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To develop a robust and efficient computational flow simulation tool for incom-
pressible flow applications, a number of different implicit multigrid schemes for solv-
ing the three-dimensional incompressible Navier–Stokes equations are compared in
the current study. These schemes consist of a common full approximation storage
(FAS) multigrid algorithm implemented in conjunction with three different implicit
schemes, which include a modified point Gauss relaxation, a standard Gauss–Seidel
line relaxation, and the Beam–Warming alternating direction implicit (ADI) scheme.
The flow solver used in the study is based on artificial compressibility and uses a
third-order upwind difference for the convective terms and a second-order central
difference for the viscous terms. The efficiency of each implicit multigrid scheme
is assessed in terms of the computing time required for two laminar flow problems:
the entry flow through a 90◦ bent square duct, and the steady-state and unsteady
flows past a prolate spheroid at incidence with an axis ratio of 4 : 1. It is found that
implementation of Neumann boundary conditions on the coarse grid in terms of the
flow variable correction rather than the flow variable itself is essential for obtaining
good convergence in the collocated finite difference discretization. The results of
steady-state flow computations show that all the implicit multigrid schemes yield
more than 50% computational time savings over their single grid counterparts, and
the point or line relaxation multigrid scheme outperforms the ADI multigrid scheme
by at least a factor of 2. However, in unsteady flow computations, the computational
time saving of the multigrid scheme is less than that in steady-state cases. The current
study concludes that the FAS multigrid algorithm implemented with the modified
point Gauss relaxation scheme is preferable for simulating both steady-state and
time-dependent incompressible flows. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The computational simulation of three-dimensional (3D) incompressible flows is an area
of intense research activity, as many realistic problems in low-speed aerodynamics and
hydrodynamics can be addressed by the incompressible Navier–Stokes equations (INSE).
Numerical solutions of the 3D INSE, nevertheless, require a very large number of grid
points to resolve the flow structure and to obtain grid-independent solutions; thus they are
computationally intensive. A further difficulty arises in solving the INSE because of the lack
of a time-derivative term in the continuity equation, which limits the straightforward use
of time-marching numerical methods. Most numerical methods [1–4] for the INSE involve
solving a Poisson equation for the pressure, which is the most CPU-time-consuming part
of these methods. They tend to be computationally expensive in general 3D curvilinear
coordinates because the discretized pressure Poisson equation is sometimes troublesome
on general curvilinear grids [5], whereas an accurate solution of the discretized Poisson
equation must be performed at each time step. There have been some improvements in
which multigrid (MG) techniques were implemented either to solve the pressure Pois-
son equation alone [6] or to solve all the coupled equations in a block-implicit manner
to speed up convergence [7]. To achieve efficiency and robustness in simulating engi-
neering flow problems, it is also desirable to use other cost-effective numerical methods
with reasonable accuracy. The artificial compressibility method (ACM) [8], which avoids
solution of the pressure Poisson equation, seems to be such a method. The main advan-
tage of using the ACM is that it changes the whole set of governing equations into a
hyperbolic–parabolic-type time-dependent system of equations by introducing a pseudo-
time derivative of pressure into the continuity equation, hence its discretization and solu-
tion technique can be borrowed from some efficient methods developed for compressible
flows.

Over the past 30 years, many studies have applied the ACM in conjunction with differ-
ent upwind differencing schemes and solution techniques to solve steady-state as well as
unsteady incompressible flow problems. The upwind differencing schemes that have been
used include the flux-differencing splitting [9, 10], MUSCL [11, 12], TVD [13, 14], and
WENO [15] schemes; the solution techniques that have been implemented cover the Beam–
Warming scheme [16, 17], the approximation factorization-planar symmetric Gauss–Seidel
scheme [13], lower–upper symmetric Gauss–Seidel (LU-SGS) scheme [15, 18], line and
point relaxation schemes [10, 19], the explicit multistage Runge–Kutta method [20], and
so on. The application is also extended to unsteady flow computations [9, 10, 20] by using
a dual-time-stepping procedure that subiterates at each physical time step and drives the
divergence of the velocity toward zero. However, the convergence rate slows down when
the system gets larger or the grid becomes more stretched, which is inherent in any of the
developed schemes listed above. One approach to overcoming the slow convergence is to
use the preconditioning method [21, 22]; another approach is to use the multigrid method.
The MG method is an efficient and generic acceleration technique known today, and it is
the most efficient solver for elliptic partial differential equations [23, 24]. Numerous stud-
ies have reported successful implementation of the MG method in compressible [25] and
incompressible flow problems [26–28], and its performance to accelerate convergence is
very impressive. However, there are only a few studies [29–32] that developed MG meth-
ods in conjunction with the ACM, and all are exclusively based on the cell-centered finite
volume discretization; see the brief review by Drikakis et al. [32]. Applications to unsteady
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flow computations and implementations in conjunction with a collocated finite difference
discretization are limited.

