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Abstract

In this paper, we propose a new lattice Bhatnagar–Gross–Krook model for simulation of the Lorenz attractor. The new model
is based on a nonlinear diffusion-reaction system. We formulate a lattice Bhatnagar–Gross–Krook model for the nonlinear
diffusion-reaction system by using a method of higher moments of the lattice Boltzmann equation. As a special case where
the diffusion effect disappears, we get the Lorenz equation. In the model, we obtain a series of lattice Boltzmann equations at
different time scales, and the conservation law at time scale t0. The equilibrium distribution functions are simpler than those
for the standard lattice Boltzmann model. The numerical examples show that the method can be used to simulate the Lorenz
equation. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Lattice BGK model; Multiscale technique; Lorenz attractor

1. Introduction

Since its precursor — the lattice gas automaton (LGA) — was proposed 10 years ago as a useful computational
fluid dynamics (CFD) technique [1], the lattice Bhatnagar–Gross–Krook (BGK) method has emerged as a promis-
ing approach for simulation of complex flows [2–4]. Unlike traditional CFD methods which solve macroscopic
equations, the lattice BGK method simulates fluid flow based on microscopic models or mesoscopic kinetic equa-
tions. This intrinsic feature enables the lattice BGK method to incorporate easily essential physics at microscopic
or mesoscopic level. Several lattice BGK models for simulation of diffusion-reaction system have been proposed
in the past several years [5–9]. Although each of the above lattice BGK diffusion-reaction models was built on
different physical pictures and has a quite different appearance, a recent study by Yan et al. [10] showed that all of
them have an origin in the kinetic theory. Especially, all these models can be derived by using higher-order moment
method with multiscale technique.
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2. Lattice BGK model

2.1. The definition of macroscopic quantity

Consider a 1D or 2D model, we discretize the velocity of particles into b directions, a lattice with unit spacing is
used where each node has b nearest neighbors connected by b links. The particles velocity eα = {0, c,−c}, b = 2
for one-dimensional lattice; eα = {(0, 0), (c, 0), (0, c), (−c, 0), (0,−c)}, b = 4 for two-dimensional lattice, here
α = 0, 1, . . . , b (α = 0 is the rest particle).

Let us define f σ
α to be the probability of finding a particle of species σ at time t , at node x, with velocity eα . The

density of species σ is defined by

uσ (x, t) =
∑
α

fσα (x, t). (1)

The lattice BGK Boltzmann equation reads as

f σ
α (x + �x, t + �t) − f σ

α (x, t) = Ωσ
α (x, t) + ωσ

α (x, t). (2)

In the case of standard lattice Boltzmann [2–4], the term ωσ
α = 0. For Ωσ

α , we use the BGK approximation,
i.e. Ωσ

α = −(1/τ)[f σ
α (x, t) − f

σ,eq
α (x, t)], where the equilibrium distribution function, f σ,eq

α , depends on x and t

through the local density. ωσ
α is the additional term and τ is the single relaxation time factor.

As in the usual Chapman–Enskog expansion [12], we impose the following conservation condition on f σ
α (x, t):

∑
α

f
σ,eq
α (x, t) = uσ (x, t). (3)

2.2. A series of lattice Boltzmann equations in different time scales

Using ε as the time step unit �t = �x/c in physical unit, ε can play the role of the Knudsen number [10,11],
the lattice Boltzmann equation (2) in physical units is

f σ
α (x + εeα, t + ε) − f σ

α (x, t) = − 1

τ
[f σ

α − f
σ,eq
α ] + ωσ

α . (4)

Making Taylor expansion of Eq. (4), and retaining terms up to O(ε5) results in

f σ
α (x + εeα, t + ε) − f σ

α (x, t) = ε

[
∂

∂t
+ eα

∂

∂x

]
f σ
α + ε2

2

[
∂

∂t
+ eα

∂

∂x

]2

f σ
α + ε3

6

[
∂

∂t
+ eα

∂

∂x

]3

f σ
α

+ ε4

24

[
∂

∂t
+ eα

∂

∂x

]4

f σ
α + O(ε5). (5)

Next, the Chapman–Enskog expansion [12] is applied to f σ
α under the assumption that the mean free path is of the

same order of ε. Expanding f σ
α about f σ,(0)

α

f σ
α =

∞∑
n=1

εnf σ,(n)
α = f σ,(0)

α + εf σ,(1)
α + ε2f σ,(2)

α + ε3f σ,(3)
α + ε4f σ,(4)

