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Abstract. A new compact implicit exponential scheme for Burgers’ and Navier-Stokes
equation is developed. The method has fourth order accuracy in space and second order
accuracy in time. It uses only two time levels for computation and requires nine grid
points at each time level. The stability of the method is proven for linearised Burgers’
equation. It is applied to a modified Taylor vortex problem. Numerical examples confirm
the theoretical results and show the accuracy of the method.
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1. Introduction

Burgers’ and Navier-Stokes equations are major objects of interest in computational
fluid dynamics (CFD). During the last five decades various numerical methods have been
developed for simulating viscous incompressible flows governed by these nonlinear equa-
tions. Finite difference methods (FDM) turned out to be very popular, since they are easily
implemented in various situations. In the case of Navier-Stokes equations, the majority
of finite difference methods have the second order accuracy that is sufficient for most of
CFD problems. Among the most popular are conventional second order central and upwind
schemes. For problems with smooth well-behaved solutions, these methods deliver good
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results on uniform grids. On the other hand, in convection dominated problems, they be-
have poorly if the mesh is not sufficiently refined. In addition, non-compact higher order
discretisations require 5-grid points in both x- and y-directions that cannot be guarantied
near boundary nodes. Therefore, it is important to have higher order compact schemes
using 3-grid points adjacent to the boundary. Higher order compact methods are more
efficient and provide more accurate numerical results.

For the time-dependent Navier-Stokes equations of motion a number of explicit and
implicit methods are developed by Hirsh [9], Rai and Moin [25] and Lele [14]. These
methods have fourth order accuracy in the spatial direction and second order accuracy in
the time direction. For 2D advection dominated flows, Balzano [3] discussed an explicit
compact method with second order time accuracy. Although explicit methods are easily
implementable, they have a conditional stability limit in time step. Implicit schemes are
unconditionally stable but they require matrix inversion at each advanced time level. For
1D and 2D time-dependent parabolic problems, several higher order implicit schemes are
studied by Mohanty et al. [18,21,22], Strickwerda [30], Yanwen et al. [33] and Shah et al.
[26]. Using stream-function-vorticity or stream-function-velocity formulation, Ghia et al.
[8], Lecointe and Piquet [13], Li et al. [15], Spotz and Carey [29], Spotz [28], Weinan
and Liu [32], Meitz and Fasel [16], Erturk and Gokcol [6], Mohanty et al. [17] solved the
incompressible Navier-Stokes equations.

However, in 3D case such a formulation increases the number of equations and un-
knowns that results in higher computational cost. Tafti [31] developed an alternate for-
mulation for the pressure equation in Laplacian form on a collocated grid for the solution
of the incompressible Navier-Stokes equations. Johnson and Liu [11] studied a method
for incompressible flow based on local pressure boundary conditions. A higher order fi-
nite volume method was employed by Pereira et al. [23], spectral method by Peyret [24],
high order explicit upwind compact scheme and UGS solution algorithm by Bai et al. [2]
in the artificial compressibility method. Other high order finite difference methods for the
solution of incompressible fluid flows are discussed in [1,4,5,7,10,27].

The aim of the present work is to solve 2D time-dependent viscous Burgers’ and Navier-
Stokes equations of motion with appropriate initial and Dirichlet boundary conditions by
a high order compact method. We propose a new exponential implicit method for gen-
eral 2D nonlinear parabolic equations in line with the 2D nonlinear schemes for elliptic
equations — cf. [19,20]. The method involves only two time levels and has accuracy of
order two in time and order four in space. We construct an exponentially fitted method at
each time level. At advanced time levels this method uses only nine grid points of a single
compact cell with minimal stencil width in the x- and y-directions. Numerical simulations
verify the usefulness of the proposed scheme in terms of maximum absolute (MA) errors.

