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Abstract
In this paper, a modified fifth-order weighted essentially non-oscillatory (WENO) finite
difference scheme is presented. The quadratic polynomial approximation of numerical flux
on each candidate stencil of the traditionalWENO-JS scheme is modified by adding a form of
cubic terms such that the resulting stencil approximation achieves fourth-order accuracy. And
the corresponding smoothness indicators are calculated. The modified candidate fluxes and
local smoothness indicators, when used in theWENO-JS scheme, canmake the resulting new
scheme (called WENO-MS) achieve fifth-order convergence in smooth regions including
first-order critical points. A series of one- and two-dimensional numerical examples are
presented to demonstrate the performance of the new scheme. The numerical results show
that the proposed WENO-MS scheme provides a comparable or higher resolution of fine
structures comparedwith theWENO-M,WENO-Z and P-WENO schemes, while it increases
only 7% of CPU time compared with the traditional WENO-JS scheme.
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1 Introduction

Essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO)
schemes have been widely used for the numerical solution of hyperbolic conservation laws
due to their high order accuracy in smooth region and essentially non-oscillatory behavior
near discontinuity. An r -th order ENO scheme [1,2] is designed to choose the smoothest one
from a set of r candidate stencils based on the local smoothness indicator of solution over
a stencil. Liu et al. [3] first introduced the finite volume WENO scheme. The scheme uses
a nonlinear convex combination of local r -th order approximations on all candidate stencils
to achieve an (r + 1)-th order accuracy in smooth regions while keeping the essentially non-
oscillatory property of the ENO scheme near discontinuities. Jiang and Shu [4] introduced
finite differenceWENOschemes andgave a new smoothness indicator,which is the sumof the
scaled L2 norms of all derivatives of the polynomial approximation over a candidate stencil.
The resultant fifth-order finite difference WENO scheme (hereafter denoted as WENO-JS)
has become a quite successful methodology for solving multidimensional problems contain-
ing both strong discontinuities and complicated smooth solution structures in computational
fluid dynamics. However, Henrick et al. [5] noticed that the actual convergence rate of the
fifth-order WENO-JS scheme is 3 at critical points where the first derivative vanishes but
the third derivative does not. Further, they derived the necessary and sufficient conditions on
the weights for fifth-order convergence and developed the fifth-order WENO-M scheme by
devising a mapping function for the weights of the WENO-JS scheme to satisfy the suffi-
cient conditions. Borges et al. [6] proposed another fifth-order WENO scheme (WENO-Z)
by utilizing a higher order global smoothness measurement to calculate the weights. The
recommended WENO-Z scheme with the power parameter p = 1 has fourth-order accuracy
at critical points of smooth solution, which is between 3 for the WENO-JS and 5 for the
WENO-M schemes. Both WENO-M and WENO-Z schemes can obtain sharper results than
the WENO-JS scheme when solving problems with shocks, mainly due to lager weights
they assign to discontinuous stencils [6]. The WENO-Z scheme assigns even larger weights,
obtaining even shaper solutions. And its CPU time cost is nearly the same as the WENO-
JS scheme while the WENO-M scheme increases about 25% CPU time compared with the
WENO-JS scheme. Later on, Ha et al. [7] developed the WENO-NS scheme by using a
smoothness indicator based on the L1 norm, and further improved their scheme by propos-
ing adjustable nonlinear weights [8]. They shown that the resultant WENO-P scheme [8]
has fifth-order accuracy even at critical points. However, the numerical results rely on two
user-tunable parameters.

On the other hand, a few researchers [9–11] defined the parameter ε for preventing division
by zero in the calculation of the WENO weights as a function of the mesh size Δx in order
to obtain the optimal order at critical points. However, it is easy to see that if the reference
length takes a small value, Δx will be a large value, and hence this kind of schemes lose
the scale invariance property and are prone to generate numerical oscillations. Very recently,
Zeng et al. [12] proposed the perturbational WENO (P-WENO) scheme by weighting the
perturbed candidate fluxes with the weights of the WENO-Z scheme. They shown that the
P-WENO scheme meets the necessary and sufficient conditions for fifth-order convergence
even at critical points. In order tomake the scheme have the ENOproperty, they used a tunable
function to reduce the role of the additional flux correction terms. However, they used the
same smoothness indicators as those of theWENO-JS scheme, which seem to be inconsistent
with the 3rd-degree polynomial approximations over the candidate stencils implied by the
numerical perturbation method they used.
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In this article, based on the work of Zeng et al. [12], we propose a modified fifth-order
WENO scheme. Unlike Ref. [12] which only gave the perturbed candidate flux at the grid
interface i + 1/2, we further construct the perturbed cubic polynomial approximation of the
numerical flux on each candidate stencil. Then we compute the corresponding smoothness
indicators according to the formula of the JS indicator. The high-order correction terms in
the candidate numerical fluxes and smoothness indicators are limited by a tunable function in
order to recover the ENO property as Ref. [12] did. And we only use the traditional WENO-
JS weights instead of the delicate WENO-Z weights as in [12]. We call the resultant scheme
WENO-MS scheme where “MS” stands for “modified stencil”. We provide a theoretical
analysis to show the fifth-order accuracy of the new scheme in smooth region including
critical point. Some numerical experiments are presented to demonstrate that the WENO-
MS scheme can obtain more salient results than the WENO-JS, WENO-M, WENO-Z and
P-WENO schemes, while its CPU cost is only 7% more than the WENO-JS scheme.

The rest of this paper is organized as follows. Section 2 provides a brief review of the con-
servative fifth-order finite differenceWENO scheme for one-dimensional scalar conservation
laws including the necessary and sufficient conditions on the weights to achieve fifth-order
convergence. In Sect. 3, themodified stencil approximation polynomials of the numerical flux
are constructed, and the corresponding smoothness indicators are given. Then the WENO-
MS scheme is presented and its order of convergence is analyzed. In Sect. 4 some numerical
results are presented to show the performance of the present scheme. Finally, concluding
remarks are given in Sect. 5.

