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Abstract
We numerically study the wide-gap spherical Couette flow between two
concentric spheres with the inner sphere rotating and the outer one stationary.
Two wide-gap clearance ratios, R R R 0.332 1 1b = - =( ) and 0.50, are
chosen to investigate the transition scenarios of the spiral instabilities with
increasing Reynolds number (Re). For 0.33b = , we first obtain the steady
1-vortex flow at Re 700= by using the 1-vortex flow for a medium gap

0.18b = at Re 700= as the initial condition. The 1-vortex flow for
0.33b = exists for Re 450, 2050Î [ ] and it collapses back to the basic flow

when Re 2050> . We then detect spiral instabilities by increasing the Rey-
nolds number gradually. The basic flow becomes unstable at Re 2900c1 =
where spiral waves of wavenumber m=6 appear first. Increasing the
Reynolds number further, the wavenumber decreases to 5 and 4 at
Re 3000c2 = and Re 4000c3 = respectively. The flow becomes turbulent
when Re 4500> . For 0.50b = , no Taylor vortices are found. The basic flow
becomes unstable at Re 1280c1 = where spiral waves of wavenumber m=5
occur first. As the Reynolds number is increased, the wavenumber becomes 4
at Re 1700c2 = , 5 again at Re 1800c3 = , 4 at Re 2000c4 = , and becomes 3
at Re 2200c5 = while the flow becomes turbulent for Re 2200> . The
computed rotational frequencies as a function of the Reynolds number for
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spiral waves of wavenumber m = 5, 4 and 3 are in good agreement with
previous experimental results. The present transition scenario of the spiral
wavenumber with increasing Reynolds number for 0.33b = is the same as
that of Egbers and Rath (1995 Acta Mech. 111 125–40), while for 0.50b = , it
is only partially similar to those of Wulf et al (1999 Phys. Fluids 11 1359–72)
and Egbers and Rath (1995 Acta Mech. 111 125–40).

Keywords: spherical Couette flow, wide gap, Taylor vortex, spiral wave

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper, we study the spiral instabilities in the laminar-turbulent transition in the wide-gap
spherical Couette flow (SCF) between two concentric spheres. The rotation of fluid in a
spherical shell (the spherical Couette system) is relevant to astrophysical and geophysical
processes (Wimmer 1988, Sha and Nakabayashi 2001). In this study, we assume that the inner
sphere is rotating and the outer one is fixed while the spherical gap is filled with a Newtonian
fluid. The flow has only two control parameters: a Reynolds number RRe 1

2 n= W , and a
clearance ratio (gap width) R R R2 1 1b = -( ) , where Ω is the angular velocity of the inner
sphere, ν is the kinematic viscosity of the fluid, and R1, R2 are the radii of the inner and outer
spheres respectively. It is well-known that besides the two control parameters, the flow history
such as rotational acceleration of the inner sphere, initial flowfield and wave form of pertur-
bation added may also play a role in the formation of different types of supercritical dis-
turbances (e.g., different Taylor–Görtler (TG) vortices, spiral waves, ring vortices, Stuart waves,
etc). Owing to the simple geometry and the diversity of instabilities, SCF is an ideal template
for studying symmetry-breaking bifurcations during the laminar-turbulent transition.

