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Summary

The blood flow model in arteries admits the steady state solutions, for which
the flux gradient is nonzero, and is exactly balanced by the source term. In this
paper, by means of hydrostatic reconstruction, we construct a high order discon-
tinuous Galerkin method, which exactly preserves the dead-man steady state,
which is characterized by a discharge equal to zero (analogue to hydrostatic
equilibrium). Moreover, the method maintains genuine high order of accu-
racy. Subsequently, we apply the key idea to finite volume weighted essentially
non-oscillatory schemes and obtain a well-balanced finite volume weighted
essentially non-oscillatory scheme. Extensive numerical experiments are per-
formed to verify the well-balanced property, high order accuracy, as well as good
resolution for smooth and discontinuous solutions.
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1 INTRODUCTION

Numerical simulations for the blood flow model in arteries have wide applications in medical engineering,1,2 because
of the pulsatility of blood and the necessity to catch properly the waves propagation in arteries. In this paper, we are
concerned with the construction of high order well-balanced discontinuous Galerkin (DG) method and finite volume
weighted essentially non-oscillatory (WENO) scheme for solving the blood flow model in arteries. With some simplifying
hypothesis from Navier-Stokes equations, it is possible to get the following one space dimension system for blood flow
modeling3,4:
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2 GANG ET AL.{At + Qx = 0,

Qt +
(
𝛼

Q2

A

)
x
+ A

𝜌
px = −Cf

Q
A
,

(1)

where A = 𝜋R2 (R being he radius of the vessel) is the cross-sectional area, Q = Au denotes the discharge, u the means flow
velocity, 𝜌 stands for the blood density, p is the pressure of the artery, and 𝛼 is the momentum-flux correction coefficient
defined by 𝛼(x, t) = ∫Su2d𝜎∕(Au2). In the following, we consider 𝛼 = 1, which corresponds to a flat velocity profile. Cf is
the viscous resistance of the flow (until Section 5.6, we consider Cf = 0). At steady state, we have

Q = constant and u2∕2 + p = constant, (2)

and at steady state at rest corresponding to dead man equilibrium, we have

Q = u = 0 and p = constant, (3)

thus we have dp∕dx = 0. The pressure law for arteries writes

p − pext = K(R − R0),

where R0 is the radius of the artery at rest (u = 0 m/s), A0 = 𝜋R2
0 the cross-sectional area at rest, pext the pressure outside

the tube (assumed constant), and K the arterial stiffness. Inside this coefficient K are hidden the vessel thickness, Young
modulus, and Poisson ratio (see Bouchut5 for more details). After some calculations, the 1-dimensional model can be
rewritten under the following system of hyperbolic balanced laws (as shown in Xiu and Sherwin6):{At + Qx = 0

Qt +
(

Q2

A
+ K

3𝜌
√
𝜋

A3∕2
)

x
= KA

2𝜌
√
𝜋
√

A0
(A0)x.

(4)

The steady state at rest for this system, also called mechanical equilibrium, writes

u = 0 and
√

A −
√

A0 = constant. (5)

Under the above steady state (5), the flux gradient is nonzero and is exactly balanced by the source term. Consequently,
it is desirable to maintain the balancing between the flux gradient and the source term at the discrete level. In general, the
standard numerical methods may not satisfy the discrete version of this balance exactly at (or near) the steady state and
even introduce spurious oscillations, unless the mesh size is extremely refined. But the mesh refinement procedure is not
applicable for high-dimensional problems or for big domains such as an artery network. To save the computational cost,
well-balanced methods are specially introduced to preserve exactly these steady-state solutions up to machine accuracy.7

In addition, well-balanced methods7 can capture small perturbations on relatively coarse meshes.8 More information
about well-balanced methods can be found in the lecture note9 and in the book.5

From the numerical point of view, there are many attempts based on the numerical methods for the blood flow model
in the literature, eg, Sherwin et al10 and Wang et al.11 In recent years, there have been many interesting attempts on the
well-balanced methods. For example, Delestre and Lagrée12 presented a well-balanced finite volume scheme based on
conservative governing equations.13-15 Müller et al16 constructed a well-balanced high order finite volume for the blood
flow in elastic vessels with varying mechanical properties. Recently, Murillo et al17 have presented an energy-balanced
approximate solver for the blood flow model with upwind discretization for the source term. More recently, Wang et al18

designed a well-balanced finite difference WENO scheme based on the modification of the source term.
The key objective of this paper is to develop a high order well-balanced DG method for the blood flow model based on

the hydrostatic reconstruction, which is introduced firstly by Audusse.19 Later, this hydrostatic reconstruction has been
applied by Noelle et al20 and Xing et al21 for the shallow water equations as well as by Delestre and Lagrée12 for the blood
flow model. To the best of our knowledge, this is a first attempt of DG method based on hydrostatic reconstruction for
the blood flow model. Subsequently, we extend the idea in the present DG method to finite volume WENO scheme and
obtain a well-balanced finite volume WENO scheme.

