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Summary
The classical third-order weighted essentially nonoscillatory (WENO) scheme
is notoriously dissipative as it loses the optimal order of accuracy at crit-
ical points and its two-point finite difference in the smoothness indicators
is unable to differentiate the critical point from the discontinuity. In recent
years, modifications to the smoothness indicators and weights of the classical
third-order WENO scheme have been reported to reduce numerical dissipa-
tion. This article presents a new reference smoothness indicator for constructing
a low-dissipation third-order WENO scheme. The new reference smoothness
indicator is a nonlinear combination of the local and global stencil smoothness
indicators. The resulting WENO-Rp3 scheme with the power parameter p = 1.5
achieves third-order accuracy in smooth regions including critical points and
has low dissipation, but numerical results show this scheme cannot keep the
ENO property near discontinuities. The recommended WENO-R3 scheme (p =
1) keeps the ENO property and performs better than several recently developed
third-order WENO schemes.
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1 INTRODUCTION

Solutions of nonlinear hyperbolic conservation laws often have both discontinuities and smooth small-scale structures. It
is necessary for numerical schemes to capture discontinuities without producing spurious oscillations and resolve smooth
small-scale structures with high resolution. Among many numerical schemes for hyperbolic conservation laws, weighted
essentially nonoscillatory (WENO) schemes have become one of the most popular methods.

WENO schemes as first introduced by Liu et al1 use a convex combination of all candidate stencils of ENO schemes2-5

to improve the accuracy in smooth regions of solution without losing the nonoscillatory property of ENO schemes near
discontinuities. This combination is performed by weighting the contributions of all local fluxes according to the smooth-
ness of solution on candidate stencils such that the weight of a stencil containing a discontinuity is essentially zero. Jiang
and Shu6 developed the classical finite difference WENO schemes (WENO-JS) by designing a local smoothness indica-
tor, which is the sum of normalized L2 norms of all the derivatives of the lower-order candidate polynomial. Henrick
et al7 developed the WENO-M scheme in which a mapping function is used to produce new weights from the Jiang-Shu
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weights so as to satisfy the sufficient conditions of full order convergence. The WENO-M scheme was extended to 17th
order.8 Borges et al9 proposed the WENO-Z scheme in which a global higher-order smoothness measurement is incor-
porated into the construction of the weights. The WENO-Z scheme can recover the full order of accuracy and generate
sharper results than the WENO-M scheme due to larger weights being assigned to discontinuous stencils while having
almost the same computational cost as the classical WENO-JS method. Kumar et al10 proposed two variants of fifth-order
finite difference WENO schemes of adaptive order. Rathan et al11 analyzed the weights of the fifth-order finite difference
WENO-P scheme developed by Kim et al,12 and they also obtained a new fifth-order WENO scheme13 which attains the
optimal order of accuracy even at the critical points of smooth solutions where the first and second derivatives vanish but
not the third derivative. Seventh to eleventh order WENO-Z schemes were developed.14-16

On the other hand, third-order WENO schemes received less attention. The reason is that the classical third-order
WENO scheme6 is too dissipative and its order of accuracy is severely degenerated at critical points.17 However,
third-order WENO schemes are attractive for practical applications due to their simplicity and low computational cost.
The problem of excessive dissipation and suboptimal order of convergence may be cured by utilizing the WENO-Z type
weights.9 With this methodology, Wu and Zhao18 developed an improved third-order WENO scheme (WENO-N3) as
a part of the complete formulation of a high-resolution hybrid WENO scheme. They devised a fourth-order reference
smoothness indicator 𝜏4N by a linear combination of the candidate and global smoothness indicators. But 𝜏4N is unable
to achieve the optimal third-order convergence at critical points. To remedy this flaw, Wu et al19 slightly modified the
reference smoothness indicator as 𝜏4Np with a power p to obtain the WENO-Np3 scheme. Based on the work,19 Gande
et al proposed the WENO-F3 scheme20 with a reference smoothness indicator 𝜏4Fp that contains the linear combina-
tion of the first derivative information of the local and global stencils, and introduced the WENO-MN3 scheme21 with
a variable parameter 𝜖 = (Δx2) in the weights in order to satisfy the sufficient condition for the optimal order conver-
gence. However, Zeng et al22 remarked that a grid size Δx dependent parameter 𝜖 makes the numerical solution lose
the scale invariance property. Recently, Xu and Wu23 suggested another fourth-order reference smoothness indicator
𝜏4P such that the resultant WENO-P3 scheme is less dissipative. Nevertheless, the WENO-P3 scheme can only achieve
third-order accuracy in smooth regions without critical points. More recently, Xu and Wu24 used the power q = 3∕4 on the
denominator in the WENO-Z weight formula to recover the optimal convergence order at critical points. Very recently,
Bhise et al25 proposed an efficient hybrid WENO scheme with a problem independent discontinuity locator, and Liu and
Shen26 developed a discontinuity-detecting method for a four-point stencil and applied it to a third-order hybrid WENO
scheme.

In this article, we propose a new reference smoothness indicator 𝜏4Rp for improving the third-order WENO scheme
where the subscript R represents “root” feature to be explained in Section 3, and p represents the power parameter on
the reference smoothness indicator. This reference smoothness indicator is a nonlinear combination of the smoothness
indicators of local and global stencils. It has at least fourth-order accuracy in smooth regions and is smaller in magnitude
than previous reference indicators 𝜏4N, 𝜏4Np, and 𝜏4P. Theoretical analysis shows that the resultant WENO-Rp3 scheme
with the power p = 1.5 achieves third-order accuracy in smooth regions including the first-order critical points, but the
numerical experiments show that the scheme with p = 1.5 produces obvious oscillations around discontinuities, while
the scheme with p = 1 (named as WENO-R3 scheme) with third-order accuracy in smooth regions without critical points
keeps the ENO property and provides more accurate results than several existing third-order WENO schemes: WENO-JS3,
WENO-Z3, WENO-N3, and WENO-P3, as well as the third-order MUSCL-LF (Lax-Friedrichs flux) scheme with the Van
Leer limiter.27,28

The remainder of this article proceeds as follows. Section 2 provides a brief review of the classical third-order WENO
schemes for 1D scalar conservation laws. In Section 3, we propose the reference smoothness indicator 𝜏4Rp and analyze
the resultant new scheme. Section 4 presents numerical tests to demonstrate the performance of the new scheme, and
Section 5 concludes this article.

