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Abstract
In this paper, a modified a posteriori limiter is developed for high order flux reconstruction
(FR) scheme for the numerical simulation of detonation problems. In this limiting procedure,
the unlimited FR solution at the new time step will be checked first by using some detection
criteria, then the solution in the troubled cells are recomputed with a robust subcell finite
volume (FV) scheme. The detection criteria for identifying troubled cells consist of the
physical admissibility (e.g., positivity of density and pressure) and numerical admissibility
(e.g., non-oscillating). We modify the detection criteria by using the KXRCF shock detector
prior to the relaxed discrete maximum principle. This can track the troubled cells near strong
shocks consecutively so as to improve the steady state convergence and can reduce the
number of overly marked troubled cells. The subcell correction procedure endows the high
order FR scheme the capability to capture discontinuities inside a cell without generating
spurious oscillations. A series of one-dimensional numerical tests are carried out to assess
the effectiveness of the proposed limiter. In particular, one-dimensional detonation wave
problems with the overdriven factor f = 1.8–1.3 are calculated using third to sixth order
accurate FR schemes in conjunction with the first order Godunov or second order TVD
subcell FV scheme. It is shown that the FR schemes with the present a posteriori limiter can
compute strong detonation waves robustly, and the third order FR scheme with the second
order TVD subcell FV limiter has better resolution of detonation waves compared with the
fifth order WENO-Z scheme under same degree of freedoms.
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1 Introduction

Detonation wave problems have complicated fine structures and strong discontinuities.
Numerical simulations of detonation wave problems necessitate the use of robust high order
and high resolution schemes which can simultaneously resolve small-scale smooth struc-
tures and capture strong discontinuities without producing numerical oscillations robustly
[1]. However, the tight coupling between the strong shock and the narrow reaction zone in
detonation waves poses a challenge to high order numerical schemes.

Over the past two decades, many kinds of high resolution and high order numerical
methods have been applied to numerical simulation of detonation phenomena. Henshaw et
al. [2] applied a second order Godunov method to simulate detonation problems in which the
chemistry ismodeledwith a three-step reactionmodel. To resolve the fine temporal and spatial
scales near detonation fronts, they used overlapping grids and block-structured adaptive
mesh refinement. Hu [3] proposed an h-adaptive finite volume (FV) method with a linear
reconstruction and a weighted essentially non-oscillatory (WENO) limiter for the reactive
Euler equations on unstructured triangular grids.Andrew et al. [4] used the fifth orderWENO-
M scheme together with a fifth order Runge–Kutta (RK) method to simulate pulsating one-
dimensional (1D) detonations. Gao et al. [5] compared three versions of fifth order WENO
finite difference schemes in the simulation of stable and unstable 1D detonations. Wang et
al. [6] developed a high order positivity-preserving discontinuous Galerkin (DG) scheme
for the reactive Euler equations to compute gaseous detonations in complex geometrical
configurations. Zhu et al. [1] extended an h-adaptive RKDG method to 1D detonation wave
simulations.

Proposed first by Huynh [7], the flux reconstruction (FR) method is a new class of high
order methods for hyperbolic conservation laws, which allows several kinds of high order
methods, including nodal DG [8] and spectral difference (SD) methods [9, 10], to be cast
within a single framework. Like DG methods, FR methods preserve the property of com-
pactness in space, i.e., only face neighbors are needed to calculate common numerical fluxes,
enabling efficient implementation on modern parallel computers [11–13]. But unlike DG
methods, FR methods are based on the differential form of governing equations, which
makes the methods quadrature free and less expensive. To achieve arbitrary high order of
accuracy, the FR solution is first approximated by interpolation of solution variables at the
solution points in each grid cell and a flux functionwhich is defined by a similar interpolation.
Generally, this flux function is discontinuous across cell interfaces since it does not account
for interactions between adjacent cells. Then a correction function g associated with a cell
interface of the current cell is employed to obtain a continuous flux function which returns
common numerical fluxes at the flux points on the cell interface. Different FR methods are
characterized by different choices of the correction function. Huynh [7] proposed several
correction functions such as gDG which makes the FR method equivalent to the nodal DG
method and the lumped correction function g2 which makes the flux derivative correction
only appear at cell interfaces. Jameson [14] proved that the SD schemes are energy stable
for 1D linear advection problems by using energy estimates and a norm of Sobolev type. By
using the same technique, Vincent et al. [15] identified a family of energy stable FR schemes
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for 1D linear advection problems where the correction function is a one-parameter linear
combination of three Legendre polynomials.

Wang and Gao [16] shown that the flux derivative correction in the FR method [7] can be
realized byusing a correctionfield, and the resultingmethodwas named asLiftingCollocation
Penalty (LCP) method [16]. Later, Yu and Wang [17] uncovered the relationship between
LCP and FR.Due to the tight connection between FR andLCP, the involved authors combined
the names and called them CPR (Correction Procedure via Reconstruction) method. For a
comprehensive review of FR methods, we recommend [18] and the references therein.

Being a high order linear upwind scheme in the sense of Godunov approach [19], the
FR method may generate spurious oscillations in the presence of discontinuities, which may
lead to nonlinear instability, and eventual blowup of simulation. Thus, shock stabilization
techniques are needed to control numerical oscillations. There are three main approaches to
stabilization of FRmethods: local artificial dissipation (LAD) [20], limiting, and h-p adaption
[18]. The LAD approach [20] needs an additional reconstruction for the auxiliary variable
q = ∇u, which is not economical, and it has problem-dependent empirical parameters. The
h-p adaption approach [18] is sophisticated and can only stabilize weak discontinuities. As
for the limiting approach, there is less work, though a lot of limiters have been developed
for high order FV and DG methods, such as TVD limiters [21, 22], TVB limiters [23], MLP
limiter [24, 25], moment limiters [26–29], WENO and HWENO limiters [30–34].

However, all of the aforementioned limiters are a priori in the sense that only the data at
time tn are used to perform the detection and limiting process, and then the limited solution is
advanced to time tn+1. Thus, the “worst case scenario" has to be considered as a precautionary
principle. A supplement to the a priori limiter is required for calculating extreme cases,
for example, Zhang and Shu [35, 36] and others [37] have developed positivity-preserving
limiters to maintain the positivity of density and pressure for gas dynamical problems. On the
other side, Diot et al. [38, 39] constructed an iterative a posteriori limiting technique (MOOD,
Multi-dimensional Optimal Order Detection) for high order FV method. In this technique,
the unlimited high order FV scheme is first used to calculate a candidate solution at time tn+1,
then a detecting procedure is carried out to detect troubled cells which do not respect some
stability criteria, including the physical admissibility and the numerical admissibility. After
that, the polynomial degree in a troubled cell and its neighbor cells is reduced by one or more
order and the low order numerical solution in these cells are recalculated, and the result will
be checked again. This try and fail algorithm will not finish until the solution is acceptable.
Inspired by the MOOD idea [38, 39], Dumbser et al. [40, 41] and Vilar [42] developed a
posteriori limiting techniques for DG methods, in which the solution in a troubled cell at the
previous time tn is distributed to the underlying subcells, and a more robust scheme is used
to recalculate the subcell solutions at tn+1 and finally the subcell solutions are assembled
to form the acceptable high order DG solution at tn+1 in the troubled cell. The a posteriori
limiter can suppress numerical oscillations and at the same time preserve positivity of density
and pressure automatically [40, 41]. Nevertheless, extensions of a posteriori limiters to FR
methods are few [42, 43].