α + · · · , (6)

where f
σ,(0)
α is f

σ,eq
α .
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We discuss changes in different time scales, introduced as t0, . . . , t3; thus

t0 = t, t1 = εt, t2 = ε2t, t3 = ε3t,

and

∂

∂t
= ∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ ε3 ∂

∂t3
+ O(ε4). (7)

Assume

ωσ
α = ε2φσ

α . (8)

Eq. (8) is an important assumption; its meaning is that reaction effect and diffusion one are at same time scale ε2.
In fact, if we choose ωσ

α = εkφσ
α , where k 	= 2, then, derivation of the diffusion-reaction equations become very

difficult. In this paper, we use k = 2 to derive the series lattice Boltzmann equations as follows:

∂f
σ,(0)
α

∂t0
+ eα

∂f
σ,(0)
α

∂x
= − 1

τ
f σ,(1)
α , (9)

∂f
σ,(0)
α

∂t1
− τ

(
1 − 1

2τ

) (
∂

∂t0
+ eα

∂

∂x

)2

f σ,(0)
α = − 1

τ
f σ,(2)
α + φσ

α , (10)

∂f
σ,(0)
α

∂t2
+ (1 − 2τ)

(
∂

∂t0
+ eαj

∂

∂xj

)
∂f

σ,(0)
α

∂t1
+

(
τ 2 − τ + 1

6

) (
∂

∂t0
+ eαj

∂

∂xj

)3

f σ,(0)
α

= − 1

τ
f σ,(3)
α + (−τ)

(
∂

∂t0
+ eαj

∂

∂xj

)
φσ (uσ ). (11)

2.3. The Lorenz equations

Taking the summation in Eqs. (9) and (10) about α, computing (9) + (10) × ε, we get

∂uσ

∂t
= λσ ε

(
τ − 1

2

)
∂2uσ

∂xi∂xi
+ εφσ (uσ )(b + 1) + O(ε2). (12)

To find the structure of the truncation error, we take (9) + (10) × ε + (11) × ε2, and get

∂uσ

∂t
= λσ ε

(
τ − 1

2

)
∂2uσ

∂xi∂xi
+ εφσ (uσ )(b + 1) − 2ε2

(
τ 2 − τ + 1

6

)
λσ ∇2 ∂u

σ

∂t0

−τε2(b + 1)
∂φσ

∂t0
+ O(ε3). (13)

From Eq. (13), we get the truncation error as follows:

R = −2ε2
(
τ 2 − τ + 1

6

)
λσ ∇2 ∂u

σ

∂t0
− τε2(b + 1)

∂φσ

∂t0
+ O(ε3). (14)

The truncation error R contains a dissipation term and an unsteady source term. Therefore, on second-level (ε2),
the term ∂uσ /∂t0 is dissipative with time.
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By choosing∑
α

f σ,(0)
α eαi = 0, (15)

∑
α

f σ,(0)
α eαieαj = λσuσ δij, (16)

where λσ = Dσ/ε(τ − 1
2 ), Eq. (12) becomes

∂uσ

∂t
= Dσ

∂2uσ

∂xi∂xi
+ ψσ (uσ ) + O(ε2), (17)

where ψσ (uσ ) = (b + 1)εφσ (uσ ) is the source term of Eq. (12). We get the truncation error

R = O(ε2). (18)

The equilibrium distribution function f
σ,(0)
α can be expressed as follows:

f
σ,(0)
0 = uσ − λσDuσ

c2
, (19)

Fig. 1. Lorenz attractors of phase space at position x = 1
2 N . Parameters: D1 = 0.0, D2 = 0.0, D3 = 0.0; ξ = 10.0, η = 24.8, ζ = 8

3 , c = 10.0,
1/τ = 2.2. Initial conditions: u|t=0 = v|t=0 = w|t=0 = 8.1. Lattice size: N = 200.
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f σ,(0)
α = λσ Duσ

bc2
, α = 1, . . . , b. (20)

Using M = 3 and u1 = u, u2 = v, u3 = w, from Eq. (17), we obtain the following diffusion-reaction equations:

∂u

∂t
= D1 ∇2u − ξu + ξv,

∂v

∂t
= D2 ∇2v + ηu − v − uw,

∂w

∂t
= D3 ∇2w − ζw + uv. (21)

In order to get the Lorenz equations [13,14], we assign λσ → 0 and u = u(t), v = v(t), w = w(t), thus Eqs. (21)
become the following form:

du

dt
= −ξu + ξv,

dv

dt
= ηu − v − uw,

dw

dt
= −ζw + uv. (22)

3. Numerical tests

We select three values of Dσ :

1. Dσ = 0.0 which corresponds to Eq. (22). In this case, the equilibrium distribution functions are

f σ
0 = uσ , f σ

α = 0, α = 1, . . . , b.