Moreover, we also mention some attempts for deriving well-balanced methods for other model equations, such as pre-
vious studies22-26 for shallow water equations over non-flat bottom topography and previous works27-31 for Euler equations
under gravitational fields.
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This paper is organized as follows: We briefly review the key ideas of the DG methods and the finite volume WENO
schemes in Section 2. In Section 3, we propose a high order well-balanced DG method for the blood flow model. We
generalize the idea for the DG method to the finite volume WENO scheme in Section 4. Extensive numerical experiments
are performed in Section 5. Some conclusions are given in Section 6.

2 A REVIEW OF HIGH ORDER DG METHOD AND FINITE VOLUME WENO
SCHEME

In this section, we briefly review the basic ideas of DG methods and finite volume WENO schemes. For more details about
these subjects, we refer to previous studies.32-36

To begin with, we apply a 1-dimensional scalar hyperbolic conservation law to present the DG method

wt + f (w)x = 0. (6)

Firstly, we divide the interval I = [a, b] into N subintervals and denote the cells by Ij = [xj− 1
2
, xj+ 1

2
] for j = 1, · · · ,N. The

center of each cell is xj = 1
2

(
xj− 1

2
+ xj+ 1

2

)
, and the mesh size is denoted by hj = xj+ 1

2
− xj− 1

2
, with h = max

1≤ j≤N
hj being the

maximal mesh size.
Under the framework of the DG methods,32,33 we seek an approximation wh to w, which belongs to a finite dimensional

space
V k

h =
{

v ∶ v|Ij ∈ Pk(Ij), j = 1, 2, · · · ,N
}
. (7)

Note that functions in V k
h are allowed to have discontinuities across element interfaces. The standard DG method for (6)

is given by

∫Ij

𝜕twhvhdx + F̂j+ 1
2
vh

(
x−

j+ 1
2

)
− F̂j− 1

2
vh

(
x+

j− 1
2

)
− ∫Ij

f (wh)𝜕xvhdx = 0, for ∀ vh ∈ V k
h , (8)

with F̂j+ 1
2
= F
(

w−
h,j+ 1

2

w+
h,j+ 1

2

)
being the numerical flux. We denote by w+

h,j+ 1
2

and w−
h,j+ 1

2

the limit values of wh at xj+ 1
2

from

the right cell Ij+1 and from the left cell Ij, respectively. The simplest and less expensive flux is the Lax-Friedrichs flux:

F(a, b) = 1
2
( f (a) + f (b) − 𝛼(b − a)), (9)

where 𝛼 = max
w
|| f ′(w)||.

Under the framework of the finite volume WENO schemes for (6), we seek the numerical solution w̄j(t), which approx-
imate the cell averages w̄(xj, t) = 1

Δx
∫Ij

w(x, t) d x. The conservative finite volume WENO scheme has the following form:

d
dt

w̄j(t) +
1
Δx

(
F̂j+ 1

2
− F̂j− 1

2

)
= 0, (10)

with F̂j+ 1
2
= F
(

w−
j+ 1

2

,w+
j+ 1

2

)
being the numerical flux. Herein, w−

j+ 1
2

and w+
j+ 1

2

are the high order pointwise approximations

to w
(

xj+ 1
2
, t
)

from left and right, respectively. They are computed through the neighboring cell average values by a high
order WENO reconstruction procedure. Basically, for a (2k−1)-th order WENO scheme, we first compute k reconstructed
boundary values w(k),±

j+ 1
2

corresponding to different candidate stencils. Then by providing each value a nonlinear weight

that indicates the smoothness of the corresponding stencil, we define the (2k− 1)-th order WENO reconstruction w±
j+ 1

2

as

a convex combination of all these k reconstructed values. Eventually, the WENO reconstruction can be written out as:

w+
j+ 1

2

=
k∑

r=−k+1
𝜔rw̄j+r, w−

j+ 1
2

=
k−1∑

r=−k
𝜔̃rw̄j+r, (11)

the coefficients 𝜔r and 𝜔̃r depend nonlinearly on the smoothness indicators involving the cell averages w̄. For hyperbolic
systems of conservation laws, we usually apply the local characteristic decomposition procedure with more computational
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cost to obtain good numerical results, which is more robust than a component by component version. The complete
algorithm can be found in Shu.34,35

