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ABSTRACT

We study Lyapunov exponents of tracers in compressible homogeneous isotropic turbulence at different turbulent Mach numbers Mt and
Taylor-scale Reynolds numbers Rek. We demonstrate that statistics of finite-time Lyapunov exponents have the same form as that in incom-
pressible flow due to density-velocity coupling. The modulus of the smallest Lyapunov exponent k3 provides the principal Lyapunov expo-
nent of the time-reversed flow, which is usually wrong in a compressible flow. This exponent, along with the principal Lyapunov exponent
k1, determines all the exponents due to vanishing of the sum of all Lyapunov exponents. Numerical results by high-order schemes for solving
the Navier–Stokes equations and tracking particles verify these theoretical predictions. We found that (1) the largest normalized Lyapunov
exponent k1sg, where sg is the Kolmogorov timescale, is a decreasing function of Mt. Its dependence on Rek is weak when the driving force is
solenoidal, while it is an increasing function of Rek when the solenoidal and compressible forces are comparable. Similar facts hold for jk3j, in
contrast to well-studied short-correlated model; (2) the ratio of the first two Lyapunov exponents k1=k2 decreases with Rek and is virtually
independent of Mt for Mt � 1 in the case of solenoidal force but decreases as Mt increases when solenoidal and compressible forces are com-
parable; (3) for purely solenoidal force, k1 : k2 : k3 � 4 : 1 : �5 for Rek > 80, which is consistent with incompressible turbulence studies; and
(4) the ratio of dilation-to-vorticity is a more suitable parameter to characterize Lyapunov exponents than Mt.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0175016

I. INTRODUCTION

Lyapunov exponents (LEs) provide a useful tool to characterize
the stability of complex dynamical systems. It has been extensively
used to identify chaos phenomena (e.g., the Lorenz 63 model1,2)
and the so-called Lagrangian coherent structures in turbulence;3–5

the latter was widely adopted in engineering applications.6–9 In
fluid mechanical studies of turbulence, the LEs are used both to

characterize turbulent transport and turbulence itself (see e.g.,
Refs. 10 and 11).

For turbulence itself, the research has been so far mostly concen-
trated on the principal Lyapunov exponent of the three-dimensional
incompressible turbulent flow fields k1 (see, e.g., Refs. 12–14). This
exponent describes the asymptotic rate of divergence of two solutions
of the Navier–Stokes equations that are initially almost equal.
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The small difference in the initial conditions grows exponentially with
time where k1 > 0 provides the growth exponent. Thus, k1 is a mea-
sure of the instability and complexity of the turbulence state.
Recognizing that the fastest timescale of turbulence is the Kolmogorov
timescale sg (see, e.g., Ref. 15), it was estimated in Ref. 16 that
k1 � s�1

g . This prediction, which disregards intermittency, was tested
in Refs. 12–14. To evolve in time the two solutions defining k1, Mohan
et al.13 determined one of them by direct numerical simulation of the
incompressible Navier–Stokes equations and the other by solving the
linearized perturbation equation with a Fourier–Galerkin method cou-
pled with a third-order Runge–Kutta method for time marching. For
cases with Taylor-scale Reynolds numbers in the range Rek
2 ½37; 211�, they found that k1 increases with Rek faster than the
inverse of Kolmogorov timescale sg, cf. similar results that have been
reported in Refs. 12 and 14. Hassanaly and Raman17 made a signifi-
cant step by determining a whole set of Lyapunov exponents as neces-
sary to determine the Kaplan–Yorke (KY) dimension of the attractor
of turbulent flow (such a set includes all positive exponents and some
negative ones, and a comprehensive study of the two-dimensional case
was done by Clark et al.18). They used a second-order pressure-correc-
tion scheme with a staggered grid. They found that the KY dimension
of the incompressible turbulence attractor DKY scales with the ratio of
the domain size L, and the Kolmogorov scale g as DKY � ðL=gÞ2:8,
and the Lyapunov eigenvectors (LVs) get more localized as Rek
increases. Localization, which was also observed in Refs. 12 and 13, sig-
nifies that the fast-growing perturbation has a spatial extent much
smaller than L.

We note that due to the quadratic computational cost to calculate
N Lyapunov exponents of turbulence itself with N grows very fast with
Reynolds number, earlier applications of LEs on turbulence are mostly
based on reduced turbulence models. In fact, the Lorenz’63 system1

can be regarded as a reduced turbulence model, in which only three
Fourier modes are kept by the Galerkin method to approximate the
Rayleigh–B�enard convection (RBC) problem. It can generate chaotic
motions but has a phase diagram that is very different from the origi-
nal RBC problem.19,20 A more realistic and capable reduced turbulence
model is the shell model proposed by Gledzer.21 The first attempts to
establish the Lyapunov-Re dependence were made by Yamada and
Ohkitani22–24 based on shell models. This approach was later extended
to elastic systems by Ray and Vincenzi.25 Recent updates in this direc-
tion are the Lyapunov analysis based on Fourier-decimated turbu-
lence26 and Galerkin-truncated inviscid turbulence.27 A novel property
of decimation models was found by Ray:26 It is possible to have nonin-
termittent, yet chaotic, turbulent flows, with an emergent time revers-
ibility as the effective degrees of freedom are reduced through
decimation. Conversely, the study on the Galerkin-truncated inviscid
fluids by Murugan et al.27 reveals an interesting link between the ther-
modynamic variables T and the maximal Lyapunov exponents, the
measure of (many-body) chaos, by the relation k1 ¼

ffiffiffiffi
T

p
.

We remark that probably, the most immediate quantity that
remains to be studied in this direction is the backward-in-time princi-
pal Lyapunov exponent. That characterizes the divergence of solutions
for backward in-time evolution, which can provide a measure of time-
reversal symmetry breaking by turbulence. It would be also of interest
to study how finite compressibility changes k1, by providing its depen-
dence on the Mach number Ma (the Mach number is the ratio of the
typical flow velocity and speed of sound, a measure of compressibility

that equals zero for incompressible flow). Indirectly, the study below
provides information on this.

The number of the Lyapunov exponents that characterize the
Navier–Stokes turbulence, which constitutes an infinite-dimensional
dynamical system, is infinite. However, the effective number N of
intrinsic degrees of freedom of the turbulent flow, e.g., the KY dimen-
sion, is finite28 (in standard phenomenology of turbulence N4=9 scales
linearly with the Reynolds number15). The solutions of the
Navier–Stokes equations then determine trajectories in the N-dimen-
sional space that are characterized by N Lyapunov exponents that
describe the evolution of distances between infinitesimally close trajec-
tories. The number N is influenced by intermittency and calls for fur-
ther investigations.

In contrast, the LEs of small-scale turbulent transport describe
the divergence of trajectories of infinitesimally close fluid particles in
ordinary three-dimensional space. These trajectories are called
Lagrangian trajectories, and thus, we occasionally refer to the corre-
sponding exponents as Lagrangian LEs. There are three such expo-
nents that describe the evolution of infinitesimal parcels of passive
tracers (in practice, the largest linear size of the parcel must be much
smaller than g). At large times, the parcels attain the shape of an ellip-
soid whose axes evolve in time exponentially with the LEs providing
the growth (or decay) exponents. Thus, the Lagrangian LEs provide a
robust characterization of the long-time effect of the transport of mat-
ter on the smallest scales of turbulence, below the Kolmogorov scale.
The principal Lagrangian LE is positive, as that of Navier–Stokes equa-
tions, so the tracers’ motion is chaotic (the so-called Lagrangian
chaos).