2 Review of Finite DifferenceWENO Schemes

We consider the numerical solution of the one-dimensional scalar hyperbolic conservation
law

ut + f (u)x = 0, (1)

where u(x, t) is the conservative variable, f (u(x, t)) is the flux function. Throughout this
paper, we assume that a given domain [a, b] is uniformly gridded with the set of cells
I j := [x j−1/2, x j+1/2], j = 1, . . . , N . The center (node) of I j is denoted by x j = (x j−1/2+
x j+1/2), and a function value at the node x j is denoted by a subscript j , e.g., f j = f (x j ).
The notion Δx = (b − a)/N indicates the grid size.

Equation (1) can be approximated by the semi-discretization form

du j

dt
= − ∂ f

∂x

∣
∣
∣
∣
x=x j

, (2)

where u j (t) is the numerical approximation to the point value u(x j , t) at the node x j . A
conservative finite difference can be obtained by defining a numerical flux function h(x)
implicitly through the following equation [13]

f (x) = 1

Δx

∫ x+ Δx
2

x− Δx
2

h(ξ)dξ. (3)

Differentiating (3) with respect to x shows that the derivative of f at x j is equal to the
conservative finite difference of the function h(x) between cell interfaces exactly,

∂ f

∂x

∣
∣
∣
∣
x=x j

= 1

Δx

[

h

(

x j + Δx

2

)

− h

(

x j − Δx

2

)]

. (4)
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If h j±1/2 in (4) is approximated by some numerical fluxes f̂ j±1/2 to a high order, e.g.,
h j±1/2 = f̂ j±1/2 + O(Δx5), and the O(Δx5) term is smooth, then the approximation to
the spatial derivative (∂ f /∂x)x=x j in (4) will have O(Δx5) accuracy [14]. For achieving
numerical stability and avoiding entropy violating solutions, upwinding and flux splitting
approaches are used in constructing the numerical flux. The original flux f (u) is split into
positive and negative fluxes, f + and f −, so that

f (u) = f +(u) + f −(u), (5)

where d f +(u)
du ≥ 0 and d f −(u)

du ≤ 0. One of the simplest flux splittings is the Lax–Friedrichs
splitting which is given by

f ±(u) = 1

2
( f (u) ± αu) , (6)

whereα = maxu | f ′
(u)| over the pertinent range of u.We then apply theWENOprocedure to

f ±(u j ) to obtain the split numerical fluxes f̂ ±
j+1/2, and sum them up to obtain the numerical

flux at the cell interface,
f̂ j+1/2 = f̂ +

j+1/2 + f̂ −
j+1/2. (7)

Hereafter, we will only describe how f̂ +
j+1/2 is approximated because the formulas for

f̂ −
j+1/2 are symmetric to the positive counterparts with respect to x j+1/2. Also, for simplicity,

we will drop the “+” sign in the superscript.

2.1 Fifth-OrderWENO Scheme

For constructing numerical flux f̂ j+1/2 from known grid point values of f j , the classic fifth-
order WENO scheme uses a 5-point global stencil which is subdivided into three 3-point
sub-stencils as shown in Fig. 1. Let

Sk := {x j+k−2, x j+k−1, x j+k}, k = 0, 1, 2 (8)

be the sub-stencil consisting of 3 points starting at x j+k−2. A third-order accurate quadratic
polynomial approximation to the function h(x) in Eq. (3) is constructed, i.e., f̂ k(x) =
h(x) + O(Δx3), with k = 0, 1, 2 for each of the three candidate stencils. These polynomial
approximate functions are found to be (e.g., see [15])

Fig. 1 Candidate stencils used for
the classic WENO5 numerical
flux f̂ j+1/2
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f̂ 0(x)=− f j+26 f j−1− f j−2

24
+ f j− f j−2

2Δx
(x−x j−1)+ f j−2 f j−1+ f j−2

2Δx2
(x−x j−1)

2,

f̂ 1(x)=− f j+1+26 f j− f j−1

24
+ f j+1− f j−1

2Δx
(x−x j )+ f j+1−2 f j+ f j−1

2Δx2
(x−x j )

2,

f̂ 2(x) = − f j+2+26 f j+1− f j
24

+ f j+2− f j
2Δx

(x−x j+1)+ f j+2−2 f j+1+ f j
2Δx2

(x − x j+1)
2.

(9)
Evaluations of Eq. (9) at the j + 1/2 interface give f̂ kj+1/2 for each stencil:

f̂ 0
j+ 1

2
= 1

3
f j−2 − 7

6
f j−1 + 11

6
f j ,

f̂ 1
j+ 1

2
= −1

6
f j−1 + 5

6
f j + 1

3
f j+1,

f̂ 2
j+ 1

2
= 1

3
f j + 5

6
f j+1 − 1

6
f j+2.

(10)

The candidate numerical fluxes f̂ kj+1/2 (k = 0, 1, 2) are combined in a weighted average
to define the fifth-order WENO approximation to the value h(x j+1/2),

f̂ j+ 1
2

=
2
∑

k=0

ωk f̂
k
j+ 1

2
, (11)

where ωk is the nonlinear weight of the stencil Sk . In the standard WENO-JS scheme, ωk is
calculated as

ωk = αk
∑2

l=0 αl
, αk = dk

(ε + βk)2
, k = 0, 1, 2, (12)

where d0 = 1
10 , d1 = 6

10 and d2 = 3
10 are the ideal weights, 0 < ε � 1 is a small positive

parameter to prevent the denominator becoming zero, and βk is the smoothness indicator for
the candidate numerical flux f̂ kj+1/2. The smoothness indicator βk introduced by Jiang and
Shu [4] is given by

βk =
2
∑

l=1

Δx2l−1
∫ x

j+ 1
2

x
j− 1

2

(

dl f̂ k(x)

dxl

)2

dx, k = 0, 1, 2. (13)

Equation (13) have the explicit expressions based on the polynomial approximations (9),

β0 = 1

4
( f j−2 − 4 f j−1 + 3 f j )

2 + 13

12
( f j−2 − 2 f j−1 + f j )

2,

β1 = 1

4
( f j−1 − f j+1)

2 + 13

12
( f j−1 − 2 f j + f j+1)

2,

β2 = 1

4
(3 f j − 4 f j+1 + f j+2)

2 + 13

12
( f j − 2 f j+1 + f j+2)

2.