In this paper, a number of different implicit MG schemes in conjunction with ACM for
obtaining both steady-state and unsteady solutions of the 3D INSE in general curvilinear
coordinates are compared. The MG algorithm is based on the standard full approximation
storage (FAS) with fixed V-cycle, except that it is now implemented in a finite difference
discretization. A special feature in the implementation is the treatment of Neumann bound-
ary conditions on the coarse grid, which received little mention in earlier literature. There
are also minor differences in the restriction operators for residuals and flow variables. The
solution procedure for unsteady flow is based on the dual-time-stepping procedure [10, 20].
In constructing a suitable MG smoother, it should be borne in mind that implicit schemes are
advantageous over explicit ones in computing steady flows because they avoid a restrictive
time-step size when highly refined grids are used to resolve viscous effects. However, there
are some unsteady flow cases where the time-step size is limited by other considerations
such as resolving physical time scales. The complexity in implementation and inflexibility
in extending to additional PDES are more disadvantages of implicit schemes, which moti-
vated researchers to further develop explicitly based MG techniques [33, 34]. Nevertheless,
for viscous dominated flow problems, implicit schemes are more robust. This work com-
pares three well-developed implicit schemes—the point Gauss and standard Gauss–Seidel
line relaxations and the diagonalized alternating direction implicit (ADI) scheme of Beam–
Warming type. We selected the first two unfactored implicit schemes mainly due to their
success in compressible flows [35–37]. Relaxation and factorization schemes may have
different damping abilities, which will be investigated in this work. The present point and
line relaxation schemes are similar to those used by Rogers et al. [10, 19] but with slight
modifications to the point relaxation scheme in the formation of the left-hand-side matrices
and in the sweeping strategy. The author also tried the LU-SGS scheme [18, 38] and the
approximation factorization-planar symmetric Gauss–Seidel scheme [13] and found that
the overall computing time was greater than that of the diagonalized ADI scheme; thus
these implicit schemes were excluded in this work. The discretization for the convective
terms used is an upwind differencing scheme based on Roe’s approximate Riemann solver
[39] with Van Leer’s MUSCL formulation [40], which was applied to the ACM and recom-
mended for its computational efficiency and accuracy in [11, 31]. The MUSCL formulation
was usually used together with limiters, but it was found that they are not necessary for the
present cases. The ability of the present MG algorithm is demonstrated for two laminar flow
problems, namely, the entry flow through a 90◦ bent square duct and the flow past a 4 : 1
prolate spheroid at incidence. Especially, the periodic flow pattern past the prolate spheroid
at high incidence is simulated for the first time.

The remainder of the paper is organized as follows. In Section 2 the ACM is briefly
outlined. The basic schemes are described in Section 3. The MG algorithm is presented
in Section 4. Section 5 presents the results and comparison of different schemes. Finally,
conclusions are drawn in Section 6.

2. GOVERNING EQUATIONS

The starting point for deriving a finite difference method is the three-dimensional, un-
steady INSE written in conservative form in a generalized coordinate system (ξ, η, ζ ). The
artificial compressibility is introduced after the coordinate transformation and is expressed
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in terms of pseudotime derivative terms that will vanish at each physical time step in order
to satisfy the continuity equation. The artificial compressibility form of the INSE is given
as (cf. [10, 12])

∂Q̂
∂τ

+ Im
∂Q̂
∂t

= −∂(Ê − Êν)

∂ξ
− ∂(F̂ − F̂ν)

∂η
− ∂(Ĝ − Ĝν)

∂ζ
≡ R̂, (1)

where

Im = diag (0, 1, 1, 1), Q̂ = Q
J

= 1

J




p
u
v

w


, Ê = 1

J




βU

Uu + ξx p

Uv + ξy p

Uw + ξz p


,

F̂ = 1

J




βV

V u + ηx p

V v + ηy p

V w + ηz p


, Ĝ = 1

J




βW

W u + ζx p

Wv + ζy p

Ww + ζz p


,

U = ξx u + ξyv + ξzw, V = ηx u + ηyv + ηzw, W = ζx u + ζyv + ζzw,

and where β is the artificial compressibility constant, p is the static pressure, u, v, and w

are the velocity components in Cartesian coordinates, U, V , and W are the contravariant
velocity components in curvilinear coordinate directions, respectively, J is the Jacobian of
the coordinate transformation, τ is the pseudotime, t is the physical time, Ê, F̂, and Ĝ are
the inviscid fluxes, and Êν, F̂ν , and Ĝν are the viscous fluxes, which are given for constant
viscosity as

Êν = ν

J
(�ξ · �ξi )Im

∂Q
∂ξi

, F̂ν = ν

J
(�η · �ξi )Im

∂Q
∂ξi

, Ĝν = ν

J
(�ζ · �ξi )Im

∂Q
∂ξi

.

3. BASIC FLOW SOLVERS

The resulting hyperbolic–parabolic system (1) may be solved using existing implicit
schemes. We chose the point relaxation, line relaxation, and ADI schemes in this study.
These implicit schemes share the same finite difference discretization on the right-hand side
(RHS) but treat the left-hand side (LHS) differently, as will be described in Sections 3.2–
3.4.

3.1. Time and Spatial Discretizations

The following discussion addresses both the steady-state and the time-accurate formula-
tions. Applying an implicit backward finite difference to the pseudotime derivatives and a
second-order, three-point backward difference to the physical time derivatives, one obtains

�Q̂n+1,m

�τ
= R̂n+1,m+1 + Ŝn+1,m+1, (2)

where �Q̂n+1,m = Q̂n+1,m+1 − Q̂n+1,m, Ŝn+1,m+1 = − Im
�t (1.5Q̂n+1,m+1 − 2Q̂n + 0.5Q̂n−1),

n is the physical time level, m is the pseudotime level (the number of subiterations), �τ is
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the pseudotime step size, and �t is the physical time step size. After the residual terms are
linearized at the m + 1 pseudo-time level with respect to the previous pseudotime level m,
an unfactored implicit delta form is given as

[
I

�τ
+ 1.5Im

�t
+

(
∂R̂

∂Q̂

)n+1,m]
�Q̂n+1,m = R̂n+1,m + Ŝn+1,m . (3)

For the steady-state formulation, terms resulting from derivatives with respect to t are
dropped in Eq. (3) and the time level n + 1 represents the steady state. The equations are
marched in pseudotime until R̂ converges to zero. The pseudotime step �τ is determined
based on the CFL number. For the unsteady formulation, the equations are iterated in
pseudotime so that Q̂n+1,m+1 approaches the physical Q̂n+1 as the RHS of Eq. (3) converges
to zero. The pseudotime step �τ is set to infinity, corresponding to a Newton iteration.