Most of the previous numerical and experimental investigations on SCF were carried out
for narrow and medium gap widths (Sawatzki and Zierep 1970, Munson and Menguturk 1975,
Wimmer 1976, Yavorskaya et al 1980, Bartels 1982, Nakabayashi 1983, Schrauf 1986, Marcus
and Tuckerman 1987a, 1987b, Bühler and Zierep 1987, Nakabayashi and Tsuchida 1995, Yuan
et al 1996, Yuan 2004, 2012, etc). For narrow and medium gap widths, the first instability
occurs in the form of toroidal TG vortices, while for wide gap widths, the first instability occurs
in the form of spiral vortices or spiral waves (Dumas 1991, Dumas and Leonard 1994, Egbers
and Rath 1995, Zikanov 1996, Araki et al 1997, Wulf et al 1999, Sha and Nakabayashi 2001,
Hollerbach et al 2006). Most of the investigators divided the clearance ratio into narrow-,
medium- and wide-gap regions while Nakabayashi et al (2002) divided the clearance ratio into
four regions. In his classification, the narrow-gap region refers to 0 0.13Nb b< < » for
which cylinder-type disturbances such as spiral TG vortices and traveling waves play an
important role. The intermediate-gap region defined by him is 0.17N Ib b b< < » for which
the spiral TG vortices and the traveling waves occurring as a result of the second instability
(Höpf bifurcation) disappear with increasing Reynolds number. The medium-gap region refers
to 0.3I Wb b b< < » for which neither spiral TG vortices nor traveling waves on TG vortices
occur. Instead, disk-type disturbances such as Stuart vortices and shear waves occur in the high
latitude zones along with TG vortices near the equator at high Reynolds number. The wide-gap
region refers to Wb b> for which the non-axisymmetric instability (spiral vortices or spiral
waves) instead of the Taylor instability occurs as the first instability. We note that some
calculations (Schrauf 1986, Hollerbach 1998, Loukopoulos and Karahalios 2004) obtained TG
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vortices for the range of 0.24 0.4963 b (medium to wide gaps) by using special initial
conditions, while some experiments claimed that no TG vortices for 0.3b > (Nakabayashi
et al 2002) or 0.4b > (Yavorskaya et al 1980) exist.

Many researchers studied flow instabilities and transition to turbulence in wide-gap SCF.
Munson and Menguturk (1975) carried out the first experimental study and reported flow
instability at Re 407= for 1.27b = and Re 425= for 2.29b = . Belyaev et al (1978) and
Belyaev and Yavorskaya (1991) considered 1.33,b = 1.0 and 0.54 to obtain spiral waves of
wavenumber m 3,= 4, 5 at critical Reynolds numbers 406, 463 and 1120 respectively.

Subsequent more detailed experimental studies on wide-gap SCF were carried in 1990s
(Egbers and Rath 1995, Wulf et al 1999). Egbers and Rath (1995) considered 0.33b = and 0.50.
For 0.50b = , they obtained secondary spiral waves with an azimuthal wavenumber m=5 at
Re 1244c1 = , and with increasing Re number, the wavenumber decreases monotonically. They
have shown m=4 at Re 1583= , m=3 at Re 1810= while the flow becomes turbulent for
higher Reynolds numbers. Wulf et al (1999) provided more clear flow visualizations for the same
two clearance ratios. For 0.50b = , Wulf et al (1999) obtained spiral waves of wavenumber
m=5 at Re 1190c1 = , m=4 at Re 1395c2 = and m=3 at Re 1565c3 = while the trans-
ition scenario with further increasing Reynolds number was different from that of Egbers and
Rath (1995). Specifically, they obtained traveling spiral waves of wavenumber m=5 again at
Re 1710c4 = and aperiodic traveling spiral waves of m=4 at Re 2080c5 = while the flow
becomes turbulent for Re Re 2380c6> » .

For 0.33b = , Egbers and Rath (1995) obtained spiral waves of wavenumber m=6 at
Re 2628c1 = , then obtained wavenumber m=5 and 4 at Re 2800= and 3100 respectively.
By further increasing Re number, the flow becomes turbulent. However, Wulf et al (1999)
reported a very different scenario. First they obtained a spiral vortex with its center at the pole
for a critical Reynolds number Re 2395c1 = , which evolves into a ring vortex at
Re 2815c2 = , and then spiral waves of wavenumber m=6 appear at Re 3300c3 = .
Increasing the Reynolds number still further, three of the six spiral waves become weak, and
aperiodic coherent structures appear at Re 3385,c4 = and finally the flow becomes turbulent
at Re 3800 .

Numerical studies on wide-gap SCF were initiated by Dumas (1991) and Dumas and
Leonard (1994). Dumas (1991) simulated 1.27,b = 1.0 and 0.54. He obtained spiral waves
of wavenumber m=3 for 1.27b = at Re 406c = having good agreement with the
experimental value Re 407c = (Munson and Menguturk 1975). They also found critical
Reynolds numbers Re 489c = and 1122 for 1.0b = and 0.54 respectively which are very
close to 463 and 1120 of Belyaev et al (1978). Later, Araki et al (1997) computed the flow for

0.50,b = and obtained spiral waves of wavenumber m=5 at Re 1245c = , which is very
close to the experimental value of 1244 in Egbers and Rath (1995). Hollerbach (2000)
computed the flow for a different 0.34b = and obtained spiral waves of wavenumber m=6
at Re 2684c = . Later, Hollerbach et al (2006) carried out another numerical study on wide-
gap SCF. They considered 0.1 3.8, b and showed that the wavenumber decreases
monotonically from m=12 at 0.1b = to m=2 at 3.8b = .

