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Abstract. A new compact implicit exponential scheme for Burgers’ and Navier-Stokes

equation is developed. The method has fourth order accuracy in space and second order

accuracy in time. It uses only two time levels for computation and requires nine grid

points at each time level. The stability of the method is proven for linearised Burgers’

equation. It is applied to a modified Taylor vortex problem. Numerical examples confirm

the theoretical results and show the accuracy of the method.
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1. Introduction

Burgers’ and Navier-Stokes equations are major objects of interest in computational

fluid dynamics (CFD). During the last five decades various numerical methods have been

developed for simulating viscous incompressible flows governed by these nonlinear equa-

tions. Finite difference methods (FDM) turned out to be very popular, since they are easily

implemented in various situations. In the case of Navier-Stokes equations, the majority

of finite difference methods have the second order accuracy that is sufficient for most of

CFD problems. Among the most popular are conventional second order central and upwind

schemes. For problems with smooth well-behaved solutions, these methods deliver good
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results on uniform grids. On the other hand, in convection dominated problems, they be-

have poorly if the mesh is not sufficiently refined. In addition, non-compact higher order

discretisations require 5-grid points in both x - and y-directions that cannot be guarantied

near boundary nodes. Therefore, it is important to have higher order compact schemes

using 3-grid points adjacent to the boundary. Higher order compact methods are more

efficient and provide more accurate numerical results.

For the time-dependent Navier-Stokes equations of motion a number of explicit and

implicit methods are developed by Hirsh [9], Rai and Moin [25] and Lele [14]. These

methods have fourth order accuracy in the spatial direction and second order accuracy in

the time direction. For 2D advection dominated flows, Balzano [3] discussed an explicit

compact method with second order time accuracy. Although explicit methods are easily

implementable, they have a conditional stability limit in time step. Implicit schemes are

unconditionally stable but they require matrix inversion at each advanced time level. For

1D and 2D time-dependent parabolic problems, several higher order implicit schemes are

studied by Mohanty et al. [18,21,22], Strickwerda [30], Yanwen et al. [33] and Shah et al.

[26]. Using stream-function-vorticity or stream-function-velocity formulation, Ghia et al.

[8], Lecointe and Piquet [13], Li et al. [15], Spotz and Carey [29], Spotz [28], Weinan

and Liu [32], Meitz and Fasel [16], Erturk and Gokcol [6], Mohanty et al. [17] solved the

incompressible Navier-Stokes equations.

However, in 3D case such a formulation increases the number of equations and un-

knowns that results in higher computational cost. Tafti [31] developed an alternate for-

mulation for the pressure equation in Laplacian form on a collocated grid for the solution

of the incompressible Navier-Stokes equations. Johnson and Liu [11] studied a method

for incompressible flow based on local pressure boundary conditions. A higher order fi-

nite volume method was employed by Pereira et al. [23], spectral method by Peyret [24],

high order explicit upwind compact scheme and UGS solution algorithm by Bai et al. [2]

in the artificial compressibility method. Other high order finite difference methods for the

solution of incompressible fluid flows are discussed in [1,4,5,7,10,27].

The aim of the present work is to solve 2D time-dependent viscous Burgers’ and Navier-

Stokes equations of motion with appropriate initial and Dirichlet boundary conditions by

a high order compact method. We propose a new exponential implicit method for gen-

eral 2D nonlinear parabolic equations in line with the 2D nonlinear schemes for elliptic

equations — cf. [19, 20]. The method involves only two time levels and has accuracy of

order two in time and order four in space. We construct an exponentially fitted method at

each time level. At advanced time levels this method uses only nine grid points of a single

compact cell with minimal stencil width in the x - and y-directions. Numerical simulations

verify the usefulness of the proposed scheme in terms of maximum absolute (MA) errors.