There might be a connection between the principal Lyapunov
exponent of turbulence and that of turbulent transport. Crudely, both
are estimated as the inverse Kolmogorov time. Moreover, localization
of the fastest-growing mode of perturbations of the Navier–Stokes
equations might cause this mode to localize below g in the limit of
large Rek and thus be determined by the small-scale turbulence simi-
larly to Lagrangian LEs. Still, it seems that the two exponents, after
multiplication by sg have different Reynolds number dependence: the
Lagrangian k1sg must decay with Rek for incompressible flow; see
detailed discussion in Ref. 29 where the difference is explained and
references therein. Further studies of the difference between the two
principal exponents are necessary.

The Lagrangian LEs have been thoroughly studied for incom-
pressible flows (see, e.g., Ref. 30). Here, the LEs were calculated based
on particle tracking with a second-order predictor-correction time
marching scheme and a fourth-order central finite difference for veloc-
ity gradients. Johnson and Meneveau30 verified that k1 : k2 : k3
� 4 : 1 : �5, the ratio that has been known for some time (see Refs. 11,
30, and references therein). The exponents sum to zero so that the vol-
ume of the ellipsoid of passive particles is conserved. A remarkable
property of the exponents is universality: at large Rek the dimensionless
exponents kisg are functions of Rek only, having no dependence on
the details of the forcing. The large length of the inertial interval guar-
antees that statistics of the flow gradients, which is a small-scale turbu-
lence property, are independent of the details of the mechanism that
stirs the large-scale turbulence.

In the case of compressible flows, much less is known and univer-
sality is more restricted. A distinction must be made here between two
different types of compressible flows. The first type of compressible
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flow arises as an effective description of the motion of the passive par-
ticles. Probably, the first example of such a flow was presented by
Maxey31 who considered the motion of weakly inertial particles pas-
sively transported by incompressible turbulence. Due to inertia, a par-
ticle cannot fully follow the transporting flow and its velocity is slightly
different from that of the turbulent flow at its position. The velocity
difference is proportional to the local Lagrangian acceleration so that
the particle’s velocity is a linear combination of the flow velocity and
acceleration at its position. Thus, the particle velocity is determined
uniquely by its spatial position and an effective transporting flow of
particles can be introduced. This flow is compressible since the diver-
gence of the Lagrangian accelerations’ field is non-zero. Thus, the solu-
tion to the continuity equation, obeyed by the particles’ concentration,
is a non-constant, time-dependent inhomogeneous field. This field is
passive and it does not change the flow.

The flow’s independence of the solutions to the continuity equa-
tion is the benchmark of the first type of compressible flow. Since Ref.
31, many other effective flow field descriptions of particles’ motion in
turbulence appeared. These include particles with large inertia that
sediment fast,32,33 bubbles,34 phytoplankton,35,36 and phoretic par-
ticles.37 The density of particles in all these cases has universal proper-
ties and allows a unified description.38 Here, the compressible flows
are generic, and hence their sum of Lyapunov exponents, providing
the logarithmic rate of growth of infinitesimal volumes, is negative.39

This implies that the KY dimension is smaller than the dimension of
space and particles distribute over a random strange attractor with
multifractal density support.40 The density obeys the continuity equa-
tion, providing its singular (weak) solution. It is also observed that
compressibility damps chaos: All Lagrangian LEs decrease with com-
pressibility in a model random flow,11 and cases with negative k1 could
be envisioned.41 Whereas the Lagrangian LEs describe the motion of
particles below the Kolmogorov scale, quite similar phenomena occur
in the inertial range. Gawȩdzki and Vergassola42 demonstrated for a
model compressible flow that tracers explosively separate for low com-
pressibility; however, they may collapse onto each other when com-
pressibility is high.

The other type of compressible flow is where the transport of
matter by the flow is coupled to the flow, i.e., solutions to the continu-
ity equation actively change the flow. This includes the case of inertial
particles with high concentration and also the compressible turbulence
at a finite Mach number, the case with many applications on which we
focus below. In compressible turbulence, the density changes must be
such as to keep the pressure finite, thus avoiding infinite forces. This
introduces the forbidding principle for isothermal (or any other baro-
tropic) turbulence: Lagrangian transport may not result in infinite den-
sity or solutions to the continuity equation must remain finite and
smooth.11,43 In cases where both density and temperature are non-
trivial, care is needed. For instance, if the ideal gas equation of state
holds, then density can become infinite provided the temperature van-
ishes simultaneously so the product of density and temperature
remains finite. In fact, this possibility is realized in fluid mechanics
with cooling where density may blow up in finite time.44–46 In the case
of conservative hydrodynamics, we conjecture that this type of singu-
larity may not occur and density stays finite so that

lim
t!1

1
t
ln

qðqðtÞ; tÞ
qðqð0Þ; 0Þ
� �

¼ 0; (1)

where the density field qðx; tÞ is evaluated on the Lagrangian trajectory
qðtÞ. However, by mass conservation, the product of infinitesimal vol-
ume and the density is constant so the above implies that the sum of
Lagrangian LEs must vanish for compressible turbulence.11 The physi-
cal reasons for the vanishing are temporal anticorrelations of the flow
divergence evaluated on qðtÞ as was formalized via several identities in
the main text and in the Appendix of Fouxon and Mond;43 see also
below. Thus, the sum of the Lyapunov exponents obtained from
numerical simulations must vanish, provided that the flow gradients
are fully resolved (see discussion in Ref. 43).

The conclusion on the vanishing of the sum of LEs is robust.
However, Schwarz et al.47 observed the sum to be non-zero. These
authors studied the LEs of passive particles in the frame of isothermal
compressible Euler equations. They adopted the CWENO scheme48

for direct numerical simulation (DNS) and employed a linear velocity
interpolation and a third-order strong-stability-preserving
Runge–Kutta method49 for particle tracking. The LEs are calculated
using a standard method proposed by Benettin et al.50 They found that
the sum of LEs is not equal to 0, which implies that the KY dimension
is smaller than 3 and the particles’ density is a singular field supported
on a multifractal. This contradiction requires an explanation and is
one of the reasons for the current work, which provides seemingly the
only measurement of the sum of the LEs alternative to Ref. 47.

Schwarz et al.47 simulated the motion of passive tracers whose
density does not react on the flow. In this form, their result does not
contradict the forbidding principle. However, the authors claimed that
the density of tracers is equal to that of the fluid, so that the fluid density
is singular which does contradict the finiteness of forces in the fluid
and, in fact, the continuum assumption itself. We observe that despite
that both densities, that of the fluid, and that of the tracer particles,
obey the continuity equation with the same flow, these densities might
differ as was explained in Ref. 43. This is because the continuity equa-
tion is not dissipative and a fine difference may persist. Yet, the numeri-
cal observation of the difference is highly delicate. The result of Schwarz
et al.47 could be an observation of such a difference. Another possible
explanation could be that the non-zero sum of the LEs arises in Ref. 47
because they essentially measure the coarse-grained LEs in the inertial
range and not the true LEs that demand the introduction of viscosity in
the numerical scheme and resolution of sub-Kolmogorov scales.

Lagrangian LEs of compressible turbulence, it seems, were stud-
ied in Ref. 47 only. These authors did not study the dependence of the
LEs on the Mach and Reynolds numbers and also their results, as
explained, demand a further study. For starters, a consistent study of
the LEs demands determining the needed resolution and which
parameters determine the exponents uniquely. Several issues arise.