3 WELL-BALANCED DG METHOD FOR THE BLOOD FLOW MODEL

In this section, we present a well-balanced DG method for the blood flow model (4). For the steady state (5), the first
equation Qx = 0 is satisfied exactly for any consistent method since Q due to u = 0. Then, we focus on the second equation,
which can be denoted by

Qt + f (U)x = S(A,A0), (12)

where U = (A,Q)T with the superscript T denoting the transpose.
In the DG method, U is approximated by a piecewise polynomial Uh ∈ V k

h . Moreover, we also project A0 into the same
space V k

h to obtain an approximation (A0)h for A0. This implies that
√

Ah −
√
(A0)h = constatn if

√
A −
√

A0 = constant.
Our DG method has the following form:

∫Ij

𝜕tQhvhdx + F̂l
j+ 1

2

vh

(
x−

j+ 1
2

)
− F̂r

j− 1
2

vh

(
x+

j− 1
2

)
− ∫Ij

f (Uh)𝜕xvhdx = ∫Ij

S (Ah, (A0)h) vhdx. (13)

The numerical fluxes F̂l
j+ 1

2

and F̂r
j− 1

2

will be presented in Section 3.1.

Compared with the standard DG method (8), we can observe that the single valued numerical fluxes F̂j+ 1
2

and F̂j− 1
2

have been replaced by the left flux F̂l
j+ 1

2

and the right flux F̂r
j− 1

2

in (13), respectively. In fact, we can rewrite the present DG

method (13) as follows:

∫Ij

𝜕tQhvhdx + F̂j+ 1
2
vh

(
x−

j+ 1
2

)
− F̂j− 1

2
vh

(
x+

j− 1
2

)
− ∫Ij

f (Uh)𝜕xvhdx

= ∫Ij

S (Ah, (A0)h) vhdx +
(

F̂j+ 1
2
− F̂l

j+ 1
2

)
vh

(
x−

j+ 1
2

)
−
(

F̂j− 1
2
− F̂r

j− 1
2

)
vh

(
x+

j− 1
2

)
,

(14)

where F̂j+ 1
2
= F

(
U−

h,j+ 1
2

,U+
h,j+ 1

2

)
. The left hand side of (14) is the traditional DG method, and the right hand side is our

approximation to the source term. Herein, we point out that F̂j+ 1
2
− F̂l

j+ 1
2

and F̂j− 1
2
− F̂r

j− 1
2

are high order correction terms at

the level of O(Δx)k+1. Therefore, the present DG method (14) is a (k + 1)-th order conservative method and will converge
to the weak solution accordingly.

3.1 The numerical fluxes based on hydrostatic reconstruction
Herein, we take the numerical fluxes F̂l

j+ 1
2

and F̂r
j− 1

2

in (13) with the following forms:

F̂l
j+ 1

2

= f
(

U∗,−
h,j+ 1

2

U∗,+
h,j+ 1

2

)
+
⎛⎜⎜⎝

0

K
3𝜌
√
𝜋

(
A−

h,j+ 1
2

) 3
2

− K
3𝜌
√
𝜋

(
A∗,−

h,j+ 1
2

) 3
2

⎞⎟⎟⎠ (15)

and

F̂r
j− 1

2

= f
(

U∗,−
h,j− 1

2

U∗,+
h,j− 1

2

)
+
⎛⎜⎜⎝

0

K
3𝜌
√
𝜋

(
A+

h,j− 1
2

) 3
2

− K
3𝜌
√
𝜋

(
A∗,+

h,j− 1
2

) 3
2

⎞⎟⎟⎠ . (16)

Herein, the construction of the numerical fluxes F̂r
j− 1

2

and F̂l
j+ is vital to the preservation of the well-balanced property.

As a matter of fact, our key idea is to make sure that

F̂l
j+ 1

2

= f
(

U−
h,j+ 1

2

)
, and F̂r

j− 1
2

= f
(

U+
h,j− 1

2

)
.
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Accordingly, we take the reconstruction values
√

A∗,+
h,j+ 1

2

and
√

A∗,−
h,j+ 1

2

in (15) and (16) as follows:

√
A∗,+

h,j+ 1
2

= max

{
0,
√

+
A

h,j+ 1
2

−
√

(A0)+h,j+ 1
2

+ max

{√
(A0)−h,j+ 1

2

,

√
(A0)+h,j+ 1

2

}}
,

√
A∗,−

h,j+ 1
2

= max
⎧⎪⎨⎪⎩0,
√

−
A

h,j+ 1
2

−
√

(A0)−h,j+ 1
2

+ max

{√
(A0)−h,j+ 1

2

,

√
(A0)+h,j+ 1

2

}⎫⎪⎬⎪⎭ ,
(17)

which is the hydrostatic reconstruction adapted to blood flow model. This approach of the hydrostatic reconstruction has
been first developed for shallow water equation by Audusse et al19 and has been later applied in Noelle et al20 and Xing
and Shu21 for shallow water equations. Moreover, this approach has also been adopted by Delestre and Lagrée12 for the
blood flow model.