2 REVIEW OF THIRD- ORDER WENO SCHEMES

In this section, we briefly describe third-order WENO finite difference schemes for the one-dimensional scalar conserva-
tion laws

ut(x, t) + fx(u(x, t)) = 0. (1)
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Assume that the grid points {xj+1∕2}N
j=0 are uniformly distributed on a given domain with the grid size Δx = xj+1/2 −

xj−1/2. Let Ij ∶= [xj−1/2, xj+1/2] denote a grid cell. The center of Ij is denoted by xj = 1
2
(xj−1∕2 + xj+1∕2) and the value of a

function f at the location xj is denoted by the subscript j, that is, fj = f(xj).
To construct a conservative finite difference for Equation (1), one can define a numerical flux function h(x) implicitly

through the following relation,5

f (x) = 1
Δx ∫

x+Δx∕2

x−Δx∕2
h(𝜉)d𝜉. (2)

Differentiating (2) with respect to x leads to

fx(x) =
1
Δx

(
h
(

x + Δx
2

)
− h

(
x − Δx

2

))
. (3)

Thus, Equation (1) can be approximated by a system of ordinary differential equations, where the spatial derivative
can be approximated by a conservative finite difference, yielding the semidiscrete form:

duj

dt
= − 1

Δx

(
f̂j+ 1

2
− f̂j− 1

2

)
, (4)

where uj(t) is the numerical approximation to the point value u(xj, t), and f̂j±1∕2 are consistent numerical fluxes which
should approximate h(xj±1/2) to a high order, for example, f̂j±1∕2 = h(xj±1∕2) + (Δx3).

In this article, we apply the local Lax-Friedrichs flux splitting at each grid point,

f±(uj) =
1
2
(

f (uj) ± 𝛼uj
)
, (5)

where 𝛼 = maxu|f ′(u)| over the pertinent range of u. The WENO scheme reconstructs high-order numerical fluxes f̂±j+1∕2

from a given point value set {f±j }. The final numerical flux is given by

f̂j+ 1
2
= f̂ +

j+ 1
2

+ f̂ −
j+ 1

2

. (6)

Hereafter, we only describe how f̂ +j+1∕2 is reconstructed because the formulas for f̂ −j+1∕2 are symmetric to f̂ +j+1∕2 with
respect to xj+1/2. Also, for simplicity, we drop the “+” sign in the superscript.

2.1 Third-order WENO schemes

To obtain f̂j+1∕2, the classic third-order WENO scheme uses a global three-point stencil which is subdivided into two
two-point substencils as shown in Figure 1. A local numerical flux polynomial approximation f̂ (k)(x) satisfying f̂ (k)(x) =
h(x) + (Δx2) with k ∈ {0, 1} is constructed for each of the two substencils by using Equation (2). The second-order
candidate numerical fluxes f̂ k

j+1∕2 are given by

f̂ 0
j+ 1

2

= − 1
2

fj−1 + 3
2

fj,

f̂ 1
j+ 1

2

= 1
2

fj + 1
2

fj+1,
(7)

which are combined to define the numerical flux of the scheme,

f̂j+ 1
2
=

1∑
k=0

𝜔kf̂ k
j+ 1

2

. (8)
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F I G U R E 1 Stencils for the third-order WENO numerical flux f̂j+1∕2

The nonlinear weights 𝜔k are defined as convention,

𝜔k = 𝛼k∑1
l=0 𝛼l

and 𝛼k = dk

(𝛽k + 𝜖)2 , (9)

where the constant coefficients dk are called ideal weights since their linear combination with f̂ k
j+1∕2 retains the optimal

third-order convergence to h(xj+1/2), that is,

h(xj+1∕2) =
1∑

k=0
dkf̂ k

j+1∕2 + (Δx3).

The specific values of dk are as follows (eg, see Reference 29):

d0 = 1
3
, d1 = 2

3
. (10)

𝜖 in Equation (9) is a small positive parameter introduced to prevent division by zero, and 𝜖 = 10−6 is used in the
classical WENO-JS3 scheme. 𝛽k is the smoothness indicator of the stencil k. The smoothness indicator proposed by Jiang
and Shu6 is given by

𝛽k =
1∑

l=1
∫

xj+1∕2

xj−1∕2

Δx2l−1
(

dl

dxl
f̂ (k)(x)

)2

dx. (11)

These indicators take on an explicit form:

𝛽0 = (fj−1 − fj)2, 𝛽1 = (fj − fj+1)2. (12)

Borges et al9 proposed the WENO-Z scheme for which the nonlinear weights are

𝜔k = 𝛼k∑1
l=0 𝛼l

and 𝛼k = dk

(
1 +

(
𝜏3

𝛽k + 𝜖

)q)
, k = 0, 1, (13)

where 𝜖 = 10−40, and 𝜏3 = |𝛽1 − 𝛽0| is a third-order reference smoothness indicator, which drives the weights 𝜔k in (13)
towards the optimal weights dk faster than the J-S weights (9). The WENO-Z scheme can recover the optimal order at
the first-order critical point if the power q = 2, but this is more dissipative near discontinuities than q = 1, thus in the
WENO-Z3 scheme and following modified WENO-Z type schemes, q = 1 is used. Then a less dissipative WENO scheme
means to use a sufficiently high-order reference smoothness indicator in lieu of 𝜏3 in Equation (13) .

2.2 Sufficient condition for third-order convergence

In order to design a suitable reference smoothness indicator for the WENO-Z weights (13), a sufficient condition on
weights to recover the optimal order of the third-order WENO scheme is required. The candidate numerical fluxes (7)
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can be expanded by Taylor series expansion to get

f̂ k
j+ 1

2

= hj+ 1
2
+ AkΔx2 + (Δx3), k = 0, 1, (14)

where the coefficient Ak is independent of Δx. Thus, the WENO flux (8) can be reorganized in the form

hj+ 1
2
=

1∑
k=0

dkf̂ k
j+ 1

2

+
1∑

k=0
(𝜔k − dk)f̂ k

j+ 1
2

=
1∑

k=0
dkf̂ k

j+ 1
2

+ Δx2
1∑

k=0
Ak(𝜔k − dk) +

1∑
k=0

(𝜔k − dk)(Δx3). (15)

A sufficient condition for the scheme to achieve third-order accuracy is

𝜔k = dk + (Δx2). (16)

Equation (16) is a sufficient condition but not a necessary one. However, this condition provides useful information
for the design of high-order reference smoothness indicator. What we attempt to do is, within the weighting framework
(13) (q ≡ 1), to seek a sufficiently high-order reference smoothness indicator that can satisfy the condition (16).

3 A NEW REFERENCE SMOOTHNESS INDICATOR

Wu and Zhao18 introduced a fourth-order reference smoothness indicators 𝜏4N which is a linear combination of the
local and global smoothness indicators inspired by the work of Hu et al.30 Later, Wu et al19 modified 𝜏4N to 𝜏4Np
with a power p in order to recover the optimal order at critical points. Recently, Xu and Wu23 developed another
fourth-order reference smoothness indicator 𝜏4P which contains some quantity from the first derivative of the global
smoothness indicator. In this section, we propose a new fourth-order smoothness indicator 𝜏4p which can recover
the optimal order at critical points and has lower dissipation. In the above subscripts, “4” means fourth-order accu-
racy, capital letters “N, P, R” mean “new”, “polynomial”, and “root” features, respectively, and small letter “p” means
“power”.