In this paper, we combine a version of FR scheme [15] with amodified a posteriori subcell
limiter for simulating 1Dgaseous detonation. To the best of our knowledge, this is thefirst time
that a FR method is applied to detonation simulations. In our limiting process, the unlimited
FR scheme is first used to calculate the candidate solution, then the physical admissibility
detection (PAD) (negative density and pressure in gas dynamics, float NaN) is carried out. For
regions with physically admissible solution, the numerical admissibility detection (NAD) is
carried out. But unlike the NAD procedure [39, 40, 42] which only uses the relaxed discrete
maximum principle (DMP), we first use the KXRCF (abbreviation of the authors [44]) shock
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detector to classify the regions into smooth, intermediate, and discontinuous regions. For
smooth regions, the candidate solution is accepted. For discontinuous regions, the cells are
directly marked as troubled cells. For intermediate regions, the detection using the relaxed
DMP is further carried out. After that, the solution in all the troubled cells are recalculated
by using a robust subcell finite volume scheme, in which the initial subcell averages are
projected from the FR solution in the troubled cells at the previous time step. Finally these
updated subcell averages will be gathered back into a high order FR polynomial via a subcell
reconstruction procedure. The numerical tests show that the FR scheme with the modified
a posteriori subcell limiter can compute a high resolution discontinuous solution within a
cell. Particularly, the modified a posteriori limiter performs remarkably well in simulations
of steady state detonation problems.

The remainder of this paper is organized as follows. Section 2 gives the FR scheme used.
Section 3 describes in detail the modified a posteriori subcell finite volume limiter for the
FR scheme. Section 4 gives the governing equations for 1D gaseous detonations and typical
ZND solution profiles which will be used as the initial conditions. Section 5 presents a series
of typical numerical tests including detonation problems to assess the effectiveness of the FR
scheme combined with the modified a posteriori limiter. Conclusions are drawn in Sect. 6.

2 Unlimited FRMethod

In this section, the FR method is introduced briefly. For a detailed introduction, the review
article by Huynh et al. [18] and the references therein are recommended. This section is
organized as follows: in 2.1, we describe the FR method [7] for 1D scalar conservation laws
bearing in mind that the extension to systems is in the component-by-component fashion;
in 2.2, we discuss the choice of the correction function and solution points, which finally
determines the unlimited 1D FR scheme used in this paper.

2.1 FRMethod for 1D Scalar Conservation Law

Consider the 1D scalar hyperbolic conservation law

∂u

∂t
+ ∂ f

∂x
= 0 (1)

in the computational domain �, where x is the spatial coordinate, t is the time, u = u(x, t)
is a conserved scalar, and f = f (u) is the flux function of u. The domain � is partitioned
into Nelem non-overlapping elements (cells) with an element being �i = {x | xi−1/2 ≤ x ≤
xi+1/2} such that

� =
Nelem⋃

i=1

�i . (2)

For the convenience of implementation, the element �i is transformed into the reference
element �̂ = {r | −1 ≤ r ≤ 1} via the mapping

r = �i (x) = 2

(
x − xi−1/2

xi+1/2 − xi−1/2

)
− 1, (3)
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which has the inverse transformation

x = �−1
i (r) = 1 − r

2
xi−1/2 + 1 + r

2
xi+1/2. (4)

With the mappings, Eq. (1) can be transformed into a conservation equation on the reference
element as follows,

∂ û

∂t
+ ∂ f̂

∂r
= 0, (5)

where

û = û(r , t) = u(�−1
i (r), t), (6)

f̂ = f̂ (r , t) = f (�−1
i (r), t)

Ji
, (7)

and Ji = ∂x
∂r = xi+1/2−xi−1/2

2 is the Jacobian of the mapping function. From now on, all

calculations are performed on the reference element �̂. To simplify notations, when there is
no confusion the element index i will be dropped.

The solution û is approximated with piecewise polynomials. To get a (K + 1)th-order
accurate approximation of û, the FR method requires (K + 1) data ûδ

j (t) at locations r j , j =
0, . . . , K in the reference element which are called solution points and will be given later
in the end of 2.2. A K th degree polynomial approximation for the solution on the reference
element can be constructed via the Lagrange interpolation,

ûδ(r , t) =
K∑

j=0

ûδ
j (t)l j (r), (8)

where l j is the j th Lagrange polynomial on the reference element defined as

l j (r) =
K∏

k=0,k �= j

(
r − rk
r j − rk

)
. (9)

Similarly, a K th degree polynomial approximation f̂ δD for the transformed flux can be
constructed using the same technique

f̂ δD(r) =
K∑

j=0

f̂ δ
j l j (r), (10)

where f̂ δ
j = f̂ (ûδ

j ) are nothing but the value of the transformed flux at the solution point

r j , evaluated directly from the point solution ûδ
j using Eq. (7). Notice that the superscript δ

means discrete and D means discontinuous [15].
However, the flux interpolation function (10) is a piecewise polynomial and is discon-

tinuous at cell interfaces. It does not include the interaction of the data between adjacent
elements. Further, since ûδ is a K th degree polynomial, the time derivative term in Eq. (5) is
a polynomial of degree K , whereas ∂ f̂ δD/∂r is of degree K − 1 and thus it is not consistent
with the time derivative term.

To fix these two drawbacks, a continuous flux function f̂ δ , which approximates the piece-
wise polynomial flux function f̂ δD in some sense, must be constructed. The requirements for
f̂ δ are that it should take the unique numerical flux value at the element interface, and be one
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order higher than f̂ δD [7]. Instead of defining f̂ δ directly, the correction flux f̂ δC = f̂ δ − f̂ δD

is defined, which takes the jump value at the cell interface:

f̂ δC(−1) = f̂ comL − f̂ δD
L , (11)

f̂ δC(1) = f̂ comR − f̂ δD
R . (12)

Here, f̂ δD
L and f̂ δD

R are the values of the discontinuous function f̂ δD taken at the left and right
interfaces of the current element, and f̂ comL and f̂ comR are the numerical fluxes at the left and
right interfaces. In order to calculate the numerical flux, values of the approximate solution
ûδ at both sides of an interface are obtained using Eq. (8), and then a suitable numerical flux
solver is applied. In this study, the local Lax-Friedrichs flux (Rusanov flux) is used.