The paper is arranged as follows. Section 2 deals with the discretisation of nonlinear
2D parabolic equations. The application and two-level nonlinear implicit schemes for the
Burgers’ and Navier-Stokes equations are discussed in Section 3. Stability of the method is
considered in Section 4. Section 5 contains the results of numerical simulations. Finally,
Section 6 provides the summary of this study.
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2. Discretisation Procedure

Let v be a positive real number. We consider the following initial boundary value prob-
lem in the semi-infinite region Q :={(x,y,t):0<x <1,0< y <1,t > 0}:

0%, 0%\ _29 2 24
“(ﬁ%—yz)— st (eree5050) @y
¢(x,y,0)=f(x,y), 0<x,y<1,
¢(x,0,t) =ap(x,t), ¢(x,1,t) =a;(x,t), 0<x<1, t>0, (2.2)

¢(O,y,t):b0(y,t), ¢(15y5t):b1(yst), OSJ’SL t>05

where ¢(x,y,t) € C8(Q), and f(x, y),ay(x, t),a;(x,t), by(y,t), by(y,t) are smooth func-
tions on the boundary of .

Choosing h > 0,7 > 0 and a positive integer M such that (M + 1)h = 1, we define
a rectangular grid (x;, y;, t,), with the internal grid points x; = ih, y; = jh,t, =nt,i,j =
0,...,M+1andn=0,1,2,.... Besides, let A denote the mesh ratio 7/h? and quj be an
approximation of the exact value ¢E ; of the function ¢ (x, y, t) at the grid point (x;, y;, t,,)-
The differential equation (2.1) can be now approximated as

§ 82¢Zj+32¢2j _3¢Ej_¢ o L0 9o _on
( dx2 dy? ) at ( 0 Yp b @i =32 dy )_\Ili’j' (2.3)
Let t,=t,+7/2and
d)lnl - (¢F;Ll ¢Zi)’ _Fﬂclj = %( Fﬂ—:i_llj + Fil,j)’ (2.4)
Plljsr = %( Bt Bl ). iy = ( ), (2.5)
qgf?il,j = %( ?Illj - Fil,j)’ qgtl]:l:l = l( 1’1;31 - lnj:lzl)’ (2.6)
¢_ij = i( lrl:11) i 1]) qu?ﬂ,J = 21h (i3¢li1] ¥4¢n lﬂ]) (2.7)
Pxijur = i( P = i), o= i( = 6)s (2.8)
By = o (B = Flas)s By = o (£300 4 2 60), 29)
1 1

- n
¢xxi,j=h_2( i+1,j 2¢1n]+¢ 1,j

-n n
¢}’)’i,j_ﬁ( l]+1_2¢l]+¢l] 1

’ ¢xxlli1 ﬁ( i+1,j£17 ¢1]i1+¢£1_1’ji1), (2.10)

- n
¢)’}’i:|:1,j = ﬁ( i+1j+1 ¢1:E1] ¢1:E1] 1) (2.11)

[
—_

)
).

Besides, let 6, ¢; = ¢iy1/2 — Pic1y2 and pu,d; = (1/2)(Pi11/2 + Pi1/2) be, respectively,
central difference and averaging operators in the x-direction.
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Applying the fourth-order compact scheme to the second derivatives in (2.3) and using
algebraic manipulations of [19], we write the Eq. (2.3) as

v (6§ +67+ 15252) o7

6 ¥
2, n ¢t?+1’j+¢t?_1’j+¢t?’j+1+¢t?’j_1_4¢t?’j
:h d)t' 'exp n
b 12¢tij
A T S T/ L VLA L LA
+h2pt exp| —L TCL TLHl TUEL T p(ps), (2.12)
bJ 1297,

At the grid points (x;, y;, t,), we denote
+b+
Dabe = w a,b,c=0,1,2
abc axaaybatc, » Pt R AR (213)

Differentiating the Eq. (2.1) with respect to t and using (2.13) yields

V(201 + Po21) = o0z + @+ Bdgor + Y P101 + NPo11- 2.149)

Next, we define the approximations

_Tl _ _Tl - n - n
1) =¥ (Xiil’yi’ tn> Piicn jp Pxicn jo ¢yii1,j)’