The paper is arranged as follows. Section 2 deals with the discretisation of nonlinear

2D parabolic equations. The application and two-level nonlinear implicit schemes for the

Burgers’ and Navier-Stokes equations are discussed in Section 3. Stability of the method is

considered in Section 4. Section 5 contains the results of numerical simulations. Finally,

Section 6 provides the summary of this study.
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2. Discretisation Procedure

Let υ be a positive real number. We consider the following initial boundary value prob-

lem in the semi-infinite region Ω := {(x , y, t) : 0< x < 1,0< y < 1, t > 0}:

υ

�

∂ 2φ

∂ x2
+
∂ 2φ

∂ y2

�

=
∂ φ

∂ t
+ψ

�

x , y, t,φ,
∂ φ

∂ x
,
∂ φ

∂ y

�

, (2.1)

φ(x , y, 0) = f (x , y), 0≤ x , y ≤ 1,

φ(x , 0, t) = a0(x , t), φ(x , 1, t) = a1(x , t), 0≤ x ≤ 1, t > 0,

φ(0, y, t) = b0(y, t), φ(1, y, t) = b1(y, t), 0≤ y ≤ 1, t > 0,

(2.2)

where φ(x , y, t) ∈ C6(Ω), and f (x , y), a0(x , t), a1(x , t), b0(y, t), b1(y, t) are smooth func-

tions on the boundary of Ω.

Choosing h > 0,τ > 0 and a positive integer M such that (M + 1)h = 1, we define

a rectangular grid (x i, y j , tn), with the internal grid points x i = ih, y j = jh, tn = nτ, i, j =

0, . . . , M + 1 and n = 0,1,2, . . . . Besides, let λ denote the mesh ratio τ/h2 and φn
i, j

be an

approximation of the exact value φn
i, j

of the function φ(x , y, t) at the grid point (x i, y j , tn).

The differential equation (2.1) can be now approximated as

υ

�

∂ 2φn
i, j

∂ x2
+
∂ 2φn

i, j

∂ y2

�

−
∂ φn

i, j

∂ t
=ψ

�

x i, y j , tn,φn
i, j

,
∂ φn

i, j

∂ x
,
∂ φn

i, j

∂ y

�

≡ Ψn
i, j

. (2.3)

Let t̄n = tn +τ/2 and

φ̄n
i, j =

1

2

�

φn+1
i, j +φ

n
i, j

�

, φ̄n
i±1, j =

1

2

�

φn+1
i±1, j +φ

n
i±1, j

�

, (2.4)

φ̄n
i, j±1

=
1

2

�

φn+1
i, j±1

+φn
i, j±1

�

, φ̄t
n

i, j
=

1

τ

�

φn+1
i, j
−φn

i, j

�

, (2.5)

φ̄t
n

i±1, j
=

1

τ

�

φn+1
i±1, j
−φn

i±1, j

�

, φ̄t
n

i, j±1
=

1

τ

�

φn+1
i, j±1
−φn

i, j±1

�

, (2.6)

φ̄x
n

i, j =
1

2h

�

φ̄n+1
i+1, j − φ̄

n
i−1, j

�

, φ̄x
n

i±1, j =
1

2h

�

±3φ̄n
i±1, j ∓ 4φ̄n

i, j ± φ̄
n
i∓1, j

�

, (2.7)

φ̄x
n

i, j±1
=

1

2h

�

φ̄n+1
i+1, j±1

− φ̄n
i−1, j±1

�

, φ̄y
n

i, j
=

1

2h

�

φ̄n+1
i, j+1
− φ̄n

i, j−1

�

, (2.8)

φ̄y
n

i±1, j
=

1

2h

�

φ̄n+1
i±1, j+1 − φ̄

n
i±1, j−1

�

, φ̄y
n

i, j±1
=

1

2h

�

±3φ̄n
i, j±1 ∓ 4φ̄n

i, j ± φ̄
n
i, j∓1

�

, (2.9)

φ̄x x
n

i, j =
1

h2

�

φ̄n
i+1, j−2φ̄n

i, j+φ̄
n
i−1, j

�

, φ̄x x
n

i, j±1 =
1

h2

�

φ̄n
i+1, j±1−2φ̄n

i, j±1+φ̄
n
i−1, j±1

�

, (2.10)

¯φy y
n

i, j
=

1

h2

�

φ̄n
i, j+1−2φ̄n

i, j+φ̄
n
i, j−1

�

, ¯φy y
n

i±1, j
=

1

h2

�

φ̄n
i±1, j+1−2φ̄n

i±1, j+φ̄
n
i±1, j−1

�

. (2.11)