Now, we can define two correction functions, gL(r) and gR(r), that correspond to the left
and right interfaces of the current element to introduce the correction to the discontinuous flux
function. Tomeet the aforementioned requirements for the continuous flux function f̂ δ , gL(r)
and gR(r) should be a polynomial of degree K + 1 in the current element that approximate
zero in some sense, satisfy the boundary conditions at the left and right interfaces,

gL(−1) = 1, gL(1) = 0, (13)

gR(−1) = 0, gR(1) = 1, (14)

and the symmetry,

gL(r) = gR(−r). (15)

Thus, the correction flux f̂ δC can be written in terms of gL and gR as

f̂ δC =
(
f̂ comL − f̂ δD

L

)
gL(r) +

(
f̂ comR − f̂ δD

R

)
gR(r). (16)

The continuous flux function is constructed by f̂ δ = f̂ δD + f̂ δC, and its divergence at each
solution point r j is defined by

∂ f̂ δ

∂r
(r j ) =

K∑

k=0

f̂ δ
j
dlk
dr

(r j ) +
(
f̂ comL − f̂ δD

L

) dgL
dr

(r j ) +
(
f̂ comR − f̂ δD

R

) dgR
dr

(r j ). (17)

Finally, the semi-discrete expression of Eq. (5) for each solution point is

dûδ
j

dt
= −∂ f̂ δ

∂r
(r j ). (18)

2.2 VCJH (Vincent-Castonguay-Jameson-Huynh) Correction Function

As shown in [7], the conservative property of a FR scheme is independent of the correction
function, but different FR schemes are characterized by different choices of the correction
function and solution point. For 1D linear scalar conservation laws, Vincent et al. [15, 20]
devised a class of 1D VCJH correction functions gL and gR leading to energy stable FR
schemes having (2K − 1)th order of super-accuracy with K + 1 solution points, which are
one-parameter correction functions as follows,

gL = (−1)K

2

[
LK −

(
ηLK−1 + LK+1

1 + η

)]
, (19)
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gR = 1

2

[
LK +

(
ηLK−1 + LK+1

1 + η

)]
, (20)

where LK is a Legendre polynomial of degree K , and η is a free scalar parameter that must
lie within the range

− 1 < η < ∞. (21)

The choice of η has influence on dispersion-dissipation properties, accuracy order, and CFL
limit [45]. Setting η = 0, a collocation nodal DG scheme is recovered, and a few other
schemes can be recovered with different choices of η [15].

For a linear flux function, the energy stable property of the VCJH FR scheme holds for
an arbitrary choice of solution points. However, if the flux function is nonlinear as in the
Euler equations, the locations of solution points have a significant impact on the nonlinear
stability because the collocation projection employed to construct f̂ δD will introduce aliasing
errors [46]. In this paper, the solution points are chosen to be Gauss-Legendre nodes as [47]
recommended, which could minimize the aliasing errors, and η = 0 is adopted.

3 a Posteriori Subcell Limiting Process

In this study, we extend the a posteriori subcell finite volume limiter for the DG method
[40] to the FR scheme. Though called limiter, this limiting process can be viewed as the h-p
adaption [18] in the sense that the marked cells are divided into many smaller subcells, and
then a robust low order finite volume scheme is used to recalculate the subcell mean values.
In this way, we may fully exploit the subcell resolution capability of the FR scheme and
capture sharp shocks inside a cell.

In the a posteriori subcell FV limiter, the physical admissibility andnumerical admissibility
criteria are used to detect troubled cells in the unlimited candidate FR solution at the new time
tn+1. If the candidate solution is considered to be unacceptable, the solution at the previous
time tn in troubled cells and their face-neighbouring cells is distributed to corresponding
subcell mean values, and then a robust finite volumemethod is used to carry out the evolution
of these subcell means. Finally, the subcell mean values are reconstructed to yield the FR
solution in troubled cells. Unlike [40, 42], the present numerical admissibility detection uses
a KXRCF shock detector [44] before the relaxed discrete maximum principle detection. This
modification can alleviate numerical wiggles caused by frequent switches between “good"
and “troubled" cells near strong shocks, and improve the computational efficiency.

3.1 Subcell Data Projection and Reconstruction

To carry out limiting process with the FV subcell limiter, the FR solution ûδ needs to be
projected onto a set of subcell averages v̂δ

m in the same troubled cell. Divide �̂ of a troubled
cell into (M + 1) subcells Sm, m = 0, . . . , M : �̂ = ⋃

m Sm , which is an equidistant non-
overlapping subgrid partition of the reference element. Figure1 gives a typical partition of
the element with five solution points into (4 + 1) subcells. Subcell mean values v̂δ

m, m =
0, . . . , M , are defined by

v̂δ
m = 1

|Sm |
∫

Sm
ûδ(r)dr . (22)
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Fig. 1 Diagram of subcells on a reference element for the case M = K = 4. The blue circle are solution points
which are chosen to be Gauss-Legendre points in this paper. The red curve is the interpolation polynomial of
FR solution (8). The vertical lines are boundaries of subcells, and the blue solid horizontal segments denote
subcell mean values of the interpolation polynomial of solution (Color figure online)

Indeed, by defining a projection operator P (matrix) on the reference element �̂ using
the Lagrange polynomial (9) as

Pm, j = 1

|Sm |
∫

Sm
l j (r)dr , (23)

Eq. (22) can be written as
⎛

⎜⎝
v̂δ
0

...

v̂δ
M

⎞

⎟⎠ = P

⎛

⎜⎝
ûδ
0

...

ûδ
K

⎞

⎟⎠ . (24)

To gather the piecewise subcell mean values back into a high order FR polynomial, the
reconstruction operator R is applied: find a polynomial ûδ(r) of degree K such that

1

|Sm |
∫

Sm
ûδ(r)dr = v̂δ

m, m = 0, . . . , M . (25)

This is a classical reconstruction problem of a high order polynomial from given cell averages
arising in FV methods [48].

In general cases, the number of subcells in the reconstruction can bemore than the number
of unknowns in the reconstructed polynomial [40], so ûδ(r) is reconstructed by a weighted
least-squares reconstruction procedure [49], or a constrained least-squares reconstruction
procedure [40, 41].

For 1D cases in this paper, the number of subcells is equal to the number of solution points,
i.e. M + 1 = K + 1. Under this setup, P is a non-singular square matrix, the reconstruction
operatorR is nothing but the inversematrix ofP , and the reconstructionEq. (25) holds exactly
rather than in the least-squares sense. This can exactly keep the conservation between the
subcell averages v̂m and the FR solution mean ūi on the corresponding cell i [42].

3.2 Troubled Cell Detector

Once the candidate solution û∗,n+1
i, j for all solution points j in all cells i at the new time tn+1

has been computed by the unlimited FR method, the troubled cell detection is carried out to
decide whether the candidate solution is admissible. As in [40–42], we use two criteria for
the detection, one addressing the physical admissibility detection (PAD) like negative density
and pressure, another addressing the numerical admissibility detection (NAD) like spurious
oscillations.

The PAD proceeds as follows:
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• Check if the candidate solution lies in a physical admissible set (positivity of the pressure
and density for compressible fluid flow equations, · · · ),

• Check if there is any NaN value.