. o - - (2.15)
wi,j:tl = 1!’ (bejzl:l, ths ¢i,j:l:1’ ¢xi,j:|:1, d))’i,j:l:l) .
Using (2.4)-(2.11) and (2.13), we simplify (2.15), thus obtaining
- T
1 =V, t 5(0‘ + Boor +YP101 + NPo11)
h2
+—Ty+ 0 (£th+h®+ 1%+ th* +h?),
6 (2.16)
=Yt —(at + + ) '
Ljrl — WijE1 T o a+ B Poo1 +YPi01 + NPo11
h2
+€T2+0’(:I:Th:|:h3+72+’rh2+h4),
where
T1 = =2y P300 + NPo30> T2 =Y P300 — 2N P030- (2.17)
Next we define the terms
=n - n - n - n - -
¢xi,j :¢xi,j +a;h [(¢ti+1,j - ¢ti—1,j) + ( ?+1,j _d)?—l,j)]
- n - n
+ash (¢yyi+1,j - ¢}’}'i—1,j) ) 2.18)

= -n -n -n n n
¢yi,j _¢Yi,j+blh[(¢fi,j+1_¢ti,j—1)+( ij+1 " i,j—l)]
- n - n
+ bzh (¢xxi,j+1 - ¢xxi,j_1) 5
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where aq,a,, b; and b, are parameters to be determined.

Taking into account the Egs. (2.4)-(2.11) and (2.16), we write (2.18) as

= n n T h2
Grij=Pxi;t+ §¢101 + g(l + 12va;) P30

+ 2h2(Ua1 + a2)¢120 +0 (Tz + Thz + h4) 5
= n n T h2
¢)’i,j = ¢)’i,j + §¢011 + E(l + 12’Ub1)¢030

+ 2h%(vby + by)da1o + O (% + Th® +h?).
For a; = b; =—1/12v,a, = b, = 1/12, the above equations take the form
cn n T 2 2 4
¢xi,j = ¢xi,j + Ed)lOl + 0(’? +Th*+h ),
- n T
d)}'i,j = d)yz] + Ed)()ll +0 (TZ + Th2 + h4) .

Next we define

n - n - n
’lpl”j = w (xl" y]) tn) i,j? ¢xi’j) ¢yi,j) .
It follows from (2.4), (2.19), (2.20) that

=n n T 2 2 4
¢i,j=¢i,j+§(a+/5¢oo1+Y¢101+n¢011)+0’(’5 +7h*+h?).

Let
ngzj =¢_ij +azh [(ggt?+1,j - 95t?—1,j) + ( _?+1,j - _?—1,]')]
+ash (¢;Y?+l,j - ¢;’)’?—1,j) >
q§y21 :qu’?,j +bsh [(qgf?,jﬂ - qgt?,j—l) + ( _?,j+1 o _Zj—l)]
+bgh (B o1 — Pt o)
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(2.19)

(2.20)

(2.21)

(2.22)

where a3, a4, by and b, are parameters to be determined. The Egs. (2.22) can be written

as
AN T h?
xij = bxij T 511+ T+ 0 (v2+ th* + 1),
A1 n T h? 2 2, 14
d)}’i,j = d)}’i,j + Ed)()ll + €T4+ ﬁ(T +7Th*+h ),
where

Ty = (1+ 12vasz)$sp + 12(vas + as) P20,
T, = (1+12vb3)g30 + 12(vbs + by)Paso-

Introducing the term

An - R AN
1!’1"]' =) (Xisy]', Ly, F,j’ qui,j’ ¢)’i,j)

(2.23)

(2.24)

(2.25)
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and using the relations (2.4) and (2.23), we write it as
1;)?] =i+ %(a +BPoo1 +1P101 + NPo11)
+§(yT3+nT4)+ o(t?+th*+h?). (2.26)
Then at each internal node (x;, y;, t,,), the differential equation (2.1) is discretised by

1 _
o(32 45242025 ) g,

n mn n - n - n
¢ti+1,j + ¢ti—1,j + ¢ti,j+1 + ¢ti,j—1 _4¢ti,j

=h%¢ '7.exp =
Y 1267,
- - - - An
3 Nt gt )t —d |
n hzi,b?j exp i+1,j i—1,j 1,;1—:1-1 i,j—1 L] + Tinj; (2‘27)
, 129 :
where Ti”j = 0(7%h? + th* + h®) and
52" =527 +T—hz¢ +0(7w?h? + th?) (2.28)
x¥ij x¥i,j 5 P201 5 .
52 =520 +T—hz¢ +0(7%h? + <h?) (2.29)
yvi,j yri,j 2 021 ) .
2<2n _ <22 4
626591, =6252¢7 +0(vh?). (2.30)