Taylor series expansion of the local smoothness indicators (12) at xj gives

𝛽0 = f ′2j Δx2 − f ′j f ′′j Δx3 +
(1

4
f ′′2j + 1

3
f ′j f ′′′j

)
Δx4 −

( 1
12

f ′j f (4)j + 1
6

f ′′j f ′′′j

)
Δx5 + (Δx6),

𝛽1 = f ′2j Δx2 + f ′j f ′′j Δx3 +
(1

4
f ′′2j + 1

3
f ′j f ′′′j

)
Δx4 +

( 1
12

f ′j f (4)j + 1
6

f ′′j f ′′′j

)
Δx5 + (Δx6). (17)

Wu and Zhao18 introduced a “new” (N) reference smoothness indicator of the form

𝜏4N =
||||1
2
(𝛽0 + 𝛽1) − 𝛽3

|||| , (18)

where 𝛽3 is the Jiang-Shu smoothness indicator of the global three-point stencil and is expressed as

𝛽3 =
2∑

l=1
∫

xj+1∕2

xj−1∕2

Δx2l−1
(

dl

dxl
f̂ (3)(x)

)2

dx = 13
12

(fj−1 − 2fj + fj+1)2 + 1
4
(fj−1 − fj+1)2. (19)

Taylor series expansion of Equation (19) at xj gives

𝛽3 = f ′2j Δx2 +
(13

12
f ′′2j + 1

3
f ′j f ′′′j

)
Δx4 + (Δx6). (20)

Using Equations (17) and (20), one can see that Equation (18) can be expanded in smooth regions as
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𝜏4N =
||||5
6

f ′′2j
||||Δx4 + (Δx6). (21)

Later, Wu et al19 slightly modified the reference smoothness indicator (18) with a power p as

𝜏4Np =
||||1
2
(𝛽0 + 𝛽1) − 𝛽3

||||p, p = 1, 1.5. (22)

More recently, Xu and Wu23 developed a reference smoothness indicator containing a term out of 𝛽3:

𝜏4P =
||||1
2
(𝛽0 + 𝛽1) −

1
4
(fj−1 − fj+1)2|||| . (23)

By using Equation (17) and Taylor expansions of the last term, Equation (23) can be expanded as

𝜏4P =
||||1
4

f ′′2j
||||Δx4 + (Δx6). (24)

In this work, we propose a new reference smoothness indicator 𝜏4Rp that is a nonlinear combination of the local and
global smoothness indicators, Equations (12) and (19). The result is

𝜏4Rp =
||||1
4
[3 (𝛽0 + 𝛽1) − 2𝛽3] −

√
𝛽0𝛽1

||||p, p = 1, 1.5. (25)

Here, the subscript “R” stands for the “root” feature in the last term and “p” for the power p. The values p = 1 and
1.5 will be explained following Remark 1. By using Equations (17) and (20), we can show that Equation (25) can be
expanded as

𝜏4Rp =
(|||| 1

12
f ′′2j

||||Δx4 + (Δx6)
)p

. (26)

Comparing Equation (26) with (24) and (21), we see that the coefficient of the leading term is in the sequence of
𝜏4Rp < 𝜏4P < 𝜏4N.

Remark 1. The WENO-N3 (18), WENO-Np3 (22), WENO-P3 (23), and WENO-Rp3 (25) schemes can achieve third-order
accuracy in smooth regions without the first-order critical point (f ′j = 0, f ′′j ≠ 0). However, the WENO-N3 and WENO-P3
schemes lose the optimal order of accuracy at the critical point while the WENO-Np3 and WENO-Rp3 schemes with the
parameter p = 1.5 can achieve the optimal order at the critical point.

The conclusion on the WENO-Rp3 scheme in Remark 1 can be got as follows. By inserting Equations (26) and (17)
into (13) (q = 1), we have

𝛼0 = d0

⎛⎜⎜⎜⎝1 +

(
1

12
f ′′2j Δx4 + (Δx6)

)p

f ′2j Δx2 − f ′j f ′′j Δx3 +
(

1
4

f ′′2j + 1
3

f ′j f ′′′j

)
Δx4 + (Δx5)

⎞⎟⎟⎟⎠ ,

𝛼1 = d1

⎛⎜⎜⎜⎝1 +

(
1

12
f ′′2j Δx4 + (Δx6)

)p

f ′2j Δx2 + f ′j f ′′j Δx3 +
(

1
4

f ′′2j + 1
3

f ′j f ′′′j

)
Δx4 + (Δx5)

⎞⎟⎟⎟⎠ . (27)

Two cases depending on values of f ′j and f ′′j are expressed as follows:

⎧⎪⎪⎨⎪⎪⎩
𝜔k = dk

(
1 +

(
1

12
f ′′2j Δx4+(Δx6)

)p

f ′2j Δx2

)
= dk

(
1 + (Δx4p−2)

)
, f ′j ≠ 0,

𝜔k = dk

(
1 +

(
1

12
f ′′2j Δx4+(Δx6)

)p

1
4

f ′′2j Δx4+(Δx5)

)
= dk

(
1 + (Δx4p−4)

)
, f ′j = 0, f ′′j ≠ 0.

(28)
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Comparing Equation (28) with the sufficient condition (16), we can find that the parameter p should satisfy
4p − 2 ≥ 2 in smooth regions without critical points or 4p − 4 ≥ 2 at the first-order critical point to achieve the opti-
mal order of accuracy. Therefore, the new WENO-Rp3 scheme with p = 1 can achieve third-order accuracy only in
smooth regions without the critical point, while with p = 1.5 it can achieve third-order accuracy even at the critical
point.

Remark 2. The quantity of dissipation is in the order of WENO-R3 < WENO-P3 < WENO-N3 < WENO-Z3. This can be
shown by comparing the present WENO-R3 scheme (ie, WENO-Rp3 with p = 1) with the WENO-P3 scheme. Suppose
Sc and Sd are two substencils of the same global stencil such that the solution is smoother at Sc than at Sd (𝛽c < 𝛽d). For
p = 1, the relative importance of weights are

(
𝜔d

𝜔c

)
𝜏4R

−
(
𝜔d

𝜔c

)
𝜏4P

= dd

dc

⎛⎜⎜⎝
1 + 𝜏4R

𝛽d

1 + 𝜏4R
𝛽c

−
1 + 𝜏4P

𝛽d

1 + 𝜏4P
𝛽c

⎞⎟⎟⎠
= dd

dc

𝛽d − 𝛽c

𝛽c𝛽d

𝜏4P − 𝜏4R(
1 + 𝜏4R

𝛽c

)(
1 + 𝜏4P

𝛽c

) > 0, (29)

where the inequality results from 𝛽d > 𝛽c and 𝜏4P > 𝜏4R (compare Equation (26) with (24)). Thus(
𝜔d

𝜔c

)
𝜏4R

>

(
𝜔d

𝜔c

)
𝜏4P

. (30)

This implies that the WENO-R3 scheme assigns a larger weight to the nonsmooth stencil than the WENO-P3 scheme,
so it is expected to be less dissipative than the latter. Similar comparisons can be done for other schemes.