Compressible turbulence is characterized by a larger number of
relevant spatial scales than its incompressible counterpart. The phe-
nomenology of incompressible turbulence operates with the energy
pumping scale L and energy dissipation (Kolmogorov) scale g only
(see, e.g., Ref. 15). Velocity is determined mainly by the flow fluctua-
tions at the scale L and its gradients by those at the scale g. In com-
pressible turbulence, there are two components to the flow, solenoidal
and compressible, and their behavior can be different. Both compo-
nents are excited at the scale L, either directly by forcing, or indirectly
by coupling to the other component. However, the scales that deter-
mine the components’ gradients might differ. Roughly speaking, gra-
dients of the solenoidal component are determined by the size of the
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smallest vortices in the flow, whereas gradients of the compressible
component (the flow divergence) are determined by the smallest width
of the shocks. These scales might differ. In the current work, we con-
sider Mach numbers smaller than one so that the Kolmogorov scaling
might be anticipated to describe the solenoidal component fairly well.
That would imply that the smallest scale associated with this compo-
nent is the Kolmogorov scale. The latter scales as Re�3=4, where Re is
the ordinary Reynolds number, and is the scale that determines the
gradients of the solenoidal component of the flow (vorticity). On the
other hand, the naive smallest scale of the shock, estimated from the
Burgers-type solutions, scales proportionally to Re�1. Hence, the
smallest scale of the flow is anticipated to behave as L/Re. Thus, in
principle, accurate determination of the flow derivatives, which is nec-
essary to determine the LEs, demands resolution below this scale.

The LEs derive from the gradients of the flow ru. Hence, in
computing the exponents, it is significant to understand whether the
statistics of the gradients of the compressible turbulent flow are univer-
sal and what they depend on. Both, the solenoidal and the compress-
ible components of the flow, are relevant. The sum of the Lyapunov
exponents is determined by the flow divergence and thus, mostly by
the compressible component of the flow. [It still has an implicit depen-
dence on the solenoidal component via the Lagrangian trajectory on
which the divergence is determined (see below).] Other combinations
of the exponents, generally speaking, depend on both components. It
can be hoped that if the statistics of the gradients are universal, then
the Lyapunov exponents, made dimensionless by multiplying with

hjruj2i�1=2 would depend only on the degree of compressibility C
� hðr � uÞ2i=hjruj2i and the Reynolds number. The ratio C mea-
sures the compressibility of the small-scale turbulence, changing from
zero for incompressible flow to one for potential flow.

The forcing that drives the turbulence imposes on the flow com-
parative weights of the solenoidal and compressible components at the
scale L. In order to have universal statistics of the gradients, the inertial
range must be as large as needed so that at the smallest scale of the
flow the weights of the flow components attain intrinsic values that are
independent of their values at scale L. Thus, unless the inertial range is
large (larger than in the case of incompressible turbulence), the gra-
dients and the LEs would not be universal. They would depend on Re,
on Ma, and the type of force. Moreover, the dependence on Ma is
non-obvious since the local Mach number associated with the small-
scale turbulence is anticipated to be small in many cases. That would
make small-scale turbulence effectively incompressible with all its
implications. It is seen from the above that compressible turbulence
imposes many issues. Some of them are tackled below.

In this paper, we investigate LEs of passive particles in three-
dimensional compressible isotropic turbulence by using high-order
methods for direct numerical simulation and for tracking particles,
with a particular emphasis on their dependence on Taylor Reynolds
number and turbulent Mach number, as well as the driving force. We
check whether the sum of the LEs vanishes and whether the LEs decay
as a function of the Mach number. The remaining part of the paper is
presented in five sections. We first describe the governing equations
and the driving force in Sec. II. Definitions and properties of the
Lyapunov exponents are presented in Sec. III while Sec. IV describes
the high-order numerical schemes for DNS, tracking particles, and the
calculation of LEs. The major results are presented and discussed in
Sec. V. Conclusions are given in Sec. VI.

II. GOVERNING EQUATIONS
A. Compressible Navier–Stokes equations
and the driving force

We study compressible homogeneous isotropic turbulence gov-
erned by the following three-dimensional Navier–Stokes equations in
a dimensionless form51:

@q
@t

þ @ðqujÞ
@xj

¼ 0; (2)

@ðquiÞ
@t

þ @ quiuj þ pmdij
� �

@xj
¼ 1

Re

@rji
@xj

þ F i; (3)

@E
@t

þ @ ðE þ pmÞuj
� �

@xj
¼ 1

a
@

@xj
j
@T
@xj

 !
þ 1
Re

@ðrjiuiÞ
@xj

� Kþ F juj;

(4)

where q is the fluid density, ui is the ith component of fluid velocity, vis-

cous stress tensor rij ¼ l @ui
@xj

þ @uj
@xi

� �
� 2

3lhdij, dilatation h ¼ @ui=@xi,

scaled pressure pm ¼ p
cMa2, pressure p ¼ qT , and E ¼ p

ðc�1ÞcMa2

þ 1
2 qðujujÞ the total energy per unit volume. F i is a large-scale driving

force, and K a cooling function. Einstein’s summation convention is
adopted. For simplicity, Stokes’ hypothesis is assumed to be true, i.e.,
the bulk viscosity is set to 0. Note that the equations are nondimen-
sionalized such that the spatial averaged density hqi ¼ 1, and the size
of the computational box is a cube with side length L ¼ 2p. There are
three reference dimensionless parameters: the reference Mach number
Ma ¼ Uf =cf , the reference Reynolds number Re ¼ qf Uf Lf =lf , and
the reference Prandtl number Pr ¼ lf Cp=jf , where Uf ; cf ; Lf ; lf ;
jf ;Cp are reference velocity, speed of sound, length, viscosity, thermal
conductivity, and specific heat at constant pressure, respectively. The
coefficient a is equal to PrReðc� 1ÞMa2. Here, c is the ratio of specific
heat at constant pressure Cp to that at constant volume Cv. In this
study, we fix Pr ¼ 0:7 and c ¼ 1:4. The scaled l and j satisfy the fol-
lowing Sutherland’s formula52:

l ¼ j ¼ 1:4042T1:5

T þ 0:40417
:

The cooling function takes the form K ¼ aTb. Several studies have
shown that the statistics are not sensitive to the choice of the cooling
function.51,53,54 So, we fix b¼ 1 in this paper.

The decomposition of the flow into the sum of the solenoidal and
compressible components is done in the Fourier space as

vðk; tÞ �
ð
0;2p½ �3

exp ð�ik � xÞuðx; tÞdx;

vðk; tÞ ¼ vsðk; tÞ þ vcðk; tÞ; vc ¼ kðk � vÞ
jkj2 ; vs ¼ v � vc:

(5)

The solenoidal and compressible components determine the flow’s
curl (vorticity) and divergence, respectively.

It is known that the statistics in (compressible) turbulence are
sensitive to the driving force. Different kinds of forces have been con-
sidered in the literature, see, e.g., Wang et al.,51 Eswaran and Pope,55

Kida and Orszag,56 Mininni et al.,57 Petersen and Livescu,58

Konstandin et al.,59 and John et al.,60 Here, we adopt a large-scale
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driving force that can lead to a statistical steady state quickly.51 The
large-scale forcing is constructed in Fourier space by fixing EðkÞ
within the two lowest wave number shells: k¼ 1 and k¼ 2, where
EðkÞ ¼Pk�0:5<jkj�kþ0:5 jvðkÞj2=2, to prescribed values that are con-

sistent with the k�5=3 kinetic energy spectrum. More precisely, if a
pure solenoidal force is adopted, after the forcing, we let

vnewðk; tÞ ¼ akv
sðk; tÞ þ vcðk; tÞ; (6)

such that the velocity magnitude in k¼ 1 and k¼ 2 shells are equal to
pre-specified values EðkÞ; k ¼ 1; 2. This is achieved by taking

ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðkÞ � EcðkÞ

EsðkÞ

s
; EbðkÞ ¼

X
k�0:5<jkj�kþ0:5

1
2
jvbðk; tÞj2;

b ¼ c; s:

(7)

For forces with nonzero compressible components, we modify the
compressible component as well. To this end, we use a factor c0 to
denote the ratio of the solenoidal part to the compressible part. The
driving force is applied to obtain

vnewðk; tÞ ¼ askv
sðk; tÞ þ ackv

cðk; tÞ; (8)

where

ask ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 EðkÞ�EcðkÞð ÞþEsðkÞ

ð1þ c0ÞEsðkÞ

s
; ack ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðkÞ�EsðkÞð Þþ c0E

cðkÞ
ð1þ c0ÞEcðkÞ

s
:

(9)

In particular,

• c0 ¼ 1 generates a purely solenoidal force, the case called below
ST.