Taking into account the second formula in (2.5) and the Egs. (2.6), (2.16), (2.21), (2.26),
(2.28)-(2.30), we obtain from(2.12), (2.27) that

vTh?
2
h2 2

h .
=7 |:6T(¢002+a+/5¢001 +rd101 +'n¢011)+§ (T1+T2—2yT3—2nT4)] +T0. (231

(201 + Po21) + 0 (T2h? + Th* + 1h°)

Finally, the relations (2.17), (2.24) and (2.14) in (2.27) allow us to evaluate the error term
Ti”j in (2.31) as

- h*
T} :ﬁ[(l +8vaz)y P30 + 8(vaz +as)y Pizo
+(1+8vb3)nggzo +8(vbs + b4)”’7¢210:|
+ 0 (t?h* + th* + h®). (2.32)

The method (2.27) is of order @(t2 + th? + h%), if the coefficient at h* in (2.32) vanishes.
This leads to the system of equations

1+8vaz; =0, wvaz+a;=0, 1+8vb;=0, vb3+by=0,



High Order Method for 2D Burgers’ and Navier-Stokes Equations in Exponential Form 443

the solution of which is

so that the local truncation error is
TN 21.2 4 6
Tl.’j—ﬁ(r h? +th* +h).

Systems of nonlinear parabolic equations and equations of higher dimensions can be dis-
cretised analogously.

Incorporating the conditions (2.2) into the formula (2.27), we obtain a tri-block-diago-
nal system of equations. Note that linear differential equations produce linear systems —
cf. [21,22], and we use the ADI method to solve it. For nonlinear differential equations one
obtains non-linear systems — cf. [12], and we use the Newton iterative method to solve
it. It is worth noting that for a fixed mesh ratio, the formula (2.27) has the fourth order of
spatial accuracy.

3. Two-Level Schemes for Time-Dependent Burgers’ and Navier-Stokes
Equations

Burgers’ equation is a fundamental time-dependent nonlinear parabolic PDE, which
appears in various areas of applied mathematics, including traffic flow, heat conduction,
fluid mechanics and nonlinear acoustic waves. It represents nonlinear physical problems
and it is difficult to solve it exactly. In the last two decades, significant efforts have been
spent on developing numerical methods for its solution. Here, we apply the scheme (2.27)
to two-dimensional unsteady viscous Burgers’ equation

R b+ ¢y, )=+ d(dx+9,), 0<x,y<1, >0, 3.1
where R, is Reynolds number and v = Re_1 the viscosity coefficient. Using (2.27) in (3.1)

gives

1 -
2 2 2g2 n
v (5x +82+ gsxay) "
L R TN RO S N P SN L O S
T 1o Tritlj i+1,j \ Fxi+1,j Yit+1,j ti—1,j i—1,j \FXi—1,j Yi—1,j
rn n ~ n - n rn n - n ~ n
+ ¢ti,j+1 + ¢i,j+1 (¢xi,j+l + ¢yi,j+1) + ¢ti,j—1 + ¢i,j—1 (¢xi,j—l + ¢yi,j—1)
- n _n - n - n -n _n AN 2 n
F120+ B (i + by ;) — 4l + G (¢Xi,j + ¢J’i,j) , (3.2)

where the subsidiary approximations of the Eq. (3.2) are discussed in Section 2. The Navier-
Stokes equations play an importance role in fluid motion, so that various numerical tech-
niques for fluid flows based on these equations have been developed in last decades. Nu-
merical methods for 2D flows are very popular and many specialised schemes have been
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developed. We consider two-dimensional Navier-Stokes equations of motion

V(Uyy +Uyy) =up +uu, +vuy, +py, (3.3)
V(Vex +Vyy) =V +uvy +vvy, +p,, 3.4

where u and v are the unknown velocity components and p(x, y, t) is the fluid pressure.
Assuming that the pressure function is known and applying the method (2.27) in coupled
form to the system of equations (3.3)-(3.4), we arrive at the following numerical scheme