Besides, let δxφi = φi+1/2 − φi−1/2 and µxφi = (1/2)(φi+1/2 + φi−1/2) be, respectively,

central difference and averaging operators in the x -direction.
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Applying the fourth-order compact scheme to the second derivatives in (2.3) and using

algebraic manipulations of [19], we write the Eq. (2.3) as

υ

�

δ2
x +δ

2
y +

1

6
δ2

xδ
2
y

�

φn
i, j

=h2φt
n
i, j exp

�

φt
n
i+1, j

+φt
n
i−1, j

+φt
n
i, j+1

+φt
n
i, j−1
− 4φt

n
i, j

12φt
n
i, j

�

+ h2ψn
i, j

exp

�

ψn
i+1, j

+ψn
i−1, j

+ψn
i, j+1

+ψn
i, j−1
− 4ψn

i, j

12ψn
i, j

�

+ O (h6). (2.12)

At the grid points (x i, y j , tn), we denote

φabc =
∂ (a+b+c)φn

i, j

∂ x a∂ y b∂ t c
, a, b, c = 0,1,2, . . . ,

α =ψt
n
i, j

, β =ψφ
n
i, j

, γ =ψφx

n
i, j

, η=ψφy

n

i, j
.

(2.13)

Differentiating the Eq. (2.1) with respect to t and using (2.13) yields

υ(φ201 +φ021) = φ002 +α+ βφ001 + γφ101 +ηφ011. (2.14)

Next, we define the approximations

ψ̄n
i±1, j =ψ
�

x i±1, y j , tn, φ̄n
i±1, j , φ̄x

n

i±1, j , φ̄y
n

i±1, j

�

,

ψ̄n
i, j±1 =ψ
�

x i, y j±1, tn, φ̄n
i, j±1, φ̄x

n

i, j±1, φ̄y
n

i, j±1

�

.
(2.15)

Using (2.4)-(2.11) and (2.13), we simplify (2.15), thus obtaining

ψ̄n
i±1, j

=ψn
i±1, j

+
τ

2
(α+ βφ001 + γφ101 +ηφ011)

+
h2

6
T1 + O
�

±τh± h3 +τ2 +τh2 + h4
�

,

ψ̄n
i, j±1

=ψn
i, j±1

+
τ

2
(α+ βφ001 + γφ101 +ηφ011)

+
h2

6
T2 + O
�

±τh± h3 +τ2 +τh2 + h4
�

,

(2.16)

where

T1 = −2γφ300 +ηφ030, T2 = γφ300 − 2ηφ030. (2.17)

Next we define the terms

¯̄φx

n

i, j =φ̄x
n

i, j + a1h
��

φ̄t
n

i+1, j − φ̄t
n

i−1, j

�

+
�

ψ̄n
i+1, j − ψ̄

n
i−1, j

��

+ a2h
�

¯φy y
n

i+1, j
− ¯φy y

n

i−1, j

�

,

¯̄φy

n

i, j
=φ̄y

n

i, j
+ b1h
��

φ̄t
n

i, j+1 − φ̄t
n

i, j−1

�

+
�

ψ̄n
i, j+1 − ψ̄

n
i, j−1

��

+ b2h
�

φ̄x x
n

i, j+1 − φ̄x x
n

i, j−1

�

,

(2.18)
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where a1, a2, b1 and b2 are parameters to be determined.

Taking into account the Eqs. (2.4)-(2.11) and (2.16), we write (2.18) as

¯̄φx

n

i, j = φx
n
i, j +

τ

2
φ101 +

h2

6
(1+ 12υa1)φ300

+ 2h2(υa1 + a2)φ120 + O
�

τ2 +τh2 + h4
�

,

¯̄φy

n

i, j
= φy

n
i, j
+
τ

2
φ011 +

h2

6
(1+ 12υb1)φ030

+ 2h2(υb1 + b2)φ210 + O
�

τ2 +τh2 + h4
�

.

For a1 = b1 = −1/12υ, a2 = b2 = 1/12, the above equations take the form

¯̄φx

n

i, j = φx
n
i, j +

τ

2
φ101 + O
�

τ2 +τh2 + h4
�

,

¯̄φy

n

i, j
= φy

n
i, j
+
τ

2
φ011 + O
�

τ2 +τh2 + h4
�

.
(2.19)

Next we define
¯̄ψ

n

i, j =ψ
�

x i, y j , tn, φ̄n
i, j ,

¯̄φx

n

i, j ,
¯̄φy

n

i, j

�

. (2.20)

It follows from (2.4), (2.19), (2.20) that

¯̄ψ
n

i, j =ψ
n
i, j +

τ

2
(α+ βφ001 + γφ101 +ηφ011) + O

�

τ2 +τh2 + h4
�

. (2.21)