These are the minimum requirements for a robust scheme. To tackle spurious oscillations,
we use the Discrete Maximum Principle in the sense of mean value [38] which states that
the FR solution on the main cell at the time tn+1 should lie in the bounds of mean values of
solution on the main cell i and its direct neighbor cells (i − 1 and i + 1) at the previous time
tn . To maintain a high order accuracy near smooth extrema, the DMP is relaxed to yield the
following NAD criterion [39, 40, 42].

The NAD proceeds as follows:

• Check if the following relaxed DMP is satisfied,

min(ūni−1, ū
n
i , ū

n
i+1) − δi ≤ û∗,n+1

i, j ≤ max(ūni−1, ū
n
i , ū

n
i+1) + δi (26)

for j = 0, · · · , K .

We remark that if the DMP is implemented in a strict way, i.e., δi = 0 in (26), then cells in
constant regions may be misjudged as troubled cells due to roundoff errors. Furthermore, the
upper and lower bounds of the mean values are stricter than the continuous function bounds,
making the scheme dissipative and at most O(�x2i ) accurate [39]. The small quantity δi in
(26) for relaxing the DMP will admit small numerical oscillations but can avoid problems
with roundoff errors and guarantee a high order accuracy at smooth extrema. In this paper,
we adopt

δi = max
(
δ0, ε · (

max(ūni−1, ū
n
i , ū

n
i+1) − min(ūni−1, ū

n
i , ū

n
i+1)

))
, (27)

where we set δ0 = 10−4 and ε = 10−3 as Dumbser et al. [40] used.
In our experience, we find that the cell mean value-based relaxed DMP detection (26)

can address the issue of spurious oscillations for polynomial degrees 2 and 3 (denote by P2,
P3) FR methods. However, it will miss out spurious oscillations within a cell and does not
work well for P4 above FR methods. Thus for P4 above FR schemes we will use the subcell
numerical admissibility detection (SubNAD) to detect numerical oscillations in place of the
main cell level NAD (26). The subcell NAD is similar to that in [42].

The SubNAD proceeds as follows:

• Check if the following relaxed DMP is satisfied at the subcell level,

min (v̂ni, j−1, v̂
n
i, j , v̂

n
i, j+1) − δi, j ≤ v̂

∗,n+1
i, j ≤ max (v̂ni, j−1, v̂

n
i, j , v̂

n
i, j+1) + δi, j , (28)

for j = 0, . . . , K , where

δi, j = max
(
δ0, ε

(
max (v̂ni, j−1, v̂

n
i, j , v̂

n
i, j+1) − min(v̂ni, j−1, v̂

n
i, j , v̂

n
i, j+1)

))
. (29)

Here, we set v̂ni,−1 = v̂ni−1,K and v̂ni,K+1 = v̂ni+1,0. If any subcell of the main cell i violates
the SubNAD (28), the main cell i will be marked as troubled.

It should be mentioned that the a posteriori limiter compares the solutions at two different
times, i.e., compare û∗,n+1 with bounds of ûn , rather than comparing solutions at the same
time level as in a priori limiter. In fact, the a posteriori way is a rather straightforward
implementation of the continuous maximum principle which states that the solution at any
time will be bounded by the maximum and minimum value of the initial values.
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The aforementioned PAD-NAD procedure generally works well for unsteady problems.
However, we have found that the NAD using only the relaxed DMP does not work well for
steady detonation problems. The reason could be explained as follows. The data transfor-
mation (24)–(25) between the FR and subcell FV solutions in a troubled cell near a shock
will cause the Runge phenomenon [50], which generates numerical perturbations larger than
the steady state convergence tolerance. After the diffusive subcell limiting, the troubled cell
may not be marked as troubled in several time steps until numerical oscillations have grown
sufficiently large to violate the relaxed DMP (26) or (28) again. Thus, the computation in
these cells will switch between the FR and subcell FV schemes frequently. In general, this
is not a big issue for unsteady problems, however, it will introduce numerical perturbations
that prevent the maximum pressure history from converging to a tolerance like 10−4 for the
simulation of steady detonation. In order to mark the troubled cells in the vicinity of steady
detonation waves successively, the KXRCF shock detector [44] is introduced into the NAD
procedure to form the present modification, which is described in Sect. 3.3.

3.3 NAD Incorporated with the KXRCF Shock Detector

Denote the cell interface vales of a cell i by ûni,L and ûni,R , which are calculated using the
Lagrange interpolation. In a way similar to the KXRCF shock detector [44], we define the
boundary jump associated with the cell i as

Ii = max
(| ûni,L − ûni−1,R |, | ûni,R − ûni+1,L |) . (30)

For a (K + 1)th order accurate scheme, the following result holds [44]:

Ii =
{O(hK+1), if �i ,�i±1 are smooth regions of solution,
O(1), if any of �i ,�i±1 contains discontinuities.

(31)

Here, h = xi+1/2 − xi−1/2 is the mesh size. Now, we can construct a discontinuity detec-
tor by normalizing Ii with the product of the cell-averaged solution ūni and an “averaged"

convergence rate O(h
K+1
2 ):

I ∗
i = Ii

h
K+1
2 ūni

. (32)

We see that if h → 0, then I ∗
i → 0 in smooth regions and I ∗

i → ∞ near discontinuities [44].
Therefore, we will mark the cell as discontinuous (troubled) if I ∗

i is larger than a specified
value CD . In fact, the above asymptotic behavior also allows us to mark smooth regions if
I ∗
i is smaller than another specified small threshold value CS < CD . So, we let the smooth
and discontinuous cells detected by the KXRCF detector bypass the detection (26) or (28),
leaving only the intermediate cells (CS ≤ I ∗

i ≤ CD) for the detection (26) or (28).
Summarizing the discussions above, the Smooth and Shock region Detection (SSD) using

the KXRCF detector is combined with the previous NAD or subcell NAD so as to form our
modified NAD or subNAD as follows:

• Compute I ∗
i .• Directly mark the cell as acceptable if I ∗

i < CS .
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• Directly mark the cell as troubled if I ∗
i > CD .

• Carry out NAD (26) or SubNAD (28) if CS ≤ I ∗
i ≤ CD .

In this paper, we take CS = 10−3 and CD = 1.0 for all the numerical examples.

3.4 Subcell Limiting Process

After the detection phase by PAD and NAD, a robust finite volume method is used to recom-
pute the subcell mean values in troubled cells and then these mean values are assembled to
the final FR solution. Here, a subcell finite volume scheme is abbreviated as

v̂δ,n+1 = A(v̂δ,n). (33)

Obviously, the first order Godunov scheme [51] can be used for (33). However, it is too
dissipative. As an option, a second order Godunov type FV scheme using the MUSCL
reconstruction [52] with the minmod limiter [53] for characteristic variables is used.

Similar to the marking strategy in [40, 42], if a cell is detected as troubled, its left and
right neighbor cells are also marked as troubled. This extra marking is useful for improving
the quality of numerical solution.