Both the steady-state and unsteady formulations require the discretization of the same
residual vector R̂. The derivatives of the viscous fluxes in this vector are approximated
using second-order central differences. However, the finite differences for the convective
fluxes are critical for the quality of the numerical solutions. There are numerous ways of
discretizing the convective fluxes. To be parallel with compressible flow solvers, upwind
characteristic-based schemes are frequently used. In this work, Roe’s flux-splitting scheme
is used in conjunction with Van Leer’s MUSCL formulation, which was first applied to
incompressible flows by Whitfield and co-workers [11, 31]. Taking the ξ direction as an
example, the inviscid derivative is discretized as

∂Ê
∂ξ

≈ Ẽi+1/2 − Ẽi−1/2, (4)

and the numerical flux is given by

Ẽi+1/2 = Êi+1/2
(
QL

i+1/2

) + A−
i+1/2

(
Q̄i+1/2

) · (
QR

i+1/2 − QL
i+1/2

)
= Êi+1/2

(
QR

i+1/2

) − A+
i+1/2

(
Q̄i+1/2

) · (
QR

i+1/2 − QL
i+1/2

)
, (5)

where A± are matrices formed from the eigensystem of the inviscid flux Jacobian A =
∂Ê/∂Q as A± = TξΛ

±
ξ T−1

ξ ,Λ±
ξ = (Λξ ± |Λξ |)/2, and Λξ , Tξ , and T−1

ξ are calculated
according to the formulae in Ref. [17], which are given in the Appendix. In incompressible
flows, the Roe average can be replaced by a simple arithmetic average, Q̄i+1/2 = (QR

i+1/2 +
QL

i+1/2)/2. The flow variables to the left and right of a node interface are obtained from the
MUSCL formulation [41]

QL
i+1/2 = Qi +

{
1

4
[(1 − χ)� + (1 + χ)] Q

}
i

, (6)

QR
i+1/2 = Qi+1 −

{
1

4
[(1 − χ) + (1 + χ)�] Q

}
i+1

, (7)

where χ = 1/3, corresponding to a third-order upwind-biased approximation, is used for
the present computations. Zero-order extrapolation of � and  is used at grid points next
to the left and right boundaries, respectively.

A direct solution of Eq. (3) is not feasible for general three-dimensional problems because
the resulting large block and banded matrix are very costly to invert and require a large
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amount of storage. To reduce the bandwidth of the resulting LHS matrix in Eq. (3), the
Jacobian of R̂ in the LHS is formed using a residual based on the first-order form of (5).
This results in the diagonally dominant form

[
1

J

(
I

�τ
+ 1.5Im

�t

)
+ (A+ + Aν)i−1/2 − (A− − Aν)i+1/2 + (B+ + Bν) j−1/2

− (B− − Bν) j+1/2 + (C+ + Cν)k−1/2 − (C− − Cν)k+1/2

]
�Qn+1,m

i, j,k

− (A+ + Aν)i−1/2�Qn+1,m
i−1, j,k + (A− − Aν)i+1/2�Qn+1,m

i+1, j,k

− (B+ + Bν) j−1/2�Qn+1,m
i, j−1,k + (B− − Bν) j+1/2�Qn+1,m

i, j+1,k

− (C+ + Cν)k−1/2�Qn+1,m
i, j,k−1 + (C− − Cν)k+1/2�Qn+1,m

i, j,k+1

= (R̂ + Ŝ)n+1,m, (8)

where the viscous Jacobians are formed by dropping the off-diagonal elements,

Aν = ν

J
(�ξ · �ξ) Im, Bν = ν

J
(�η · �η) Im, Cν = ν

J
(�ζ · �ζ ) Im . (9)

In practice, one always resorts to relaxation or factorization schemes. It is generally
known that the factorization error of factorized schemes limits the size of the time step
and factorized schemes need fewer operations per time step, while larger time steps can
be used for relaxation schemes. Therefore, it is worthwhile to compare some of the widely
used schemes for future development of more efficient methods. We will briefly outline a
modified point Gauss relaxation scheme, a standard line Gauss–Seidel relaxation scheme,
and a diagonalized Beam–Warming scheme for Eq. (8).

3.2. Point Relaxation Scheme

The point relaxation scheme used is a Gauss point relaxation that iteratively solves a block
diagonal system formed by multiplying all of the nonmain block diagonals in the LHS by the
most recently calculated �Q and moving to the RHS in Eq. (8). This is done for each interior
point, sweeping sequentially through the computational domain. A forward sweep plus a
backward sweep counts as one sweep, denoted as PR(1). In the current implementation, it
is found that PR(2) is optimum in all PR(n). A slight modification to the point relaxation
in [19] is as follows: (i) Every PR(2) is initialized by setting all �Q to zero and (ii) all the
Jacobians are updated following the updating of Q after every PR(2) and are the same as
those for calculating the RHS by Eq. (5).