Let
ˆ̂
φx

n

i, j =φ̄x
n

i, j + a3h
��

φ̄t
n

i+1, j − φ̄t
n

i−1, j

�

+
�

ψ̄n
i+1, j − ψ̄

n
i−1, j

��

+ a4h
�

¯φy y
n

i+1, j
− ¯φy y

n

i−1, j

�

,

ˆ̂
φy

n

i, j
=φ̄y

n

i, j
+ b3h
��

φ̄t
n

i, j+1 − φ̄t
n

i, j−1

�

+
�

ψ̄n
i, j+1 − ψ̄

n
i, j−1

��

+ b4h
�

φ̄x x
n

i, j+1 − φ̄x x
n

i, j−1

�

,

(2.22)

where a3, a4, b3 and b4 are parameters to be determined. The Eqs. (2.22) can be written

as

ˆ̂
φx

n

i, j
= φx

n
i, j
+
τ

2
φ101 +

h2

6
T3 + O
�

τ2 +τh2 + h4
�

,

ˆ̂
φy

n

i, j
= φy

n
i, j
+
τ

2
φ011 +

h2

6
T4 + O
�

τ2 +τh2 + h4
�

,

(2.23)

where
T3 = (1+ 12υa3)φ300 + 12(υa3 + a4)φ120,

T4 = (1+ 12υb3)φ030 + 12(υb3 + b4)φ210.
(2.24)

Introducing the term

ˆ̂
ψ

n

i, j
=ψ
�

x i, y j , tn, φ̄n
i, j

,
ˆ̂
φx

n

i, j
,

ˆ̂
φy

n

i, j

�

(2.25)
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and using the relations (2.4) and (2.23), we write it as

ˆ̂
ψ

n

i, j
=ψn

i, j
+
τ

2
(α+ βφ001 + γφ101 +ηφ011)

+
h2

6

�

γT3 +ηT4

�

+ O
�

τ2 +τh2 + h4
�

. (2.26)

Then at each internal node (x i, y j , tn), the differential equation (2.1) is discretised by

υ

�

δ2
x +δ

2
y +

1

6
δ2

xδ
2
y

�

φ̄n
i, j

=h2φ̄t
n

i, j exp





φ̄t
n

i+1, j + φ̄t
n

i−1, j + φ̄t
n

i, j+1 + φ̄t
n

i, j−1 − 4φ̄t
n

i, j

12φ̄t
n

i, j





+ h2 ¯̄ψ
n

i, j exp





ψ̄n
i+1, j

+ ψ̄n
i−1, j

+ ψ̄n
i, j+1

+ ψ̄n
i, j−1
− 4

ˆ̂
ψ

n

i, j

12 ¯̄ψ
n

i, j



+ T̄ n
i, j , (2.27)

where T̄ n
i, j
= O (τ2h2 + τh4 + h6) and

δ2
xφ̄

n
i, j = δ

2
xφ

n
i, j +

τh2

2
φ201 + O
�

τ2h2 +τh4
�

, (2.28)

δ2
yφ̄

n
i, j = δ

2
yφ

n
i, j +

τh2

2
φ021 + O
�

τ2h2 +τh4
�

, (2.29)

δ2
xδ

2
yφ̄

n
i, j = δ

2
xδ

2
yφ

n
i, j + O
�

τh4
�

. (2.30)

Taking into account the second formula in (2.5) and the Eqs. (2.6), (2.16), (2.21), (2.26),

(2.28)-(2.30), we obtain from(2.12), (2.27) that

υτh2

2
(φ201 +φ021) + O

�

τ2h2 +τh4 + h6
�

=
h2

12

�

6τ
�

φ002+α+βφ001+γφ101+ηφ011

�

+
h2

3

�

T1+T2−2γT3−2ηT4

�

�

+ T̄ n
i, j . (2.31)

Finally, the relations (2.17), (2.24) and (2.14) in (2.27) allow us to evaluate the error term

T̄ n
i, j

in (2.31) as

T̄ n
i, j
=

h4

12

�

(1+ 8υa3)γφ300 + 8(υa3 + a4)γφ120

+ (1+ 8υb3)ηφ030 + 8(υb3 + b4)ηφ210

�

+ O
�

τ2h2 +τh4 + h6
�

. (2.32)

The method (2.27) is of order O (τ2 +τh2 + h4), if the coefficient at h4 in (2.32) vanishes.