3.5 Summary of the a posteriori Subcell Limiter

Algorithm 1 Procedure for the a posteriori subcell finite volume limiter
1: Carry out unlimited FR solver
2: for i = 1 to Nelem do
3: if PAD violated then
4: marki−1 = marki = marki+1 = 1
5: continue
6: end if
7: if I∗i ≥ CS then
8: if I∗i > CD then
9: marki−1 = marki = marki+1 = 1
10: else if NAD or SubNAD violated then
11: marki−1 = marki = marki+1 = 1
12: end if
13: end if
14: end for
15: for i = 1 to Nelem do
16: if marki == 1 then
17: Projection: v̂ni = P(ûni )

18: Subcell Finite Volume Solver: v̂n+1
i = A(v̂ni )

19: Reconstruction: ûn+1
i = R(v̂n+1

i )

20: end if
21: end for

Let us summarize Sects. 3.1, 3.2 and 3.4 in Algorithm 1, which computes the FR solution
at the time tn+1 from the FR solution at the time tn .
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4 Governing Equations and Initial Conditions for 1D Detonations

4.1 Governing Equations

The governing equations used in this work for modeling 1D detonation problems are the 1D
reactive Euler equations for the gas mixture with two species-the reactant and the product:

∂ρ

∂t
+ ∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+ ∂(ρu2 + p)

∂x
= 0,

∂E

∂t
+ ∂ (u(E + p))

∂x
= 0,

∂(ρY )

∂t
+ ∂(ρuY )

∂x
= ω̇,

(34)

where ρ is the density, p is the pressure, u is the velocity, E is the specific total energy,
and 0 ≤ Y ≤ 1 is the mass fraction of the reactant, which equals one when the single-step
irreversible chemical reaction has not started, and zero when the reaction has completed.

The chemical reaction releases heat to sustain the propagation of detonation wave. The
reaction heat is accounted for in the total energy as

E = p

γ − 1
+ 1

2
ρu2 + ρYq0, (35)

where q0 is the heat release due to the chemical reaction, and γ is the ratio of specific heats.
The mass production rate of the reactant, ω̇, is given by the Arrhenius rate law

ω̇ = −AρYe−Ea/T . (36)

Here, A is the pre-exponential factor and Ea is the activation energy. The temperature T is
determined by the ideal gas EOS

T = p

ρR
. (37)

where R is the specific gas constant. Following the normalization way [5, 54], we set R = 1
in this study.

4.2 Initial Conditions

The setup of the initial conditions for solving Eq. (34) is given by the approximate solution
of the classical 1D steady ZND solution. For completeness, the derivation in [55, 56] will be
given below to provide a brief review.

Assume that the detonation wave propagates at a constant velocity D in a quiescent
unburned gas in the x direction. Transform the coordinate x in Eq. (34) to a new one such
that the origin is moving with the constant velocity D. Then, Eq. (34) can be transformed
into the steady equations in the new coordinate still denoted as x ,

d(ρu)

dx
= 0, (38a)

d(ρu2 + p)

dx
= 0, (38b)
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d (u(ρE + p))

dx
= 0, (38c)

d(ρuY )

dx
= ω̇. (38d)

The non-dimensional flow variables in the unburned zone in the new system are given by

ρ = 1, p = 1, T = 1, u = −D, Y = 1. (39)

Integrating Eqs. (38a), (38b) and (38c) from the unburned zone with the state (39) to any
point in the flame zone, one obtains the following relations,

ρu = −D, (40)

ρu2 + p = D2 + 1, (41)

ρu

(
γ

γ − 1

p

ρ
− q0λ + 1

2
u2

)
= −D

(
γ

γ − 1
+ 1

2
D2

)
, (42)

where λ = 1 − Y is the mass fraction of the product. Eqs. (40) and (41) can be rewritten as

ρ = −D/u, (43)

p = Du + D2 + 1. (44)

By inserting Eqs. (43) and (44) into Eq. (42), one obtains

1

2
u2 + γ

γ + 1

(
D + 1

D

)
u + γ − 1

γ + 1

(
q0λ + γ

γ − 1
+ 1

2
D2

)
= 0. (45)

This is a second order polynomial equation about u and its solution has two roots as follows,

u± = − γ

γ + 1

(
D + 1

D

)
± √

ξ(λ), (46)

where

ξ(λ) =
[

γ

γ + 1

(
D + 1

D

)]2
− 2

γ − 1

γ + 1

(
q0λ + γ

γ − 1
+ 1

2
D2

)
. (47)

Note that the root u− in Eq. (46) does not exist in real situations. The Chapman-Jouguet (CJ)
velocity follows from Eq. (47) by setting ξ |λ=1= 0,

D2
CJ = [γ + (γ 2 − 1)q0] +

√
[γ + (γ 2 − 1)q0]2 − γ 2. (48)

Define the overdriven factor f as

f = D2

D2
CJ

. (49)

Given the parameters γ and q0, DCJ is determined by Eq. (48), then by specifying a value of
f , the detonation velocity D is determined by Eq. (49). And then u, p, ρ and T can be got
from Eqs. (46), (44), (43) and (37), respectively, for a value of λ (or Y ).

Finally, by substituting Eqs. (36) and (40) into Eq. (38d), one obtains an ordinary
differential equation for Y

dY

dx
= Aρ(Y )Y

D
e−Ea/T (Y ), (50)
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which can be integrated in x to obtain the profile Y (x) by using standard numerical methods
like Runge–Kutta methods [5, 54] if A, Ea and a starting point for the integration are given.

The half length of the reaction zone, L1/2, is defined as the distance between the detonation
head point where Y = 1 and the point in the reaction zone where half of the reactant is
consumed by combustion (Y = 0.5). By integrating Eq. (50), the half reaction length is
defined as

L1/2 = D

A

∫ 1

1/2

dY

ρ(Y )Y exp (−Ea/T (Y ))
. (51)

Equation (51) implies that L1/2 is related to A with given (γ, q0, f , Ea). For convenience,
we will fix L1/2 = 1 across different configurations of (γ, q0, f , Ea) by choosing the
corresponding pre-exponential factor A according to Eq. (51), i.e.

A = D
∫ 1

1/2

dY

ρ(Y )Y exp (−Ea/T (Y ))
. (52)

In this study, following Hu [3], instead of integrating Eq. (50) to get Y (x), a simple
stepwise approximation is adopted for the initial Y profile as given by

Y (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x ≤ x0 − L1/2,
1

2

[
tanh

(
π
x − x0
L1/2

)
+ 1

]
, x0 − L1/2 < x ≤ x0 + L1/2,

1, x > x0 + L1/2,

(53)

where x0 = 1 is chosen to be the center of the reaction zone, and L1/2 = 1.
To sum up, the present initial conditions are set up as follows. Given values of γ , q0 and f ,

D is calculated by Eqs. (48) and (49). Then, given Ea , A is calculated from (52). The simple
initial distribution Y (x) is given by Eq. (53), and then u(x), ρ(x), p(x) and T (x) in the
computational domain can be determined from Eqs. (46), (44), (43) and (37), respectively.

