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a b s t r a c t 

A two-phase shallow granular flow model consists of mass and momentum equations for the solid and 

fluid phases, coupled together by conservative and non-conservative momentum exchange terms. Devel- 

opment of classic Godunov methods based on Riemann problem solutions for such a model is difficult 

because of complexity in building appropriate wave structures. Non-oscillatory central (NOC) differencing 

schemes are attractive as they do not need to solve Riemann problems. In this paper, a staggered NOC 

scheme is amended for numerical solution of the two-phase shallow granular flow equations due to Pit- 

man and Le. Simple discretization schemes for the non-conservative and bed slope terms and a simple 

correction procedure for the updating of the depth variables are proposed to ensure the well-balanced 

property. The scheme is further corrected with a numerical relaxation term mimicking the interphase 

drag force so as to overcome the difficulty associated with complex eigenvalues in some flow conditions. 

The resultant NOC scheme is implemented on multiple graphics processing units (GPUs) in a server by 

using both OpenMP-CUDA and multistream-CUDA parallelization strategies. Numerical tests in several 

typical two-phase shallow granular flow problems show that the NOC scheme can model wet/dry fronts 

and vacuum appearance robustly, and can treat some flow conditions associated with complex eigenval- 

ues. Comparison of parallel efficiencies shows that the multistream-CUDA strategy can be slightly faster 

or slower than the OpenMP-CUDA strategy depending on the grid sizes. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Landslides, rock avalanches, and debris flows are dangerous ge-

ological disasters that may cause great loss of properties and lives.

Reliable prediction of geophysical mass movements is thus of fun-

damental importance for planning strategies for hazard risk mitiga-

tion. Nevertheless, the processes behind these phenomena are very

complicated as they include continuous and discontinuous motion

regimes and multiphase, polydisperse, multiscale, erosive and rhe-

ologically complicated materials. They have drawn great attention

from numerous researchers in various fields. It is recognized that

the basic ingredients in real geological disasters are granular ma-

terials composed of solid particles and interstice fluids, thus, study

of the dynamics of granular materials can provide the scientific un-

derpinnings for modeling diverse geological mass motions [1] . 

Savage and Hutter [2] first made their pioneering work to

model dry granular avalanche flows by using depth-integrated

Saint Venant like equations obeying Coulomb-type yield. Their
∗ Corresponding author. 
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odel (now called the Savage–Hutter (SH) equations) was elab-

rated on and generalized by many researchers [1,3–6] . Fluids

re found to play an important role in the mobility of granular

valanche flows. To take into account effects of interstice fluids

n granular materials, Iverson and Denlinger [7,8] came up with

 mixture model. Later, Pitman and Le [9] proposed the original

wo-phase (two-fluid) shallow flow model from depth averaging of

he two-phase Navier–Stokes equations for the mixture of Coulomb

aterials and Newtonian fluids. The Pitman–Le model was subse-

uently reformulated and studied for its mathematical properties

10] and numerical solutions [11,12] . 

In this article we focus on efficient numerical solution for a

opular variant of the original Pitman–Le two-phase shallow gran-

lar flow model. In this variant [10,13] , the fluid momentum equa-

ions are recast into a semi-conservative form similar to the solid

omentum equations. Compared with the single phase model, the

ajor difficulties for the two-phase shallow granular flow model

re the lack of explicit expressions for the eigenvalues of the

uasilinear system, and hence the lack of knowledge of the exact

r full-wave approximate Riemann solution, the presence of non-

onservative terms, and the occurrence of complex roots in certain

http://dx.doi.org/10.1016/j.compfluid.2016.04.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2016.04.032&domain=pdf
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ow conditions, all of which make some popular Riemann problem

olution-based Godunov methods hard to apply. 