2 2 22
(5 +5 +65x5y) i,

2

n
12|:ut1+1)+u1+1) x1+1]+v1+1)u}’1+1]+pxl+1)+ut1 1)+u1 ].]uxi—l,j

-n
+vl 1,j yl 1)+px1 1]+ut1]+1+u,]+1uxl]+1+v,]+l }'1)+1+pxlj+l+utij—1

rn
+ul] 1uxl) 1+v1) 1y i 1+le] 1+12(ut J+u uxlj+vl)uyl]+pxl])

An - An —
4(ufu + 1} it vi’jjuyi,]. +px?,].) ], (3.5)
2, <2 252
(5 +62 + 65x5y) "

2

- n ~-Nn -n =n
[vti+1’j+u. V4V

-n -n -n
i+1,j  Xi+1,j i+1,jv)’i+1,] p}’l+1] + vfl 1,j tuy iVxi

:E i—1,j "Xi—1,j

+Vl 1,j )’1 1]+pJ’l 1]+vt1)+1+u1]+1 Xl)+1+vl)+1 }’1]+1+p}’1]+1+vf1] 1

- n - n
HU Vi 1Vyij— 1+py1] 1+12(Vt1]+u11vx1,1+v11vy11+pyt )
-n A - n
—4(th]+ul]"x1]+Vi,jvyi,j+pyi,j)]’ (3.6)

where the approximations of u and v associated with (3.5) and (3.6) are defined in Section 2
in terms of ¢.

4. Stability Analysis
In order to study the stability, we use the linearised form of the Burgers’ equation, i.e.

U(¢xx+¢yy):¢t+ﬂ(¢x+¢y) 4.1)

with a constant convective velocity 8 > 0. Introducing the cell Reynolds number Cy =
(Bh)/(2v) and applying the method (2.27) to the differential equation (4.1), we obtain

1 1
[1 + (1—6vA—2vACE) 8% + 5 (1-6vA—2vACF)82

C
- 1—2(1 — 6UA) (2,5 +2u,5,)
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VA
12 (2CR52“X5 + 26R5xn“y5y - 4C1§“x5xuy5y - 5>265)2/) :|¢ln;Ll

[1+ 1—(1+6’U7L+2UAC )5§+1—12(1+6v/1+2uxc§)5§

— —(1 +6VA)(2u, 6y +2u,0,)

UA

__(ZCRSZMX(‘S +2Cp62 w6, — 4C§,ux5x,uy5 —5252)]¢ 4.2)

i,j’
where
1
Ux®i = > (bircyny + Pirj2)> 0P =(Piran— Picay))s--- -

This is an implicit scheme involving 9-grid points at the advanced time level (n+ 1). It can
be written in the form

[Xl][Yl]qbg;—l [X>][Y2]07), (4.3)
where

X, = 1+—(1—6w1 20AC2) 52 R(1—6UA)(2MX5X)],

-

2)
Y, = 1+1—(1 6VA —2VAC )5 ——(1—6U/1)(2,uy5y)
)6%

1
X, = 1+ﬁ(1+6m+2vxc ——(1+6U/1)(2ux5 )],

1 2) s2 R
h=|1+3 (1+6vA+2vACF) 82 — T (1 +6v2n,5,) |-

There are additional higher orders terms in the Eq. (4.3), which do not affect the order of
accuracy but allow to write (4.2) in factorization form of @(72 + h*).
The scheme (4.3) in alternating direction implicit (ADI) form [21] may be written as

[X119;; = [X21[YV219], (4.4)
[Y1]¢ln;rl =97 (4.5)

where qSl* ; in (4.4), (4.5) is any dummy variable and the boundary conditions for finding
qbf j can be obtained from (4.5).
To study the stability of (4.3), we employ the Fourier analysis. At each grid point, the

error can be written in the form s = &M expli(iB; +j6O,)], where 6; and 6, are real angles
and i = 4/(—1). The character1st1c equat1on for the Eq. (4.3) is

=88y, (4.6)
where

1—(1/3)(1 +6vA +2vAC2)sin?(6;/2) — (iCr/6)(1 + 6vA)sin 6;
1—(1/3)(1 —6vA—2vACE)sin?(6;/2) — (iCr/6)(1 —6vA)sin 6
1—(1/3)(1+ 6vA + 20ACE) sin?(6,/2) — (iCr/6)(1 + 6vA) sin O,
Y12 (1/3)(1 — 6vA —2VAC2)sin?(0,/2) — (iCr/6)(1 —6vA)sin Oy

x:
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The equation is stable if £2 < 1. It is shown in [4] that |£,|? < 1 and the proof of |§ y|2 <1
is similar, so that (4.6) yields |£|?> < 1. Thus the method above is unconditionally stable.