3.3. Line Relaxation Scheme

A standard Gauss–Seidel line relaxation scheme similar to [10] is used. A solving di-
rection is chosen such that terms on the LHS from points along this direction are solved
for simultaneously. All terms on the LHS from points off this direction are multiplied by
the most recently calculated �Q and moved to the RHS. The resulting block tridiagonal
systems are solved for each grid line as the domain is swept forward and backward. A
forward sweep plus a backward sweep again counts as one sweep, denoted as LR(1). In
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the current implementation, it is found that LR(1) is optimum. Every LR(1) is also ini-
tialized by setting �Q to zero. All the Jacobians are updated after every LR(1). The three
coordinate directions are alternately chosen as the solving direction when the pseudotime
goes on.

3.4. Diagonalized ADI Scheme

The diagonal ADI scheme as developed by Pulliam et al. [42] and applied to ACM by
Rogers et al. [17] is extended here as

Tξ [D + δ−
ξ Λ+

ξ + δ+
ξ Λ−

ξ − δξ A′
νδξ ]T−1

ξ D−1Tη[D + δ−
η Λ+

η + δ+
η Λ−

η − δηB′
νδη]T−1

η

× D−1Tζ [D + δ−
ζ Λ+

ζ + δ+
ζ Λ−

ζ − δζ C′
νδζ ]T−1

ζ �Qn+1,m = R̂n+1,m + Ŝn+1,m, (10)

where D = 1
J ( 1

�τ
+ 1.5

�t )I, δ−
ξ and δ+

ξ are two-point backward and forward differences, δξ

is the central difference for viscous terms, and A′
ν = ν

J (�ξ · �ξ)I is formed from Eq. (9)
by changing Im to identity matrix I.

3.5. Boundary Conditions

The present study involves both external and internal flows. For the external flow past
an isolated prolate spheroid, we use a special grid layout where the first and last ξ = const
grid planes are located at 1

2�ξ away from the polar axes of the prolate spheroid, and we
solve for the flow variables in the two planes in the same way as for other inner points.
In doing so, Ẽi−1/2 and Êνi−1/2 for the points in the first ξ plane, or Ẽi+1/2 and Êνi+1/2 for
the points in the past ξ plane, are set to zero. Reflection conditions are also used when (6)
and (7) are evaluated. This technique avoids the polar singularity in a way similar to that
adopted in a cell-centered finite volume discretization. Although there are other ways to
treat the polar singularity in a finite difference method, they are either too crude, such as
the one that took the flow variables on the polar axis as averaging from around the axis,
or too complicated, such as the one where equation transformation is made at the polar
axis [43]. The flow variables in the farfield are determined through a characteristic analysis
normal to the boundary [16]. The nonslip condition for the velocity is specified on the wall
surface and the pressure is obtained by applying zero normal pressure gradient. Symmetric
or periodic conditions are imposed in the symmetry plane. For the internal flow through a
square duct, the inflow velocity profile is prescribed. The outflow boundary condition is a
prescribed pressure and a zero normal velocity gradient.

The boundary conditions are generally applied implicitly with the two relaxation schemes,
where �Q has the same physical meaning as the original flow variables. However, where
there are implementation difficulties, such as on the characteristics boundary, the boundaries
are treated explicitly (setting �Q on the boundary to zero while solving for �Q in the interior
points). As with the diagonalized ADI scheme, all boundaries are treated explicitly because
of the lack of physical meaning for �Q at split steps.

4. MULTIGRID METHOD

The MG method adopted in this work is a full-coarsening nonlinear FAS V-cycle algo-
rithm implemented with a finite difference discretization. The fine grid in the MG method
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serves to dampen the high-frequency errors, while the coarser grid dampens the low-
frequency errors. The finest grid G1, which describes the shape most accurately, is set
up first. A sequence of coarse grids G2, G3, G N can be formed by successively deleting
every other line in all three coordinate directions on the previous finer grid. The solution
starts from the finest grid (top level) and goes to the coarsest grid (lowest level) for restric-
tion, and the prolongation is performed from the lowest level upward to the top level. For
illustration, consider a typical numerical scheme

Mk�Qk = R(Qk), (11)

where Mk is the LHS implicit operator of Eq. (8) or (10), R is the residual R̂ + Ŝ, and the
superscript k is the grid level. One FAS V-cycle for Eq. (11) consists of the following steps:

Step 1 (fine grid solution). Carry out one iteration of Eq. (11) on the finest grid (k = 1)
to obtain an approximate solution Q1.

Step 2 (coarse grid solution). If the present grid is the coarsest, go to Step 3. Otherwise,
restrict the solution and updated residuals to the next coarser grid by

Qk+1
0 = I k+1

k Qk, Rk+1
c = Ī k+1

k Rk, (12)

where the subscripts 0 and c denote the initialized coarse grid solution and the transferred
residuals, respectively, and I k+1

k and Ī k+1
k are corresponding restriction operators. Then

a coarse grid forcing function, which represents the relative truncation error between the
coarse and the fine grid, is defined as [25]

Pk+1 = Rk+1
c − R

(
Qk+1

0

)
. (13)

The residual on the coarse grid is calculated as

Rk+1 = R(Qk+1) + Pk+1, (14)

and the coarse grid equation is given by

Mk+1�Qk+1 = Rk+1. (15)

Perform one iteration at intermediate grid levels and five iterations at the coarsest grid level.
Repeat Step 2 until the coarsest grid is reached.