Several researchers have developed numerical methods for the

itman–Le two-phase flow model. Pelanti et al. [10,11] constructed

 Roe approximate Riemann solver with a relaxation technique for

imulating two-phase shallow granular flow over variable topog-

aphy. While possessing high resolution and several other mer-

ts, this method is complicated. Dumbser et al. [14] developed a

amily of well-balanced path-conservative one-step ADER (Arbi-

rary DERivative in space and time) finite volume and discontinu-

us Galerkin finite element schemes for hyperbolic partial differ-

ntial equations with non-conservative products and stiff source

erms, but solution of an approximate Riemann problem is still

 complicated thing. More recently, Ref. [15] developed a simpler

LLEM Riemann solver that works for general conservative and

on-conservative systems of hyperbolic equations, and applied to

he Pitman–Le two-phase flow model. Ref. [16] presented a class

f first order finite volume solvers called PVM (polynomial viscos-

ty matrix) and applied the solvers to 2D Pitman–Le model. Later

n, a second order numerical scheme which was constructed by

sing a suitable decomposition of a Roe matrix by means of the

VM was presented in [17] and proved to be well-balanced with

espect to the water-at-rest solution. Ref. [12] applied the space-

ime conservation element and solution element (CE/SE) method

o simulating single and two-phase shallow granular flows with

ottom topography, and shown higher resolution results compared

ith the kinetic flux-vector splitting method [18] . 

Non-Oscillatory Central Differencing (NOC) schemes [19] were

rst introduced for one-dimensional case and later elaborated by

any others (e.g., [20,21] ). The original NOC scheme [19] is time-

pace staggered. Ref. [22] translated the staggered scheme into

on-staggered one for convenience of dealing with complex ge-

metries and boundary conditions. NOC schemes belong to the

lass of Riemann-problem-solver-free Godunov methods. In spite

f fewer applications in three dimensions due to complicated

D space-time staggered grids and many quadrature points, NOC

chemes are relatively simple and widely used for two-dimensional

yperbolic systems of conservation laws. The schemes do not need

o solve Riemann problems, and this makes them attractive for

omplicated systems like the Pitman–Le two-phase model. Both

taggered NOC [5,23] and non-staggered NOC schemes [24] have

een applied to single-phase shallow granular flow equations. Ex-

ension to 1D two-layer shallow water equations was made in [25] .

owever, there seems to be a lack of application of NOC schemes

o the Pitman–Le two-phase model up to now. 

Over the last decade or so, graphics processing units (GPUs)

ave been increasingly used in high-performance computing. Com-

ared to CPU, GPU has many more lightweight compute cores,

nd enables execution of many similar arithmetic operations. Al-

hough GPU programming is still somewhat cumbersome and

ime-consuming, the research community utilizing GPUs is contin-

ously growing [26] , and GPU hardware and programming envi-

onment have been steadily improved. Nowadays popular GPU pro-

ramming languages are CUDA (Compute Unified Device Architec-

ure) and OpenCL. CUDA is based on extension to C/C++ languages,

nd has well established tools like debuggers and profilers. There

re a couple of papers on shallow water simulation using multiple

PUs in both single nodes [27] and clusters [28] . 

In this article, we extend the staggered NOC scheme developed

or single phase SH model [5] to the Pitman–Le two-phase shallow

ranular flow model. In the extension, we have to specify a way

he nonconservative terms and the bed slope source terms are dis-

retized. This is very important for the numerical scheme to solve

xactly the stationary solutions corresponding to water at rest, i.e.,

he C-property or well-balanced property (e.g., [29,30] ). An obsta-

le to designing well-balanced staggered NOC scheme stems from
he additional quadrature terms due to the staggered grid arrange-

ent of the scheme. We have to design a special correction proce-

ure to achieve the well-balanced property. 

Implementation of the NOC scheme on multiple graphics pro-

essing units (GPUs) is another concern of this article. Here we fo-

us on single node system with several GPUs connected through

he PCI Express bus to the motherboard. There are several strate-

ies to implement multi-GPU computing in a single node, and

ifferent strategies may have different efficiencies depending on

he specific device and optimization technique as well as grid

cale used. We compare two frequently used strategies for run-

ing multiple GPUs in a node, one is Open Multiprocessing in-

erface (OpenMP) which spawns several CPU threads with each

hread managing a GPU, another is CUDA’s multistream multi-GPU

apability. The comparison may be useful in gaining experience for

hoosing a better strategy for running multiple GPUs in a node. 

The paper is organized as follows. In Section 2 , we give formu-

ation of the Pitman–Le two-phase model. In Section 3 , we derive

 well-balanced NOC scheme for this model and analyze its well-

alanced and positive-preserving properties. In Section 4 , the detail

f implementing the NOC scheme with OpenMP and multistream

trategies is given. In Section 5 , some numerical examples, includ-

ng one- and two-dimensional two-phase flows for a wide range of

ow conditions, are presented, and concluding remarks are given

n Section 6 . 