5. Numerical Tests

We now show the effectiveness of the scheme by applying it to four nonlinear engi-
neering problems. Exact solutions of these problems are known and they help to establish
initial and boundary values and evaluate the errors. Newton’s block iteration method [12]
is used to solve the system of non-linear difference equations. For all problems the initial
guess is assumed trivial — i.e. u = 0. All computations are performed by using MATLAB
code.

The error of the method is defined by

i =

— n__gymn
0 = max|u

2

where u} and U" are, respectively, numerical and exact solutions at the point (x;, t,,).

Example 5.1 (Viscous unsteady Burgers’ equation).

2%u  d%u u du Jdu
Tt |==—+u[=+=—), 0<x<1, 0<y<1, t>0. 5.1
U(axz 3y2) ot “(ax 3}/) * d G-D

The exact solution is given by

(2umsin[7(x + y)]exp(—2vm?t))
(2+ cos[m(x + y)]exp(—2vm2t))

u(x,y,t) =

For different v and A = 1.6, Table 1 shows the maximum absolute errors for the proposed
method and the method in [21]. Figs. 1 and 2 present numerical and exact solutions of the
Eq. (5.1). Both plots are for the step size h = 1/64 and Reynolds number R, = v™! = 10°.

Example 5.2 (Time-dependent Navier-Stokes equations of motion).

d%u  2%u du du du Jp

—t—|==—4u—+v—+ =, 0<x, <m t>0, 5.2
(3x2 8y2) ot "ox "oy ax oYST (>-2)
_82v+_82v _Q+uﬂ+vﬂ+3_p 0<x <m, t>0 (5.3)
ax® 9y2) 3t "Yax "Vay Ty P VST '

with the pressure function

1
p(x,y,t) = —Z(Cos 2 + cos 2y e,

Exact solutions is

(—2vt) (—2vt) )

u=—cosxsinye y =sinxcosye

For various v and A = 1.6/ 72, Table 2 shows the maximum absolute errors for the proposed
method and the method in [21]. Figs. 3-6 demonstrate numerical and exact solutions.
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Table 1: Example 5.1. Maximum absolute errors, t =1.
. Proposed Method (2.27) Method in [21]

R,=10*> | R,=10* | R,=10° | R,=10? | R,=10* | R,=10°
1/16 | 1/160 |7.1178e-07|3.6749e-10(3.7834¢e-14|1.4122e-06|4.3534e-09|8.9751e-12
1/32| 1/640 |4.7311e-08|2.6503e-11(2.8935e-15|8.5579e-08|2.5732e-10{5.9022e-13
1/62 | 1/2560 |2.9963e-09(1.6737e-12(1.8508e-16|5.6412e-09|1.6554e-11(3.7842e-14
1/128|1/10240(1.8829e-10(1.0393e-13[1.1592e-17|3.8452e-10(1.1129e-12(2.7041e-15

Numerical solution U

Y values

Figure 1: Example 5.1. Numerical solution, h =

Numerical Solution at t=1
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X values
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Y values

Exact Solution at t=1

0 o

0.6

0.4

X values

Figure 2: Example 5.1. Exact solution, h =1/64,

1/64, Re =10°. Re =10°.
Table 2: Example 5.2. Maximum absolute errors, ¢t = 1.
h . Proposed Method (2.27) Method in [21]
v=0.1 v =0.02 v=0.1 v =0.02
. - . - .6922e- .5524e-
/16 1/160 u | 3.4768e-05 | 3.5985e-04 | 3.6922e-04 | 4.5524e-03
v | 5.8554e-05 | 7.7496e-04 | 4.8429e-04 | 5.3412e-03
2.1214e-06 | 2.2505e-05 | 2.3207e-05 | 2.7376e-0
/32 1/640 u 4e e 7e 7376e-04
v | 3.4888e-06 | 4.9773e-05 | 3.0288e-05 | 3.3120e-04
1.3121e-0 1.4025e-06 | 1.4516e-06 | 1.7001e-05
/64 1/2560 u e-07 4025e 4 e 7 e
v | 2.1532e-07 | 3.0864e-06 1.8932-06 | 2.0667e-05
.1867e-0 .7572e-0 .0751-0 1.0611e-06
/128 | 1/10240 u | 8.1867e-09 | 8.7572e-08 | 9.07 8 e
v | 1.3426e-08 | 1.9238e-07 | 1.1886e-07 | 1.4114e-06