Remark 3. Although the WENO-Rp3 scheme with the power p = 1.5 has third-order accuracy at critical points, we will
see that it is prone to numerical overshoots near discontinuities. On the other hand, the recommended WENO-R3 scheme
with p = 1 will maintain the ENO property well and perform better than other recently developed third-order WENO
schemes, even though it is not third-order accurate at the critical points.

4 NUMERICAL TESTS

In this section, we provide some numerical examples to compare the performances of the present WENO-Rp3 (p = 1.5)
and WENO-R3 (p = 1) schemes and the WENO-JS3, WENO-Z3, WENO-N3, WENO-P3 schemes. We also compare them
with the popular third-order MUSCL-LF scheme with the van Leer total variation diminishing (TVD) limiter. The pre-
sentation of this section starts with solutions of the advection equation, followed by solutions of the Euler equations. The
time advancement is done by using the third-order TVD Runge-Kutta method.5

4.1 Scalar test problems

Consider the scalar advection equation with periodic boundary conditions and different initial data to test the propagation
of arbitrary initial profiles, containing jump discontinuities and corner points.

Example 1 (One-dimensional Linear equation). Let us consider the following 1D linear advection equation:

ut + ux = 0, −1 ≤ x ≤ 1, t ≥ 0, (31)

with the initial data

u(x, 0) = u0(x).

We test the numerical convergence order of the proposed scheme on the linear equation (31) with four sets of
initial data
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T A B L E 1 L1 errors and convergence rates at t = 2.0 of different schemes for the linear advection Equation (31) with the initial data
(32a)

WENO-JS3 WENO-Z3 WENO-N3 WENO-P3 WENO-R3 WENO-Rp3

N L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order)

10 0.30E−0(—) 0.23E−0(—) 0.21E−0(—) 0.17E−0(—) 0.14E−0(—) 7.01E−2(—)

20 9.08E−2(1.72) 7.58E−2(1.60) 6.85E−2(1.62) 5.08E−2(1.74) 3.21E−2(2.12) 8.79E−3(3.00)

40 3.83E−2(1.25) 2.07E−2(1.87) 1.66E−2(2.04) 1.20E−2(2.08) 7.67E−3(2.07) 1.21E−3(2.86)

80 9.41E−3(2.03) 4.86E−3(2.09) 3.80E−3(2.13) 2.54E−3(2.24) 1.66E−3(2.21) 1.58E−4(2.94)

160 1.91E−3(2.30) 1.09E−3(2.16) 8.15E−4(2.22) 5.58E−4(2.19) 3.61E−4(2.20) 2.01E−5(2.97)

320 2.70E−4(2.82) 2.53E−4(2.10) 2.04E−4(2.00) 1.31E−4(2.09) 8.14E−5(2.15) 2.57E−6(2.97)

T A B L E 2 L1 errors and convergence rates at t = 2.0 of different schemes for the linear advection Equation (31) with the initial data
(32b)

WENO-JS3 WENO-Z3 WENO-N3 WENO-P3 WENO-R3 WENO-Rp3

N L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order)

10 0.29E−0(—) 0.25E−0(—) 0.23E−0(—) 0.20E−0(—) 0.17E−0(—) 0.13E−0(—)

20 0.11E−0(1.40) 7.87E−2(1.67) 7.13E−2(1.69) 5.51E−2(1.86) 3.78E−2(2.17) 2.44E−2(2.41)

40 4.21E−2(1.39) 2.44E−2(1.69) 1.91E−2(1.90) 1.35E−2(2.03) 8.87E−3(2.09) 3.35E−3(2.86)

80 1.11E−2(1.92) 5.76E−3(2.08) 4.53E−3(2.08) 3.12E−3(2.11) 2.07E−3(2.10) 4.30E−4(2.96)

160 2.36E−3(2.23) 1.30E−3(2.15) 9.75E−4(2.22) 6.59E−4(2.24) 4.37E−4(2.24) 5.53E−5(2.96)

320 3.52E−4(2.74) 3.19E−4(2.03) 2.38E−4(2.03) 1.72E−5(1.94) 1.15E−5(1.93) 7.01E−6(2.98)

(a) u0(x) = sin(𝜋x), (b) u0(x) = sin
(
𝜋x − sin(𝜋x)

𝜋

)
,

(c) u0(x) = sin2(𝜋x), (d) u0(x) = sin3(𝜋x). (32)

Since we use the third-order TVD Runge-Kutta method in time, the time step is taken as Δt = 0.5Δx to be compatible
with the spatial order.

Table 1 shows the L1 errors and convergence rates, respectively, at t = 2 for the initial data (32a). We see that the errors
decrease with the sequence of WENO-JS3, WENO-Z3, WENO-N3, WENO-P3, WENO-R3, and WENO-Rp3. It is noted
that the WENO-Rp3 scheme achieves the optimal third order.

Table 2 shows the results t = 2 for the initial data (32b) which contains two first-order critical points at which f ′ = 0,
f ′′ ≠ 0, f ′′′ ≠ 0 in the domain. The numerical convergence order of all the schemes except WENO-Rp3 does not achieve
the optimal order due to the occurrence of critical points. In comparison, the present WENO-R3 scheme performs better
than the previous WENO schemes.

Table 3 shows the results t = 2 for the initial data (32c) which contains a first-order critical point. We see that the
errors decrease with the sequence of WENO-JS3, WENO-Z3, WENO-P3, WENO-R3, and WENO-Rp3. The WENO-Rp3
scheme achieves the best accuracy compared with the other schemes.

Table 4 shows the results t = 2 for the initial data (32d) which contains first-order and second-order critical points (f ′ =
0, f ′′ = 0 but f ′′′ ≠ 0). It is noted that the WENO-Rp3 scheme achieves the optimal third order, while other schemes do
not achieve the optimal order. The errors from large to small is still in the sequence of WENO-JS3, WENO-Z3, WENO-P3,
WENO-R3, and WENO-Rp3.