. Two-phase shallow granular flow equations 

.1. One-dimensional equations 

The Pitman–Le two-fluid shallow granular flow model we con-

idered here is the variant [10,13] in which the fluid momentum

quation is rewritten as a form similar to the solid momentum

quation and the basal friction is neglected, which describes the

ynamics of a shallow layer of mixture of solid granular material

nd fluid over a nearly horizontal surface. The solid and fluid com-

onents are assumed to be incompressible with densities ρs and

f , where ρ f < ρs . Let h denote the flow height and φ denote the

olid volume fraction. The solid and fluid heights can be defined as

ollows, 

 s = φh, h f = (1 − φ) h. (1) 

n a Cartesian coordinate system with x being horizontal, the one-

imensional two-phase shallow flow model consisting of mass and

omentum equations for the two constituents can be written as

11,12] 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ t h s + ∂ x (h s u s ) = 0 , 

∂ t (h s u s ) + ∂ x 
(
h s u 

2 
s + 

g 
2 

h 

2 
s + 

g 
2 
(1 − γ ) h s h f 

)
+ γ gh s ∂ x h f 

= −gh s ∂ x b + γ F D , 

∂ t h f + ∂ x (h f u f ) = 0 , 

∂ t h f u f + ∂ x 
(
h f u 

2 
f 
+ 

g 
2 

h 

2 
f 

)
+ gh f ∂ x h s = −gh f ∂ x b − F D , 

(2) 

here u s and u f are the solid and fluid velocities in the x direc-

ion, respectively, γ = ρ f /ρs is the fluid/solid density ratio and g 

s the gravitational constant, b := b ( x ) is the basal topography, and

 

D is the inter-phase drag force which can be expressed as F D =
 (h s + h f )(u f − u s ) where D is the drag function. In this paper, the

nter-phase drag force is neglected in designing the NOC scheme.

owever, since the inter-phase drag is important for maintaining

ow conditions in the hyperbolic regime [11,31] , it will be ac-

ounted for as a numerical remedy to make the NOC scheme be-

ave normally when the loss of hyperbolicity of system (2) may

appen ( Section 3.5 ). 
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2.2. Quiescent steady states 

The quiescent steady state for Newtonian fluid has an impor-

tant feature that the free surface level is horizontal. This feature

should be maintained by a good numerical scheme (so called well-

balanced scheme in literature). For the two-fluid system (2) with-

out Coulomb friction, the quiescent steady states are solution of

lake at rest and constant ratio of volume fractions everywhere

[10] , 

u s = u f = 0 , h s + h f + b = Const , φ ≡ h s 

h s + h f 

= Const . (3)

2.3. Quasi-linear form and eigenstructure 

Rewrite system (2) without inter-phase drag terms into com-

pact form, it reads 

∂U 

∂t 
+ 

∂F (U ) 

∂x 
+ H 

(
U , 

∂U 

∂x 

)
= S (U ) , (4)

where 

U = 

⎛ ⎜ ⎜ ⎝ 

h s 

h s u s 

h f 

h f u f 

⎞ ⎟ ⎟ ⎠ 

, F (U ) = 

⎛ ⎜ ⎜ ⎝ 

h s u s 

h s u 

2 
s + 

g 
2 

h 

2 
s + 

g 
2 
(1 − γ ) h s h f 

h f u f 

h f u 

2 
f 
+ 

g 
2 

h 

2 
f 

⎞ ⎟ ⎟ ⎠ 

, 

H 

(
U , 

∂U 

∂x 

)
= 

⎛ ⎜ ⎜ ⎜ ⎝ 

0 

γ gh s 
∂h f 
∂x 

0 

gh f 
∂h s 
∂x 

⎞ ⎟ ⎟ ⎟ ⎠ 

, S (U ) = 

⎛ ⎜ ⎜ ⎝ 

0 

−gh s 
∂b 
∂x 

0 

−gh f 
∂b 
∂x 

⎞ ⎟ ⎟ ⎠ 

. 

(5)

Here, F is the conservative flux vector, H is the non-conservative

terms which have non-conservative products that couple the dy-

namics of the solid and fluid phases in the momentum equations,

and S is the contribution from the varying basal topography. 