• c0 ¼ 1 generates a force with the solenoidal and compressible
parts comparable, the case called below C1.

• c0 ¼ 0 generates a force with only the compressible part.

Due to the limitation of computational resources, in this paper,
we will only investigate the ST and C1 cases.

B. Statistical quantities

The following important statistical quantities are of interest in
compressible turbulence. The root mean square (rms) component fluc-
tuation velocity u0 is defined and related to the kinetic energy spectrum
E(k) as

3
2
ðu0Þ2 � 1

2
huðx; tÞ � uðx; tÞi ¼

ð1
0
EðkÞdk;

where h�i stands for the spatial average. The longitudinal integral
length scale is

Lf ¼ p
2u02

ð1
0

EðkÞ
k

dk:

The transverse Taylor microscale k and Taylor Reynolds number Rek
are defined as

k ¼ u0

hð@ui=@xiÞ2=3i1=2
; Rek ¼ u0khqi

hli Re;

where the summation convention is not assumed in the equation. The
viscous dissipation rate e, Kolmogorov length scale g, and timescale sg
are defined as

e ¼
	
rij

@ui
@xj



; g ¼ Re�3=4 hl3i=hq2i=e

� �1=4
;

sg ¼ Re�1=2ðhli=eÞ1=2:
The turbulent Mach numberMt is defined as

Mt ¼ Ma
�
u21 þ u22 þ u23

�1=2
=
� ffiffiffiffi

T
p �

:

III. DEFINITIONS AND PROPERTIES OF LYAPUNOV
EXPONENTS OF COMPRESSIBLE TURBULENCE
A. Definitions

The trajectories of passive particles in a fluid are determined by

dqðtÞ
dt

¼ uðqðtÞ; tÞ; qðt ¼ 0Þ ¼ q0; qðtÞ 2 R3; (10)

where u is the flow field obtained from DNS. An infinitesimal pertur-
bation r0 in the initial condition qðt ¼ 0Þ ¼ q0 þ r0 leads to a slightly
different trajectory. The distance rðtÞ between the two resulting trajec-
tories obeys the evolution equation

drðtÞ
dt

¼ ðrðtÞ � rÞu; rðt ¼ 0Þ ¼ r0; rðtÞ 2 R3; (11)

where the flow gradients are evaluated on the trajectory qðtÞ. The
Lyapunov characteristic number (LCN) is defined as

kðq0; r0Þ ¼ limsup
t!1

1
t
jrðtÞj
jr0j : (12)

It has the following basic property: there exist d linear subspaces
Zd 	 Zd�1 	 � � � 	 Z1 ¼ Rd , such that

kiðq0Þ ¼ max
r02Zi

kðq0; r0Þ ¼ kðq0; r0Þ; ; 8 r0 2 ZinZiþ1
 �

:

Alternatively, we may define Lyapunov exponents using the Cauchy-
Green tensor. Consider

dDijðtÞ
dt

¼ @ui
@xk

qðtÞ; tð ÞDkjðtÞ; Dijðt ¼ 0Þ ¼ dij: (13)

The finite-time Lyapunov exponents (FTLEs) are defined by using the
singular values riðq0; tÞ of the deformation tensor Dij, i.e., the square
roots ri of the eigenvalues of the symmetric positive Cauchy–Green
tensor Cij ¼ DikDjk,

ciðq0; tÞ :¼
1
t
ln riðq0; tÞ:

The Lyapunov exponents (LEs) are defined as the infinite time
limit of FTLEs and are equivalent to LCNs, i.e.,

lim
t!1 ciðq0; tÞ ¼ kiðq0Þ: (14)

B. Representation of the Lyapunov exponents
for three-dimensional flow

We are concerned with three-dimensional flows where the spec-
trum of the Lyapunov exponents is fully described by k1, k3, andP3

i¼1 ki. These three quantities allow a simplified description in any
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dimension. Considering qðtÞ as a vector function of the initial condi-
tion q0, we find from Eq. (13) that the Jacobi determinant of this func-
tion, JðtÞ ¼ j@qðtÞ=@q0j, obeys a simple equation. We have by using
the definition of ki,

d ln JðtÞ
dt

¼ r � u;
X

ki � lim
t!1

ln JðtÞ
t

¼ lim
t!1

1
t

ðt
0
hr � uðq; t0ÞiLdt0;

(15)

where h�iL denotes the Lagrangian average. Ergodicity is assumed
which will be numerically verified in Sec. VC. Due to the fact that
d
dt ln qðq; tÞ ¼ �r � u, we also have
X

ki ¼ lim
t!1

1
t

ðt
0
� d
dt

ln qðt0Þdt0 ¼ lim
t!1

1
t
ðlnqð0Þ � ln qðtÞÞ: (16)

If we take uniform initial density, i.e., qð0Þ � 1, then we haveX
ki ¼ lim

t!1�lnqðtÞ=t ¼ lim
t!1�h lnqðtÞiL=t: (17)

Since h�iL denotes the Lagrangian average and the passive particles and
the fluid density have the same probability distribution in a statistically
steady turbulence state, h ln qðtÞiL ¼ hqðtÞ ln qðtÞi 
 hqðtÞi ln hqðtÞi
¼ 0 by Jensen inequality. Here, the assertion that Lagrangian averages
are equivalent to density-weighted averages is assumed and will be jus-
tified by a numerical investigation given in Sec. VC. Thus, if the
startup density satisfies a uniform distribution, then the sum of finite
time LEs will take negative values and converge to 0 from below at a
speedOð1=tÞ.

For the largest and smallest LEs, they can be evaluated using the
following dynamics10,11:

k1 ¼ lim
t!1

1
t

ðt
0
r : r1r1dt

0;
dr1
dt

¼ r � r1 � ðr : r1r1Þr1; (18)

k3 ¼ lim
t!1

1
t

ðt
0
r : r3r3dt

0;
dr3
dt

¼ �rT � r3 þ ðr : r3r3Þr3; (19)

where r ¼ rxu and r1; r3 are two randomly initialized vectors in the
respective linear subspaces (e.g., r1ð0Þ 2 Z1nZ2). We note that Eq.
(18) is mathematically equivalent to Eqs. (11) and (12), so we can use
Eq. (25) below to estimate it. Equation (19) is obtained in Appendix B
of Balkovsky and Fouxon.10 Roughly speaking, the representation for
k3 can be explained by observing that the equation on the
Cauchy–Green tensor, which in matrix form reads _D ¼ rD, implies
_D
�1;T ¼ �rTD�1;T . The singular values of D�1;T are �ki, which

implies Eq. (19). Since Eqs. (18) and (19) have similar forms, we can
use the standard numerical method for k1 to calculate k3 by consider-
ing the transformed backward dynamics.