(14)

Henrick et al. [5] noticed that by using the Taylor series expansions of the Eq. (10) and
their counterparts at j − 1/2, one can get

f̂ 0
j± 1

2
= h j± 1

2
− 1

4
f

′′′
j Δx3 + O(Δx4),

f̂ 1
j± 1

2
= h j± 1

2
+ 1

12
f

′′′
j Δx3 + O(Δx4),

f̂ 2
j± 1

2
= h j± 1

2
− 1

12
f

′′′
j Δx3 + O(Δx4) (15)
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Denote A0 = − 1
4 f

′′′
j , A1 = 1

12 f
′′′
j , A2 = − 1

12 f
′′′
j for the second terms in (15). Henrick et

al. [5] derived the necessary and sufficient conditions on the weights for fifth-order conver-
gence of a nominal fifth-order WENO scheme,

2
∑

k=0

(ω±
k − dk) = O(Δx6),

2
∑

k=0

Ak(ω
+
k − ω−

k ) = O(Δx3),

ω±
k − dk = O(Δx2), (16)

where superscripts “+” and “−” on ωk correspond to their use in f̂ kj+1/2 and f̂ kj−1/2 respec-
tively. Since the first equation in (16) always holds due to the normalization, a simple sufficient
condition for fifth-order convergence is give in [6] as

ω±
k − dk = O(Δx3). (17)

3 NewModified Fifth-OrderWENO Scheme

In this section, we introduce high-order correction terms to the stencil approximation poly-
nomials (9) to construct a new modified fifth-order WENO scheme, and analyze its order of
accuracy.

3.1 Modified Stencil Approximation

We add cubic correction terms pk(x) to the candidate stencil polynomials (9),

f̃ k(x) = f̂ k(x) + pk(x), k = 0, 1, 2. (18)

We require that the modified polynomial f̃ k(x) satisfy Eq. (3) at each grid point of the stencil
Sk as shown in Fig. 1, and that it be a fourth-order accurate approximation to the function
h(x). The first constraint requires

fi = 1

Δx

∫ xi+ Δx
2

xi− Δx
2

f̃ k(x)dx, i = j + k − 2, j + k − 1, j + k. (19)

Because f̂ k(x) alone has already satisfied Eq. (19) [4,15], pk(x) should satisfy

∫ xi+ Δx
2

xi− Δx
2

pk(x)dx = 0, i = j + k − 2, j + k − 1, j + k. (20)

There are several choices for the form of pk(x) that can satisfy Eq. (20). In this paper, we
choose

pk(x) = ak
(

x − x j+k−2
)3 + bk

(

x − x j+k−1
)3 + ck

(

x − x j+k
)3

, k = 0, 1, 2. (21)

Substituting (21) into (20), we obtain

5bk + 34ck = 0, ak − ck = 0, 34ak + 5bk = 0, k = 0, 1, 2. (22)
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Thus, ak = ck, bk = − 34
5 ck . So, Eq. (21) becomes

pk(x) = ck

[
(

x − x j+k−2
)3 − 34

5

(

x − x j+k−1
)3 + (x − x j+k

)3
]

, k = 0, 1, 2. (23)

The second constraint requires that f̃ kj+1/2 be a fourth-order accurate approximation to

h j+1/2, i.e, f̃ kj+1/2 = f̂ kj+1/2 + pk(x j+1/2) = h j+1/2 + O(Δx4), k = 0, 1, 2. By using
Eq. (15), we obtain

h j+ 1
2

− 1

4
f

′′′
j Δx3 + p0

(

x j+ 1
2

)

+ O(Δx4) = h j+ 1
2

+ O(Δx4),

h j+ 1
2

+ 1

12
f

′′′
j Δx3 + p1

(

x j+ 1
2

)

+ O(Δx4) = h j+ 1
2

+ O(Δx4),

h j+ 1
2

− 1

12
f

′′′
j Δx3 + p2

(

x j+ 1
2

)

+ O(Δx4) = h j+ 1
2

+ O(Δx4). (24)

These equations give ck = − 5
144 f

′′′
j ,∀k ∈ {0, 1, 2}. Thus, pk(x) takes the specific form

pk(x) = − 5

144
f

′′′
j

[
(

x − x j+k−2
)3 − 34

5

(

x − x j+k−1
)3 + (x − x j+k

)3
]

, k = 0, 1, 2.

(25)
If we use a finite difference approximation for f

′′′
j in Eq. (25) as Ref. [12] did,

f
′′′
j = ∂3 f

∂x3

∣
∣
∣
∣
x=x j

≈ − f j−2 + 2 f j−1 − 2 f j+1 + f j+2

2Δx3
+ O(Δx), (26)

then pk(x) becomes

pk(x) = − 5

288Δx3
(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2)

[
(

x − x j+k−2
)3 − 34

5

(

x − x j+k−1
)3 + (x − x j+k

)3
]

, k = 0, 1, 2.
(27)

Obviously, the finite difference (26) will not degrade the fourth-order accuracy of f̃ k(x) in
approximating h(x). Finally, evaluations of the modified stencil polynomials (18) with (27)
at the grid interface j + 1/2 give the modified candidate fluxes as

f̃ 0
j+ 1

2
= 1

3
f j−2 − 7

6
f j−1 + 11

6
f j + 1

8

(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2
)

,

f̃ 1
j+ 1

2
= −1

6
f j−1 + 5

6
f j + 1

3
f j+1 − 1

24

(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2
)

,

f̃ 2
j+ 1

2
= 1

3
f j + 5

6
f j+1 − 1

6
f j+2 + 1

24
(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2).

(28)

We remark that the candidate numerical fluxes (28) are the same as those in the P-WENO
scheme [12]. Nevertheless, the smoothness indicator and weights as described in the next
subsection are different.
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3.2 The New Smoothness Indicator and theWENO-MS Scheme

The Jiang-Shu smoothness indicator formula for the modified stencil polynomial approxi-
mations (18) can be written as

β̃k =
3
∑

l=1

Δx2l−1
∫ x

j+ 1
2

x
j− 1

2

{
dl

dxl

[

f̂ k(x) + pk(x)
]}2

dx . (29)

After integration, the modified indicators take on explicit forms:

β̃0 = β0 + 547

960
(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2)

2

+ 1

12
(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2)(15 f j−2 − 34 f j−1 + 19 f j ),

β̃1 = β1 + 89

320
(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2)

2

− 1

12
(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2)( f j+1 − f j−1),

β̃2 =β2 + 547

960
(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2)

2

− 1

12
(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2)(19 f j − 34 f j+1 + 15 f j+2).