As discrepancies existed in the literature, particularly for 0.33b = and 0.50, for which
Egbers and Rath (1995) and Wulf et al (1999) presented different transition scenarios, it is
necessary to further examine the evolution of spiral instabilities with increasing Reynolds
number for the two clearance ratios. In this work, we have carried out time-dependent
simulations for the two clearance ratios by solving the 3D unsteady incompressible Navier–
Stokes equations numerically with a finite difference method.

For 0.33b = , our simulation gives the evolution scenario of the spiral waves
with increasing Reynolds number: m 6 5 4 turbulent flow=    , which agrees with
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that of Egbers and Rath (1995). For 0.50b = , our evolution scenario is
m 5 4 5 4 3 turbulent flow=      , which partially follows the experimental
result of Wulf et al (1999): m 5 4 3 5 4 turbulent flow=      , and partially
follows that of Egbers and Rath (1995): m 5 4 3 turbulent flow=    . Nevertheless,
the calculated rotational frequencies and wavenumber of the spiral waves at several Rey-
nolds numbers for the two clearance ratios are in approximate agreement with Egbers and
Rath (1995) and Wulf et al (1999).

In section 2, we briefly describe the computational setup. Section 3 deals with numerical
results and discussion of the characteristics of the wide-gap instabilities in the form of spiral
waves of different wavenumber and wave frequencies. Section 4 concludes this paper.

2. Computational setup

Consider an annulus between two concentric spheres filled with an incompressible Newtonian
fluid of constant density ρ and kinematic viscosity ν. The inner sphere rotates with an angular
velocity Ω, while the outer sphere is fixed. For simulating the incompressible flow we have
used the artificial compressibility method discretized with a finite difference weighted non-
oscillatory (WENO) scheme (Yang et al 1998, Jiang and Wu 1999) and solved with a line
Gauss–Seidel method (Rogers and Kwak 1990, Yuan 2002).

We divide the spherical annulus into a number of grid points along the radial r ,( )
meridional q( ) and azimuthal f( ) directions, respectively. The grid points are clustered near
the walls along the radial r( ) direction and uniform along the meridional q( ) and azimuthal f( )
directions. Wider gaps need more grid points in the radial direction. We use grid point
numbers r51 361 153q f´ ´( ) ( ) ( ) for 0.33b = and r61 361 153q f´ ´( ) ( ) ( ) for

0.50b = . The non-dimensional physical time step t 0.05D = is used. The Stokes flow
(Marcus and Tuckerman 1987a) is used as an initial condition.

We apply no-slip boundary conditions to the velocities on the inner and outer spheres.
The pressure on the wall is obtained from the radial component of the momentum equations
written in the spherical coordinate system, and the polar boundary is treated by a half grid size
arrangement as in Yuan (2002). We take a reference pressure at a fixed interior point of the
computational domain.

In the time-marching calculations of the multiple solutions of SCF, the final solution
depends on the initial conditions (initial flowfield, transient effects like temporary counter-
rotation of the outer sphere and the perturbation used). In this work, we use a perturbation
velocity similar to that used to trigger traveling waves in circular Couette flow (Schroeder and
Keller 1990);
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where R R R0.5m 1 2= +( ), 101
4e = - is the perturbation amplitude for velocity and 0.42e =

is the perturbation amplitude for the azimuthal variation. In Yuan (2012), different values of
the azimuthal wave number ma have used to initialize different numbers of spiral waves at the
same Reynolds number for 0.18b = . But for present wide-gap cases, the formation of spiral
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waves are independent of the value of ma used. So we have fixed the wave number m 6a = in
all cases. We have added the perturbation (1) to the numerical solution at each time step, and
this was done for a duration of the non-dimensional viscous diffusion time across the gap
which is t Red

2b= .