Let us further rewrite the compact form (4) in quasi-linear form

for later reference: 

∂U 

∂t 
+ A (U ) 

∂U 

∂x 
= S (U ) , (6)

where matrix A is 

A (U ) = 

⎛ ⎜ ⎜ ⎝ 

0 1 0 0 

−u 

2 
s + gh s + g 1 −γ

2 
h f 2 u s g 1+ γ

2 
h s 0 

0 0 0 1 

gh f 0 −u 

2 
f 
+ gh f 2 u f 

⎞ ⎟ ⎟ ⎠ 

. (7)

In general cases, there are no simple explicit expressions of the

eigenvalues of the matrix A ( U ), but there is a theoretical result

proved in [10] as follows. 

Proposition 2.1. Matrix A ( U ) has always at least two real eigenval-

ues λ1, 4 , and moreover, the eigenvalues λk of A ( U ), satisfy the follow-

ing inequalities: 

u min − a ≤ λ1 ≤ R (λ2 ) ≤ R (λ3 ) ≤ λ4 ≤ u max + a (8)

where a = 

√ 

gh = 

√ 

g(h s + h f ) , u min = min (u f , u s ) , u max = max (u f ,

u s ) , and R (·) denotes the real part. Furthermore: 

(i) If | u s − u f | ≤ 2 aβ or | u s − u f | ≥ 2 a (where β =√ 

1 
2 (1 − φ)(1 − γ ) < 1 ) then all the eigenvalues are real.

If one of these inequalities are strictly satisfied, and the eigen-

values are also distinct, then system (6) is strictly hyperbolic. 

(ii) If 2 aβ < | u s − u f | < 2 a then the internal eigenvalues λ2, 3 may
be complex. 
Pelanti et al. [10,11] used Newton’s iteration method to compute

ll eigenvalues of matrix A ( U ) as needed by their Roe type solver.

e remark that one can also calculate these eigenvalues according

o Vieta’s formula for polynomials. However, for the NOC scheme

resented in this article, there is no need to compute the eigen-

alues at all, and only the lower bound, u min − a, and the upper

ound, u max + a, are used to calculate the time step based on a

FL condition. 

.4. Two-dimensional equations 

Similarly, the two-dimensional two-phase shallow flow model

ithout inter-phase drag force terms can be written as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ t h s + ∂ x (h s u s ) + ∂ y (h s v s ) = 0 , 

∂ t (h s u s ) + ∂ x 
(
h s u 

2 
s + 

g 
2 

h 

2 
s + 

g 
2 
(1 − γ ) h s h f 

)
+ ∂ y ( h s u s v s ) 

+ γ gh s ∂ x h f = −gh s ∂ x b, 

∂ t (h s v s ) + ∂ x (h s u s v s ) + ∂ y (h s v 2 s + 

g 
2 

h 

2 
s + 

g 
2 
(1 − γ ) h s h f ) 

+ γ gh s ∂ y h f = −gh s ∂ y b, 

∂ t h f + ∂ x (h f u f ) + ∂ y (h f v f ) = 0 , 

∂ t h f u f + ∂ x 
(
h f u 

2 
f 
+ 

g 
2 

h 

2 
f 

)
+ ∂ y (h f u f v f ) + gh f ∂ x h s = −gh f ∂ x b, 

∂ t (h f v f ) + ∂ x (h f u f v f ) + ∂ y 
(
h f v 2 f + 

g 
2 

h 

2 
f 

)
+ gh f ∂ y h s 

= −gh f ∂ y b, 

(9)

here v s and v f is the solid and fluid velocities in the y direction,

espectively, and basal topography b ( x, y ) is a function of both x

nd y coordinates. Write system (9) into compact form 

∂U 

∂t 
+ 

∂F (U ) 

∂x 
+ 

∂G (U ) 

∂y 
+ H 

(
U , 

∂U 

∂x 
, 
∂U 

∂y 

)
= S (U ) , (10)

here 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

h s 

h s u s 

h s v s 
h f 

h f u f 

h f v f 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, F (U ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

h s u s 

h s u 

2 
s + 

g 
2 

h 

2 
s + 

g 
2 
(1 − γ ) h s h f 

h s u s v s 
h f u f 

h f u 

2 
f 
+ 

g 
2 

h 

2 
f 

h f u f v f 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

 (U ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

h s v s 
h s u s v s 

h s v 2 s + 

g 
2 

h 

2 
s + 

g 
2 
(1 − γ ) h s h f 

h f v f 
h f u f v f 

h f v 2 f + 

g 
2 

h 

2 
f 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

 