Step 3 (coarse grid correction and postrelaxation). If the coarsest grid is reached, the
obtained coarse grid corrections are interpolated back to the next finer grid and the old
solution is updated by

Qk
new = Qk + Pk

k+1

(
Qk+1 − Qk+1

0

)
, (16)

where Pk
k+1 is the prolongation operator. Use Qk

new as an initial guess and iterate Eq. (15)
one time on grid Gk to obtain an approximate solution. Repeat Step 3 until the finest grid
is reached.

In accordance with a finite difference discretization, the restriction for the solution is a
simple injection due to the collocation of coarse and fine grid points, while the restriction
for the residuals is a full-weighted average over all the fine grid points composing the
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control volume of each coarse grid point. Standard trilinear interpolation is used for the
prolongation operator. In addition, a proper treatment of Neumann boundary conditions on
the coarse grid is found to be essential in iterating Eq. (15). Basically, there are two ways to
update the flow variables on the Neumann-type boundaries. One is to directly and explicitly
update the boundary flow variable itself from the already updated interior values by

Qs+1
b = f

(
Qs+1

interior

); (17)

another is to update the flow variable in the incremental form, either explicitly by

Qs+1
b = Qs

b + �Q̄s
b, (18)

or implicitly by

Qs+1
b = Qs

b + �Qs
b, (19)

where the superscript s is the iteration index of the coarse grid equation, subscript b rep-
resents boundary, �Q̄s

b is explicitly obtained from linearization of the Neumann boundary
condition, and �Qs

b is implicitly solved for from the interior point equations coupled with
the linearized condition. As for the computational effects of different treatments, it will
be shown in the numerical example that direct updating (17) will lead to stalling of the
residuals or divergence in some cases, and explicit incremental updating (18) will lead
to slow convergence. Only the proposed implicit incremental form (19) will ensure good
convergence.

5. RESULTS AND DISCUSSION

The present MG algorithm in conjunction with each of the three implicit schemes is ap-
plied to two 3D laminar flow problems: the flow through a square duct with a 90◦ bend and
the flow past a prolate spheroid with long/short axis ratio of 4 : 1. The unsteady flow past
the prolate spheroid at higher incidence is also simulated. The choice of the artificial com-
pressibility factor β is important [10, 16]. We found that β = 1 gives optimum convergence
for all schemes used. The convergence of the ADI scheme is more sensitive to β than the
convergence of the relaxation schemes, and the range of β for the ADI scheme to converge
is quite narrow. However, the relaxation schemes will converge well for β in the range 1−10.
Thus we set β to 1 for the ADI scheme and 10 for the relaxation schemes. For steady-state
flows, the pseudotime step is spatially varied based on an optimal CFL number arrived at
through convergence tests. The optimal CFL number is around 2.5−10 for the ADI scheme
and 100−600 for the relaxation schemes. The three-space dimensionality and the inherent
factorization error of the ADI scheme limit its CFL number to values smaller than those of
the relaxation schemes. For unsteady flows, the pseudotime step is set to infinity, while the
constant physical time step is adopted on all grid levels. The initial flowfield is a uniform
free-stream condition in the prolate spheroid problem or a prescribed inflow velocity profile
and zero pressure in the square duct problem.

5.1. Steady Flow Through a 90◦ Bending Square Duct

The experiment of Humphrey et al. [44], which measured the flow through a strongly
curved 90◦ bend square duct, was used as a steady-state test case in the present study. The
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FIG. 1. Geometry and grid (25 × 11 × 11) of flow through a 90◦ bending square duct.

problem was nondimensionalized using the side of the square cross section as the unit length
and the average inflow velocity as the unit velocity. The Reynolds number was 790 based
on the unit length and velocity. The geometry and an example grid system of 25 × 11 × 11
are shown in Fig. 1. The straight inflow section before the bend was set to a length of 5,
and the outflow section downstream of the bend was also set to a length of 5. The radius of
curvature of the inner wall in the curved section was 1.8 while that of the outer wall was 2.8.
The inflow velocity profile was prescribed to be that of a fully developed laminar straight
square duct as given by White [45].

In the present work, three different grid systems with grid points of 49 × 33 × 33, 73 ×
49 × 49, and 121 × 61 × 61 were used to solve the problem. As an example of how the
convergence behaves for different boundary condition treatments on the coarse grid, the
convergence history for the 49 × 33 × 33 grid is shown in Fig. 2, where the averaged L2-
norm of residuals is plotted vs iteration number. It can be seen that the fastest convergence
was obtained by using the proposed coarse grid boundary correction Eq. (19). Updating the
boundary values in explicit incremental form will lead to slower convergence (Eq. (18)),
while direct application of the Neumann condition to Q itself will result in stalling of the
residuals (Eq. (17)). Figure 3 shows the comparison of the convergence history between
the MG and single grid iterations, where the work unit is equivalent to the iteration number
of the single grid ADI scheme, and symbols are marked on the plotting lines for relaxation
MG schemes at every 50 iterations. In general, the CPU time of the MG solution is only
1/3 to 1/4 that of its single grid counterpart. Nevertheless, the CPU time of the PR(2) MG
scheme is about 80% that of the line relaxation MG scheme and is less than 50% that of the
ADI MG scheme. Thus it is shown that the PR(2) or the standard line relaxation scheme is
an efficient MG smoother in three space dimensions, but the ADI scheme is not as effective
as the other two schemes for this test problem.