C. Incompressible-like large deviations theory
of finite-time Lyapunov exponents

We saw that
P

ki of compressible turbulence equals zero as in
the incompressible flow. We demonstrate here that fluctuations of the
finite-time Lyapunov exponents also behave as in the incompressible
flow. This has a remarkable consequence that jk3j is the first Lyapunov
exponent of the time-reversed flow. In general, an infinitesimal spheri-
cal parcel of the fluid is transformed by the flow into an ellipsoid,
whose largest and smallest axes, asymptotically at large times, grow

and shrink exponentially, with exponents k1 and k3, respectively.
Reversing this evolution naively, we find that in time-reversed flow the
stretching occurs with exponent jk3j and shrinking with the exponent
�k1. In fact, this consideration is generally true in incompressible flow
only: Compressibility introduces a non-trivial Jacobian (volume) fac-
tor, which usually depends on time exponentially causing the principal
exponent of the time-reversed flow to differ from jk3j (see the arXiv
version of Balkovsky et al.61). In compressible turbulence, however, the
Jacobian is stationary since infinitesimal volumes define stationary
density. This makes the volume factor irrelevant to the exponential
behavior of the ellipsoid’s dimensions.

We provide a more formal description of the considerations
above. We consider the joint probability density function (PDF) of

jðtÞ � ln
qð0Þ

qðqðtÞ; tÞ
� �

¼
ðt
0
r � uðq; t0Þdt0;

q1ðtÞ ¼
ðt
0
r : r1r1dt

0; q3ðtÞ ¼
ðt
0
r : r3r3dt

0;
(20)

where r1;3 are defined in Eq. (19).
At large times, the distribution of jðtÞ becomes stationary since it

becomes a difference of two independent stationary processes ln qð0Þ
and ln qðqðtÞ; tÞ. The time integral in the definition of jðtÞ does not
accumulate with time due to the anticorrelations in the temporal
behavior of r � uðq; tÞ that manifests via the vanishing ofÐ hr � uðq; tÞr � uðq; t0Þidt0. The vanishing of this integral in several
forms (quasi-Eulerian and Lagrangian) was discussed at length in
Appendix A of Fouxon and Mond.43 Thus, jðtÞ depends only on the
values of the velocity divergence in the time vicinity of times 0 and t
whose size is of the order of the correlation time ofr � uðq; tÞ.

In contrast, q1;3 depends on the gradients during the entire time
interval ð0; tÞ. At large times, the contribution of time intervals near 0
and t that determine jðtÞ can be neglected in q1;3ðtÞ. We infer from
this that jðtÞ and q1;3ðtÞ become independent (see similar consider-
ations in Balkovsky and Fouxon10). We conclude that the joint PDF
Pðj; q1; q3; tÞ of jðtÞ and q1;3ðtÞ reads

Pðj; q1; q3; tÞ � P0ðjÞ exp �tS
q1
t
� k1;

q3
t
� k3

� �� �
; (21)

where the standard large deviations form is used for the PDF of q1;3ðtÞ
(see, e.g., Balkovsky and Fouxon10). The convex large deviation func-
tion Sðx1; x2Þ is non-negative and it has a unique minimum of zero at
x1 ¼ x2 ¼ 0. It is readily seen that at t ! 1, the above distribution
becomes a d-function, which guarantees that the limits in Eqs. (18)
and (19) are non-random. The typical values of q1;3ðtÞ scale linearly
with t so that at large times bounded fluctuations of j become negligi-
bly small, compared with the spread of the distribution. For most rele-
vant observables, such as those considered in turbulent mixing,10 the
results of the averaging with the PDF in Eq. (21) coincide with those
obtained by using the effective PDF given by

Pðj; q1; q3; tÞ � dðjÞ exp �tS
q1
t
� k1;

q3
t
� k3

� �� �
: (22)

This has the same form as in the incompressible flow, as explained at
the beginning of this section. The recalculation of this result into the
statistics of the finite time Lyapunov exponents is straightforward (see
Ref. 62). The form of the statistics is the same as in the incompressible
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flow, as derived in Ref. 10. We conclude that long-time statistics of the
finite-time Lyapunov exponents have the same form as in the incom-
pressible flow. For instance, this implies that the principal Lyapunov
exponent of the time-reversed flow is jk3j, and the fact that is non-true
for a general compressible flow.61

D. Perturbation theory for Lyapunov exponents
at small Mach number

We discus here the dependence of ki on the Mach number Ma.
In the limit of very small Ma, the results must be describable by the
perturbation theory around the exponents of the incompressible tur-
bulent flow that holds at Ma ! 0.53,63–66 The corrections to the expo-
nents of incompressible turbulence are of the same order inMa as the
compressible component. However, this perturbation theory holds
only at very small Mach numbers, empirically below 0.153,66 and it is
of no use below where largerMa are considered.

IV. NUMERICAL METHODS
A. Numerical methods for direct numerical simulation
of turbulence

We use a hybrid WENO-central compact difference method pro-
posed by Liu et al.,54 which is an improved version of Wang et al.51 for
DNS of compressible isotropic turbulence. The DNS solver has the fol-
lowing properties:

• An eighth-order compact central difference scheme (CCD867) for
smooth regions, a seventh-order WENO scheme (WENO768) for
shock regions is used to discretize the convection terms.

• Shock fronts are determined by h < �Rhh
0, where Rh ¼ 3; h0 is

the rms of h.
• Viscous dissipation terms are handled by a non-compact sixth-
order central difference scheme (CD6).

• Thermal diffusion term in the energy equation is discretized
using a non-hybrid CCD8 scheme.

• Strong-stability preserving third-order Runge–Kutta method
(SSP-RK349) is used for time marching.

• Numerical hyperviscosity is applied to q; u; v;w;T in every five
steps (filtering) as

@f
@t

¼ �n f 00n � ðf 0nÞ0n
� �

; (23)

where f stands for any of q; u; v;w, and T, and f 0n; f
0 0
n stands for

numerical discretizations for fx and fxx using CCD8 scheme,
respectively. We set �n ¼ 2� 10�2 in the numerical simulation.
Note that51

�n f 00n � ðf 0nÞ0n
� � � �nCð0ÞðDxÞ8ðr2Þ5f ; Cð0Þ � 2:88� 10�5:

So, �nCð0Þ � l=Re. Thus, the numerical hyperviscosity only has
a strong smoothing effect on high wave number parts. The

smoothing effect on low-frequency part f̂ k; k < kmax=2 is quite
small compared to the physical diffusion l

Rer2f in the
Navier–Stokes equation.

To get reliable results of Lyapunov exponents, we will only consider
the cases where the shock scales can be resolved or nearly resolved
numerically, which means that we focus on low Reynolds number
cases. For these low Reynolds cases, we will also present numerical
results computed by using a fifth-order upwind compact scheme69

together with a compact central difference scheme with hyperviscosity
for comparison.

B. Numerical methods for passive particles
and Lyapunov exponents

The standard method for numerically calculating all LEs50 is
described below. The method of computing all LEs needs first to
choose random vectors r01;…; r0m 2 Rd with ðr0i ; r0j Þ ¼ dij; m � d,
then evolve them via Eq. (11), then the LEs are formally given by

kp ¼ lim
k!1

1
ks

Xk
i¼1

ln rðiÞp ; rðiÞp ¼ j~r pðrði�1Þ
p ; sÞj; p ¼ 1;…: (24)

Here, rpðrði�1Þ
p ; sÞ stands for the vector obtained by marching Eq. (11)

with an initial value rði�1Þ
p for a time period s. ~r p; p ¼ 1;…; d are vec-

tors after applying Gram–Schmidt orthogonalization (but not normal-
ized) to rp. More precisely,

~r p ¼ rp �
Xp�1

j¼1

ðrp; rðiÞj ÞrðiÞj ; rðiÞp ¼ ~rp=j~rpj; p ¼ 1;…;m:

We note that there exist some improvements in the orthogonali-
zation procedure (see, e.g., Ref. 70), but the standard Gram–Schmidt
orthonormalization is good enough for our purpose since we only
need to compute three LE exponents.

