly important role in the light emission from Xe to He bubbles. Light spectra and pulses are then computed from an optically thin model. It is found that the resulting spectrum intensities are too small and the pulse widths are too short to fit to recent experimental results within stable SBSL range. Addition of a finite-size blackbody core to the optically thin model improves the fitting. Suggestions on how to reconcile the conflict are given. \end{abstract}