Example 5.3 (Taylor-Vortex Problem). We determine the approximate solution of the sys-
tem (5.2)-(5.3) with the pressure function

1
plx,y,t) = Z[ cos (2N x) + cos (2Ny)]e(—4vN2t)’

where N is the number of vortices. The exact solution is

u=—cos(Nx)sin(Ny)e2*¥*0 v = sin(Nx) cos(N y)e"2N°0),
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Numerical Solution of u at t=1 Exact Solution of u at t=1

Numerical solution U
Exact solution u

Y values 0 o Y values 0 o

X values X values

Figure 4: Example 5.2. Exact solution u; h =
n/64, v=0.1.

Figure 3: Example 5.2. Numerical solution for u;
h=mn/64, v=0.1.

Numerical Solution of v at t=1 Exact Solution of v at t=1

Numerical solution V/
Exact solution v

Y values Y values

X values X values

Figure 6: Example 5.2. Exact solution v; h =
n/64, v=0.1.

Figure 5: Example 5.2. Numerical solution for v;
h=mn/64, v=0.1.

Table 3: Example 5.3. Maximum absolute errors, t =1, N = 4.

h . Proposed Method (2.27) Method in [21]
v=0.1 v =0.02 v=0.1 v =0.02
/16 1/160 u | 1.2738e-04 | 1.8535e-02 | 7.3752e-04 | 4.8356e-02
v | 1.2738e-04 | 1.8535e-02 | 7.3752e-04 | 4.8356e-02
. - . - .6415e- 2.91 -
/32 1/640 u | 9.9738e-06 | 8.9660e-04 | 4.6415e-05 9143e-03
v | 9.9738e-06 | 8.9660e-04 | 4.6415e-05 | 2.9143e-03
. 2e- .81 - 2. - 1. -
/64 1/2560 u | 6.5082e-07 | 3.8165e-05 9030e-06 8073e-04
v | 6.5082e-07 | 3.8165e-05 | 2.9030e-06 | 1.8073e-04
1 - 2. - 1.81 - 1.12 -
7/128 | 1/10240 u | 4.1043e-08 3857e-06 8146e-07 44e-05
v | 4.1043e-08 | 2.3857e-06 | 1.8146e-07 | 1.1244e-05

For various v, A = 1.6/n? and N = 4, Table 3 shows the maximum absolute errors for
the proposed method and the method in [21]. Figs. 7-10 display exact and approximate
solutions.
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Numerical Solution of u at t=1 Exact Solution of u at t=1

Numerical solution U
Exact solution u

2
2

Y values X values Y values X values

Figure 7: Example 5.3. Numerical solution for u; Figure 8: Example 5.3. Exact solution u; h =
h=mn/64, v=0.02, N =4. n/64, v=0.02 and N =4.

Numerical Solution of v at t=1 Exact Solution of v at t=1

Numerical solution V/
Exact solution v
o

2
2

0 0
¥ values 0 X values ¥ values 0 X values

Figure 9: Example 5.3. Numerical solution for v; Figure 10: Example 5.3. Exact solution v; h =
h= /64, v=0.02, N=4. n/64, v=0.02, N = 4.

Example 5.4 (Unsteady Burgers’ equation in cylindrical polar coordinates).

—+—+ ul=—
R, \3dr2 0922 radr r2 at
O<r<l1, 0O0<z<l1, t>0.