This leads to the system of equations

1+ 8υa3 = 0, υa3 + a4 = 0, 1+ 8υb3 = 0, υb3 + b4 = 0,
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the solution of which is

a3 = b3 =
−1

8υ
, a4 = b4 =

1

8
,

so that the local truncation error is

T̄ n
i, j
= O
�

τ2h2 +τh4 + h6
�

.

Systems of nonlinear parabolic equations and equations of higher dimensions can be dis-

cretised analogously.

Incorporating the conditions (2.2) into the formula (2.27), we obtain a tri-block-diago-

nal system of equations. Note that linear differential equations produce linear systems —

cf. [21,22], and we use the ADI method to solve it. For nonlinear differential equations one

obtains non-linear systems — cf. [12], and we use the Newton iterative method to solve

it. It is worth noting that for a fixed mesh ratio, the formula (2.27) has the fourth order of

spatial accuracy.

3. Two-Level Schemes for Time-Dependent Burgers’ and Navier-Stokes

Equations

Burgers’ equation is a fundamental time-dependent nonlinear parabolic PDE, which

appears in various areas of applied mathematics, including traffic flow, heat conduction,

fluid mechanics and nonlinear acoustic waves. It represents nonlinear physical problems

and it is difficult to solve it exactly. In the last two decades, significant efforts have been

spent on developing numerical methods for its solution. Here, we apply the scheme (2.27)

to two-dimensional unsteady viscous Burgers’ equation

R−1
e (φx x +φy y ) = φt +φ(φx +φy), 0< x , y < 1, t > 0, (3.1)

where Re is Reynolds number and υ = R−1
e the viscosity coefficient. Using (2.27) in (3.1)

gives

υ

�

δ2
x
+δ2

y
+

1

6
δ2

x
δ2

y

�

φ̄n
i, j

=
h2

12

�

φ̄t
n

i+1, j + φ̄
n
i+1, j

�

φ̄x
n

i+1, j + φ̄y
n

i+1, j

�

+ φ̄t
n

i−1, j + φ̄
n
i−1, j

�

φ̄x
n

i−1, j + φ̄y
n

i−1, j

�

+ φ̄t
n

i, j+1 + φ̄
n
i, j+1

�

φ̄x
n

i, j+1 + φ̄y
n

i, j+1

�

+ φ̄t
n

i, j−1 + φ̄
n
i, j−1

�

φ̄x
n

i, j−1 + φ̄y
n

i, j−1

�

+ 12φ̄t
n

i, j + φ̄
n
i, j

�

¯̄φx

n

i, j +
¯̄φy

n

i, j

�

− 4φ̄t
n

i, j + φ̄
n
i, j

�

ˆ̂
φx

n

i, j +
ˆ̂
φy

n

i, j

�
�

, (3.2)

where the subsidiary approximations of the Eq. (3.2) are discussed in Section 2. The Navier-

Stokes equations play an importance role in fluid motion, so that various numerical tech-

niques for fluid flows based on these equations have been developed in last decades. Nu-

merical methods for 2D flows are very popular and many specialised schemes have been
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developed. We consider two-dimensional Navier-Stokes equations of motion

υ(ux x + uy y ) = ut + uux + vuy + px , (3.3)

υ(vx x + vy y) = vt + uvx + vvy + py , (3.4)

where u and v are the unknown velocity components and p(x , y, t) is the fluid pressure.

Assuming that the pressure function is known and applying the method (2.27) in coupled

form to the system of equations (3.3)-(3.4), we arrive at the following numerical scheme
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+ ūt
n
i−1, j

+ ūn
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, (3.5)
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+ ūn
i, j−1 v̄x

n
i, j−1 + v̄n

i, j−1 v̄y
n
i, j−1

+ p̄y
n
i, j−1

+ 12
�

v̄t
n
i, j + ūn
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, (3.6)

where the approximations of u and v associated with (3.5) and (3.6) are defined in Section 2

in terms of φ.

4. Stability Analysis

In order to study the stability, we use the linearised form of the Burgers’ equation, i.e.

υ(φx x +φy y ) = φt + β(φx +φy ) (4.1)

with a constant convective velocity β > 0. Introducing the cell Reynolds number CR =

(βh)/(2υ) and applying the method (2.27) to the differential equation (4.1), we obtain
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where

µxφi =
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2

�

φi+(1/2) +φi−(1/2)

�

, δxφi =
�

φi+(1/2) −φi−(1/2)

�

, . . . .