Then, based on (17), we can obtain A∗,±
h,j+ 1

2

and subsequently get

U∗,±
h,j+ 1

2

=
⎛⎜⎜⎝

A∗,±
h,j+ 1

2

Q±
h,j+ 1

2

⎞⎟⎟⎠ . (18)

In a similar way, we can obtain

U∗,±
h,j− 1

2

=
⎛⎜⎜⎝

A∗,±
h,j− 1

2

Q±
h,j− 1

2

⎞⎟⎟⎠ . (19)

We assume that Uh being the numerical approximation to U is a steady-state solution of the equation Qt + f(Uh)x =

S(Ah, (A0)h). This fact is true since
√

Ah −
√
(A0)h = constant and uh = 0, which subsequently imply

(
K

3𝜌
√
𝜋

A
3
2
h

)
x
=

S(Ah, (A0)h), or

𝜕x f (Uh) = S (Ah, (A0)h) . (20)

3.2 Well-balanced method
All these together lead to a well-balanced DG method for the blood flow model, as outlined in the following proposition.

Proposition 1. For the blood flow model (4), the semi-discrete DG method (13), combined with (15) and (16) as well as
(17), is well-balanced for the steady state solutions (5).

Proof. For the steady state solutions (5), the first equation 𝜕xQ = 0 is satisfied exactly for any consistent method since
Q = Au = 0 due to u = 0.

At the steady state, we have
√

Ah −
√
(A0)h = constant and uh = 0. From (17), we can easily observe A∗,−

h,j+ 1
2

= A∗,+
h,j+ 1

2

.

Subsequently, we can obtain

F̂l
j+ 1

2

=
⎛⎜⎜⎝

0

K
3𝜌
√
𝜋

(
A∗,−

h,j+ 1
2

) 3
2

⎞⎟⎟⎠ +
⎛⎜⎜⎝

0

K
3𝜌
√
𝜋

(
A−

h,j+ 1
2

) 3
2

− K
3𝜌
√
𝜋

(
A∗,−

h,j+ 1
2

) 3
2

⎞⎟⎟⎠ = f
(

U−
h,j+ 1

2

)
, (21)

due to (15). Similarly, we have

F̂r
j− 1

2

= f
(

U+
h,j− 1

2

)
. (22)
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Then, the residue R in (13) for steady-state solutions reduces to

R = F̂l
j+ 1

2

vh

(
x−

j+ 1
2

)
− F̂r

j− 1
2

vh

(
x+

j− 1
2

)
− ∫Ij

f (Uh)𝜕xvhdx − ∫Ij

S(Ah, (A0)h)vhdx

= f
(

U−
h,j+ 1

2

)
vh

(
x−

j+ 1
2

)
− f
(

U+
h,j− 1

2

)
vh

(
x+

j− 1
2

)
− ∫Ij

f (Uh)𝜕xvhdx − ∫Ij

S(Ah, (A0)h)vhdx

= ∫Ij

𝜕x f (Uh)vhdx − ∫Ij

S(Ah, (A0)h)vhdx

= ∫Ij

(
𝜕x f (Uh) − S(Ah, (A0)h)

)
vhdx

= 0,

(23)

where the second equality is due to (21) and (22), the third equality follows from a simple integration by parts, and
the last equality derives from the equality (20).

For the temporal discretization, high order total variation diminishing (TVD) Runge-Kutta method37 can be used. In
the numerical section of this paper, we apply the third-order Runge-Kutta method:

lclU (1) = Un + Δt (Un)

U (2) = 3
4

Un + 1
4
(

U (1) + Δt (U (1))
)

Un+1 = 1
3

Un + 2
3
(

U (2) + Δt (U (2))
)
,

(24)

with  (U) being the spatial operator.

4 WELL-BALANCED FINITE VOLUME WENO SCHEME FOR THE BLOOD
FLOW MODEL

In this section, we generalize the idea of the well-balanced DG method in Section 3 to design a well-balanced finite volume
WENO scheme for the blood flow model. The basic idea is the same as that for the DG method. The only extra step is due
to the fact that we only have the reconstructed pointwise values U±

j+ 1
2

and would need to first define an approximation

function Uh. We can then follow the procedure as before.
For sake of the well-balanced property, we only need to consider the second equation of the model (4), ie, (12). Our

well-balanced finite volume WENO scheme is given by

d
dt

Q̄j(t) +
1
Δx

(
F̂l

j+ 1
2

− F̂r
j− 1

2

)
= 1

Δx∫Ij

S(A,A0)dx, (25)

with F̂l
j+ 1

2

and F̂r
j− 1

2

being the left and right numerical fluxes as defined in Section 3.