A grid-independence study using the three grid systems demonstrated that the 73 × 49 ×
49 grid and above can give grid-independent results. Figure 4 shows the computed results in
comparison with the experimental data of Humphrey et al. [44]. The x axis is the normalized
radial distance and the y axis is the velocity in the streamwise direction. The streamwise
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FIG. 2. Comparison of the convergence histories among different boundary condition treatments on the
49 × 33 × 33 grid for the flow through the 90◦ bending square duct. The computations were done using the
three-level PR(2) multigrid scheme.

velocity (Vθ ) profile at the x−y symmetry plane is shown for four different streamwise
stations along the duct. The four positions correspond to the cross-flow planes at θ equal to
0◦, 30◦, 60◦, and 90◦ in the curved section (see Fig. 1). The match between computation and
experiment is fairly good at the first two stations. However, discrepancy becomes evident
between the computed and experimental results when the flow begins to form swirls at
θ = 60◦ station. This deviation can also be found in other numerical calculations [10, 15]
and is thought to be caused by any small change in the Reynolds number or small amount
of turbulent mixing [10]. Nevertheless, the peak of streamwise velocity near the outside
wall and the second peak near the inside wall at θ = 60◦ and 90◦ are well captured.
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FIG. 3. The convergence histories of the three-level multigrid (MG-3) and single grid (SG) computations in
conjunction with the three implicit schemes. The symbols are marked on two plotting lines every 50 iterations.
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FIG. 4. Comparison of computed streamwise velocity profiles at four streamwise locations (midspan) with
the experimental results [44].

5.2. Steady Flow Past a 4 : 1 Prolate Spheroid

The flow past a prolate spheroid has been extensively studied for more than three decades
and is a benchmark problem for studying three-dimensional separated flow structures
[46, 47]. Two axis ratios of the prolate spheroid, namely, 6 : 1 and 4 : 1, were commonly in-
vestigated in past studies. For a 6 : 1 prolate spheroid, detailed surface shear stress, pressure,
and oil flow pattern measurements have been performed by Kreplin et al. [48], which pro-
vided a data set for validating the ability of turbulence modeling of Navier–Stokes solvers
[49, 50]. For a 4 : 1 spheroid, there are more flow visualization studies [46, 47] than quanti-
tative measurements. However, the vortical flow characteristics on a 4 : 1 spheroid are much
richer than those on a 6 : 1 spheroid. For this reason, the laminar flow past a 4 : 1 prolate
spheroid is studied in this paper.

An O–O grid topology is used for the computations. A representative O–O type grid
system of 19(ξ) × 17(η) × 25(ζ ) is shown in Fig. 5 for the bare prolate spheroid, where
ξ is in the streamwise direction, η in the circumferential direction, and ζ in the normal
direction. The grids are generated by using the ellipsoid coordinates and are clustered in the
normal direction near the body surface for resolving the thin viscous layers. The minimum
grid spacing in the normal direction normalized with the major axis is taken to be 1.0 × 10−4.
The first and the last ξ = const planes are located at 1

2�ξ away from the axes to avoid the
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FIG. 5. A sketch grid of 19 × 17 × 25 with the first and last ξ grid located at half grid size away from the
singular axes for computation of flow past a 4 : 1 prolate spheroid.

polar singularity. The grid extends 1.5 times the length upstream and downstream. To show
how results depend on the grid size, calculations have been performed on a coarse grid with
37 × 33 × 49 points and on a fine grid with 81 × 81 × 65 points.

Generally, steady-state flows exist at low Reynolds number and low incidence, while
unsteady flows appear at high Reynolds number and/or high incidence. Two steady-state
cases were studied: one is for a low incidence (α = 10◦) and a moderate Reynolds number
(Re = U∞ L

ν
= 11700) that is close to the onset of flow unsteadiness; another is for a higher

incidence (α = 30◦) and a lower Reynolds number (Re = 3000). Figure 6 compares the
convergence histories between the MG and single grid solutions and among different implicit
schemes on the fine grid system. It can be seen that steady-state flow can be obtained in
both cases by using the MG schemes, but only a nominally steady flow can be obtained
for the first case by using the single grid schemes because the residual cannot be reduced
below a certain level. It can also be seen from Fig. 6b that the computational work required
by the MG schemes is only 30–45% that required by their single grid counterparts. The
convergence acceleration is not as good as those in the square duct case. However, in view of
the extremely long computing time required in an implicit scheme, the observed reduction
in CPU time is quite significant. Both the modified point relaxation (PR(2)) and the standard
line relaxation MG schemes outperform the diagonalized ADI MG scheme by saving over
50% in CPU time. The CPU time of the PR(2) + MG scheme is slightly less than that of
the LR(1) + MG scheme.

To compare the computational resolution of the separated flows for different grid sizes,
the surface streamline patterns are shown in Fig. 7. It is evident that surface streamline
patterns as computed using the two grid systems are in close agreement with each other in
front of the main separation line but differ in the size and flow topology of the separated
region. In the case of α = 10◦, the separated region moves upstream on the fine grid,
and an attachment node Na and saddle point S2 appear. There exists mainly so-called
closed-type separation [46, 47]. In the case of α = 30◦, the separation node Ns1 appears
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FIG. 6. The convergence histories of the multigrid and single grid computations in conjunction with the three
implicit schemes for flow past a 4 : 1 prolate spheroid. The symbols are marked on two plotting lines at every
50 iterations.

on the fine grid. Both open- and closed-type separations are evident. The surface pressure
distributions for the windward (θ = 0◦) and leeward (θ = 180◦) planes of symmetry are
given in Fig. 8. The agreement between the fine and coarse grids is good in both cases.