Example 2 (Two-dimensional Linear equation). Let us consider the following 2D linear advection equation:

ut + ux + uy = 0, 0 ≤ x, y ≤ 1, t ≥ 0, (33)

We test the numerical convergence order of the proposed scheme on the linear equation (33) with the initial data
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T A B L E 3 L1 errors and convergence rates at t = 2.0 of different schemes for the linear advection Equation (31) with the initial data
(32c)

WENO-JS3 WENO-Z3 WENO-N3 WENO-P3 WENO-R3 WENO-Rp3

N L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order)

10 0.33E−0(—) 0.364E−0(—) 0.364E−0(—) 0.363E−0(—) 0.358E−0(—) 0.336E−0(—)

20 2.31E−1(0.51) 2.08E−1(0.81) 1.94E−1(0.91) 1.66E−1(1.13) 1.34E−1(1.42) 8.58E−2(1.97)

40 7.79E−2(1.57) 5.14E−2(1.99) 4.54E−2(2.10) 3.63E−2(2.19) 2.49E−2(2.43) 1.07E−2(3.00)

80 3.36E−2(1.21) 1.85E−2(1.47) 1.42E−2(1.68) 9.39E−3(1.95) 5.95E−3(2.07) 1.32E−3(3.02)

160 8.05E−3(2.06) 4.26E−3(2.12) 3.15E−3(2.17) 2.14E−3(2.13) 1.34E−3(2.15) 1.69E−4(2.97)

320 1.38E−3(2.54) 9.53E−4(2.16) 6.91E−4(2.19) 4.59E−4(2.22) 3.09E−4(2.12) 2.13E−5(2.99)

T A B L E 4 L1 errors and convergence rates at t = 2.0 of different schemes for the 2D linear advection Equation (31) with the initial
data (32d).

WENO-JS3 WENO-Z3 WENO-N3 WENO-P3 WENO-R3 WENO-Rp3

N L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order)

10 0.263E−0(—) 0.243E−0(—) 0.235E−0(—) 0.215E−0(—) 0.193E−0(—) 0.169E−0(—)

20 2.10E−1(0.32) 1.94E−1(0.32) 1.85E−1(0.35) 1.69E−1(0.35) 1.52E−1(0.34) 1.27E−1(0.41)

40 9.20E−2(1.19) 5.81E−2(1.74) 5.03E−2(1.88) 4.16E−2(2.02) 3.43E−2(2.15) 2.49E−2(2.35)

80 2.84E−2(1.70) 1.52E−2(1.93) 1.12E−2(2.17) 8.05E−3(2.37) 5.80E−3(2.56) 3.24E−3(2.94)

160 7.93E−3(1.84) 3.42E−3(2.15) 2.46E−3(2.19) 1.72E−3(2.23) 1.18E−3(2.30) 4.12E−4(2.98)

320 1.42E−3(2.48) 7.46E−4(2.20) 5.32E−4(2.21) 3.60E−4(2.26) 2.58E−4(2.19) 5.14E−5(3.00)

u(x, y, 0) = sin (2𝜋(x + y)) (34)

and periodic boundary conditions. The exact solution is

u(x, y, t) = sin (2𝜋(x + y − 2t)) .

The time step is taken as Δt = 0.25Δx. Table 5 shows the L1 errors and convergence rates, respectively, at t = 2.0. We
see that the errors decrease in the sequence of WENO-JS, WENO-Z3, WENO-P3, WENO-R3, and WENO-Rp3. Only the
present WENO-Rp3 scheme attains third order. However, the present WENO-R3 scheme also has much smaller errors
than the previous third-order WENO schemes.

Example 3 (Long time integration of a jump). We show the performance of the present scheme for long time integration
of a jump. We first test numerical schemes on the 1D linear equation (31) with the initial data

u0(x) =

{
− sin(𝜋x) − 1

2
x3, −1 < x ≤ 0,

− sin(𝜋x) − 1
2

x3 + 1, 0 < x ≤ 1, (35)

which is a piecewise sine function with a jump discontinuity at x = 0.
We solve this problem up to t = 40 to see behaviors of various schemes at the jump discontinuity. Figure 2 shows

comparison of numerical solutions of different WENO schemes using grid points N = 400 with the analytical solution.
We can see that both the WENO-Rp3 and WENO-R3 schemes match the exact solution very well, and the amount of
dissipation is WENO-JS3 > WENO-Z3 > WENO-N3 > WENO-P3 > WENO-R3 ≈ WENO-Rp3.
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T A B L E 5 L1 errors and convergence rates at t = 2.0 of different schemes for the 2D linear advection Equation (33) with the initial
data (34)

WENO-JS3 WENO-Z3 WENO-N3 WENO-P3 WENO-R3 WENO-Rp3

N L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order)

102 0.564E−0(—) 0.524E−0(—) 0.505E−0(—) 0.464E−0(—) 0.291E−0(—) 0.260E−0(—)

202 0.284E−0(0.99) 0.151E−0(1.80) 0.121E−0(2.06) 8.89E−2(2.38) 4.38E−2(2.73) 4.14E−2(2.65)

402 9.15E−2(1.63) 5.74E−2(1.40) 4.32E−2(1.49) 2.80E−2(1.67) 8.21E−3(2.42) 5.36E−3(2.95)

802 2.93E−2(1.64) 1.34E−2(2.10) 9.26E−3(2.22) 6.02E−3(2.22) 1.54E−3(2.41) 6.73E−4(2.99)

1602 5.92E−3(2.31) 2.87E−3(2.22) 1.91E−3(2.28) 1.19E−3(2.34) 3.08E−4(2.32) 8.42E−5(3.00)

3202 8.31E−4(2.83) 5.99E−4(2.26) 3.74E−4(2.35) 2.31E−4(2.36) 5.50E−5(2.49) 1.05E−5(3.00)

F I G U R E 2 Comparison of the analytical and numerical
solutions of the linear advection Equation (31) with the initial
condition (35) with WENO-JS3, WENO-Z3, WENO-N3, WENO-P3,
and the present WENO-R3, and WENO-Rp3 at t = 40. Closer-up in
the region x ∈ [−0.12, 0.12] [Colour figure can be viewed at
wileyonlinelibrary.com]

We further consider a square wave problem defined by Equation (31) with the initial condition

u0(x) =
{

1 if − 0.5 ≤ x ≤ 0.5,
0 otherwise. (36)

We solve this problem up to t = 40 in the computational domain −1 ≤ x ≤ 1 with the grid size Δx = 0.01.
The Courant-Friedrichs-Lewy (CFL) number is set to 0.5. The numerical results are shown in Figure 3. We see that

the WENO-Rp3/R3 are less dissipative than WENO-JS3, WENO-Z3, WENO-N3, WENO-P3.

Example 4 (Solution with smooth and discontinuous waves). At last, we solve the 1D linear equation (31) with the
following initial condition which contains a Gaussian, a square-wave, a triangle, and a semiellipse wave, given by

u0(x) =

⎧⎪⎪⎨⎪⎪⎩

1
6
(G(x, 𝛽, z − 𝛿) + G(x, 𝛽, z + 𝛿) + 4G(x, 𝛽, z)) , −0.8 ≤ x ≤ −0.6,

1, −0.4 ≤ x ≤ −0.2,
1 − |10(x − 0.1)|, 0.0 < x ≤ 0.2,
1
6
(F(x, 𝛼, a − 𝛿) + G(x, 𝛼, a + 𝛿) + 4G(x, 𝛼, a)) , 0.4 ≤ x ≤ 0.6,

0, otherwise.