Remark 1. To construct a high order polynomial Ah on the cell Ij, we apply interpolation based on the boundary values
A+

j− 3
2

, A+
j− 1

2

, A−
j+ 1

2

, and A−
j+ 3

2

, which come from the cell averages Āj by means of WENO reconstruction procedure. In a

similar way, we use the same interpolation on A0 to obtain a polynomial (A0)h.

Similarly, we get the following proposition for the well-balanced finite volume WENO scheme as for the DG method.

Proposition 2. For the blood flow model (4), the semi-discrete finite volume WENO scheme (25), combined with (15)
and (16) as well as (17), are well-balanced for the steady state solutions (5).
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Proof. In fact, for the second equation, the residue R in (25) reduces to

R = F̂l
j+ 1

2

− F̂r
j− 1

2

− ∫Ij

S(Ah, (A0)h)dx

= f
(

U−
h,j+ 1

2

)
− f
(

U+
h,j− 1

2

)
− ∫Ij

S(Ah, (A0)h)dx

= ∫Ij

𝜕x f (Uh)dx − ∫Ij

S(Ah, (A0)h)dx

= ∫Ij

(
𝜕x f (Uh) − S(Ah, (A0)h)

)
dx

= 0,

(26)

where the second equality is due to (15) and (16), the third equality follows from a simple integration by parts, and
the last equality follows from (20). Then, this completes the proof correspondingly.

For the temporal discretization, we also apply the third-order Runge-Kutta method (24) as it is also applied in Xing
and Shu.21,38

5 NUMERICAL RESULTS

In this section, we perform extensive numerical experiments to demonstrate the performance of the proposed third-order
well-balanced DG method and the fifth-order well-balanced finite volume WENO scheme. In all the computations, we
apply the third-order TVD Runge-Kutta method (24) for the time discretization. For the third-order DG method, the CFL
number is 0.18. For fifth-order finite volume WENO schemes, the CFL number is taken as 0.6.

5.1 To test the order of accuracy
We apply the following example to test the order of accuracy of the resulting method. The initial conditions are defined by

A(x, 0) = sin2(𝜋x), Q(x, 0) = sin(𝜋x) + cos(𝜋x), and A0(x) = cos2(𝜋x),

on a computational domain [0, 2] based on the following parameters: K = 1 × 108 Pa/m, 𝜌 = 1060 kg/m3.
We impose this problem with periodic boundary conditions at the 2 endpoints. Then, we solve this example up to

t = 0.01 seconds and get reference solutions on a mesh with 2000 cells. We present the errors and the order of accuracy
in Table 1. It is clear that the DG method and the WENO scheme all obtain their expected order of accuracy.

5.2 The ideal tourniquet
This example is similar with the dam break problem in shallow water equations, namely, Stoker's solution.39 Here, we
consider the analogue of this problem in blood flow model: A tourniquet is applied, and we remove it instantaneously.

TABLE 1 L1 errors and numerical orders of accuracy for the example of Section 5.1

DG Method WENO Scheme
A Q A Q

N L1error Order L1error Order L1error Order L1error Order

50 2.32E-3 2.59E-02 3.34E-3 3.34E-2
100 8.03E-4 1.53 8.48E-03 1.61 5.00E-4 2.74 5.25E-3 2.67
200 2.14E-4 1.91 2.23E-03 1.93 5.83E-5 3.10 5.55E-4 3.24
400 3.96E-5 2.43 4.19E-04 2.41 4.68E-6 3.64 3.70E-5 3.91
800 5.49E-6 2.85 5.81E-05 2.85 2.25E-7 4.38 1.60E-6 4.53
1600 6.36E-7 3.11 7.11E-06 3.03 6.92E-9 5.03 4.90E-8 5.03

Abbreviations: DG, discontinuous Galerkin; WENO, weighted essentially non-oscillatory.
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We consider the following initial conditions

A(x, 0) =
{

𝜋R2
L if x ≤ 0,

𝜋R2
R otherwise,

and Q(x, 0) = 0,

on a computational domain [−0.04, 0.04] based on the following parameters: K = 1 × 107 Pa/m, 𝜌 = 1060 kg/m3, RL =
5 × 10−3 m, RR = 4 × 10−3 m.