3. Results and discussion

We study two clearance ratios, 0.33b = and 0.50b = in the wide-gap regime defined by
Nakabayashi et al (2002). The Reynolds number range studied is 450 Re 5000  for

0.33b = , and 1250 Re 2500  for 0.50b = . Computed results are compared with
existing experimental (Egbers and Rath 1995, Liu et al 1996, Wulf et al 1999) and numerical
results (Hollerbach 1998, Hollerbach et al 2006).

3.1. β ¼ 0:33

For this clearance ratio, we cannot obtain the TG vortex flow directly from the Stokes flow.
But numerical studies (Schrauf 1986, Hollerbach 1998, Loukopoulos and Karahalios 2004)
showed that one can get TG vortices for 0.4963b by means of special conditions, e.g.,
Hollerbach (1998) obtained the TG vortex for 0.336b = by starting with the stable Taylor
vortex flow for 0.154b = , then gradually increasing β up to the desired value. In our study,
we first obtained the steady toroidal 1-vortex flow for 0.33b = at Re 700= by using the
1-vortex flow computed for 0.18b = at Re 700= as the initial condition. Figure 1 shows
the meridional streamlines and angular velocity for 0.33b = at Re 700= . By scanning the

Figure 1. Steady 1-vortex flow for 0.33b = at Re 700= : (a) streamlines; (b) angular
velocity u r sin qf ( ).
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Reynolds number range first with Re 100D = then with Re 10D = to determine the
critical Reynolds number, the 1-vortex flow is found to exist for Re 450, 2050Î [ ]. The flow
then evolves from the 1-vortex flow to the basic 0-vortex flow when Re 2050> , and this
trend is consistent with the experimental and numerical results (Liu et al 1996,
Hollerbach 1998).

We explore spiral instabilities by increasing the Reynolds number starting from the
0-vortex flow at Re 2600= . For the purpose of comparison, we first describe previous
experimental visualization results. According to the experiment of Egbers and Rath (1995),
secondary waves of an azimuthal wavenumber m = 6, 5 and 4 occur in turn and then the flow
becomes turbulent with increasing Reynolds number. However, the experiment of Wulf et al
(1999) first observed a corotating spiral vortex with its center in the pole, then at a higher
Reynolds number the spiral vortex turns into a ring vortex that originates periodically in the
middle latitude zone, travels to the polar region and vanishes at the pole. Increasing Reynolds
number further, the ring vortex disintegrates into spiral waves of wavenumber m=6 in the
middle latitude zone, then three of the six spiral waves become weak and finally the flow
becomes turbulent.

By using an increment of Re 10D = and starting from the 0-vortex flow at
Re 2600= , we obtained an approximate critical Reynolds number Re 2900c1 = for the
occurrence of spiral waves with wavenumber m=6. This value is larger than Re 2628c1 =
for the occurrence of spiral waves with wavenumber m=6 in Egbers and Rath (1995), and
much larger than Re 2395c1 = for the occurrence of a spiral vortex centering at the pole in
Wulf et al (1999). Figures 2(a) and (b) show the computed contours of azimuthally averaged
meridional streamlines and angular velocity u r sin qf ( ) at Re 2900c1 = . It can be seen from

Figure 2. Azimuthally averaged section contours for the m= 5 spiral waves for
0.33, Re 2900b = = : (a) meridional streamlines; (b) angular velocity u r sin qf ( ).
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figure 2(b) that the meridional flow has two different flow structures, a strong equatorial jet
and a strong boundary layer adjacent to the inner sphere.

To verify the correctness of our code, figure 3 shows a comparison of the distributions of
velocity components uf (solid) and ur (dashed) as a function of the radial distance relative to
the inner sphere (radius) in the equatorial plane with the numerical results in Hollerbach et al
(2006) for 0.30b = and 0.50. The comparison shows that our results agree well with those of
Hollerbach et al (2006). It can be seen that the rotational velocity uf is much larger than the
radial velocity ur.