(
U , 

∂U 

∂x 
, 
∂U 

∂y 

)
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

γ gh s ∂ x h f 

γ gh s ∂ y h f 

0 

gh f ∂ x h s 

gh f ∂ y h s 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, S (U ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

−gh s ∂ x b 

−gh s ∂ y b 

0 

−gh f ∂ x b 

−gh f ∂ y b 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (11)

ewrite system (10) in quasi-linear form 

∂U 

∂t 
+ A (U ) 

∂U 

∂x 
+ B (U ) 

∂U 

∂y 
= S (U ) , (12)

here matrices A and B are 
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Fig. 1. Sketch of staggered grid for NOC scheme. 
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o  
 (U ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 0 0 0 0 

−u 2 s + gh s + 

g 
2 
(1 − γ ) h f 2 u s 0 g 

2 
(1 + γ ) h s 0 0 

−u s v s v s u s 0 0 0 

0 0 0 0 1 0 

gh f 0 0 −u 2 
f 
+ gh f 2 u f 0 

0 0 0 −u f v f v f u f 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

B (U ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 1 0 0 0 

−u s v s v s u s 0 0 0 

−v 2 s + gh s + 

g 
2 
(1 − γ ) h f 0 2 v s g 

2 
(1 + γ ) h s 0 0 

0 0 0 0 0 1 

0 0 0 −u f v f v f u f 

gh f 0 0 −v 2 
f 
+ gh f 0 2 v f 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(13) 

rom (13) , it is easy to verify that matrix A has two eigenvalues u s 
nd u f (see 3rd row and 3rd column, and 6th row and 6th column),

nd the remaining eigenvalues are exactly the same as those in the

d case. Similarly, matrix B has two eigenvalues v s and v f , and the

emaining eigenvalues are analogous to those of matrix A . Hence,

e can continue to make use of Proposition 2.1 for each matrix.

gain, only the lower and upper bounds of the eigenvalues, u min −
, u max + a, v min − a, and v max + a, are utilized to calculate the time

tep in the present NOC scheme. 

. Non-oscillatory Central Differencing scheme (NOC) 

Tai et al. [23,32] and Wang et al. [5] applied the staggered NOC

cheme to numerical simulations of single-phase shallow granular

ows. In this work, we apply the staggered NOC scheme to two-

hase shallow granular flow equations. The well-balanced prop-

rty of the resulting NOC scheme is ensured with a modification

rocedure, and the scheme is proven to be positivity-preserving. A

umerical treatment [31] using the relaxation term to recover the

yperbolicity of the system is adopted to make the scheme work

ne for flow conditions in which the loss of hyperbolicity happens.

.1. One-dimensional NOC scheme 

We first illustrate one-dimensional time-space staggered NOC

cheme. As a Godunov method, the solution variables U are the cell

verages on interval [ x 
i − 1 

2 
, x 

i + 1 
2 

] at t = t n and on staggered interval

 x i , x i +1 ] at t = t n +1 ( Fig. 1 ). With MUSCL reconstruction, one can

econstruct the piecewise linear distribution as 

 i (x, t n ) = U i (t n ) + ( x − x i ) 
σn 

i , x i − 1 
2 

≤ x ≤ x i + 1 2 
, (14) 
�x 
here cell average at time t n is defined as U i (t n ) =
1 

�x 

∫ x i + 1 
2 

x 
i − 1 

2 

U (x, t n ) d x, and σn 
i 
/ �x is the slope and σn 

i 
could be

ome limiter for undivided differences of U i . Integrate system

4) over control volume [ x i , x i +1 ] × [ t n , t n +1 ] as shown in Fig. 2 , 

 x i +1 

x i 

U (x, t n +1 ) d x −
∫ x i +1 

x i 

U (x, t n ) d x 

+ 

∫ t n +1 

t n 
F (x i +1 , t) −

∫ t n +1 

t n 
F (x i , t) d t 

= −
∫ t n +1 

t n 

∫ x i +1 

x i 

H d x d t + 

∫ t n +1 

t n 

∫ x i +1 

x i 

S d x d t, (15) 

ivide Eq. (15) by �x , and define cell average at time t n +1 which

s the unknown solution as 

 

n +1 

i + 1 2 
= 

1 

�x 

∫ x i +1 

x i 

U (x, t n +1 ) d x, (16) 

hen 

1 

�x 

∫ x i +1 

x i 

U (x, t n ) d x = 

1 

�x 

[ ∫ x 
i + 1 

2 

x i 

U (x, t n ) d x + 

∫ x i +1 

x 
i + 1 

2 

U (x, t n ) d x 

] 