(30)

The nonlinear weights ωk are calculated as the WENO-JS scheme,

ωk = αk
∑2

l=0 αl
, αk = dk

(

ε + β̃k

)2 , k = 0, 1, 2. (31)

where ε = 10−40 is used in the present scheme. It is easy to see that the ideal weights
d0 = 1

10 , d1 = 6
10 and d2 = 3

10 also make the linear combination of the modified candidate
fluxes (28) have the optimal fifth-order accuracy, i.e.,

2
∑

k=0

dk f̃
k
j+ 1

2
= 1

60
(2 f j−2 − 13 f j−1 + 47 f j + 27 f j+1 − 3 f j+2)

= h j+1/2 + O(Δx5).

(32)

Based on the modified candidate fluxes (28) and smoothness indicators (30), as well as the
nonlinear weights (31), a naive weighted scheme is given by

f̃ MS
j+ 1

2
=

2
∑

k=0

ωk f̃
k
j+ 1

2
, (33)

where “MS” stands for “modified stencil”.
However, themodified candidate fluxes (28) and smoothness indicators (30) depend on the

whole 5-point stencil thus the naive scheme (33) loses the ENO property. Ref. [12] retained
the WENO-JS smoothness indicators and applied a tunable function ϕ to limit the influence
of the last terms in Eq. (28) to recover the ENO property. In this work, we multiply the last
terms in Eq. (28) and the last two terms in Eq. (30) by using a tunable function ϕ in order to
recover the ENO property. The smoothness indicators (30) become
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˜̃
β0 = β0 + ϕ

(
547

960

(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2
)2

+ 1

12

(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2
) (

15 f j−2 − 34 f j−1 + 19 f j
)
)

,

˜̃
β1 = β1 + ϕ

(
89

320

(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2
)2

− 1

12

(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2
) (

f j+1 − f j−1
)
)

,

˜̃
β2 = β2 + ϕ

(
547

960

(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2
)2

− 1

12

(− f j−2 + 2 f j−1 − 2 f j+1 + f j+2
) (

19 f j − 34 f j+1 + 15 f j+2
)
)

,

(34)

where ϕ is defined as

ϕ = 1 −
( |β0 − β2|

β0 + β2 + ε

)q

, q ≥ 1. (35)

And the candidate fluxes (28) become ˜̃f kj+1/2 similarly. We call Eq. (33) with the ϕ-limited

candidate fluxes ˜̃f kj+1/2 and smoothness indicators ˜̃
βk the WENO-MS scheme.

From Eq. (35) we can see that if any of the three candidate stencils in Fig. 1 contains a dis-

continuity, then ϕ is a small value approaching zero. Thus ˜̃
βk → βk ,

˜̃f kj+1/2 → f̂ kj+1/2,∀k =
0, 1, 2 so that WENO-MS recovers WENO-JS; otherwise, ϕ = 1 −

(
O(Δx5)
O(Δx2)

)q =
1 − O(Δx3q) for f ′

j 
= 0, and ϕ = 1 −
(
O(Δx5)
O(Δx4)

)q = 1 − O(Δxq) for f ′
j = 0 [12].

We take q = 1. Such a ϕ does not affect the fifth-order convergence of the scheme (33) in
smooth regions as will be shown in Sect. 3.3.

3.3 Accuracy Analysis of theWENO-MS Scheme

In smooth region of solution, Taylor series expansions of the smoothness indicators (30) at
x j give

β̃0 = f
′2
j Δx2 + 13

12
f

′′2
j Δx4 + 1

2
f

′
j f

(4)
j Δx5 + O(Δx6),

β̃1 = f
′2
j Δx2 + 13

12
f

′′2
j Δx4 + O(Δx6),

β̃2 = f
′2
j Δx2 + 13

12
f

′′2
j Δx4 − 1

2
f

′
j f

(4)
j Δx5 + O(Δx6).

(36)

Taylor series expansions of Eq. (34) also give the same results as long as ϕ = 1 + O(Δx),
since the affected last two terms in Eq. (34) contain only O(Δx5). Similar to the analysis
made in Ref. [5], Eq. (36) can be written as

β̃k = D
(

1 + O(Δx2)
)

. (37)

where D = f
′2
j Δx2 if f ′

j 
= 0, f ′′
j 
= 0 and D = 12

13 f
′′2
j Δx4 if f ′

j = 0, f ′′
j 
= 0. Notice

that (37) is different from βk = D (1 + O(Δx)) for f ′
j = 0 in Refs. [5,9,12]. Substitution of

Eq. (37) into the second equation of the weights (31) gives
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αk = dk
(

D
(

1 + O(Δx2)
))2 = dk

D2

(

1 + O(Δx2)
)

. (38)

In view of
∑2

k=0 dk = 1, the sum of these terms is

2
∑

k=0

αk = 1

D2

(

1 + O(Δx2)
)

. (39)

Thus the weights (31) satisfy the following relation:

ωk = dk + O(Δx2). (40)

Now, we derive the necessary and sufficient conditions for fifth-order convergence of the
WENO-MS scheme. We add and subtract

∑2
k=0 dk f̃

k
j+1/2 from Eq. (33):

f̂ MS
j+ 1

2
=

2
∑

k=0

dk f̃
k
j+ 1

2
+

2
∑

k=0

(ω+
k − dk) f̃

k
j+ 1

2
,

f̂ MS
j− 1

2
=

2
∑

k=0

dk f̃
k
j− 1

2
+

2
∑

k=0

(ω−
k − dk) f̃

k
j− 1

2
.