(37)

Here, G(x, 𝛽, z) = exp−𝛽(x−z)2 , F(x, 𝛼, a) =
√

max(1 − 𝛼2(x − a)2, 0), a = 0.5, z = −0.7, 𝛿 = 0.005, 𝛼 = 10, and 𝛽 =
log 2∕36𝛿2. The solution of this case consists of contact discontinuities, corner singularities, and smooth areas. We solve
this problem with Δt = 0.5Δx up to t = 6. The numerical results are shown in Figure 4. Again, it is seen that the present

http://wileyonlinelibrary.com
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F I G U R E 3 Comparison of the analytical and numerical solutions
of the linear advection with the initial condition (36) with WENO-JS3,
WENO-Z3, WENO-N3, WENO-P3, WENO-R3, and WENO-Rp3 at
t = 40, N = 200 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 Comparison of the analytical and numerical solutions of Equation (31) with the initial condition (37) computed with
WENO-JS3, WENO-Z3, WENO-N3, WENO-P3, and WENO-R3 at t = 6 with 200 points (left) and 400 grid points (right) [Colour figure can be
viewed at wileyonlinelibrary.com]

WENO-Rp3/R3 schemes perform better than WENO-JS3, WENO-Z3 ,WENO-N3, and WENO-P3, especially near the dis-
continuities. All the improved third-order WENO schemes produce shaper results than the classical WENO-JS3 scheme,
with the present schemes being least dissipative.

4.2 One-dimensional Euler systems

In this section, we present numerical results for system of hyperbolic conservation laws. We consider the system of 1D
Euler equations,

Ut + F(U)x = 0, (38)

http://wileyonlinelibrary.com
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with
U = (𝜌, 𝜌u,E)T , F(U) =

(
𝜌u, 𝜌u2 + p,u(E + p)

)T
.

The equation of state is given by

p = (𝛾 − 1)
(

E − 1
2
𝜌u2

)
,

where 𝜌,u, p, and E are the density, velocity, pressure, and total energy, respectively, and 𝛾 is the ratio of specific heats
and is taken as 1.4 in all test cases unless otherwise specified. The eigenvalues of the Jacobian matrix A(U) = 𝜕F

𝜕U
are

𝜆1 = u − c, 𝜆2 = u, 𝜆3 = u + c,

where c = (𝛾p∕𝜌)1/2 is the sound speed. The characteristic decomposition and local Lax-Friedrichs splitting in the
characteristic fields4 are chosen to generalize the WENO schemes to the 1D Euler system.

Example 5 (Accuracy test for the Euler system). First, we consider the periodic solution of the Euler equations (38).
The initial values are given by

(𝜌,u, p) = (1.0 + 0.2 sin(𝜋x), 1.0, 1.0) , −1 ≤ x ≤ 1. (39)

Periodic boundary conditions are applied in this test. The exact solution of density is

𝜌(x, t) = 1.0 + 0.2 sin(𝜋(x − t)).

The final time is t = 1.0. Table 6 shows the L1 errors and numerical convergence orders of the density at t =
1.0 by using different third-order WENO schemes. We can see that the errors decrease in the sequence of
WENO-JS3, WENO-Z3, WENO-P3, WENO-R3, and WENO-Rp3. The WENO-R3 scheme has much smaller errors
than previous third-order schemes, and the WENO-Rp3 scheme has the smallest errors and achieves the optimal
accuracy.

Second, we consider several 1D Riemann problems in which the initial data are of the form

U(x, 0) =
{

UL if x ≤ x0,
UR if x > x0.

Example 6 (The Sod problem). Sod's shock tube problem31,32 has the initial condition given by

(𝜌,u, p) =
{

(1.000, 0.000, 1.000), if 0 ≤ x < 0.5,
(0.125, 0.000, 0.100), if 0.5 ≤ x ≤ 1,

We solve the problem up to t = 0.2 with Δx = 0.005. The numerical results of the density field with different schemes
are compared with the exact Riemann solution33 in Figure 5. It can be seen that the results of the WENO-P3 and WENO-R3

T A B L E 6 L1 errors and convergence rates of the density at t = 1.0 of different schemes for the 1D Euler equations (38) with the initial
data (39)

WENO-JS3 WENO-Z3 WENO-N3 WENO-P3 WENO-R3 WENO-Rp3

N L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order) L1 error (order)

10 3.14E−2(—) 2.25E−2(—) 1.99E−2(—) 1.69E−2(—) 1.36E−2(—) 8.56E−3(—)

20 1.36E−2(1.21) 9.67E−3(1.22) 8.33E−3(1.26) 6.24E−3(1.44) 3.95E−3(1.78) 1.07E−3(3.00)

40 4.36E−3(1.64) 2.51E−3(1.95) 2.03E−3(2.04) 1.46E−3(2.10) 9.49E−4(2.06) 1.40E−4(2.94)

80 1.11E−3(1.97) 5.86E−4(2.10) 4.76E−4(2.09) 3.28E−4(2.15) 2.07E−4(2.20) 1.77E−5(2.98)

160 2.73E−4(2.02) 1.32E−4(2.15) 1.01E−4(2.19) 7.01E−5(2.22) 4.43E−5(2.22) 2.62E−6(2.76)

320 6.50E−5(2.07) 2.90E−5(2.19) 2.19E−5(2.21) 1.46E−5(2.26) 9.34E−6(2.25) 3.27E−7(3.00)
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F I G U R E 5 Numerical results of Sod problem32 with
MUSCL-Van Leer, WENO-JS3, WENO-Z3, WENO-P3, and
WENO-R3 at t = 0.2, N = 200, CFL = 0.6. The subset is the zoom of
the contact wave of density. [Colour figure can be viewed at
wileyonlinelibrary.com]

schemes are shaper than the MUSCL result, while the result of the WENO-JS3 is less shaper than the MUSCL result,
and that of the WENO-Z3 is comparable to the MUSCL result. The WENO-R3 scheme is in best agreement with the
exact solution. Figure 6 shows comparison between the WENO-Rp3 and WENO-R3 schemes. We see that the WENO-Rp3
produces unacceptable overshoot and undershoot at the discontinuities and rarefaction waves, so this scheme is not
recommended.

Example 7 (The Lax problem). The Lax problem31,32 has the initial condition given by

(𝜌,u, p) =
{

(0.445, 0.698, 0.3528), if 0 ≤ x < 0.5,
(0.500, 0.000, 0.5710), if 0.5 ≤ x ≤ 1.

We solve the problem up to t = 0.13 withΔx = 0.05. The numerical results of the density field are displayed in Figure 7.
It is seen that the WENO-R3 performs better than the WENO-P3, WENO-Z3, MUSCL-Van Leer, and WENO-JS3 schemes.
The third-order WENO-JS3 scheme is even more dissipative than the third-order MUSCL3-LF scheme. Figure 8 compares
the WENO-Rp3 (p = 1.5) and WENO-R3 (p = 1) schemes. Again we see that the WENO-Rp3 scheme generates evident

F I G U R E 6 Comparison between the WENO-R3 and
WENO-Rp3 schemes for Sod problem32 at t = 0.2, N = 200, CFL
= 0.6 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 7 Numerical results of Lax problem32 with
MUSCL3-Van Leer, WENO-JS3, WENO-Z3, WENO-P3, and WENO-R3
at t = 0.13, N = 200, CFL = 0.6. The subset shows the zoom of the
contact wave [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 Numerical results of Lax problem32 with WENO-R3
and WENO-Rp3 at t = 0.13, N = 200, CFL = 0.6 [Colour figure can be
viewed at wileyonlinelibrary.com]

oscillations at the contact discontinuity and shock. So the WENO-Rp3 scheme is not recommended and will not be used
in the following examples.