We impose this problem with transmissive boundary conditions. Then, we solve this example on a mesh with 200 cells
up to t = 0.005 seconds and present the numerical solutions against the exact ones in Figures 1 and 2. In addition, we
also run the same numerical test using the non–well-balanced DG method and the non–well-balanced WENO scheme,
with a straightforward numerical treatment of the source term, and show their results in Figures 1 and 2, respectively,
for comparison. It is obvious that the results of the well-balanced DG method and the well-balanced WENO scheme are
in good agreement with the exact solutions and keep steep shock transitions, while the results of the non–well-balanced
ones fail to fit well with the exact solutions.
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FIGURE 1 DG method: The numerical solutions of the ideal tourniquet problem in Section 5.2 on a mesh with 200 cells at
t = 0.005 seconds and those of the non–well-balanced (denoted by non-WB) method. Radius (left) and discharge (right) [Colour figure can be
viewed at wileyonlinelibrary.com]
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t = 0.005 seconds and those of the non–well-balanced (denoted by non-WB) scheme. Radius (left) and discharge (right) [Colour figure can be
viewed at wileyonlinelibrary.com]
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5.3 Wave equation
The following quasi-stationary test case has been proposed by Delestre and Lagrée12 and is chosen to demonstrate the
capability of the proposed method to compute the spreading of a small perturbation of a steady state. In that case, we
recover the behavior of the wave equation.
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FIGURE 3 The initial radius of the wave equation problem in Section 5.3 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 DG method: The numerical solutions of the wave equation problem in Section 5.3 on a mesh with 100 cells. Radius at
t = 0.002 seconds (upper), t = 0.004 seconds (lower left), and t = 0.006 seconds (lower right), respectively [Colour figure can be viewed at
wileyonlinelibrary.com]
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Herein, we apply the following initial data:

A(x, 0) =
⎧⎪⎨⎪⎩
𝜋R2

0 if x ∈
[
0, 40L

100

]
∪
[

60L
100

,L
]
,

𝜋R2
0

[
1 + 𝜖 sin

(
𝜋

x−40L∕100
20L∕100

)]2
if x ∈

[
40L
100

,
60L
100

]
,

Q(x, 0) = 0,

on a computational domain [0, 0.16] coupled with transmissive boundary conditions. The following parameters have been
used for this example: 𝜖 = 5 × 10−3,K = 108 Pa/m, 𝜌 = 1060 kg/m3, R0 = 4 × 10−3 m, and L = 0.16 m.

The initial radius is presented in Figure 3. We show the numerical solutions on a mesh with 100 cells at t = 0.002,
0.004, and 0.006 seconds, respectively, against the exact solutions in Figures 4 and 5. The figures strongly suggest that
the numerical solutions of the well-balanced DG method and the well-balanced WENO scheme agree well with the
reference ones.

5.4 The man at eternal rest
The purpose of this example is to verify that the current DG method and the WENO scheme indeed maintain the
well-balanced property.
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FIGURE 5 WENO scheme: The numerical solutions of the wave equation problem in Section 5.3 on a mesh with 100 cells. Radius at
t = 0.002 seconds (upper), t = 0.004 seconds (lower left), and t = 0.006 seconds (lower right), respectively [Colour figure can be viewed at
wileyonlinelibrary.com]
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Herein, we consider a configuration with no flow and with a change of radius R0(x), this is the case for a dead man with
an aneurism. Thus, for the initial conditions, the section of the artery is not constant with the following form

R(x, 0) = R0(x) =

⎧⎪⎪⎨⎪⎪⎩

R̃ if x ∈ [0, x1] ∪ [x4,L],

R̃ + ΔR
2

[
sin
(

x−x1
x2−x1

𝜋 − 𝜋

2

)
+ 1
]

if x ∈ [x1, x2],

R̃ + ΔR if x ∈ [x2, x3],

R̃ + ΔR
2

[
cos
(

x−x3

x4−x3
𝜋

)
+ 1
]

if x ∈ [x3, x4],

on a computational domain [0, 0.14] with R̃ = 4 × 10−3 m, ΔR = 10−3 m, K = 108 Pa/m, 𝜌 = 1060 kg/m3, L = 0.14 m,
x1 = 10−2 m, x2 = 3.05 × 10−2 m, x3 = 4.95 × 10−2 m, and x4 = 7 × 10−2 m. In addition, the initial velocity is zero. We
impose this problem with transmissive boundary conditions and compute this example up to t = 5 seconds.

To show that the well-balanced property is maintained up to the machine round off error, tests are run using single,
double, and quadruple precisions, respectively, on a mesh with 100. We present the L1 and L∞ errors for A and Q in
Table 2. It can be clearly seen that the L1 and L∞ errors are all at the level of round off errors associated with different
precisions, which verify that the current DG method and the WENO scheme indeed maintain the steady state and thus
their well-balanced property accordingly.