(41)

The numerical flux difference f̂ MS
j+1/2 − f̂ MS

j−1/2 can be expanded as

2
∑

k=0

ω+
k f̃ kj+1/2 −

2
∑

k=0

ω−
k f̃ kj−1/2

=
2
∑

k=0

dk f̃
k
j+1/2 −

2
∑

k=0

dk f̃
k
j−1/2

︸ ︷︷ ︸

linear flux difference

+
2
∑

k=0

(ω+
k − dk ) f̃

k
j+1/2 −

2
∑

k=0

(ω−
k − dk ) f̃

k
j−1/2

= h
j+ 1

2
− 1

60

d5 f

dx5

∣
∣
∣
∣
∣
j

Δx5 − h
j− 1

2
+ 1

60

d5 f

dx5

∣
∣
∣
∣
∣
j

Δx5 + O(Δx6)

︸ ︷︷ ︸

linear flux difference

+
2
∑

k=0

(ω+
k − dk )

(

h
j+ 1

2
+ AkΔx4 + O(Δx5)

)

︸ ︷︷ ︸

= f̃ kj+1/2, k=0,1,2

−
2
∑

k=0

(ω−
k − dk )

(

h
j− 1

2
+ AkΔx4 + O(Δx5)

)

︸ ︷︷ ︸

= f̃ kj−1/2, k=0,1,2

= f ′
jΔx + O(Δx6)
︸ ︷︷ ︸

linear scheme

+Δx4
2
∑

k=0

(

ω+
k − ω−

k

)

Ak +
⎡

⎣

2
∑

k=0

(ω+
k − dk ) −

2
∑

k=0

(ω−
k − dk )

⎤

⎦O(Δx5),

where the normalization has been utilized for the last equality. (In fact, ˜̃f kj±1/2 = h j±1/2 +
O(Δx4) is also valid as long as ϕ = 1 + O(Δx) because the last terms in Eq. (28) contain
only O(Δx3)). The last two terms give the necessary and sufficient conditions

2
∑

k=0

(

ω+
k − ω−

k

)

Ak = O(Δx2), (42a)

ω±
k − dk = O(Δx). (42b)
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It is only sufficient to require ωk − dk = O(Δx2), i.e., Eq. (40). This sufficient condition
relaxes the original requirement on the weights (Eq. (17)) by one order. We remark that the
condition was also derived in the P-WENO scheme [12] in a slightly different way.

Since the nonlinear weights (31) always satisfy the condition (40) whether f
′
j = 0 or

f
′
j 
= 0, we conclude that the proposed WENO-MS scheme is fifth-order accurate in smooth

regions including first-order critical points.

4 Numerical Results

In this section, we demonstrate the performance of the proposed WENO-MS scheme in
several numerical examples in comparison with theWENO-JS, WENO-M,WENO-Z and P-
WENO schemes. The numerical examples beginwith solutions of the simple scalar advection
equation, followed by numerical solutions of the one-dimensional and two-dimensional Euler
equations. The local Lax–Friedrichs flux splitting is used for all schemes and examples in
this paper. For the time advancement we use the third-order TVD Runge–Kutta method [13].

4.1 One-Dimensional Scalar Advection Problems

Consider the following linear advection equation:

ut + ux = 0, − 1 ≤ x ≤ 1, t ≥ 0 (43)

with the initial condition u(x, 0) = u0(x) and periodic boundary conditions.
Firstly, we test the approximation order of the WENO-MS scheme on Eq. (43) with two

sets of initial data (e.g., [7,12])

(a) u0(x) = sin(πx), (b) u0(x) = sin

(

πx − sin(πx)

π

)

. (44)

Since we use the third-order TVD Runge–Kutta method in time, the time step is taken as
Δt = 0.5× (Δx)5/3 such that it becomes effectively fifth-order. Table 1 gives the L∞ errors
and convergence orderswith increasing node number N at t = 2 for the initial data (44a). This
initial data have no first-order critical points. It can be seen that the errors of the WENO-MS
scheme are close to those of theWENO-M,WENO-Z, and P-WENO schemes. Table 2 shows
results for the initial data (44b). It is seen that the present scheme has smaller or comparable
errors than other improved WENO schemes for this case with first-order critical points.

Table 3 shows the local errors and rates of convergence of the four schemes at the first-order
critical point xc ≈ 0.59 for the initial condition (44b).We can see thatWENO-MS,WENO-M
and P-WENO attain fifth-order, while WENO-Z attains fourth-order and WENO-JS attains
third-order accuracy, respectively.

To compare the computational costs, Table 4 shows the CPU times of different schemes
spent in doing 1000 WENO reconstructions. We see that the CPU costs of the WENO-M,
WENO-Z, P-WENO, and WENO-MS schemes increase roughly 33%, 1%, 3%, and 7%
compared with the classical WENO-JS scheme, respectively.

Secondly, we check the behaviors of the present scheme at jump discontinuities after a
long time by using the following three cases. In the first case, we test it on the linear advection
Eq. (43) with the initial condition [8]

u0(x) =
{− sin(πx) − 1

2 x
3, if − 1 ≤ x ≤ 0,

− sin(πx) − 1
2 x

3 + 1, if 0 ≤ x ≤ 1,
(45)
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Table 1 L∞ errors and convergence orders at t = 2.0 of different schemes on the linear advection equation
(43) with the initial condition (44a)

N WENO-JS WENO-M WENO-Z P-WENO WENO-MS
L∞ error (order) L∞ error (order) L∞ error (order) L∞ error (order) L∞ error (order)

10 4.76E−2 (—) 1.33E−2 (—) 1.04E−2 (—) 1.16E−2 (—) 1.38E−2 (—)

20 2.54E−3 (4.23) 3.34E−4 (5.31) 3.33E−4 (4.96) 3.42E−4 (5.08) 4.02E−4 (5.10)

40 8.03E−5 (4.98) 9.87E−6 (5.08) 1.03E−5 (5.01) 9.37E−6 (5.19) 1.12E−5 (5.17)

80 2.43E−6 (5.04) 2.36E−7 (5.39) 2.96E−7 (5.12) 2.64E−7 (5.15) 3.04E−7 (5.20)

160 8.08E−8 (4.91) 7.36E−9 (5.00) 7.71E−9 (5.26) 7.36E−9 (5.16) 8.57E−9 (5.15)

320 2.46E−9 (5.04) 1.96E−10 (5.23) 2.36E−10 (5.03) 2.23E−10 (5.04) 2.58E−10 (5.05)