Remembering that, with (52), the pre-exponential factor A is determined from the given
(γ, q0, f , Ea) under the assumption L1/2 = 1. However, for convenience of computing the
chemical reaction rate (36), both the given (γ, q0, f , Ea) and the calculated Awill be used to
prescribe detonation conditions. A typical ZND wave solution with the parameters x0 = 1,
γ = 1.2, q0 = 50, Ea = 50, f = 1.8 (A = 145.69) is shown in Fig. 2.

5 Numerical Examples

In this section, a series of test cases are used to demonstrate the performance of the VCJH
FR scheme in conjunction with the proposed limiting algorithm. The local Lax-Friedrichs
numerical flux is used for the FR and subcell FV schemes. The third-order SSP Runge–Kutta
method [57] is used for the time integration of the semi-discretized scalar Eq. (18) and Euler
equations [5, 54]. Because the present detonation simulation is focused on the maximum
pressure history, we use the pressure as the detection variable in the NAD and SubNAD.

In the followings, a FR method with the subcell limiter is denoted as “FRK -Limiter"
scheme, where K represents a degree-K polynomial (K + 1 order accurate) approximation
for the solution in a cell, and Limiter takes either “God" (first order Godunov FVmethod)
or “TVD" (second order TVD FV method). For example, “FR2-TVD" denotes the 3rd-order
accurate FR method in conjunction with the second order TVD method for subcell mean
values. For K = 2, 3, NAD (26) is used while for K ≥ 4, SubNAD (28) is used. The CFL
number is chosen to be 1/(2K + 1) for all the numerical examples.
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Fig. 2 Initial profiles of a mass fraction, b pressure, c density, d velocity using an one-dimensional ZND
detonation wave

In the numerical tests in Sects. 5.2, 5.3 and 5.4 we solve the traditional Euler equations for
an ideal gas with γ = 1.4. For the detonation tests from Sect. 5.5 on, we solve the reactive
Euler Eq. (34) with fixed γ = 1.2, q0 = 50, Ea = 50 and the initial conditions in Sect. 4.2.
And different detonation tests will be characterized by different values of f = 1.3 ∼ 1.8
together with the calculated pre-exponential factors A.

5.1 Numerical Convergence Test

To verify the accuracy of the FR scheme with the a posteriori subcell limiter, we use the 1D
linear advection equation

∂u

∂t
+ ∂u

∂x
= 0 (54)
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Table 1 L2 and L∞ errors and convergence rates of the FR2-TVD scheme for the linear advection equation
(54) with the initial condition (55)

Scheme Nelem L2 error Order L∞ error Order

FR2-TVD 40 1.14011E−05 1.79643E−05

80 1.42245E−06 3.00272 2.24099E−06 3.00293

160 1.77745E−07 3.00050 2.79853E−07 3.00139

320 2.22177E−08 3.00003 3.49659E−08 3.00065

640 2.77739E−09 2.99990 4.36960E−09 3.00038

1280 3.47388E−10 2.99911 5.45986E−10 3.00056

with periodic boundary conditions on two ends of the computational domain x ∈ [0, 1]. The
initial condition is a shifted sine wave,

u(x, 0) = 0.99 sin(2πx) + 1.0. (55)

Since we use the third-order SSP Runge–Kutta method for the time integration, the time step
is take as �t = CFL · �x (K+1)/3 so that the temporal accuracy is commensurate with the
spatial one. We compute the solution for one period, i.e., time t = 1 as in [36]. The errors
and rates of convergence computed by the FR2-TVD scheme are shown in Table 1. We see
that the scheme has achieved the theoretical third order of convergence. The results by the
FR2-God scheme (not shown here) are the same because there are no detected troubled cells
and thus no limiting.

5.2 Sod’s Shock Tube Problem

The Sod shock tube problem [58] describes the 1D inviscid flow initiated by two states
separated by an interface located at x = 0.5. The left state is a high pressure gas and the right
state is a low pressure gas as given by

(ρ, u, p) =
{

(1, 0, 1), 0 ≤ x ≤ 0.5,

(0.125, 0, 0.1), 0.5 < x ≤ 1.
(56)

The computational domain is discretized with 100 cells, the simulation is carried out up
to t = 0.2, and CFL number is set to 0.2. The reference solution is obtained using the exact
Riemann solver [48]. Figure3a shows the density profiles computed by the FR2-God and
FR2-TVD schemes. It can be seen that both schemes do not generate spurious oscillations
at the shock, and the FR2-TVD scheme has a better resolution for the contact discontinuity
than the FR2-God scheme. Figure3b shows the detected troubled cell history in time for the
FR2-TVD scheme, in which the symbol "�" is used to represent the troubled cells and is
plotted at the center of each troubled cell. It is seen that the detected troubled cells propagate
always with the shock, but intermittently with the discontinuity and expansion waves. We
have used the pressure as the detect variable, and thus there should not be detected troubled
cells near the contact discontinuity all the time. But due to numerical undulations near the
contact discontinuity (see Fig. 3a), the cells near the contact discontinuity are detected as
troubled cells initially but are not detected as troubled cells between t = 0.07 and 0.14. To
capture the contact discontinuity better the density may be a more suitable detect variable.
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Fig. 3 Density profiles at t = 0.2 computed by the FR2-God and FR2-TVD schemes a and troubled cell
detection history by the FR2-TVD scheme b for the Sod shock tube problem on 100 cells with CFL = 0.2

Fig. 4 Density profiles at t = 0.15 computed by the FR2-God and FR2-TVD schemes a and trouble cell
history detected by the FR2-TVD scheme b for the double expansion waves on 100 cells with CFL = 0.2

5.3 One-Dimensional Supersonic Expansion

This problem describes double rarefactionwaves thatmove in opposite directions [59], which
is often used to test the performance of a scheme near vacuum. The initial conditions are

(ρ, u, p) =
{

(1,−2, 0.4), 0 ≤ x ≤ 0.5,

(1, 2, 0.4), 0.5 < x ≤ 1.
(57)

The computational domain is discretized with 100 cells and the final time is t = 0.15. The
CFL number used is 0.2. The FR2-God and FR2-TVD schemes are used. Figure4a shows
the computed density profiles. We see that the results contain no spurious oscillations and
are in good agreement with the exact solution. Figure4b shows the history of troubled cell
mark. We see that the trouble cells can follow the movement of the two rarefaction heads
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Fig. 5 Density profiles at t = 0.038 computed by the FR2-God and FR2-TVD schemes a and trouble cell
history detected by the FR2-TVD scheme b for the blast-wave problem on 400 cells with CFL = 0.2

and the central zone with low density and pressure. As the time goes on, the expansion heads
become smooth, so the troubled cells disappear around the two heads.

5.4 Two Interacting BlastWaves

Now we consider the well-known interaction problem of two blast waves from Woodward
and Colella [60]. The initial condition is

(ρ, u, p) =

⎧
⎪⎨

⎪⎩

(1, 0, 1000), 0 ≤ x < 0.1,

(1, 0, 0.01), 0.1 ≤ x < 0.9,

(1, 0, 100), 0.9 ≤ x ≤ 1.0.