Moreover, we also ran the same test case using the non–well-balanced DG method and the non–well-balanced WENO
scheme, with a straightforward integration of the source term, and show their results in Figures 6 and 7 for the sake
of comparison. It is obvious that the results of the DG method and the WENO scheme are in good agreement with the
reference solutions for the case, while the non–well-balanced ones produce spurious oscillations.

TABLE 2 L1 and L∞ error for different precisions for the man at eternal rest in Section 5.4

DG Method WENO Scheme
L1error L∞ error L1error L∞ error

Precision A Q A Q A Q A Q

Single 1.04E-07 1.46E-07 3.96E-07 6.38E-07 2.41E-07 5.47E-07 3.25E-07 1.25E-07
Double 2.82E-16 2.82E-16 5.38E-16 4.42E-15 3.79E-16 3.89E-16 5.91E-16 6.56E-16
Quadruple 2.59E-31 5.69E-32 2.52E-33 1.58E-32 5.93E-32 4.63E-31 8.04E-33 2.39E-32

Abbreviations: DG, discontinuous Galerkin; WENO, weighted essentially non-oscillatory.
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FIGURE 6 DG method: The man at eternal rest problem in Section 5.4 at t = 5 seconds. The results of the well-balanced method with 100
and 2000 cells and those of the non–well-balanced (denoted by non-WB) method with 100 cells [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 7 WENO scheme: The man at eternal rest problem in Section 5.4 at t = 5 seconds. The results of the well-balanced scheme with
200 and 2000 cells and those of the non–well-balanced (denoted by non-WB) scheme with 100 cells [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 8 The initial error R − R0 of the propagation of a pulse to an expansion in Section 5.5 [Colour figure can be viewed at
wileyonlinelibrary.com]

5.5 Propagation of a pulse to an expansion
Firstly, we test the case of a pulse in a section RR passing trough an expansion: AL > AR, taking the following parameters:
K = 1.0 × 108 Pa/m, L = 0.16 m, 𝜌 = 1060 kg/m3, RL = 5 × 10−3 m, RR = 4 × 10−3 m, ΔR = 1.0 × 10−3 m. We take a
decreasing shape on a rather small scale:

R0(x) =
⎧⎪⎨⎪⎩

RR + ΔR if x ∈ [0, x1],
RR + ΔR

2

[
1 + cos

(
x−x1
x2−x1

𝜋

)]
if x ∈ [x1, x2],

RR else,

with x1 = 19L
40

, x2 = L
2

. As initial conditions, we consider a fluid at rest (Q(x, 0) = 0 m3/s) and the following perturbation
of radius:

R(x, 0) =

{
R0(x)

[
1 + 𝜖 sin

(
100
20L

𝜋

(
x − 65L

100

))]
if x ∈

[
65L
100

,
85L
100

]
,

R0(x) else,

with 𝜖 = 5.0 × 10−3 and transmissive boundary conditions.
We present the initial error R − R0 at time t = 0 seconds in Figure 8 and present the numerical results against the

reference solutions at t = 0.002 seconds and t = 0.006 seconds in Figures 9 and 10. We get 2 travelling waves, one spreading
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FIGURE 9 DG method: The numerical solutions of the propagation of a pulse to an expansion in Section 5.5 on a mesh with 100 cells and
those of the non–well-balanced (denoted by non-WB) method. The errors R − R0 at t = 0.002 seconds (left) and t = 0.006 seconds (right)
[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 10 WENO scheme: The numerical solutions of the propagation of a pulse to an expansion in Section 5.5 on a mesh with 100 cells
and those of the non–well-balanced (denoted by non-WB) scheme. The errors R − R0 at t = 0.002 seconds (left) and t = 0.006 seconds (right)
[Colour figure can be viewed at wileyonlinelibrary.com]

to the left and the other one going to the right at time t = 0.002 seconds. The numerical solutions of the well-balanced
method are in good agreement with the reference ones and are comparable with those in Delestre and Lagrée.12 However,
the numerical results by the non–well-balanced ones fail to be good agreement with the reference solutions.