1 (0% d%u 10u 1 du du Jdu
A 5 = u _+ A +f(rjz’ t)’

or Oz (5.4)

The exact solution of this problem is

n2t
u(r,z,t) =exp| —— | ?r?sin(mz).
Re
We solve the Eq. (5.4) by methods (2.27) and [21]. For various R, and A = 1.6, Table 4
shows the maximum absolute errors for the proposed method and the method in [21].
Figs. 11 and 12 provide numerical and exact solutions of the Eq. (5.4). The spatial conver-
gence order is computed as
log(Ep, /Ep,)
Ph= 7T
log(hy/hy)
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Table 4: Example 5.4. Maximum absolute errors, t =5.

h . Proposed Method (2.27) Method in [21]
R,=10 | R,=50 | R,=100 | R,=10 | R,=50 |R,=100
1/16 | 1/160 |2.2839e-07|4.2703e-04(1.8115e-03|1.4892e-06|3.6713e-03 [Over flow
1/32| 1/640 |1.4212e-08]2.6822e-05[1.1275e-04|9.3082e-08|2.2997e-04 [Over flow
1/64 | 1/2560 |8.8612e-10|1.6825e-06(|7.0125e-06|5.8206e-09 |1.4376e-05 |Over flow
1/128|1/10240|5.5623e-11|1.0556e-07 [4.4043e-07|3.6489¢e-10|8.9855e-07 | Over flow

Nut

x10™

()
55X
G

““

Numerical solution U

0.5

z values

Figure 11: Example 5.4. Numerical solution for u;

h=1/32, R, = 100.
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z values

1/32, R, = 100.

Table 5: Rate of convergence p,, in space.

0.4

0 o

0.6

rvalues

Figure 12: Example 5.4. Exact solution u, h =

Problem Parameters, if any | Order of convergence

R,=10% | foru 3.99
1 R,=10* | foru 4.01
h,=1/64,h,=1/128 | R,=10° | foru 4.00
v =01 for u 4.00
2 for v 4.00
h, =m/64, h, =m/128 v =002 foru 4.00
forv 4.00

f .
v =01 or u 3.99
3 forv 3.99
h, =m/64, h, = /128 v =0.02 foru 3.99
for v 3.99
R, =10 foru 3.99
4 R, =50 foru 3.99
h,=1/64,h,=1/128 | R, =100 | foru 3.99
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where Ej, and Ej, are maximum absolute errors for spatial uniform mesh sizes h; and h,,
respectively.
The time convergence order is computed as

log(E;, /E-,)
Pe="T——"7"7>
© log(t/75)
where E. and E, are maximum absolute errors for time uniform mesh of size 7, and 75,
respectively.

Different values of p; and p, for all the problems are presented in Tables 5 and 6,
respectively. The log-log error plots for all problems are given in Figs. 13-16.

Table 6: Rate of convergence p. in time.

Log of MAE values

Problem Parameters, if any | Order of convergence
R,=10? | foru 1.996
1 R,=10% | foru 2.004
T, =1/2560, T, =1/10240 | R, =10° | foru 1.998
for u 2.001
v=0.1

2 for v 2.001

=1/2 =1/102 f 2.
T, =1/2560, 7, =1/10240 v =002 | foru 000
forv 2.001
v=0.1 foru 1.993
3 forv 1.993

=1/2 =1/102 f 1.
T, /2560, 7, =1/10240 v = 0.02 or u 999
for v 1.999
R, =10 foru 1.996
4 R, =50 foru 1.997
T, =1/2560, T, =1/10240 | R, =100 | foru 1.996

Error Plot- Order of Cgs

Log of h values

Figure 13: Example (5.1). log-log error.
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Log of MAE values
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Figure 14: Example (5.2). log-log error.
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Error Plot- Order of Cgs Error Plot- Order of Cgs
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Figure 15: Example (5.3). log-log error. Figure 16: Example (5.4). log-log error.

6. Summary

We use an implicit exponential numerical scheme for solving unsteady 2D Burgers’ equa-
tion, Navier-Stokes equations of motion and the Taylor-vortex problem. The scheme has
fourth order accuracy in space and second order accuracy in time. It is compact and at the
advanced time levels computational stencil requires only nine points. It is shown that for
linearised Burgers’ equation the method is unconditionally stable. Numerical simulations
show that the scheme can produce oscillation-free solution for high Reynolds numbers —
cf. [21,22]. The simulations are in excellent match with analytic results. The method can
be extended to more complex flow problems in polar coordinates and to complete Navier-
Stokes equations with the pressure as a variable.
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