5.3. Unsteady Flow Past a 4 : 1 Prolate Spheroid at 50◦ Incidence

In the previous steady-state calculations, it was shown that the MG algorithm combined
with each of the three implicit schemes provides significant convergence acceleration and
that the point relaxation (PR(2)) scheme is more efficient than the other two schemes.
Therefore, only the point relaxation scheme and its MG algorithm are compared in the
computation of the unsteady flow past the prolate spheroid at higher incidence.
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FIG. 7. Comparison of the surface streamlines on the unwrapped spheroid surface as computed with different
grid sizes. S is the surface arclength in the longitudinal direction, St is the total arclength, θ = 0 is the windward
symmetry, and θ = 180◦ is the leeward symmetry.

To simulate the unsteady flow, a full flowfield around the body was used. The compu-
tations were done on a grid system of 57 × 97 × 57. To find out quickly when the flow
becomes unsteady, several runs using pseudotime marching only were performed first. The
Reynolds number was fixed at 3000 while the incidence was continually increased from
30◦. We found that the flow became periodic first at α = 43◦. Then a series of runs were
conducted for α = 50◦ using the dual-time stepping method implemented with both single
grid and MG schemes. The effects of different values of ε for the residuals reduction in
subiterations were compared to establish an appropriate convergence criterion for a time-
accurate solution. The computations used a physical time step �t = 0.05 and were run for
two periods of the side force coefficient.

For each case, Table I reports the CPU time on a Pentium III-550E computer, the number
of subiterations used, the side force and normal force coefficients, and the Strouhal num-
ber based on the period of the side force T . These results show that the problem only requires
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TABLE I

Quantities for the Spheroid at α = 50◦, Re = 3000, 57 × 97 × 57 Grid Points

CPU hour Subiterations Side forcea Normal forcea Strouhal no.
ε (MG/SG) (MG/SG) (Cs ) (Cn) (L sin α/U∞T )

10−1 18.1/32.8 5–8/13–20 ±0.05932 0.5272 ± 0.0074 0.04974
10−2 40.6/57.8 12–16/25–31 ±0.05933 0.5272 ± 0.0075 0.04975
10−3 69.7/87.9 20–29/40–55 ±0.05933 0.5272 ± 0.0075 0.04975

a The force coefficient is based on the projection area S = πab of the prolate spheroid, where
a and b are the half-long and half-short axes, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
p

X/L

81×81×65
37×33×49

Leeward

Windward 

(a) α = 10° , Re = 11700

(b) α = 30° , Re = 3000

X/L

0.0 0.2 0.4 0.6 0.8 1.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
p

81×81×65
37×33×49

Leeward

Windward 
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the residual to drop one order of magnitude (ε = 10−1) from its initial value at each physical
time step to obtain adequate accuracy. The value ε = 0.1 requires only 5–8 subiterations
per time step for the MG solution and 13–20 subiterations for the single grid solution.
The result supports an earlier statement [10] that any work done beyond 5 subiterations
did not change the solution of the unsteady flow computations. At ε = 0.1, the CPU time
of the MG scheme is 55% that of the single grid scheme. However, at further enhanced
convergence levels, the CPU time of the MG scheme is 70–80% that of the single grid
scheme. Actually, the corresponding subiterations also depend on the size of the physical
time step and complexity of the flow problem in addition to the convergence level. In view
of the fact that ε = 0.1 results in satisfactory accuracy within a few subiterations and that
ε = 10−4 is only necessary in occasional cases such as the brief stage started impulsively
from free-stream conditions, we think that the PR(2) + MG scheme implemented with
the dual-time stepping method is plausible for calculating unsteady incompressible flows.
Perhaps it is possible to improve the efficiency of the MG scheme by using other techniques
such as preconditioning [34, 51].

Figure 9 shows the time history of the normal force and side force coefficients. The flow
is fully periodic. The calculated period of the side force is 15.4 L/U∞. Figure 10 shows
the time development of the total pressure contour in the cross-section plane normal to the
major axis within one period of the side force, where the time instants correspond to t1
through t9 as marked in Fig. 9. It can be seen that alternate vortex shedding happens near
the body surface in a way similar to that observed in a 2D flow past a cylinder. But the shed
vortex is now convected downstream in a direction almost perpendicular to the cross-section
plane, not in the transverse direction in this plane, which would form a wake. The flow at t1
is the same as that in t9, and both are reflectively symmetric with respect to the longitudinal
symmetry plane with the flow at t5; so are the flows in t2 and t6, t3 and t7, and t4 and t8.
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FIG. 9. Time history of the side force and normal force coefficients for flow past a 4 : 1 prolate spheroid at
α = 50◦, Re = 3000.