= 

1 

�x 

[ ∫ x 
i + 1 

2 

x i 

L i (x, t n ) d x + 

∫ x i +1 

x 
i + 1 

2 

L i +1 (x, t n ) d x 

] 

= 

1 

2 

(
U 

n 

i + U 

n 

i +1 

)
+ 

1 

8 

(
σn 

i − σn 
i +1 

)
. (17) 

he time-integration of flux F can be approximated by midpoint

ule of integral ( ◦ points in the right frame of Fig. 2 ), 

1 

�x 

∫ t n +1 

t n 
F (x i +1 , t) d t ≈ �t 

�x 
F 

(
U 

n + 1 2 

i +1 

)
, 

1 

�x 

∫ t n +1 

t n 
F (x i , t) d t ≈ �t 

�x 
F 

(
U 

n + 1 2 

i 

)
. (18) 

o proceed, we need to evaluate the integration of non-

onservative term H ( U, U x ) in Eq. (15) . Because the second and

ourth components of vector H are similar as seen from Eq. (5) , we

ake the fourth component as example. For clarity, we omit con-

tant g . If it is approximated with 

1 

�x 

∫ t n +1 

t n 

∫ x i +1 

x i 

h f 

∂h s 

∂x 
d x d t ≈ 1 

�x 

∫ t n +1 

t n 

(̃
 h f ̃

 δh s 

)
i + 1 2 

d t 

≈ �t 

�x 

(̃
 h f ̃

 δh s 

)n + 1 2 

i + 1 2 

= 

�t 

�x 
H 

n + 1 2 

i + 1 2 

, (19) 

here ( ̃  h f ) 
n +1 / 2 
i +1 / 2 

and ( ̃  δh s ) 
n +1 / 2 
i +1 / 2 

are suitable approximations to

(h f ) 
n +1 / 2 
i +1 / 2 

and (δh s ) 
n +1 / 2 
i +1 / 2 

, and if the last bed slope term in Eq.

15) is also discretized properly, then (15) becomes NOC scheme 

 

n +1 

i + 1 2 
= 

1 

2 

(
U 

n 

i + U 

n 

i +1 

)
+ 

1 

8 

(
σn 

i − σn 
i +1 

)
− �t 

�x 

[ 
F 

(
U 

n + 1 2 

i +1 

)
− F 

(
U 

n + 1 2 

i 

)] 
− �t 

�x 
H 

n + 1 2 

i + 1 2 

+ 

�t 

�x 
S n + 

1 
2 

i + 1 2 

. (20) 

he RHS of (20) consists of four parts: the quadrature terms

rom the reconstruction (first two terms), the flux terms (third

erm), the nonconservative terms (fourth term), and the bed slope

ource terms (fifth term). As will be shown later, suitable second-

rder discretization schemes for the nonconservative and bed slope
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Fig. 2. Diagram of a NOC scheme in the x − t plane. The left frame shows grid points in the NOC scheme. The right frame shows the NOC integration stencil, where • indicate 

the grid points at time level n and n + 1 , ◦ represent the quadrature points for fluxes F across the cell boundaries and the data points for discretizing non-conservative terms 

H and bed slope source terms S . 
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a  
terms for ensuring the well-balanced property are 

H 

n + 1 2 

i + 1 2 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 

γ g 
2 

(
h 

n + 1 2 

s,i 
+ h 

n + 1 2 

s,i +1 

)(
h 

n + 1 2 

f,i +1 
− h 

n + 1 2 

f,i 

)
0 

g 
2 

(
h 

n + 1 2 

f,i 
+ h 

n + 1 2 

f,i +1 

)(
h 

n + 1 2 

s,i +1 
− h 

n + 1 2 

s,i 

) , 

S 
n + 

1 

2 

i + 1 2 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 

−g 
h 

n + 1 2 

s,i +1 
+ h 

n + 1 2 

s,i 

2 

( b i +1 − b i ) 