WENO-JS uses ε = 10−6 while other schemes use ε = 10−40

Table 2 L∞ errors and convergence orders at t = 2.0 of different schemes on the linear advection equation
(43) with the initial condition (44b)

N WENO-JS WENO-M WENO-Z P-WENO WENO-MS
L∞ error (order) L∞ error (order) L∞ error (order) L∞ error (order) L∞ error (order)

10 1.23E−1 (—) 7.36E−2 (—) 5.21E−2 (—) 4.38E−2 (—) 4.63E−2 (—)

20 1.43E−2 (3.10) 5.26E−3 (3.81) 3.50E−3 (3.89) 1.87E−3 (4.55) 1.77E−3 (4.71)

40 1.10E−3 (3.68) 2.09E−4 (4.66) 1.21E−4 (4.86) 6.13E−5 (4.93) 5.51E−5 (5.01)

80 4.27E−5 (4.69) 4.58E−6 (5.51) 2.58E−6 (5.55) 1.53E−6 (5.32) 1.48E−6 (5.22)

160 1.30E−6 (5.04) 1.31E−7 (5.13) 6.71E−8 (5.27) 3.81E−08 (5.33) 4.12E−8 (5.17)

320 4.03E−8 (5.01) 4.09E−8 (5.00) 2.10E−9 (5.00) 1.14E−09 (5.06) 1.27E−9 (5.02)

Table 3 The point errors |u − uexact | at the critical point xc ≈ 0.59 and corresponding convergence orders at
t = 2.0 of different schemes on the linear advection equation (43) with the initial condition (44b)

N WENO-JS WENO-M WENO-Z P-WENO WENO-MS
L∞-
error (order)

L∞-
error (order)

L∞-
error (order)

L∞-
error (order)

L∞-
error (order)

20 1.60E−3(—) 2.53E−4(—) 2.90E−4(—) 2.36E−4(—) 2.65E−4(—)

40 2.34E−4 (2.77) 7.96E−6 (4.99) 2.14E−5 (3.87) 7.81E−6 (4.92) 8.46E−6 (4.97)

80 3.05E−5 (2.93) 2.53E−7 (4.98) 1.37E−6 (3.96) 2.47E−7 (4.98) 2.67E−7 (4.99)

160 4.10E−6 (2.90) 7.94E−9 (4.99) 8.69E−8 (3.98) 7.76E−9 (4.99) 8.40E−9 (4.99)

320 5.31E−7 (2.95) 2.55E−10 (4.96) 5.46E−9 (3.99) 2.44E−10 (4.99) 2.65E−10 (4.99)

Table 4 CPU times in seconds and costs relative to theWENO-JS scheme for different schemes spent in doing
1000 WENO reconstructions for the linear advection equation (43) with the initial condition (44a)

N WENO-JS WENO-M WENO-Z P-WENO WENO-MS

40 0.044 (1.00) 0.055 (1.25) 0.043 (0.98) 0.0452 (1.03) 0.0465 (1.06)

160 0.204 (1.00) 0.272 (1.33) 0.208 (1.02) 0.211 (1.03) 0.215 (1.05)

640 6.689 (1.00) 9.552 (1.43) 6.744 (1.01) 6.920 (1.03) 7.180 (1.07)
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Fig. 2 Comparison of the analytical solution and the numerical solutions usingWENO-JS,WENO-M,WENO-
Z, P-WENO andWENO-MS schemes for the linear advection Eq. (43) with the initial condition (45) at t = 40,
Δx = 0.01

Table 5 Local L1 errors in the region [-0.15, 0.15] (near discontinuity) at t = 40 of different schemes for the
linear advection Eq. (43) with the initial condition (45)

N WENO-JS WENO-M WENO-Z P-WENO WENO-MS

50 4.0432E−02 3.5678E−02 3.6704E−02 3.5596E−02 3.5617E−02

100 2.6695E−02 2.3034E−02 2.3264E−02 2.2916E−02 2.3289E−02

200 1.6556E−02 1.4419E−02 1.4170E−02 1.4523E−02 1.4931E−02

400 9.6786E−03 8.5651E−03 8.3847E−03 8.6717E−03 9.0301E−03

800 5.2363E−03 4.5529E−03 4.5265E−03 4.6188E−03 4.7520E−03

which is a piecewise sine function with a jump discontinuity at x = 0. Numerical solutions
of different schemes are compared with the analytic solution at t = 40 in Fig. 2. We can
see that there are significant improvements near discontinuities with the WENO-MS and P-
WENO schemes. Table 5 shows the L1 errors near the discontinuity. We see that the results
ofWENO-MS, P-WENO,WENO-M andWENO-Z are comparable, all of which are slightly
smaller than those of the WENO-JS scheme.

In the second case, the initial condition is [7,8]

u0(x) =
⎧

⎨

⎩

−x sin
( 3π

2 x2
)

, if − 1 ≤ x ≤ − 1
3 ,| sin(2πx)|, if − 1

3 < x ≤ 1
3 ,

2x − 1 − 1
6 sin(3πx), if 1

3 ≤ x ≤ 1.
(46)

We solve the advection equation (43) with the initial condition (46) up to t = 41 with the
CFL number of 0.5. The solution consists of contact discontinuities, corner singularities and
smooth areas. Thenumerical results inFig. 3, especially near the areas of discontinuities, show
that WENO-MS performs slightly better than P-WENO, and both are better than WENO-Z,
WENO-M, and WENO-JS.
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Fig. 3 Comparison of the analytical solution and the numerical solutions usingWENO-JS,WENO-M,WENO-
Z, P-WENO and WENO-MS schemes for the linear advection equation (43) with the initial condition (46) at
t = 41, Δx = 0.01

In the third case, the initial condition containing a Gaussian, a square-wave, a triangle and
a semi-ellipse wave, is given by [12]

u0(x) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
6 (G(x, β, z − δ) + G(x, β, z + δ) + 4G(x, β, z)) , if − 0.8 ≤ x ≤ −0.6,
1, if − 0.4 ≤ x ≤ −0.2,
1 − |10(x − 0.1)|, if 0.0 < x ≤ 0.2,
1
6 (F(x, α, a − δ) + G(x, α, a + δ) + 4G(x, α, a)) , if 0.4 ≤ x ≤ 0.6,
0, otherwise.