Numerically, we cannot solve the perturbation equation (11) for
an infinitely long time to obtain the kp defined by Eq. (24). Instead, we
will use a relatively large terminal time t and use the corresponding
FTLEs to approximate LEs. The FTLEs are evaluated as

cp ¼
1

K � K0

XK�1

i¼K0

aðiÞp ; p ¼ 1; 2; 3; (25)

where aðiÞp ¼ 1
s ln r

ðiÞ
p ; s ¼ t=K . K0 is a parameter to be tuned to get

faster convergence by discarding data from a transient region.
To verify the numerical accuracy of the standard numerical

methods for LEs, we also implemented alternative approaches (16) for
the sum of all LEs and a different approach (19) for the largest and
smallest LE.

V. NUMERICAL RESULTS AND DISCUSSION
A. Verifying the numerical schemes

1. Checking numerical resolutions of DNS

To check if the shocks are resolved by the numerical experiments,
we first run a testing case using the hybrid scheme54 with 1283 grids
for 20 time units. Then, use the solution as the initial condition and
run with resolutions using 1283, 2563, and 5123 grid points, for a short
time, e.g., 0.1 time unit (which is approximately equal to 1
Kolmogorov timescale). The results are reported in Figs. 1 and 2.
These figures show that all the solutions are very accurate for the den-
sity and velocity fields except for some locations with huge gradients,
which occupy only a small portion of the total computational domain.

For the solenoidal forcing (ST) case (Fig. 1), we see that the 1283

resolution does a decent job, except for the place where ux is smaller
than –5, which corresponds to a shock wave. Notice that the shock cal-
culated by 1283 resolution is a little bit wider and less steep than that
obtained using 2563 and 5123 resolutions.
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FIG. 1. Density and velocity profiles using different resolutions (ST, Rek ¼ 80;Mt ¼ 0:8, hybrid scheme). From top to bottom: snapshots of q, u, and v at a fixed z slice and
profiles along white lines in u and v slices.
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FIG. 2. Density and velocity fields using different resolutions (C1, Rek ¼ 80;Mt ¼ 0:8, hybrid scheme). From top to bottom: snapshots of q; u; v and profiles along the white
lines in u and v slices.
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The result of the C1 forcing case (Fig. 2) is similar to the ST case.
However, we see larger errors in the 1283 grid case compared to the
reference solution obtained by using 5123 grid points, at places where
gradients are large. So, we use 2563 grid points for most of the numeri-
cal experiments.

In Fig. 3, we present the results of using a compact central differ-
ence scheme for a solenoidal forcing case and a mixed forcing case.
We see that the compact difference scheme has better resolutions of
shock thickness, but its solution has nonphysical oscillations near the
rear boundaries of the shocks. For this reason, we will not use this
scheme to generate DNS data.

2. High-order schemes are necessary for calculating LEs

There are several numerical methods that are used for evaluating
LEs of passive particles in turbulence. To make a proper choice, we

tested two such schemes with different spatial and temporal discretiza-
tion orders. For the low-order scheme (LS1, L stands for Lyapunov),
we use a second-order central difference scheme to evaluate the veloc-
ity gradient tensorru, then carry out linear interpolation to get values
on Lagrangian points and use a second-order Crank–Nicolson scheme
for marching the perturbation equation (11). For the high-order
scheme (LS2), we use a fourth-order central difference for ru and
then use cubic interpolation to get values on Lagrangian points, and a
third-order Runge–Kutta49 is adopted to march Eq. (11).

In Fig. 4, we present these results for a C1 forcing case with
Mt � 0:8;Rek � 100, where we observe that the lower-order scheme
and the high-order scheme generate results with observable differences
in 1283 grid resolution. By taking the computed LEs of the high-order
scheme with 2563 grid points as reference solutions, we see that the
lower order scheme leads to large numerical errors in the computation

FIG. 3. Resolution check (u x-profile) using compact difference scheme. Left: ST forcing, Rek ¼ 80;Mt ¼ 0:8: acceptable results; right: C1 forcing, Rek ¼ 40;Mt ¼ 0:4: oscil-
lation happened for ux near x¼ 6.

FIG. 4. LE results obtained with different schemes for calculating r ¼ rxu and for time marching of perturbing vectors (C1 forcing case with Mt � 0:8;Rek � 100). Left:
1283 DNS grids and right: 2563 DNS grids.
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of LEs. We also observed that the high-order method (LS2) leads to
significantly smaller values of the sum of LEs. For this reason, we adopt
the high-order scheme in the remaining part of this paper. We also
note that the sum of LEs in the 2563 grid case is larger than the case
with the 1283 grid case. However, this difference is insignificant com-
pared to the differences in LEs themselves. As shown by Eqs. (16) and
(17), the sum of finite time LEs usually takes negative values and con-
verges to 0 from below at a speed Oð1=tÞ. The small difference is due
to the fluctuations in the Lagrangian-averaged density at the start and
terminal time.

3. Remove the dependence on initial conditions

For the initial condition of the DNS, we use uniform density
qðx; 0Þ � 1, uniform temperature Tðx; 0Þ � 1, and a randomly initial-
ized velocity field that is consistent with the k�5=3 scaling law. We use
a uniform initial distribution for the passive particles to calculate LEs.
However, there is a noticeable transient region in the first several time
units, as shown in Fig. 5. Since we are interested in the properties of
the statistical steady state, we expect to obtain more physical and accu-
rate results by removing the initial transient region related to the initial
conditions. To this end, we tested doing particle tracking from
t0 � 3Te, where Te ¼ Lf =u0 is the large-eddy turnover time. However,
the numerical results are similar to the ones without discarding the
transient region of the flow. We also tried doing particle tracking from
the very beginning but evaluating finite-time Lyapunov exponents
from t0 � 3Te, which is equivalent to replacing the summation i¼ 1
by i ¼ t0=s in (24) or setting K0 ¼ t0=s in Eq. (25). By doing this, the
relaxation periods of both DNS and the LE dynamics are removed,
and a faster convergence is observed (see Fig. 6). In this figure, calcu-
lated FTLEs as functions of time using different methods are plotted.
The FTLEs at the largest simulated time are taken as estimates of LEs.
The red, green, and blue curves are three FTLEs calculated using three
tracked vectors with Gram–Schmidt orthonormalization at each time
step. The one marked by blue dots is the negative of c3 obtained using
a method similar to the one to the largest FTLE, but with the evolution
tensor r ¼ ru replaced by r ¼ ð�ruÞt . The figure shows that the k3
calculated using two different methods agree with each other very well.
The sum of FTLEs converges to 0, which asserts that the sum of LEs is
0, despite some minor oscillations existing in the initial transient
region.

We further run some typical cases using 1283 and 2563 grid reso-
lutions with different DNS schemes to check the effect of numerical
resolutions and schemes of DNS on the calculation of LEs. The

FIG. 5. Results of instantaneous log vector length increments aðiÞp used in (25) for
calculating FTLEs in a mixed-type forcing (C1) case with Rek ¼ 40; Mt ¼ 0:4. In
this figure, h�i stands for the time average for t> 5.

FIG. 6. Results of FTLEs calculated by discarding (right: t0 ¼ 5) or not discarding (left: t0 ¼ 0) the relaxation period. The results for a typical mixed-type forcing (C1) case with
Rek ¼ 40 and Mt¼ 0.4 is shown.
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parameters and results are summarized in Table I, from which, we see
the maximum relative differences of k1=k2 and k3 in difference resolu-
tions/schemes are less than 2.2%. We note that the grid size Dx for 1283

and 2563 are close to 0.049 and 0.024, respectively, which are smaller
than the standard Dx � 2g used in the existing DNS studies.53,60

B. Comparing the average of velocity divergence
weighted by fluid density and particle number density

The quantities of
Ð
Xqr � u dx and ÐXnðxÞr � u dx as functions of

time t are plotted in Fig. 7, where nðxÞ is the number density of passive
particles. We see that the two quantities agree with each other in both
solenoidal and mixed forcing cases.