(58)

The computational domain is x ∈ [0, 1]. A reflecting boundary condition is applied at
both ends. The grid has 400 uniform cells, the CFL number used is 0.2, and the output time
is t = 0.038. Figure5a shows the results computed by the FR2-God and FR2-TVD schemes
where the solid line indicates the reference solution computed by a 2nd-order TVD finite
volume method on 10000 grid cells. We see that both the FR2-God and FR2-TVD schemes
can capture the basic interaction structures without numerical oscillations. However, we
observe that the FR2-TVD scheme captures the structures with a higher resolution than the
FR2-God scheme, especially near the contact discontinuities and the extremas. Figure5b
shows the time history of troubled cells. Again, since we us the pressure as the detection
variable, troubled cells near contact waves are not constantly marked.

5.5 Stable DetonationWave with f = 1.8

We now consider the numerical solution of the 1D reactive Euler Eq. (34) with the mass
production rate (36).

According the linearized stability theory of the classical ZND wave, Bourlioux et al. [61]
regarded the overdriven factor f as a bifurcation parameter and the ZND profile becomes
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Fig. 6 Max pressure time history by various order FR schemes with the 1st-order Godunov FV subcell limiter
for the stable detonation case with the overdriven factor f = 1.8 (A = 145.69). The small plot is an enlarged
view. The horizontal lines are the ZND post shock pressure pZND = 75.79 and CJ Neumann point pressure
pNP = 75.58 respectively

more unstable as f decreases. There is a critical value fc ≈ 1.73, above which the ZND
profile is stable.

Denote the grid resolution with N uniform cells lying in the half reaction length as resolu-
tion δN . Since there is no exact solution for unsteady ZND problems, the numerical solution
computed by the fifth order characteristic-wise reconstructed alternative WENO-JS finite
volume scheme [5] with the local Lax-Friedrichs (Rusanov) numerical flux on the resolution
δ160 under CFL = 0.5 is used as the reference solution in all the detonation examples.

Wefirst simulate the stable detonation casewith f = 1.8 (A = 145.69), Ea = 50,q0 = 50
and γ = 1.2. The computational domain is [−750, 50], and the boundary conditions are of
Dirichlet type on both ends taking the ZND solution values with the assumed mass fraction
distribution (53). The final time is t = 120. Since the initial data are not the exact solution of
the ZNDmodel, the simulation needs some time to compute a stable detonation solution that
approximates the exact solution of the ZND model. In the early stage, the detonation front
moves forth and back around x = x0 = 1. As the simulation goes on, the numerical solution
evolves into a steady state.

The peak pressure temporal history computed with the third to sixth order FR schemes
on the resolution δ20 is shown in Figs. 6 and 7, in which we compare performance of the
detectors with and without SSD. Two horizontal dashed lines are plotted as reference steady
states, one is pNP = 75.58 which is the pressure on the Neumann point [62] and another is
pZND = 75.79 which is the exact post-shock pressure value of the ZND model [63]. From
Figs. 6a and 7a we see that the numerical results by the FR schemes with SSD combined
with either the 1st-order Godunov or 2nd-order TVD FV subcell limiter can converge to
steady state. In contrast, Fig. 6b shows that the FR schemes without SSD fail to converge
for the 1st-order Godunov subcell limiter as a result of improper tracing of the shock front.
Figure7b shows that the FR schemes with the 2nd-order TVD subcell limiter without SSD
can converge, but at the cost of marking exceedingly more troubled cells than the counterpart
with SSD (to be verified in Fig. 10b).

The pressure and density profiles computed with the FR2-God and FR2-TVD schemes
on the resolution δ20 at time t = 120 are compared in Fig. 8. We can see that both results
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Fig. 7 Max pressure time history for the detonation case f = 1.8 case computed by various order FR schemes
with the 2nd-order TVD subcell FV limiter

Fig. 8 Pressure and density profiles computed with the FR2-TVD and FR2-God schemes for the case f = 1.8
at t = 120

are in good agreement with the reference solution. By comparison, the FR2-TVD scheme
produces a shaper detonation front.

We compare the shock-resolving ability of the FR2-TVD, FR2-God, 5th-orderWENO-JS
and WENO-Z schemes under the same degrees of freedom (DOFs), i.e., δ20 for FR2 and δ60
forWENO-JS andWENO-Z. Figure9 shows the pressure profile at t = 120. From Fig. 9bwe
can see that the shock resolution of the FR2-TVD scheme is close to those of the WENO-JS
and WENO-Z schemes but the FR2-God scheme is more diffusive. However, Fig. 9a shows
that the WENO-JS and WENO-Z schemes generate some non-physical oscillations near the
end of the reaction zone and in the more left region, but the FR2-TVD and FR2-God schemes
do not generate such fluctuations.

Figure 10a shows the troubled cell time history and the steady pressure profile at t =
120 computed by the FR2-TVD scheme. The time traces include all the identified troubled
cells in the whole computational domain [−750, 50]. We see that the troubled cells are
clustered around the detonation front, indicating that the present modified NAD can detect
discontinuities accurately. By comparison, Fig. 10b shows the troubled cell history by the
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Fig. 9 Comparison of pressure profiles by various schemes with same DOFs for the case f = 1.8 at t = 120.
a View in [−15, 5]. b Zoom in [2.04, 2.22]

Fig. 10 a Time history of troubled cells and the pressure profile at t = 120 computed by the FR2-TVD scheme
with SSD on the resolution δ20 for the steady detonation case f = 1.8. Red circles are limiter use history
plotted at the center of cells. The blue line with diamonds (solution points) is the pressure profile at t = 120.
b Time history of troubled cells by the FR2-TVD scheme without SSD (Color figure online)

FR2-TVD scheme without SSD. It is seen that more troubled cells are unnecessarily marked
in the left region of the detonation front. To compare the tracing efficiency, we show the
number of detected troubled cells per time step averaged from the beginning of simulation
to t = 120 in Table 2. The results illustrate that the combination of NAD and SSD can
significantly reduce unnecessary marking, thus improving the computational efficiency.

5.6 Slightly Unstable DetonationWave with f = 1.6

In this subsection, the detonation wave with the overdriven factor f = 1.6 (A = 230.75) and
the same (Ea, q0, γ ) values as in Sect. 5.5, is simulated with the resolution δ20 to the final
time t = 80. The computational domain is still [−750, 50]. According to [61], the solution
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Table 2 Time averaged number
of troubled cells from t = 0 to
t = 120 for various order FR
schemes on the resolution δ20 for
the steady detonation case
f = 1.8

Detector Limiter FR2 FR3 FR4 FR5

NAD + SSD God 5.15 6.13 6.16 6.39

TVD 5.28 5.81 6.47 7.12

NAD Only God 84.98 45.52 17.57 17.43

TVD 43.79 60.26 14.47 15.09

Fig. 11 Max pressure time history by different high order FR schemes with the a 1st order Godunov subcell
FV limiter and b 2nd order TVD subcell FV limiter for the slightly unstable detonation problem with the
overdriven factor f = 1.6

of this problem is slightly unstable in the sense that the detonation front will pulsate around
the initial jump position x0 = 1.0 regularly eventually.