(47)
where G(x, β, z) = exp−β(x−z)2 , F(x, α, a) = √

max(1 − α2(x − a)2, 0), a = 0.5, z =
−0.7, δ = 0.005, α = 10 and β = log 2/36δ2. We solve the advection equation (43) with
the condition (47) up to t = 6 using CFL = 0.5 and Δx = 0.005. The numerical results are
shown in Fig. 4. Form the enlarged subsets we see that the present WENO-MS scheme is
closer to the analytical solution than P-WENO, WENO-Z, WENO-M and WENO-JS. The
present scheme ismost close to the exact solution near the smooth peaks, while theWENO-JS
scheme is more dissipative than other improved WENO schemes, both at smooth peaks and
at discontinuities.

4.2 1D Euler Systems

We consider the system of the one-dimensional Euler equations,

Ut + F(U )x = 0, (48)

where
U = (ρ, ρu, E)T , F(U ) = (ρu, ρu2 + p, u(E + p)

)T
.
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Fig. 4 Comparison between the analytical solution and the numerical solutions using WENO-JS, WENO-M,
WENO-Z, P-WENO andWENO-MS schemes for the linear advection equation (43) with the initial condition
(47) at t = 6, Δx = 0.005
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The ideal gas equation of state is given by

p = (γ − 1)

(

E − 1

2
ρu2
)

,

where ρ, u, p and E are the density, velocity, pressure and total energy respectively, γ is the
ratio of specific heats, and γ = 1.4 is used throughout in this subsection. The characteristic
decomposition [15] is used to generalize the WENO schemes to the 1D Euler system. We
consider three examples. The CFL number used is set to 0.5 in all the examples.

1. Shock Entropy Wave Interaction (Shu–Osher Problem [13]) The solution domain
is x ∈ [−5, 5] with zero-gradient boundary conditions. The initial conditions are

(ρ, u, p) =
{(

27
7 , 4

√
35
9 , 31

3

)

, if − 5 ≤ x < −4,

(1 + ε sin(kx), 0, 1), if − 4 ≤ x ≤ 5,
(49)

where ε = 0.2 and k = 5 are the amplitude and wave number of the entropy wave, respec-
tively. A right-going Mach 3 shock wave initially at x = −4 interacts with sine waves in a
density disturbance which generates a flow field with both smooth structures and discontinu-
ities. This flow induces high-frequencywave trails behind themain shock that are progressing
into smaller amplitude shocks. Since the exact solution is unknown, the reference solution is
obtained by using the fifth-order WENO-JS scheme [4] with 3201 grid points. The problem
is solved with Δx = 0.05 and with Δx = 0.025 respectively. Figure 5 shows comparison
between the numerical results of density profiles for different schemes and the exact solu-
tion at t = 1.8. It is seen that the present WENO-MS scheme captures the shock and the
high-frequency waves better than other WENO schemes.

2. Sod’s Shock Tube Problem [16,17] The initial conditions of this problem are given by

(ρ, u, p) =
{

(1.000, 0.0, 1.0), if 0 ≤ x < 0.5,
(0.125, 0.0, 0.1), if 0.5 ≤ x ≤ 1.

(50)

The computational domain is x ∈ [0, 1] with zero-gradient boundary conditions. We solve
the 1D Euler equations with the initial conditions (50) up to t = 0.2 with Δx = 0.005.
The numerical results of the density distribution are displayed in Fig. 6. We see the present
WENO-MS scheme has a resolution slightly higher than the P-WENO, WENO-Z, WENO-
M, and WENO-JS schemes. We found that the use of the function ϕ (35) in the WENO-MS
scheme can suppress spurious overshoots and undershoots at the contact discontinuity and
the left end of the rarefaction wave.

3. Interacting Blast Waves [18] The initial conditions are given by

(ρ, u, p) =
⎧

⎨

⎩

(1, 0, 1000), if 0.0 ≤ x < 0.1,
(1, 0, 0.01), if 0.1 ≤ x < 0.9,
(1, 0, 100), if 0.9 ≤ x ≤ 1.0

(51)

with reflection boundary conditions at two ends. The initial pressure jumps generate two
interacting shockwaves. This problem is usually used to test the robustness and the capability
of shock-capturing schemes. We solve the equation up to t = 0.038 with Δx = 0.005.
The numerical results of the density and pressure field are displayed in Fig. 7. It is seen
that WENO-MS performs better than the P-WENO, WENO-Z, WENO-M and WENO-JS
schemes.
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Fig. 5 Density profiles of the shock entropy wave interaction problem [13] computed using WENO-JS,
WENO-M, WENO-Z, P-WENO and WENO-MS at t = 1.8 with a grid of N = 200 (top) and N = 400
(bottom)

4.3 2D Euler Systems

In this subsection we use theWENO-S scheme to solve the 2D compressible Euler equations,

Ut + F(U )x + G(U )y = 0, (52)

where

U = (ρ, ρu, ρv, E)T ,

F(U ) = (ρu, p + ρu2, ρuv, u(E + p))T ,

G(U ) = (ρv, ρvu, p + ρv2, v(E + p))T .
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Fig. 6 Numerical results of the Sod problem [17] with WENO-JS, WENO-M, WENO-Z, P-WENO and
WENO-MS schemes at t = 0.2, N = 200. Enlarged zone shows plot of the contact discontinuity

Fig. 7 Density profiles of interacting blast wave problem computed with WENO-JS, WENO-M, WENO-Z,
P-WENO and WENO-MS schemes at t = 0.038, N = 200. Enlarged view show the three contact waves.
Here “reference” solution is obtained by WENO-JS on 3200 points

The equation of state is given by

p = (γ − 1)

(

E − 1

2
ρ(u2 + v2)

)

.

Here u, v are the velocity components in the x and y directions, respectively. The 2D Euler
equations are solved in a dimension-by-dimension fashion. The Lax–Fridriches flux splitting
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is used. The time step is taken as Refs. [12,19] based a CFL number of 0.5 throughout all the
examples.