0 

−g 
h 

n + 1 2 

f,i +1 
+ h 

n + 1 2 

f,i 

2 

( b i +1 − b i ) 

. (21)

By letting cell average U 

n 

i coincide with point ( i, n ) (second-order

approximation in space), the required middle time values of U 

n + 1 
2 

i 

and U 

n + 1 
2 

i +1 
are obtained by the first-order Taylor expansions, 

U 

n + 1 2 

i + q = U 

n 

i + q + 

�t 

2 

(
∂U 

∂t 

)n 

i + q 
, q = 0 , 1 , (22)

where 
(

∂U 
∂t 

)n 

i 
are computed according to discretization of quasi-

linear system (6) at ( i, n ), (
∂U 

∂t 

)n 

i 

= S ( U 

n 

i ) − A ( U 

n 

i ) 
σn 

i 

�x 
. (23)

The limiter we used for the undivided slope σ in (23) is 

σi = δ̄U i = minmod ( U i − U i −1 , U i +1 − U i ) . (24)

It is remarked that the bed slope term S ( U i ) in (23) should be

approximated with a finite difference to be given in Eq. (34) in

Section 3.3 so as to ensure the well-balanced property. It is differ-

ent from S n +1 / 2 
i +1 / 2 

in Eq. (21) . 

3.2. Two-dimensional NOC scheme 

The 2D NOC scheme is similar to 1D NOC scheme (20) but is

more involved due to the 2D staggered grids (see Fig. 3 ). We follow

[5] to give the 2D staggered NOC scheme for system (10) . The final

2D NOC scheme also consists of four parts and is written as 

U 

n +1 

i + 1 2 , j+ 1 2 
= 

1 

4 

(
U 

n 

i, j + U 

n 

i +1 , j + U 

n 

i, j+1 + U 

n 

i +1 , j+1 

)
+ 

1 

16 

(
σx,n 

i, j 
− σx,n 

i +1 , j 
+ σx,n 

i, j+1 
− σx,n 

i +1 , j+1 

)
+ 

1 

16 

(
σy,n 

i, j 
− σy,n 

i, j+1 
+ σy,n 

i +1 , j 
− σy,n 

i +1 , j+1 

)
− �t 

2�x 

[ 
F 

(
U 

n + 1 2 

i +1 , j 

)
− F 

(
U 

n + 1 2 

i, j 

)

+ F 

(
U 

n + 1 2 

i +1 , j+1 

)
− F 

(
U 

n + 1 2 

i, j+1 

)] 
− �t 

2�y 

[ 
G 

(
U 

n + 1 2 

i, j+1 

)
− G 

(
U 

n + 1 2 

i, j 

)
+ G 

(
U 

n + 1 2 

i +1 , j+1 

)
− G 

(
U 

n + 1 2 

i +1 , j 

)] 
− �t H 

n + 1 2 

i + 1 2 , j+ 1 2 

+ �t S n + 
1 
2 

i + 1 2 , j+ 1 2 

. (25)

here σx,n 
i, j 

and σy,n 
i, j 

represent limited undivided “slopes” in the x

nd y directions, respectively. Suitable second-order discretizations

or the nonconservative terms and the bed slope source terms are

imilar to previous 1d case, i.e., the same quadrature points � as

or fluxes at the middle time level n + 

1 
2 are used: 

 