This is an implicit scheme involving 9-grid points at the advanced time level (n+1). It can

be written in the form

[X1][Y1]φ
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, (4.3)

where
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There are additional higher orders terms in the Eq. (4.3), which do not affect the order of

accuracy but allow to write (4.2) in factorization form of O (τ2 + h4).

The scheme (4.3) in alternating direction implicit (ADI) form [21] may be written as

[X1]φ
∗
i, j
= [X2][Y2]φ

n
i, j

, (4.4)

[Y1]φ
n+1
i, j
= φ∗

i, j
, (4.5)

where φ∗
i, j

in (4.4), (4.5) is any dummy variable and the boundary conditions for finding

φ∗
i, j

can be obtained from (4.5).

To study the stability of (4.3), we employ the Fourier analysis. At each grid point, the

error can be written in the form ǫn
(i, j)
= ξn exp[i(iθ1+ jθ2)], where θ1 and θ2 are real angles

and i =
p

(−1). The characteristic equation for the Eq. (4.3) is

ξ = ξx .ξy , (4.6)

where
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R
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,
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) sin2(θ2/2)− (iCR/6)(1+ 6υλ) sinθ2

1− (1/3)(1− 6υλ− 2υλC2
R) sin

2(θ2/2)− (iCR/6)(1− 6υλ) sinθ2
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The equation is stable if ξ2 ≤ 1. It is shown in [4] that |ξx |
2 ≤ 1 and the proof of |ξy |

2 ≤ 1

is similar, so that (4.6) yields |ξ|2 ≤ 1. Thus the method above is unconditionally stable.

5. Numerical Tests

We now show the effectiveness of the scheme by applying it to four nonlinear engi-

neering problems. Exact solutions of these problems are known and they help to establish

initial and boundary values and evaluate the errors. Newton’s block iteration method [12]

is used to solve the system of non-linear difference equations. For all problems the initial

guess is assumed trivial — i.e. u = 0. All computations are performed by using MATLAB

code.

The error of the method is defined by




un
i − Un

i







∞ =max
�

�un
i − Un

i

�

�,

where un
i

and Un
i

are, respectively, numerical and exact solutions at the point (x i, tn).

Example 5.1 (Viscous unsteady Burgers’ equation).

υ

�

∂ 2u

∂ x2
+
∂ 2u

∂ y2

�

=
∂ u

∂ t
+ u

�

∂ u

∂ x
+
∂ u

∂ y

�

, 0< x < 1, 0< y < 1, t > 0. (5.1)

The exact solution is given by

u(x , y, t) =
(2υπ sin[π(x + y)]exp(−2υπ2 t))

(2+ cos[π(x + y)]exp(−2υπ2t))
.

For different υ and λ = 1.6, Table 1 shows the maximum absolute errors for the proposed

method and the method in [21]. Figs. 1 and 2 present numerical and exact solutions of the

Eq. (5.1). Both plots are for the step size h = 1/64 and Reynolds number Re = υ
−1 = 106.

Example 5.2 (Time-dependent Navier-Stokes equations of motion).

υ

�

∂ 2u

∂ x2
+
∂ 2u

∂ y2

�

=
∂ u

∂ t
+ u
∂ u

∂ x
+ v
∂ u

∂ y
+
∂ p

∂ x
, 0< x , y < π, t > 0, (5.2)

υ

�

∂ 2v

∂ x2
+
∂ 2v

∂ y2

�

=
∂ v

∂ t
+ u
∂ v

∂ x
+ v
∂ v

∂ y
+
∂ p

∂ y
, 0< x , y < π, t > 0 (5.3)

with the pressure function

p(x , y, t) = −
1

4
(cos2x + cos2y)e(−4υt).

Exact solutions is

u= − cos x sin ye(−2υt), v = sin x cos ye(−2υt).