Fig. 2. Lorenz attractors of phase space at position x = 1
2 N . Parameters: D1 = 1.0 × 10−2, D2 = 1.0 × 10−2, D3 = 1.0 × 10−2; ξ = 10.0,

η = 24.8, ζ = 8
3 , c = 10.0, 1/τ = 2.2. Initial conditions: u|t=0 = v|t=0 = w|t=0 = 8.1. Lattice size: N = 200.
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Fig. 3. Lorenz attractors of phase space at position x = 1
2 N . Parameters: D1 = 1.0, D2 = 1.0, D3 = 1.0; ξ = 10.0, η = 24.8, ζ = 8

3 , c = 10.0,
1/τ = 2.2. Initial conditions: u|t=0 = v|t=0 = w|t=0 = 8.1. Lattice size: N = 200.

Fig. 4. Comparisons between LBM results and Euler method from 1 to 400 time steps at position x = 1
2 N . LBM (circle) and the Euler

method (line) of v. Parameters: D1 = 1.0, D2 = 1.0, D3 = 1.0; ξ = 10.0, η = 24.8, ζ = 8
3 , c = 10.0, 1/τ = 2.2. Initial conditions:

u|t=0 = v|t=0 = w|t=0 = 8.1. Lattice size: N = 200.
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2. Dσ = 1.0 × 10−2.
3. Dσ = 1.0.

For numerical simulation, we set a one-dimensional region [0, 1], with initial conditions

uσ = uσ
0 , t = 0,

and boundary conditions

∂uσ (0, t)

∂x
= ∂uσ (1, t)

∂x
= 0.

In this paper, we set ξ = 10.0, η = 24.8 and ζ = 8
3 for the reaction terms, c = 10.0, 1/τ = 2.2 for Eq. (2).

The additional terms are as follows:

φ1 = 1

ε(b + 1)
(−ξu + ξv), φ2 = 1

ε(b + 1)
(ηu − v − uw), φ3 = 1

ε(b + 1)
(−ζw + uv),

and

λ1 = D1

ε(τ − 1
2 )

, λ2 = D2

ε(τ − 1
2 )

, λ3 = D3

ε(τ − 1
2 )

.

We used u|t=0 = v|t=0 = w|t=0 = 8.1 as an initial condition and studied the trajectory in four phase spaces:
(u, v,w), (u, v), (u,w) and (v,w). Figs. 1–3 show the calculated results plotted with 5000 points. It is seen that
the Lorenz attractor appears. We then compared the numerical results of the LBM with the Euler method original
400 time steps. This can be observed in Fig. 4. The numerical result shows the phase picture as an attractor, and
good agreement with existing results has been achieved.

4. Conclusion

In this paper, we have presented a new method for solving the Lorenz equation using the lattice BGK method.
We obtained numerically the Lorenz attractor from Dσ = 0 to 1 in this model. We are able to get more detailed
results by numerical simulations. We only show three situations of Dσ . The result in Dσ = 0 is very important, as
it gives a new method for solution of ordinary differential equations. It is easy to construct other nonlinear chemical
reaction systems by using higher moments of the lattice BGK model (e.g. the Belousov–Zhabotinski reaction and
the Sel’kov reaction). As a numerical method, it may be considered as a tool to get patterns of some chemical
reactions. We use an assumption in this model: ωσ

α = ε2φσ
α . Its meaning is that Dσ ∼ ψσ = O(ε2), i.e. Da = O(1)

(Da is the unit Damkohler number). Till now, there is no method to remove this assumption in the field of the lattice
BGK method. According to the linear stability of the difference equation, the stability of the lattice BGK schemes
is based on the second viscosity, the third dispersion and the fourth viscosity. If we set Dσ = 0, we only control
the third coefficient of dispersion and the fourth coefficient of viscosity. We also select multi-speed lattice BGK
model to give these coefficients if the macroscopic equation contains the third or the fourth coefficient [10]. These
numerical results show that the assumption is reasonable. As a numerical method, the lattice BGK method may be
not more efficient and more accurate standard ODE integration schemes. But we can find the ability of the lattice
BGK method to simulate the nonlinear systems and the diffusion-reaction systems. It is interesting and difficult
to compute the Lyapunov time scale of the Lorenz equations with the lattice BGK method. This problem will be
explored in further research.
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