Figure11 shows the peak pressure time history computed by the FR2 to FR5 schemes with
different subcell limiters in comparison with the reference solution as mentioned in Sect. 5.5.
Figure11a shows that there are differences in the phases and maximum peaks among the
FR2-God to FR5-God results and the reference solution after t = 40. Figure11b shows that
both the phases andmaximum peaks computed by the FR2-TVD to FR5-TVD schemes agree
well with each other and with the reference solution.

We remark that the maximum pressure in the whole computational domain is taken as the
peak pressure. But during the simulation, the pressure immediately behind the shock may
drop lower than the pressure more away behind the shock, resulting in the “lipped"-shape
pmax − t profile in Fig. 11 as explained in [64]. Such “lipped"-shape valleys are also present
in similar figures in this paper.

We have also compared the FR2-TVD scheme with the finite difference WENO-JS5 and
WENO-Z5 schemes under the same DOFs in Fig. 12. We can see that the FR2-TVD scheme
matches better with the reference solution than the other two WENO schemes.

The troubled cell time history of the FR2-TVD scheme is shown in Fig. 13. We can see
that the troubled cells are always clustered around the detonation front and swing forth and
back in the interval x ∈ [0.5, 3.5].
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Fig. 12 Comparison of density profiles at t = 80 between various schemes under same DOFs for the slightly
unstable detonation problem with f = 1.6. The left plot is the view in [−25, 5] and the right is the zoom in
[0, 4]

Fig. 13 Limiter activation history
of the FR2-TVD scheme for the
slightly unstable detonation
problem with f = 1.6

5.7 Multimode Unstable DetonationWave with f = 1.4

We simulate the detonation problem with the overdriven factor f = 1.4 (A = 411.98) on
the mesh resolution δ20 to the final time t = 100, while the parameters (Ea, q0, γ ) and
computational domain are same as the f = 1.8 case in Sect. 5.5. A comparison of the
maximum pressure temporal histories between the 1st-order Godunov and 2nd-order TVD
subcell FV limiters is shown in Fig. 14. We can observe that the top peaks have a same
period but two distinct values. And all the FR schemes produce results in good agreement
with the reference solution on the resolution δ160 except the FR2-God scheme which gives
larger valley pressures (Fig. 14a). By comparison, the FR schemes with the 2nd-order TVD
subcell FV limiter perform better.

The density profiles at t = 80 computed with various schemes under same DOFs are
shown in Fig. 15. Again, the FR2-TVD scheme gives a better approximation to the reference
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Fig. 14 Comparison of the maximum pressure time histories by various FR schemes with a the 1st-order
Godunov and b 2nd-order TVD subcell limiters for the multimode detonation problem with the overdriven
factor f = 1.4

Fig. 15 Comparison of pressure profiles between various schemes with same DOFs for the multimode
detonation problem with f = 1.4 at t = 100. The right frame is a zoom-in view

solution than the other schemes, while the FR2-God has lower resolution compared with the
WENO-JS scheme.

The troubled cell time history by the FR2-TVD scheme is shown in Fig. 16. We see that
the initial detonation front will generate spurious left moving compress waves which are
marked as troubled cells twice, and which finally develop into a chain of shock waves as
shown in the left plot of Fig. 15.

5.8 Chaotic DetonationWave with f = 1.3

Finally, we simulate a chaotic detonation problem [61] with the overdriven factor f = 1.3
(A = 583.71) on themesh resolution δ20 to the final time t = 100. The parameters (Ea, q0, γ )

and computational domain are same as in Sect. 5.5. According to the study [61], the solution
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Fig. 16 Troubled cell time history
of FR2-TVD for the multi-mode
detonation with f = 1.4

Fig. 17 Chaotic pressure spatial profiles at t = 100 computed by a different WENO schemes with the mesh
resolution δ80 and b FR2-TVD and FR3-TVD schemes with the mesh resolution δ20 for the chaotic detonation
with the overdriven factor f = 1.3

under this configuration is chaotic, and is sensitive to the initial data such that any small
perturbation in the initial data will result in qualitatively similar but quantitatively different
shock position time histories. To verify this conclusion, Fig. 17 shows numerical results at
t = 100 computed by four different characteristic based WENO schemes with the mesh
resolution δ80, including finite difference WENO-JS5, alternative finite volume WENO-
JS5 [65], finite difference WENO-Z5 and alternative finite volume WENO-Z5 schemes [5],
and two FR schemes with the resolution δ20. At the very beginning of the simulation, all
the schemes give nearly the same pressure profile, but as time goes on, different schemes
produce random distributions near the detonation front, verifying the chaotic property of this
problem.

The peak pressure time histories by various FR schemes are shown in Fig. 18. It is seen that
the values of the top peaks vary from time to time, and the difference between different orders
of FR schemes increases with time. In particular, the result by the FR2-God scheme differs
much from other results due to its higher dissipation errors. For completeness, we show the
time history of the detected troubled cells in Fig. 19. It is seen that there are troubled cells to
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Fig. 18 Maxpressure time history computed by various FR schemeswith a 1st-orderGodunov and b 2nd-order
TVD subcell FV limiters for the chaotic detonation problem with f = 1.3

Fig. 19 Troubled cell time
history by the FR2-TVD scheme
for the chaotic detonation
problem with f = 1.3

the left side of the detonation front occasionally, again showing the chaotic property of this
problem.

6 Conclusion

In this paper, we have presented amodified a posteriori limiting procedure in conjunctionwith
the Vincent-Castonguay-Jameson-Huynh flux reconstruction method and tested the resulting
schemes in a couple of one-dimensional detonation problems. In this limiting procedure,
the unlimited FR solution at the new time step is first calculated, then it is detected for
troubled cells by using the physical admissibility detection (PAD) and numerical admissibility
detection (NAD). The solution at the previous time step in the troubled cells are projected
into a set of subcell mean values, and a robust finite volume method is used to advance the
subcell mean values to the new time step which are finally reconstructed into the FR solution
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in the troubled cells. The previous NAD only uses the relaxed discrete maximum principle
(DMP). The present NAD uses a KXRCF shock detector prior to the relaxed DMP. The use
of the KXRCF detector has two advantages. First, it quickly finds out the very smooth and
very discontinuous regions, and by letting these regions bypass the relaxed DMP detection
the computer time is reduced. Second, the KXRCF detector can track troubled cells near
strong shocks successively in time so as to avoid unnecessary switch between the FR and
subcell FV solutions, while the relaxed DMP detection alone will frequently switch, making
the solution hard to converge to steady state.

The numerical tests in several one-dimensional detonation wave problems shown that the
high order FR schemes with the modified a posteriori limiter are accurate and robust. For
example, the FR2-TVD scheme has higher resolution than theWENO-Z5 scheme under same
degree of freedoms. In future work, we will extend the present method to multi-dimensional
cases.
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