Example 8 (Shock-entropy wave interaction5). We compute the approximate solution on the domain [−5, 5] with
periodic boundary conditions. The initial condition is given by

(𝜌,u, p) =

{(
27
7
,

4
√

35
9

,
31
3

)
, if − 5 ≤ x < −4,

(1 + 𝜖 sin(kx), 0, 1), if − 4 ≤ x ≤ 5,

where 𝜖 and k are the amplitude and wave number of the entropy wave, respectively. Here, we set 𝜖 = 0.2 and k = 5. In this
problem, a right-moving supersonic (Mach 3) shock wave interacts with sine waves in a density disturbance that generates
a flow field with both smooth structures and discontinuities. The flow induces wave trails behind the right-going shock at
wave numbers higher than the initial density-variation wave number k. Since the exact solution is unknown, the reference
solution is obtained by using the fifth-order WENO-JS scheme6 with 3201 grid points. Figure 9 compares comparison of
the numerical results for density profiles with the reference solution. It can be seen that the WENO-R3 scheme captures
the high-frequency waves behind the right-going shock better than the WENO-P3, WENO-Z3, MUSCL3, and WENO-JS3
schemes.

http://wileyonlinelibrary.com
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F I G U R E 9 Density profiles of the shock-entropy wave
interaction5 computed with MUSCL3-Van Leer, WENO-JS3,
WENO-Z3, WENO-P3, and WENO-R3 at t = 1.8 with 401 points and
CFL = 0.5 [Colour figure can be viewed at wileyonlinelibrary.com]

Example 9 (Shock-entropy wave test of Titarev-Toro34). This is a variation of the Shu-Osher problem5 with a different
initial condition given as follows

(𝜌,u, p) =
{

(1.515695, 0.523346, 1.805000) , if − 5 ≤ x < −4.5,
(1 + 0.1 sin(20𝜋x), 0, 1), if − 4.5 ≤ x ≤ 5.

The flow contains physical oscillations which have to be resolved by the numerical method. We compute the solution
until the output time t = 5. Figure 10 depicts comparison of results for all schemes on a mesh of 4000 cells. The refer-
ence solution is obtained by applying the WENO-R3 scheme on a fine mesh of 6400 cells. It is obvious that the present
WENO-R3 scheme resolves most of the waves with a good approximation of the wave amplitudes better than other tested
schemes. Unlike in Example 8, the MUSCL3 scheme for this case shows a higher resolution compared with the WENO-Z3
scheme.

Example 10 (Interacting blast waves31,32). This problem has the initial condition given as

(𝜌,u, p) =

{ (1, 0, 1000), if 0 ≤ x < 0.1,
(1, 0, 0.01), if 0.1 ≤ x < 0.9,
(1, 0,100), if 0.9 ≤ x ≤ 1,

with reflective boundary conditions at both ends since the waves generated by the initial discontinuity have arrived at
both ends at the output time t = 0.038. We solve this problem up to t = 0.038 with Δx = 0.0025. The numerical results of
the density distribution are displayed in Figure 11. The WENO-R3 and WENO-P3 schemes produce overshoots at x ≈ 0.57
and x ≈ 0.8. From the enlarged frame, we again see that the amount of dissipation near discontinuities is WENO-R3 <

WENO-P3 < WENO-Z3 < MUSCL3 < WENO-JS3.

4.3 Two-dimensional Euler systems

In this subsection we apply the present WENO-R3 scheme to the 2D compressible Euler systems of the form,

Ut + F(U)x + G(U)y = 0, (40)

http://wileyonlinelibrary.com
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F I G U R E 10 Density profiles of shock-entropy wave test of Titarev-Toro34 computed with different third-order schemes at t = 5 with
4001 points and CFL = 0.5. The right frame shows the partial view [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 11 Numerical results of interacting blast waves32

with MUSCL3-Van Leer, WENO-JS3, WENO-Z3, WENO-P3, and
WENO-R3 at t = 0.038, N = 400, CFL = 0.6. Density profile and
zoom of the contact wave of density. The reference solution is
obtained by applying the WENO-Z3 scheme on a fine mesh of 6400
cells [Colour figure can be viewed at wileyonlinelibrary.com]

where

U = (𝜌, 𝜌u, 𝜌v,E)T ,

F(U) = (𝜌u, 𝜌u2 + p, 𝜌uv,u(E + p))T ,

G(U) = (𝜌v, 𝜌vu, 𝜌v2 + p, v(E + p))T ,

p = (𝛾 − 1)
(

E − 1
2
𝜌(u2 + v2)

)
.

Here 𝜌,u, v, p, and E are density, components of velocity in the x and y coordinate directions, pressure, and total energy,
respectively. 𝛾 = 1.4 is used for all cases. Also, U is the vector of conservative variables, F(U) the x-wise-flux component,
and G(U) the y-wise-flux component. The 2D Euler system (40) are solved in a dimension-by-dimension fashion and for
each direction the reconstructions in the characteristic fields are used.
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Example 11 (Two-dimensional Riemann Problem for gas dynamics35). The computational domain is the square [0, 1] ×
[0, 1]. The 2D Riemann problem is defined by four constant states on each of four quadrants which is divided by lines
x = 0.8 and y = 0.8 on the square:

(𝜌,u, v, p) =
⎧⎪⎨⎪⎩
(1.5, 0, 0, 1.5), 0.8 ≤ x ≤ 1, 0.8 ≤ y ≤ 1,
(0.5323, 1.206, 0, 0.3), 0 ≤ x < 0.8, 0.8 ≤ y ≤ 1,
(0.138, 1.206, 1.206, 0.029), 0 ≤ x ≤ 0.8, 0 ≤ y < 0.8,
(0.5323, 0, 1.206, 0.3), 0.8 < x ≤ 1, 0 ≤ y < 0.8,

and transmissive boundary conditions.

We solve this problem until time t = 0.8 with CFL= 0.6. Figure 12 shows the numerical results obtained with different
third-order WENO schemes and the MUSCL-Van Leer scheme. An examination of these results reveals that the WENO-R3

F I G U R E 12 Density contours of 2D
Riemann Problem35 with 50 contour lines
ranging from 0.2 to 1.7 on 801 × 801 grid
points at t = 0.8. (A) MUSCL3-Van Leer, (B)
WENO-JS3, (C) WENO-Z3, (D) WENO-N3,
(E) WENO-P3, (F) WENO-R3 [Colour figure
can be viewed at wileyonlinelibrary.com]
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scheme has the best resolution of the structure on the slip lines. The WENO-P3 and WENO-N3 schemes have similar
resolution. The MUSCL3-Van Leer scheme is more dissipative than the WENO-N3 but is comparable to the WENO-Z3
scheme, and the WENO-JS3 scheme is most dissipative.