C. A direct comparison of fluid density and particle
number density

We next present a direct numerical study to check if the fluid
density q and particle number density n have the same invariant distri-
bution since they are related to the statistics of LEs. We adopt the fol-
lowing strategy.

We first divide the range of q: ½qmin; qmax� into 100 regions
½qi; qiþ1�; i ¼ 0;…; 99. The volume of the domain has a density qðxÞ
in the range ½qi; qiþ1� is given by Vi ¼ Volðfxjqi < qðxÞ � qiþ1gÞ.
Then, the fluid mass in Vi is approximately given by �qiVi, where
�qi ¼ qiþqiþ1

2 . Then, we count the number of particles in Vi to make the
comparison. Such an approach can get results with smaller fluctua-
tions. We introduce 105 particles into the system at t¼ 5 with a uni-
form initial distribution. The results are presented in Fig. 8, from
which we see that even though the distributions of q and n at t¼ 5
(the starting time) are different, they evolve into almost exactly the
same distribution at t¼ 10. This result is consistent with the Birkhoff
ergodic theorem.71

To further verify that the fluid density q and particle number den-
sity n have the same invariant distribution, we tested an extreme case,
where the particles are initialized in a small corner of the computational
box: f0 � x < L=10; 0 � y < L=10; 0 � z < L=10g. The average par-
ticle density n vs fluid density q in Vi are plotted in Fig. 9, from which
we see, at the very beginning (t¼ 5), the two average densities are very
different, but at a later time (t¼ 20), they are linearly correlated.

D. Spectrum of LEs

Now, we present the results of the probability density functions
(PDFs) of calculated LEs and the sum of all three LEs in Figs. 10 and
11, where histogram and fitted normal distribution of calculated LEs
and the sum of LEs using different methods are plotted. The simula-
tion time period is t ¼ 20 � 15Te � 150sg. N ¼ 105 particles are
tracked to generate the histogram. We tested taking N ¼ 104; 105; 106

particles, and the difference is very small. We see the PDFs of all three
LEs are close to normal distributions. The results of using two different
methods for k3 agree with each other very well. We notice that, even
though k2 has smaller average values than k1, its variance is larger. The
sums of LEs obtained using two different methods all have much
smaller average values and variance than ki; i ¼ 1; 2; 3, which con-
firms the fact that the sum of all LEs should be 0.

With similar other parameters used, we see that the ST forcing
case has a smaller absolute value of

P
ki than the C1 forcing case.

This is due to the fact the density variations are larger in the C1 case,
which can be verified by the corresponding PDF plots of �lnq=t in
Figs. 10 and 11. More passive particles will stay near high-density
regions according to the invariant measure even though the initial dis-
tribution is uniform.

TABLE I. Summary of results using different schemes and grid sizes. ST stands for the solenoidal driving force. C1 stands for the force with comparable solenoidal and com-
pressible parts (c0 ¼ 1).

Force-scheme Grid ReL Rek Mt g sg k1 k2 k3 k1=k2

ST-hybrid 1283 1395.43 79.81 0.7961 0.0353 0.1307 0.8620 0.2130 �1.0761 4.047
ST-unwind 1283 1402.75 78.36 0.8007 0.0349 0.1281 0.8801 0.2176 �1.0997 4.045
ST-hybrid 2563 1407.12 81.11 0.8001 0.0346 0.1293 0.8660 0.2151 �1.0817 4.027
ST-upwind 2563 1400.49 79.19 0.7988 0.0350 0.1286 0.8592 0.2154 �1.0763 3.989
C1-hybrid 1283 628.48 39.84 0.4042 0.0603 0.1842 0.5763 0.1328 �0.7117 4.340
C1-upwind 1283 627.46 38.04 0.4036 0.0595 0.1796 0.5673 0.1303 �0.7007 4.354
C1-hybrid 2563 627.73 37.92 0.4036 0.0594 0.1787 0.5635 0.1302 �0.6976 4.328
C1-upwind 2563 627.87 37.14 0.4037 0.0589 0.1762 0.5628 0.1318 �0.6995 4.270

FIG. 7. Comparison of weighted dilations. Top: A ST forcing case with
Rek ¼ 80; Mt ¼ 0:8; Bottom: A C1 forcing case with Rek ¼ 80; Mt ¼ 0:8.
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E. Dependence of LEs on turbulent Mach number
and Taylor Reynolds number

We show the dependence of k1 and k2 on turbulent Mach num-
berMt and Taylor Reynolds number Rek in Figs. 12 and 13.

In Fig. 12, we see that k1sg is a decreasing function ofMt for both
ST and C1 forcing cases. We attribute this to the fact that particles in
velocity field with larger compressible components tend to steady clus-
tered near shocks,42,72 which decreases the separation rate, since larger
Mt and mixed forcing leads to larger d, the ratio of the compressible
(dilational) rms. velocity to solenoidal rms. velocity ucrms=u

s
rms. The

quantity d has been studied as an additional non-dimensional

parameter to get some universal scaling laws of compressible HIT by
Donzis and John.73

We also observe that the quantity k1sg is almost independent of
Rek (except for Rek ¼ 40) in the ST forcing case for 1 
 Mt 
 0:2 but
has a nearly linear dependence for the C1 forcing case whenMt � 0:8.
For Mt ¼ 0:2, the results of the ST forcing case shown in Fig. 12 that
k1sg decreases slowly as Rek increases, which is consistent with the
incompressible flow case (see, e.g., Fig. 7 in Donzis et al.74 and the
results in Fouxon et al.29). We numerically experience that when Rek is
small, simulations give large variations in k1sg. This is because the
flow is not fully developed turbulence, and the long time average is

FIG. 8. Direct comparison of q and n: Mass in different density q regions. Left: T¼ 5 and right: T¼ 10.

FIG. 9. Direct comparison of the averaged particle density and fluid density in Vi in an extreme case. Left: T¼ 5 and right: T¼ 20.
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required to get rid of the chaotic oscillations in the dynamics of
Navier–Stokes equations. Therefore, the numerical results reported for
Rek � 40 are subject to larger fluctuation errors. Note that Bec et al.75

report k1sg � 0:15 for incompressible turbulence with Rek ¼ 65;
105; 185, which is slightly higher than our result interpolated at
Mt¼ 0.

In Fig. 13, the dependence of k1=k2 on Taylor Reynolds number
Rek and turbulent Mach number Mt are plotted for the ST and C1
forcing. We see that in ST cases, k1=k2 is a decreasing function of Rek.
In the C1 cases, k1=k2 is also a decreasing function of Rek, but when
Rek gets larger, the dependence k1=k2 on Rek weakens quicker. Due to
the fact k2 is an indicator of time reversibility, smaller values of k1=k2
suggest a stronger irreversibility, thus suggesting that the turbulent
attractor gets more and more strange as Rek increases. For Rek > 80,
the value k1=k2 seems to reach fixed values, which suggests that the
flow is close to fully developed turbulence. In particular, for the ST
forcing, when Rek � 100, we observe that k1 : k2 : k3 � 4 : 1 : �5,
which is similar to the known result for the incompressible
Navier–Stokes system.30

In the ST forcing case, the dependence onMt is very weak, but in
the C1 case, higher Mt leads to smaller values of k1=k2. When Mt is
close to 1, the ratio k1=k2 is smaller than 4.