Figure 4 shows the north pole view of the colored contours for the azimuthal vorticity at
four typical Reynolds numbers. Starting from Re 2900c1 = , spiral waves of wavenumber
m=6 appear first. These spiral waves appear in the middle latitudes and extend towards the
polar region up to Re 2990» . By increasing the Reynolds number to Re 3000c2 = , we
obtained spiral waves of wavenumber m=5 and these five spiral waves remain stable up to
Re 3900» . When we further increasing the Reynolds number to Re 4000c3 = , the spiral
wavenumber is reduced to m=4 and these four spiral waves exist up to Re 4500c4 = . Like
spiral waves with wavenumber m=6, the spiral waves of wavenumber m=5 and 4 also
appear periodically in the middle latitudes and extend towards the polar region. When
Re Rec4> , the spiral structures start to break up and we obtain aperiodic coherent structures
which cause the flow to become turbulent at Re 5000= . Hence we can say that our scenario is
m 6 5 4 turbulence=    , as was found by Egbers and Rath (1995).

Figure 5 shows the radial velocity contours ur in the unwrapped middle spherical surface
r 1 0.5b= + , 0 , q p 0 2 f p. Although we have imposed the perturbation (1)
with a fixed m 6a = for a duration of t Re2d b= ( ) in the computation, the final wave-
number m 6, 5= or 4 of the spiral waves only depends on the Reynolds number. The outflow
boundary at the equator is wavy in the f direction in the case of Re 5000= due to the strong
secondary flow convection of the spiral structures toward the equatorial region.

Figure 3. Comparison of the present azimuthally averaged uf (solid) and ur (dashed) as
function of r R1- for (a) the m=6 spiral wave flow at Re 2900= , 0.30b = , (b) the
m=5 spiral wave flow at Re 1280= , 0.50b = with the numerical results of
Hollerbach et al (2006) uf (diamonds) and ur (circles) for the m=6 spiral wave flow at
Re 3310= , 0.30b = , and the m=5 spiral wave flow at Re 1245= , 0.50b = ,
respectively.
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Figure 6 shows the time history of uθ at a point in the flowfield for m 6, 5, 4= and
turbulent flows. From the corresponding data, we have calculated the non-dimensional
rotational frequencies of the spiral waves according to

f

f T

2rot

rot
= p as in Yuan (2012), where f is

the dimensional rotational frequency of the inner sphere and Trot is the non-dimensional
rotational period of the spiral waves as a whole. We measured the rotational frequency

1.70
f

f
rot = for m=6 at Re 2900= , 1.60

f

f
rot = for m=5 at Re 3000= and 1.06

f

f
rot = for

m=4 at Re 4000= respectively. These numbers are roughly close to 1.79, 1.56 and 1.13
for m=6 at Re 2680= , m=5 at Re 2855= and m=4 at Re 3142= respectively as
given in figure 10 of Egbers and Rath (1995).

Finally, we show the evolution of the wavenumber with increasing or decreasing Rey-
nolds number in figure 7(a) for 0.33b = . The evolution path with increasing Reynolds
number is marked with the rightward arrows while that with decreasing Reynolds number is
marked with the leftward arrows. Hysteresis, i.e. the difference between the two paths, was
observed in the experiments of Egbers and Rath (1995). To obtain the decreasing path, first
we have used the numerical solution of spiral waves of wavenumber m=5 at Re 3000c2 =

Figure 4. North pole view of the colored contours of the azimuthal vorticity component
wf of spiral waves for 0.33b = at four different Re. The inner sphere rotates
counterclockwise.
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as an initial condition and reduced the Reynolds number with Re 10D = . We have found that
with decreasing Reynolds number, the spiral waves of wavenumber m=5 remain stable
down to Re 2910» . With further decreasing Reynolds number, we have successfully
recovered the preceding solution with m=6 spiral waves at Re 2900= . Thus we have
obtained a small hysteresis loop. Next we have used the solution of spiral waves of wave-
number m=4 at Re 4000c3 = as an initial condition and reduced the Reynolds number with

Re 10D = . We have found that the spiral waves of wavenumber m=4 remain stable down
to Re 3100» . Further decreasing the Reynolds number we have recovered the preceding
solution with m=5 spiral waves at Re 3000= . This forms another larger hysteresis loop.
Due to the limited numerical resolution, the thresholds in figure 7 are approximate. In
addition, a bifurcation analysis would explain the structure behind these hysteresis loops.