1. 2D Riemann Problem [20]We solve this problem on the square domain [0, 1]×[0, 1].
The 2D Riemann problem is defined by four initial constant states in the four quadrants
divided by lines x = 0.8 and y = 0.8:

(ρ, u, v, p) =

⎧

⎪⎪⎨

⎪⎪⎩

(1.5, 0.0, 0.0, 1.5), 0.8 ≤ x ≤ 1.0, 0.8 ≤ y ≤ 1.0,
(0.5323, 1.206, 0.0, 0.3), 0.0 ≤ x < 0.8, 0.8 ≤ y ≤ 1.0,
(0.1380, 1.206, 1.206, 0.029), 0.0 ≤ x < 0.8, 0.0 ≤ y < 0.8,
(0.5323, 1.206, 0.0, 0.3), 0.8 < x ≤ 1.0, 0.0 ≤ y < 0.8.

(53)

The ratio of specific heats is taken as γ = 1.4. The numerical results at t = 0.8 with various
WENO schemes are shown in Fig. 8 on 400 × 400 cells and in Fig. 9 on 800 × 800 cells.
Careful comparison between these frames of each figure reveals that WENO-MS and P-
WENO produce richer structures than WENO-Z, WENO-M and WENO-JS. It is noted that
smaller vortices in the WENO-MS result have combined into larger vortices such that the
resolution looks lower but actually is higher than the P-WENO result and WENO-Z result.
Again, the sequence of resolution is WENO-MS ≥ P-WENO > WENO-Z ≥ WENO-M >

WENO-JS. The present results are comparable to those in Ref. [8].
2. 2D Rayleigh–Taylor Instability Taylor instability happens on an interface between

two fluids of different densities when an acceleration is directed from the heavier fluid to
the lighter fluid. The problem has been widely used to test the numerical dissipation of
a numerical scheme [8,21]. The computational domain is [0, 0.25] × [0, 1] and the initial
conditions are

(ρ, u, v, p) =
{

(2, 0,−0.025a cos(8πx), 2y + 1), if 0 ≤ y < 0.5,
(

1, 0,−0.025a cos(8πx), y + 3
2

)

, if 0.5 ≤ y ≤ 1.0,
(54)

where the sound speed a = (γ p/ρ)1/2 and the ratio of specific heats γ = 5/3. The gravi-
tational effect is introduced by adding the source term S = (0, 0, ρ, ρv)T to the right-hand
side of the 2D Euler equations (52). Reflective boundary conditions are imposed for the left
and right boundaries, and the top and bottom boundaries are set as

(ρ, u, v, p) =
{

(2, 0, 0, 2.5), bottom-boundary,
(1, 0, 0, 1), top-boundary.

(55)

The density contours at the time t = 1.95 computed with different schemes are shown
in Fig. 10. We see that the WENO-MS scheme generates more complex structures than the
other schemes (e.g., more wiggles on the hat in Fig. 10e), indicating that it is less dissipative
than the other schemes.

3. Double Mach Reflection of a Strong Shock [21] This problem is widely used to
verify the performance of numerical methods. We calculate this test problem on the [0, 4] ×
[0, 1] domain and display the results in [0, 3] × [0, 1] as customary. Initially a right-moving
Mach 10 shock wave is imposed and the shock front makes an angle of 60◦ with the x-axis
at x = 1/6. The region from x = 0 to x = 1/6 along the bottom boundary is always
assigned the exact post-shock states and the region x ∈ [1/6, 4] is a reflecting wall. The
left boundary is assigned the initial post-shock states. For the right boundary at x = 4,
all gradients are set to zero. The top boundary of the problem is set to describe the exact
motion of the Mach 10 shock. See [18] for a detailed description of this problem. We solve
it up to time t = 0.2 using Δx = Δy = 1/240 with γ = 1.4. The numerical results of
different schemes are compared in Fig. 11. Figure 12 shows the details at the Mach stem
zone of the density variable. It can be clearly seen that WENO-MS scheme resolves better
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Fig. 8 Density contours of the 2D Riemann problem at t = 0.8 using 400 × 400 cells. a WENO-JS, b
WENO-M, c WENO-Z, d P-WENO, e WENO-MS
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Fig. 9 Density contours of the 2D Riemann problem at t = 0.8 using 800 × 800 cells. a WENO-JS, b
WENO-M, c WENO-Z, d P-WENO, e WENO-MS
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Fig. 10 Density contours of the Rayleigh–Taylor instability problem at t = 1.95 computed on 240×960 grids
cells with a WENO-JS, b WENO-M, c WENO-Z, d P-WENO, e WENO-MS

the instabilities around the Mach stem than the other schemes, e.g., in Fig. 12d, vortices
begin to form in more upstream position of the contact discontinuity than in (a),(b),(c) and
(e).

5 Conclusions

We introduce a modified fifth-order WENO scheme (WENO-MS) by increasing the
quadratic approximation polynomials of flux function on candidate stencils to cubic
ones with information on the global 5-point stencil of the classical WENO scheme.
The corresponding smoothness indicators are given and are used in the classic JS
weights. To regain the ENO property, the effect of the additional high-order correc-
tions are limited by a tunable function if any of the candidate stencils is discontinuous.
Theoretical analysis and numerical results show that the new scheme can obtain the
full fifth-order accuracy in smooth regions and at first-order critical points. Numeri-
cal experiments show that the proposed WENO-MS scheme resolves the fine smooth
structures as well as or even better than the improved WENO schemes (P-WENO,
WENO-Z, WENO-M) and the classic WENO-JS scheme, is robust for shock cap-
turing, and increases only 7% of CPU time compared with the classical WENO-JS
scheme.
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Fig. 11 Density contours of the double Mach reflection problem with 50 equally spaced contours at t = 0.2
computed on 960 × 240 grid cells with a WENO-JS, b WENO-M, c WENO-Z, d WENO-MS, e P-WENO
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Fig. 12 Zoom in the region [2.2, 2.8] × [0, 0.6] near the Mach stem in Fig. 11 for double Mach reflection
problem at t = 0.2 computed on 960 × 240 grids cells with a WENO-JS, b WENO-M, c WENO-Z, d
WENO-MS, e P-WENO
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