Example 12 (Double Mach reflection of a strong shock36). The two-dimensional double Mach reflection problem
describes the reflection of a planar shock in air hitting a wedge. This test is widely used to verify the performance of numer-
ical methods. We calculate this test problem on [0, 4] × [0, 1] and display the results in [0, 3] × [0, 1] as usual. Initially a
right moving Mach 10 shock is imposed and the shock front makes an angle of 60◦ with the x-axis at x = 1∕6. The region
from x = 0 to x = 1∕6 along the bottom boundary is assigned values of the initial postshock flow and reflecting boundary
condition is taken for the rest. The left boundary is assigned values of the initial postshock flow. For the right-hand bound-
ary at x = 4, all gradients are set to zero. The top boundary of the problem is set to describe the exact motion of the Mach
10 shock. See Reference 36 for a detailed description. We compute the problem to t = 0.2 with Δx = Δy = 1∕480 and CFL
= 0.6. The numerical results of the WENO-R3 scheme are compared with those of the MUSCL3, WENO-JS3, WENO-Z3,
WENO-N3, and WENO-P3 schemes in Figure 13. It can be clearly seen that the WENO-R3 scheme resolves better the

F I G U R E 13 Density contours of Double Mach reflection
problem at t = 0.2 with 1920 × 480 grid points. From top to
bottom: (A) MUSCL3-Van Leer, (B) WENO-JS3, (C) WENO-Z3,
(D) WENO-N3, (E) WENO-P3, (F) WENO-R3 [Colour figure can
be viewed at wileyonlinelibrary.com]
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F I G U R E 14 Density contours of
2D inviscid shock/vortex interactions
computed with (A) MUSCL3-Van Leer,
(B) WENO-JS3, (C) WENO-Z, (D)
WENO-N3, (E) WENO-P3, (F)
WENO-R3 schemes at t = 0.6 on
500 × 200 grid cells [Colour figure can
be viewed at wileyonlinelibrary.com]

F I G U R E 15 Instantaneous density distribution of the
shock-vortex interaction problem at t = 0.6 along the line y = 0.5
computed by different schemes on a grid of 500 × 200. The reference
is computed by WENO-Z3 on the 2000 × 800 grid [Colour figure can
be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 16 Density contours of the 2D shock
regular reflection problem computed with (A)
MUSCL3-Van Leer,(B) WENO-JS3, (C) WENO-Z, (D)
WENO-N3, (E) WENO-P3, (F) WENO-R3 schemes at
t = 20 with 200 × 50 grid cells [Colour figure can be
viewed at wileyonlinelibrary.com]

instabilities around the Mach stem. The resolution from (a) to (f) is gradually increased except that the MUSCL3 (a) has
a comparable resolution with the WENO-Z3 (c).

Example 13 (Two-dimensional inviscid shock/vortex interactions29). This two-dimensional example contains an inter-
action between a stationary Mach 1.1 shock and a moving isentropic vortex. The initial condition is set as the exact
Rankine-Hugoniot condition and a vortex is added to the main flow with its center at (x0, y0) = (0.25, 0.5). The left and
right states of the shock are specified as

(𝜌,u, v, p) =
{

(1, 1.1
√
𝛾, 0, 1), if 0.0 ≤ x < 0.5,

(1.169, 1.1134, 0, 1.245), if 0.5 ≤ x ≤ 2.

The vortex is described by the perturbations to the velocities (u, v), temperature (T = p∕𝜌), and entropy (S = ln(p∕𝜌𝛾 ))
of the mean flow which have the values
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u′ = 𝜖𝜏exp𝛼(1−𝜏2) sin 𝜃, (41a)

v′ = −𝜖𝜏exp𝛼(1−𝜏2) cos 𝜃, (41b)

T′ =
(𝛾 − 1)𝜖2exp2𝛼(1−𝜏2)

4𝛼𝛾
, (41c)

S′ = 0, (41d)

where 𝜏 = r∕rc, r =
√
(x − x0)2 + (y − y0)2, 𝜖 = 0.3, rc = 0.05, and 𝛼 = 0.204. A nondimensional computational domain

[0, 2] × [0, 1] is used. Transmissive boundary conditions are imposed on the boundary and the final time is taken as t = 0.5.
We solve this problem to the time t = 0.6 using 500 × 200 cells with CFL= 0.6. Figure 14 shows the details of the computed
density contours, and Figure 15 compares the density profiles on the line of y = 0.5, which clearly indicates that the
WENO-R3 scheme has a higher resolution compared with other schemes.

Example 14 (Two-dimensional regular shock reflection37). The purpose of this example is to verify if the new scheme
can obtain steady state solution. A shock impinges the bottom wall with an angle of 𝜃 = 29◦ and is regularly reflected
from the wall. The inflow Mach number is 2.9. The computational domain is [0, 4] × [0, 1] which is divided into
200 × 50 equally spaced grids. The boundary conditions on the left and top boundaries of the domain are supersonic
inflow

(𝜌,u, v, p)1 = (1.4, 2.9, 0, 1),
(𝜌,u, v, p)2 = (2.38, 2.6193,−0.50632, 2.13948).

The bottom boundary is a reflecting wall and the right one is supersonic outflow. Figure 16 shows the computed
density contours at t = 50 when the solution has reached steady state. Figure 17A shows the density distributions along
the line y = 0.5. We see that the results of the present WENO-R3 scheme is most close to the exact solution. Figure 17B
shows the evolution of the maximal density residual with time. It can be clearly seen that the WENO-R3 scheme can
converge to about 10−12 as other third-order schemes.

F I G U R E 17 The regular shock reflection problem computed with different schemes. (A) Density distribution at t = 50 along y = 0.5 by
a grid 200 × 50. (B) Time history of the max density residual (density residual is in terms of Δ𝜌∕Δt) [Colour figure can be viewed at
wileyonlinelibrary.com]
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5 CONCLUSION

We develop a low-dissipation third-order WENO scheme (WENO-R3) for the numerical solution of nonlinear hyperbolic
conservation laws by introducing a new reference smoothness indicator in the WENO-Z weights. The new reference
smoothness indicator is a nonlinear combination of the Jiang-Shu smoothness indicators for local and global stencils.
The proposed scheme achieves third-order accuracy in smooth regions without critical points. A number of one- and
two-dimensional linear scalar convection equation and Euler equation problems are calculated. The numerical results
show that the WENO-R3 scheme resolves discontinuities and small-scale structures better than several recently developed
third-order WENO schemes and the popular third-order MUSCL scheme.
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