3.2. β ¼ 0:50

For this wide-gap case, the first instability appears in the form of rotating spiral waves
with wavenumber m=5, and the present transition scenario with increasing Reynolds

Figure 5. Contours of the radial velocity ur at different Re on the middle spherical
surface r 1 0.5b= + , 0 , q p 0 2 f p for 0.33b = .
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number is m 5 4 5 4 3=      turbulence, which partially follows that of
m 5 4 3=    turbulence as in Egbers and Rath (1995) and partially follows that of
m 5 4 3 5 4=      turbulence as in Wulf et al (1999). Recall that Egbers and
Rath (1995) obtained secondary waves of wavenumber m=5 at Re 1244,c1 = and by
increasing the Reynolds number, the wavenumber decreases to 4 at Re 1583= and to 3 at
Re 1810= and then the flow becomes turbulent at higher Reynolds numbers. On the other
hand, Wulf et al (1999) obtained m=5 at Re 1190c1 = , then m=4 at Re 1395c2 = and
then m=3 at Re 1565c3 = . However, by further increasing the Reynolds number, they
obtained traveling spiral waves of wavenumber m=5 at Re 1710c4 = and aperiodic spiral
waves of wavenumber m= 4 at Re 2080c5 = and then the flow becomes chaotic for
Re Re 2380c6 » . In previous numerical studies, Araki et al (1997) and Hollerbach et al
(2006) obtained spiral waves of wavenumber m=5 at different critical Reynolds numbers
Re 1245c = and 1431 respectively. Unlike Egbers and Rath (1995) and Wulf et al (1999),
they did not show the evolution of the flow states with increasing Reynolds number.

Figure 6. Time history of the meridional velocity component uθ at a point
r, , 1 2, 2, 0q f b p= +( ) ( ) for 0.33b = . The rotational period Trot of the spiral
waves is counted between every four peaks for the m=4 case as shown in frame (c).
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In the present study, we show the transition scenario with increasing Reynolds number.
First to verify the accuracy of the present code, figure 3(b) shows comparison of the present
velocity uf and velocity ur (averaged in the f direction) as a function of radius in the
equatorial plane at Re 1280c1 = for spiral waves of wavenumber m=5 with the numerical
results of Hollerbach et al (2006) at Re 1245c = , and the agreement is good.

We have found the critical Reynolds number to be Re 1280c1 = where the spiral waves
of wavenumber m=5 occur first and rotate in the same direction as the inner sphere. With
increasing Reynolds number, flow states with different wave numbers and shapes appear as
shown in figure 8. We note that the m=5 spiral waves are succeeded by the m=4 spiral
waves at Re 1700c2 = as shown in figure 8(b). When we further increase the Reynolds
number, the flow evolves into a ring wave encircling the pole and the m=5 traveling spiral
waves in the low to medium latitude zones at Re 1800c3 = as shown in figure 8(c). From the
time snapshots (not shown here), we confirmed the observation (Wulf et al 1999) that the
traveling spiral waves originate between the middle latitudes and the equatorial region and
travel towards the polar region. As the Reynolds number is increased to Re 2000c4 = , the
wavenumber of the spiral waves and ring waves reduces to m=4 as shown in figure 8(d). By
increasing the Reynolds number further to Re 2200c5 = , we obtained two separate m=3
spiral waves that travel in the same direction as the rotation of the inner sphere and are
separated synchronously with one set of spiral waves being near the polar region as show in
figure 8(e). This figure looks like figure 9(c) of Wulf et al (1999). Finally at Re 2500= , the
flow becomes turbulent and we get some instantaneous irregular structures as shown in
figure 8(f). The present transition scenario is m 5 4 5 4 3 turbulence=      ,
which only partially resembles those in Egbers and Rath (1995) and Wulf et al (1999).