5.6 Propagation of a pulse from an expansion
Then, we consider a pulse propagating from an expansion. The parameters are the same as in Section 5.5, only the initial
radius is changed:

R(x, 0) =

{
R0(x)

[
1 + 𝜖 sin

(
100
20L

𝜋

(
x − 15L

100

))]
if x ∈

[
15L
100

,
35L
100

]
,

R0(x) else,

with 𝜖 = 5.0 × 10−3. Similarly, we also impose this problem with transmissive boundary conditions.
We present the initial error R−R0 at time t = 0 seconds in Figure 11 and demonstrate the numerical results against the

reference solutions at t = 0.002 seconds and t = 0.006 seconds, respectively, in Figures 12 and 13. Similarly, the numerical
solutions of the well-balanced method fit well with the reference ones and are comparable with those in Delestre and
Lagrée.12 For comparison, we also plot the numerical results by the non–well-balanced ones. Nevertheless, the numerical
results by the non–well-balanced ones do not fit well with the reference solutions.
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FIGURE 11 The initial error R − R0 of the propagation of a pulse from an expansion in Section 5.6 [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 12 DG method: The numerical solutions of the propagation of a pulse from an expansion in Section 5.6 on a mesh with 100 cells
and those of the non–well-balanced (denoted by non-WB) method. The errors R − R0 at t = 0.002 seconds (left) and t = 0.006 seconds (right)
[Colour figure can be viewed at wileyonlinelibrary.com]

5.7 Wave damping
In this last test case, we look at the viscous damping term in the linearized momentum equation, which is an analogue
of the Womersley problem.40 We consider the following model coupled with the linear friction term:

{At + Qx = 0,

Qt +
(

Q2

A
+ K

3𝜌
√
𝜋

A
3
2

)
x
= KA

2𝜌
√
𝜋
√

A0
(A0)x − Cf

Q
A
,

(27)

where Cf = 8𝜋𝜈 with 𝜈 being the blood viscosity. We consider this example on a computational domain [0, 3] subject to
the given initial conditions {

A(x, 0) = 𝜋R2
0,

Q(x, 0) = 0,

companied by the following parameters: K = 1 × 108 Pa/m, 𝜌 = 1060 kg/m3, R0 = 4 × 10−3 m. For the friction term, we
directly apply the high order Gaussian quadrature rule.32
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FIGURE 13 WENO scheme: The numerical solutions of the propagation of a pulse from an expansion in Section 5.6 on a mesh with 100
cells and those of the non–well-balanced (denoted by non-WB) scheme. The errors R − R0 at t = 0.002 seconds (left) and t = 0.006 seconds
(right) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 14 DG method: The numerical solutions of the wave damping in Section 5.7 on a mesh with 200 cells at t = 25 seconds. The
damping of a discharge wave with Cf = 0 (upper left), Cf = 0.000022 (upper right), Cf = 0.000202 (lower left), and Cf = 0.005053 (lower
right) [Colour figure can be viewed at wileyonlinelibrary.com]

Subsequently, we obtain a damping wave in the computational domain12

Q(t, x) =
{

0 if krx > 𝜔t,
Qamp sin(𝜔t − krx)ekix if krx ≤ 𝜔t, (28)
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with

lclkr =
⎡⎢⎢⎣𝜔

4

c4
0
+

(
𝜔Cf

𝜋R2
0c2

0

)2⎤⎥⎥⎦
1
4

cos

(
1
2

arctan

(
−

Cf

𝜋R2
0𝜔

))
,

ki =
⎡⎢⎢⎣𝜔

4

c4
0
+

(
𝜔Cf

𝜋R2
0c2

0

)2⎤⎥⎥⎦
1
4

sin

(
1
2

arctan

(
−

Cf

𝜋R2
0𝜔

))
,

w = 2𝜋∕Tpulse = 2𝜋∕0.5 s,

c0 =

√√√√k
√

A0

2𝜌
√
𝜋

=

√
kR0

2𝜌
.

For the treatment of the boundary conditions, we impose the incoming discharge

Qb(t) = Qamp sin(wt) m3∕s,

at x = 0 m with Qamp = 3.45 × 10−7 m3/s being the amplitude of the inflow discharge.
In Figures 14 and 15, we present the numerical results against the exact solutions at t = 25 seconds with different Cf. It

is obvious that the numerical solutions of the well-balanced method are in good agreement with the exact solutions and
are comparable with those in Delestre and Lagrée.12
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FIGURE 15 WENO scheme: The numerical solutions of the wave damping in Section 5.7 on a mesh with 200 cells at t = 25 seconds. The
damping of a discharge wave with Cf = 0 (upper left), Cf = 0.000022 (upper right), Cf = 0.000202 (lower left), and Cf = 0.005053 (lower
right) [Colour figure can be viewed at wileyonlinelibrary.com]
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6 CONCLUDING REMARKS

In this paper, we present a new class of high order well-balanced DG method and finite volume WENO scheme based on
hydrostatic reconstruction for the blood flow model. Rigorous theoretical analysis as well as extensive numerical examples
all suggest that the current DG method and finite volume WENO scheme maintain the well-balanced property, enjoy the
high order of accuracy, and keep non-oscillatory shock resolution at the same time.
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