From the above-mentioned results, we see the dimensionless LEs
depend on turbulent Mach number and Taylor Reynolds number non-
linearly. The scaling law is not universal; in other words, it depends on
the driving force as well. We note that Donzis and John73 have intro-
duced d ¼ ucrms=u

d
rms to derive universal scaling laws for compressible

turbulence. However, we checked that the relationship between dimen-
sionless LEs and d is not linear either. Since the LEs depend on the dis-

sipation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjruj2i

q
rather than energy hjuj2i, we divide

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjruj2i

q
into the compressible part and solenoidal part and define the ratio of
dilation-to-vorticity (in magnitude) as

rdv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjr � uj2i=hjr � uj2i

q
: (26)

Figure 14 shows how rdv depends on turbulent Mach number
and Taylor scale Reynolds number. Again, we see a nonlinear relation.
The Rek ¼ 40 in ST forcing case has a quite different scaling because

FIG. 10. The distributions of calculated LEs and sum of LEs for the case ST-Re80M06 with solenoidal forcing. The last plot is the k3 calculated using approach (19).
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FIG. 11. The distributions of LEs and the sum of LEs for the case C1-Re80M06.

FIG. 12. The relation between k1sg and Taylor scale Reynolds number Rek and turbulent Mach number. Left: solenoidal forcing (ST) and right: mixed forcing (C1).
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the Reynolds number is very small, and the system is too dissipative to
allow small-scale compressible velocity to be excited.

Next, we show that the dimensionless LEs depend on rdv linearly
for both ST and C1 forcing cases in Fig. 15, where nine Mt values
(0:2; 0:3;…; 0:9; 1) are simulated for each Rek. From this figure, we
see that the linear fitting presents very good results for all Taylor scale
Reynolds numbers except for Rek � 40, and the slopes in ST and C1
forcing cases are very close.

To see clearly the dependence on Rek, we carry out a linear fitting
for Rek ¼ 60; 80; 100 separately and present the results of k1sg in
Fig. 16, where temporal fluctuations of sg in the numerical simulation
is used to plot error bars. From this figure, we observe that the slopes
and intercepts at different Taylor scale Reynolds numbers and forcing
cases are very close (see Fig. 17), which suggests that rdv is a universal
nondimensional parameter for LEs. The results of linear fitting for
k3sg are similar and not presented.

To give a better understanding of the dilation parts and vorticity
parts in ru, we give the isosurfaces of the dilation r � u and the
Frobenius norm of jruj in Fig. 18. If the driving force contains no
compressible part, then the dilation component in the velocity gradient
is not easy to be excited, even at relatively high Mt [cf. Figures 18(a)
and 18(b)], the correlation between high dilation region and high jruj
region is weak. This explains why the dependence of k1=k2 on Mt is
weak in solenoidal forcing cases, since the linear fittings of k1sg and
k2sg with respect to rdv have intercepts much larger than the slopes;
meanwhile, rdv is small. However, in the C1 forcing case, evenMt is as
small as 0.4, the dilation component is dominant in the high-
frequency (i.e., small scale) parts [cf. Figures 18(c) and 18(d)]. In other
words, the dilation component is responsible for the small-scale varia-
tions, which is the major thing to define the LEs. We note that when
dilation components are dominant locally, sheet-like structures (thin
but broader) corresponding to large-scale shock waves are observed.

FIG. 13. k1=k2 vs Taylor scale Reynolds number and turbulent Mach number. Left: solenoidal forcing (ST) and right: mixed forcing (C1).

FIG. 14. The ratio of dilation-to-vorticity in magnitude rdv defined in Eq. (26) as a function of turbulent Mach number and Taylor scale Reynolds number. Left: ST forcing and
right: C1 forcing.
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When vorticity components are dominant, small-scale vortex struc-
tures and shocklets are observed.

VI. CONCLUSIONS

We developed the theory of statistics of finite-time Lyapunov
exponents of compressible turbulence and have carried out a thorough
numerical study of Lyapunov exponents of passive particles in com-
pressible homogeneous isotropic turbulence, with emphasis on their
dependence on turbulent Mach number and Taylor scale Reynolds
number, as well as external forcing.

Our main theoretical result is the general form of the distribution
of the finite-time Lyapunov exponents given by Eqs. (21) and (22). For
most purposes, the distribution has the same general form as in incom-
pressible flow.10 This conclusion generalizes the previous observation
that the sum of Lyapunov exponents vanishes in compressible turbu-
lence.11,43 It is remarkable that despite that the flow can have a possibly

large Mach number, the small-scale mixing is effectively incompress-
ible. The role of the Mach number seems mainly to suppress
Lagrangian chaos and, consequently, mixing. We observed numerically
that both the principal exponent of the Lagrangian flow k1 and its
counterpart for the time-reversed flow jk3j decrease with Mach
number.

To the best of our knowledge, no numerical study of the
Lyapunov exponents of compressible turbulence has been previously
published besides Ref. 47. This reference, however, provided estimates
of the Lyapunov exponents that do not sum to zero as they should. We
believe that the discrepancy is caused by using velocity gradients that
are not fully resolved and are effectively coarse-grained. Thus, in our
numerical simulations, we paid great attention to achieving the neces-
sary resolution. In contrast to Ref. 47 whose simulations are performed
at zero viscosity, our numerical scheme has a finite viscosity. To resolve
the shocks, we focused on the middle range of Taylor scale Reynolds

FIG. 15. The linear fitting of LEs as functions of rdv defined in Eq. (26) for different Taylor scale Reynolds numbers. TL: fit k1sg for ST forcing; TR: fit k3sg for ST forcing; BL: fit
k1sg for C1 forcing; and BR: fit k3sg for C1 forcing.
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numbers and adopted high-order numerical schemes. Our findings
can be summarized as follows.

• We numerically verified that the sum of LEs of passive particles
in compressible turbulence is zero. To get this result, accurate
numerical methods and long-time simulation were employed.

• For the solenoidal driving force with Rek > 80, we found k1 : k2 :
k3 � 4 : 1 : �5 that is similar to the incompressible
Navier–Stokes system.30

• The dependence of k1sg; k1=k2 on turbulent Mach number and
Taylor Reynolds number is heavily affected by the type of exter-
nal force.

FIG. 16. The linear fitting of k1sg as functions of rdv defined in Eq. (26) for different Taylor scale Reynolds numbers. Error bars reflect fluctuations in calculating sg. Top row: fit
k1sg for ST forcing, Rek ¼ 60 (left), 80 (middle), and 100 (right); bottom row: fit k1sg for C1 forcing with Rek ¼ 60 (left), 80 (middle), and 100 (right).

FIG. 17. The results of fitting k1sg ¼ a0ðRekÞ þ a1ðRekÞrdv for ST forcing (left) and C1 forcing (right).
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• We find that the dilation-to-vorticity ratio rdv

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjr � uj2i=hjr � uj2i

q
is directly responsible for the behavior

of dimensionless LEs, which can be used as a control parameter.

We note that there are some limitations to the current work.
First, due to the limitation of computational resources, we only investi-
gated a special type of external forcing, although it has been extensively
used in the literature. Further investigations with other types of driving
force should be performed in order to find out whether rdv is, indeed, a
universal parameter. Second, the numerical error of small Reynolds
number Rek � 40 and small Mach number Mt � 0:2 may have an
undesirable effect, since the numerical scheme we used is not designed

for small Rek and small Mt. Third, this study is limited to Mt � 1. It
would also be of interest to study the large deviation function that gov-
erns the distribution of the finite-time Lyapunov exponents.
Performing this task and going beyond the considered special cases
deserves further study.
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