IMPLICIT MULTIGRID SCHEMES 151

1.
0

0.0
0.0

t=t1=216.25

1.0

0.0

0.0

t=t2=217.35

0.0

1.0

0.0

t=t3=218.85

1.0

0.0
0.0

t=t4=221.05

1.0

0.0

0.0

t=t5=224.00

0.0

0.0

1.0

t=t6=225.10

1.
0

0.0

0.0

t=t7=226.55

1.
0

0.0
0.0

t=t8=228.75

0.0

0.0

1.
0

t=t9=231.65

FIG. 10. Time development of the total pressure contours in the cross-section plane at X/L = 0.75 for flow
past a 4 : 1 prolate spheroid, α = 50◦, Re = 3000. The positive values are plotted as solid lines with an increment
�P0 = 0.2, while the negative values are plotted as dotted lines with �P0 = 0.025.



152 LI YUAN

6. CONCLUSIONS

A nonlinear FAS multigrid algorithm in conjunction with three frequently used implicit
schemes has been implemented and applied to simulations of both steady-state and unsteady
three-dimensional incompressible laminar flows. An appropriate treatment of Neumann
boundary conditions on coarse grids is proposed for the finite difference discretization,
which is shown to guarantee good convergence of the resulting multigrid schemes. The
numerical tests show that the multigrid scheme implemented with the modified point Gauss
relaxation (PR(2)) or the standard line Gauss relaxation is more efficient than that imple-
mented with the ADI scheme in three-dimensional flows, with the PR(2) + MG scheme
being most efficient. It is demonstrated that all the multigrid schemes accelerate the conver-
gence by at least two times their corresponding single grid schemes in computing steady-
state flows. However, the convergence acceleration of the multigrid algorithm for unsteady
flows is relatively small. It is found that a one order of magnitude reduction of the residuals
in the subiteration can meet the time-accurate requirement in general, except in a brief sharp
transitional stage. The separated flow structures as computed using the third-order MUSCL
scheme are fairly good when a fine grid is used. The simulated periodic flow past a 4 : 1
prolate spheroid at higher incidence also indicates that the modified point relaxation (PR(2))
multigrid scheme in conjunction with the ACM is preferable when large-scale computations
of unsteady three-dimensional incompressible flows are conducted.

APPENDIX: INVISCID JACOBIAN

The Jacobian matrices A, B, C (A = ∂Ê
∂Q , B = ∂F̂

∂Q , C = ∂Ĝ
∂Q ), are given by

Ai = 1

J




0 kxβ kyβ kzβ

kx kx u + � kyu kzu

ky kxv kyv + � kzv

kz kxw kyw kzv + �


 , (A.1)

where Ai = A, B, C for = 1, 2, 3, respectively, and

� = kx u + kyv + kzw,

kx = ∂ξi

∂x
, ky = ∂ξi

∂y
, kz = ∂ξi

∂z
, ξi = (ξ, η or ζ ) for i = 1, 2, 3.

A similarity transform for the Jacobian matrix is introduced,

Ai = TiΛi Ti
−1, (A.2)

with

Λi = 1

J




� 0 0 0
0 � 0 0
0 0 � + c 0
0 0 0 � − c


 , (A.3)
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where c is the scaled artificial speed of sound given by

c =
√

�2 + β
(
k2

x + k2
y + k2

z

)
. (A.4)

The matrix of the right eigenvectors is given by

Ti =




0 0 −λ̃4c̃ λ̃3c̃

x̃2 x̃1 u − λ̃4k̃x u − λ̃3k̃x

ỹ2 ỹ1 v − λ̃4k̃ y v − λ̃3k̃y

z̃2 z̃1 w − λ̃4k̃z w − λ̃3k̃z


 , (A.5)

and its inverse is given by

T−1
i = 1

c̃2




(x̃1a2 + ỹ1a3 + z̃1a1) (z̃1d2 − ỹ1d3) (x̃1d3 − z̃1d1) (ỹ1d1 − x̃1d2)

−(x̃2a2 + ỹ2a3 + z̃2a1) (ỹ2d3 − z̃2d2) (z̃2d1 − x̃2d3) (x̃2d2 − ỹ2d1)

1/2 λ̃3k̃x/2 λ̃3k̃y/2 λ̃3k̃z/2

1/2 λ̃4k̃x/2 λ̃4k̃y/2 λ̃4k̃z/2


 ,

(A.6)

where

x̃1 = xξi+1 J 1/2(
k2

x + k2
y + k2

z

)1/4 , ỹ1 = yξi+1 J 1/2(
k2

x + k2
y + k2

z

)1/4 , z̃1 = zξi+1 J 1/2(
k2

x + k2
y + k2

z

)1/4 ,

x̃2 = xξi+2 J 1/2(
k2

x + k2
y + k2

z

)1/4 , ỹ2 = yξi+2 J 1/2(
k2

x + k2
y + k2

z

)1/4 , z̃2 = zξi+2 J 1/2(
k2

x + k2
y + k2

z

)1/4 ,

ξi+1 = η, ζ, or ξ, and ξi+2 = ζ, ξ, or η, for i = 1, 2, and 3, respectively,

λ̃3 = �̃ + c̃, λ̃4 = �̃ − c̃,

a1 = k̃xv − k̃yu, a2 = k̃yw − k̃zv, a3 = k̃zu − k̃xw,

d1 = k̃xβ + �̃u, d2 = k̃yβ + �̃v, d3 = k̃zβ + �̃w,

�̃ = k̃x u + k̃yv + k̃zw, c̃ =
√

�̃2 + β,

k̃x = kx√
k2

x + k2
y + k2

z

, k̃y = ky√
k2

x + k2
y + k2

z

, k̃z = kz√
k2

x + k2
y + k2

z

.
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