The evolution of these flow states in terms of the spiral wavenumber with increasing
Reynolds number (rightward arrows) and decreasing Reynolds number (leftward arrows) are
shown in figure 7(b). As we did for 0.33b = , we have used the solutions at critical Reynolds
numbers obtained in the forward path as the initial conditions. We then reduced the Reynolds
number until we recovered the preceding spiral wavy flow at a lower Reynolds number. The

Figure 7. Transition path and hysteresis effect for the flow of spiral waves of different
spiral wavenumber m with increasing or decreasing Reynolds number, (a) 0.33b = ,
(b) 0.50b = .
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Figure 8. North pole view of flooded contours of the azimuthal vorticity component wf of
the spiral wave flows for 0.50b = , (a) m=5 spiral waves; (b) m=4 spiral waves;
(c) five traveling spiral waves; (d) four aperiodic spiral waves; (e) two sets of three spiral
waves; (f) turbulence. The inner sphere rotates counterclockwise. Reproduced from Araki
et al (1997), with the permission of AIP Publishing. http://doi.org/10.1063/1.869177.
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differences between forward and backward paths form hysteresis loops, which can be
observed in figure 7(b).

To see the flow structures more clearly, figure 9 shows contours of the radial velocity ur
in the unwrapped spherical surface r 1 0.7 ,b= + 0 , q p 0 2 f p. As in figure 5,
the outflow boundary at the equator is wavy in the f direction due to the influence of the
spiral waves.

Figure 10 shows the time history of the meridional velocity component uθ at an interior
point r, , 1 0.7 , 2, 0q f b p= +( ) ( ). As we did in figure 6, we have computed the rotational

frequencies of the spiral waves. The non-dimensional rotational frequencies are 1.37,
f

f
rot =

1.06 and 0.75 for m=5 at Re 1280= , m=4 at 1700, and m=3 at 2200 respectively.
These values are in fair agreement with 1.32, 1.05 and 0.75 at Re 1190, 1395= and 1565
respectively of Wulf et al (1999), and close to 1.36, 0.97 for m 5, 4= at Re 1700, 1810=
extracted from figure 10 in Egbers and Rath (1995).

4. Conclusions

We have numerically investigated the wide-gap SCF with a rotating inner sphere. Two
clearance ratios 0.33b = and 0.50b = have been studied for a wide range of Reynolds
numbers covering laminar basic flows, spiral instabilities, and turbulent flows.

We have obtained the 1-vortex flow for 0.33b = in the range of Re 450, 2050Î [ ] by
using a special initial condition. This confirmed previous numerical (Schrauf 1986, Holler-
bach 1998, Loukopoulos and Karahalios 2004) and experimental results (Liu et al 1996, Junk
and Egbers 2000) that TG vortices can exist for wide-gap cases. In addition, the computed
velocity distributions along the radius at the equator for 0.30b = and 0.50 are in good
agreement with available numerical results. Subsequently, we simulated the transition sce-
narios of flow states with increasing Reynolds number.

For 0.33,b = we obtained spiral waves of wavenumber m=6 at a critical Reynolds
number Re 2900c = as compared to Re 2628c = in the experiment of Egbers and Rath
(1995). When the Reynolds number is increased, the wavenumber of spiral waves decreases
to 5 and 4 in turn and finally the flow becomes turbulent. Our scenario agrees with Egbers and
Rath (1995), but disagrees with Wulf et al (1999) who obtained a rotating spiral vortex at the
pole first at Re 2395c = . The rotational frequencies of spiral waves with wavenumbers
m 6, 5, 4= are found to decrease with increasing Reynolds number, which agrees with the
experimental results of Egbers and Rath (1995).

For 0.50,b = we obtained five spiral waves at a critical Reynolds number Re 1280c =
very close to Re 1244c = of Egbers and Rath (1995). By increasing the Reynolds number we
obtained periodic five and four spiral waves. Further increasing the Reynolds number, we
obtained five spiral waves together with a ring wave near the pole, then four spiral waves with
a ring wave, and then two separate sets of three spiral waves, and finally the flow becomes
turbulent. Our scenario m 5 4 5 4 3 turbulence=      is the same as those of
Egbers and Rath (1995) and Wulf et al (1999) only in the initial 5 4 stage.

We have managed to resolve the discrepancy between the two experimental scenarios
(Egbers and Rath 1995, Wulf et al 1999). The hysteresis of the flow states depending on
whether the Reynolds number is increased or decreased is also simulated. The rotational
frequencies of different spiral wavenumbers are found in fair agreement with the experimental
results (Egbers and Rath 1995, Wulf et al 1999).
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Figure 9. Contours of the radial velocity ur for 0.50b = at different Reynolds number
on the unwrapped spherical surface r 1 0.7b= + , 0 , q p 0 2 f p.
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