For various υ and λ= 1.6/π2, Table 2 shows the maximum absolute errors for the proposed

method and the method in [21]. Figs. 3-6 demonstrate numerical and exact solutions.
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Table 1: Example 5.1. Maximum absolute errors, t = 1.

h τ
Proposed Method (2.27) Method in [21]

Re = 102 Re = 104 Re = 106 Re = 102 Re = 104 Re = 106

1/16 1/160 7.1178e-07 3.6749e-10 3.7834e-14 1.4122e-06 4.3534e-09 8.9751e-12

1/32 1/640 4.7311e-08 2.6503e-11 2.8935e-15 8.5579e-08 2.5732e-10 5.9022e-13

1/62 1/2560 2.9963e-09 1.6737e-12 1.8508e-16 5.6412e-09 1.6554e-11 3.7842e-14

1/128 1/10240 1.8829e-10 1.0393e-13 1.1592e-17 3.8452e-10 1.1129e-12 2.7041e-15
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Figure 1: Example 5.1. Numerical solution, h =

1/64, Re = 106.
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Figure 2: Example 5.1. Exact solution, h = 1/64,
Re = 106.

Table 2: Example 5.2. Maximum absolute errors, t = 1.

h τ
Proposed Method (2.27) Method in [21]

υ = 0.1 υ = 0.02 υ = 0.1 υ = 0.02

π/16 1/160
u 3.4768e-05 3.5985e-04 3.6922e-04 4.5524e-03

v 5.8554e-05 7.7496e-04 4.8429e-04 5.3412e-03

π/32 1/640
u 2.1214e-06 2.2505e-05 2.3207e-05 2.7376e-04

v 3.4888e-06 4.9773e-05 3.0288e-05 3.3120e-04

π/64 1/2560
u 1.3121e-07 1.4025e-06 1.4516e-06 1.7001e-05

v 2.1532e-07 3.0864e-06 1.8932-06 2.0667e-05

π/128 1/10240
u 8.1867e-09 8.7572e-08 9.0751-08 1.0611e-06

v 1.3426e-08 1.9238e-07 1.1886e-07 1.4114e-06

Example 5.3 (Taylor-Vortex Problem). We determine the approximate solution of the sys-

tem (5.2)-(5.3) with the pressure function

p(x , y, t) =
1

4

�

cos (2N x) + cos (2N y)
�

e(−4υN2 t),

where N is the number of vortices. The exact solution is

u= − cos(N x) sin(N y)e(−2υN2 t), v = sin(N x) cos(N y)e(−2vN2 t).
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Figure 3: Example 5.2. Numerical solution for u;
h= π/64, υ= 0.1.
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Figure 4: Example 5.2. Exact solution u; h =
π/64, υ= 0.1.
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Figure 5: Example 5.2. Numerical solution for v;
h= π/64, υ= 0.1.
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Figure 6: Example 5.2. Exact solution v; h =
π/64, υ= 0.1.

Table 3: Example 5.3. Maximum absolute errors, t = 1, N = 4.

h τ
Proposed Method (2.27) Method in [21]

υ = 0.1 υ = 0.02 υ = 0.1 υ = 0.02

π/16 1/160
u 1.2738e-04 1.8535e-02 7.3752e-04 4.8356e-02

v 1.2738e-04 1.8535e-02 7.3752e-04 4.8356e-02

π/32 1/640
u 9.9738e-06 8.9660e-04 4.6415e-05 2.9143e-03

v 9.9738e-06 8.9660e-04 4.6415e-05 2.9143e-03

π/64 1/2560
u 6.5082e-07 3.8165e-05 2.9030e-06 1.8073e-04

v 6.5082e-07 3.8165e-05 2.9030e-06 1.8073e-04

π/128 1/10240
u 4.1043e-08 2.3857e-06 1.8146e-07 1.1244e-05

v 4.1043e-08 2.3857e-06 1.8146e-07 1.1244e-05

For various v, λ = 1.6/π2 and N = 4, Table 3 shows the maximum absolute errors for

the proposed method and the method in [21]. Figs. 7-10 display exact and approximate

solutions.
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Figure 7: Example 5.3. Numerical solution for u;
h= π/64, υ= 0.02, N = 4.
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Figure 8: Example 5.3. Exact solution u; h =
π/64, υ= 0.02 and N = 4.
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Figure 9: Example 5.3. Numerical solution for v;
h= π/64, υ= 0.02, N = 4.
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Figure 10: Example 5.3. Exact solution v; h =
π/64, υ= 0.02, N = 4.

Example 5.4 (Unsteady Burgers’ equation in cylindrical polar coordinates).

1

Re

�

∂ 2u

∂ r2
+
∂ 2u

∂ z2
+

1

r

∂ u

∂ r
−

1

r2
u

�

=
∂ u

∂ t
+ u

�

∂ u

∂ r
+
∂ u

∂ z

�

+ f (r, z, t),

0< r < 1, 0< z < 1, t > 0.

(5.4)

The exact solution of this problem is

u(r, z, t) = exp

�

−2π2t

Re

�

π2r2 sin(πz).

We solve the Eq. (5.4) by methods (2.27) and [21]. For various Re and λ = 1.6, Table 4

shows the maximum absolute errors for the proposed method and the method in [21].

Figs. 11 and 12 provide numerical and exact solutions of the Eq. (5.4). The spatial conver-

gence order is computed as

ρh =
log(Eh1

/Eh2
)

log(h1/h2)
,
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Table 4: Example 5.4. Maximum absolute errors, t = 5.

h τ
Proposed Method (2.27) Method in [21]

Re = 10 Re = 50 Re = 100 Re = 10 Re = 50 Re = 100

1/16 1/160 2.2839e-07 4.2703e-04 1.8115e-03 1.4892e-06 3.6713e-03 Over flow

1/32 1/640 1.4212e-08 2.6822e-05 1.1275e-04 9.3082e-08 2.2997e-04 Over flow

1/64 1/2560 8.8612e-10 1.6825e-06 7.0125e-06 5.8206e-09 1.4376e-05 Over flow

1/128 1/10240 5.5623e-11 1.0556e-07 4.4043e-07 3.6489e-10 8.9855e-07 Over flow
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Figure 11: Example 5.4. Numerical solution for u;
h= 1/32, Re = 100.
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Figure 12: Example 5.4. Exact solution u, h =
1/32, Re = 100.

Table 5: Rate of convergence ρh in space.

Problem Parameters, if any Order of convergence

Re = 102 for u 3.99

1 Re = 104 for u 4.01

h1 = 1/64, h2 = 1/128 Re = 106 for u 4.00

υ= 0.1
for u 4.00

2 for v 4.00

h1 = π/64, h2 = π/128
υ= 0.02

for u 4.00

for v 4.00

υ= 0.1
for u 3.99

3 for v 3.99

h1 = π/64, h2 = π/128
υ= 0.02

for u 3.99

for v 3.99

Re = 10 for u 3.99

4 Re = 50 for u 3.99

h1 = 1/64, h2 = 1/128 Re = 100 for u 3.99
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where Eh1
and Eh2

are maximum absolute errors for spatial uniform mesh sizes h1 and h2,

respectively.

The time convergence order is computed as

ρτ =
log(Eτ1

/Eτ2
)

log(τ1/τ2)
,

where Eτ1
and Eτ2

are maximum absolute errors for time uniform mesh of size τ1 and τ2,

respectively.

Different values of ρh and ρτ for all the problems are presented in Tables 5 and 6,

respectively. The log-log error plots for all problems are given in Figs. 13-16.

Table 6: Rate of convergence ρτ in time.

Problem Parameters, if any Order of convergence

Re = 102 for u 1.996

1 Re = 104 for u 2.004

τ1 = 1/2560, τ2 = 1/10240 Re = 106 for u 1.998

υ = 0.1
for u 2.001

2 for v 2.001

τ1 = 1/2560, τ2 = 1/10240
υ = 0.02

for u 2.000

for v 2.001

υ = 0.1
for u 1.993

3 for v 1.993

τ1 = 1/2560, τ2 = 1/10240
υ = 0.02

for u 1.999

for v 1.999

Re = 10 for u 1.996

4 Re = 50 for u 1.997

τ1 = 1/2560, τ2 = 1/10240 Re = 100 for u 1.996
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Figure 13: Example (5.1). log-log error.
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Figure 14: Example (5.2). log-log error.
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Figure 15: Example (5.3). log-log error.
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Figure 16: Example (5.4). log-log error.

6. Summary

We use an implicit exponential numerical scheme for solving unsteady 2D Burgers’ equa-

tion, Navier-Stokes equations of motion and the Taylor-vortex problem. The scheme has

fourth order accuracy in space and second order accuracy in time. It is compact and at the

advanced time levels computational stencil requires only nine points. It is shown that for

linearised Burgers’ equation the method is unconditionally stable. Numerical simulations

show that the scheme can produce oscillation-free solution for high Reynolds numbers —

cf. [21,22]. The simulations are in excellent match with analytic results. The method can

be extended to more complex flow problems in polar coordinates and to complete Navier-

Stokes equations with the pressure as a variable.
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