n + 1 2 

i + 1 2 , j+ 1 2 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 , 

γ g 
4�x 

[ (
h 

n + 1 2 

s,i, j 
+ h 

n + 1 2 

s,i +1 , j 

)(
h 

n + 1 2 

f,i +1 , j 
− h 

n + 1 2 

f,i, j 

)
+ 

(
h 

n + 1 2 

s,i, j+1 
+ h 

n + 1 2 

s,i +1 , j+1 

)(
h 

n + 1 2 

f,i +1 , j+1 
− h 

n + 1 2 

f,i, j+1 

)] 
, 

γ g 
4�y 

[ (
h 

n + 1 2 

s,i, j 
+ h 

n + 1 2 

s,i, j+1 

)(
h 

n + 1 2 

f,i, j+1 
− h 

n + 1 2 

f,i, j 

)
+ 

(
h 

n + 1 2 

s,i +1 , j 
+ h 

n + 1 2 

s,i +1 , j+1 

)(
h 

n + 1 2 

f,i +1 , j+1 
− h 

n + 1 2 

f,i +1 , j 

)] 
, 

0 , 

g 
4�x 

[ (
h 

n + 1 2 

f,i, j 
+ h 

n + 1 2 

f,i +1 , j 

)(
h 

n + 1 2 

s,i +1 , j 
− h 

n + 1 2 

s,i, j 

)
+ 

(
h 

n + 1 2 

f,i, j+1 
+ h 

n + 1 2 

f,i +1 , j+1 

)(
h 

n + 1 2 

s,i +1 , j+1 
− h 

n + 1 2 

s,i, j+1 

)] 
, 

g 
4�y 

[ (
h 

n + 1 2 

f,i, j 
+ h 

n + 1 2 

f,i, j+1 

)(
h 

n + 1 2 

s,i, j+1 
− h 

n + 1 2 

s,i, j 

)
+ 

(
h 

n + 1 2 

f,i +1 , j 
+ h 

n + 1 2 

f,i +1 , j+1 

)(
h 

n + 1 2 

s,i +1 , j+1 
− h 

n + 1 2 

s,i +1 , j 

)] 
, 

(26)

 

n + 1 2 

i + 1 2 , j+ 1 2 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 , 

− g 
4�x 

[ (
h 

n + 1 2 

s,i +1 , j+1 
+ h 

n + 1 2 

s,i, j+1 

)(
b i +1 , j+1 − b i, j+1 

)
+ 

(
h 

n + 1 2 

s,i +1 , j 
+ h 

n + 1 2 

s,i, j 

)(
b i +1 , j − b i, j 

)] 
, 

− g 
4�y 

[ (
h 

n + 1 2 

s,i +1 , j+1 
+ h 

n + 1 2 

s,i +1 , j 

)(
b i +1 , j+1 − b i +1 , j 

)
+ 

(
h 

n + 1 2 

s,i, j+1 
+ h 

n + 1 2 

s,i, j 

)(
b i, j+1 − b i, j 

)] 
, 

0 , 

− g 
4�x 

[ (
h 

n + 1 2 

f,i +1 , j+1 
+ h 

n + 1 2 

f,i, j+1 

)(
b i +1 , j+1 − b i, j+1 

)
+ 

(
h 

n + 1 2 

f,i +1 , j 
+ h 

n + 1 2 

f,i, j 

)(
b i +1 , j − b i, j 

)] 
, 

− g 
4�y 

[ (
h 

n + 1 2 

f,i +1 , j+1 
+ h 

n + 1 2 

f,i +1 , j 

)(
b i +1 , j+1 − b i +1 , j 

)
+ 

(
h 

n + 1 2 

f,i, j+1 
+ h 

n + 1 2 

f,i, j+1 

)(
b i, j+1 − b i, j 

)] 
, 

(27)

he required middle time values of U 

n + 1 
2 

i, j 
, U 

n + 1 
2 

i +1 , j 
, U 

n + 1 
2 

i, j+1 
, U 

n + 1 
2 

i +1 , j+1 

or evaluating fluxes, nonconservative terms, and bed slope terms,

re calculated according to the first-order Taylor expansions with



J. Zhai et al. / Computers and Fluids 134–135 (2016) 90–110 95 

Fig. 3. Diagram of a 2D NOC scheme in the (x, y ) − t space. (a) Perspective view, where • indicate the computational grid points at time levels n and n + 1 , red triangles � 

are quadrature points for the piecewise linear reconstruction at time level n , and � are quadrature points for fluxes F and G across cell boundaries of the control volume, 

and data points for discretizing nonconservative terms H and source terms S . (b) Top view of (a) onto the ( x, y ) plane, where • is the projected grid point for ( i + 

1 
2 
, j + 

1 
2 
) at 

time n + 1 , � are the quadrature points for the piecewise linear reconstruction at time level n , and � are quadrature points for the flux terms and data points for discretizing 

the nonconservative terms and source terms, which coincide with the computational points at time n . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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espect to piece-wise integer grid points at time level n , 

 

n + 1 2 

i + q, j+ r = U 

n 

i + q, j+ r + 

�t 

2 

(
∂U 

∂t 

)n 

i + q, j+ r 
, q, r = 0 , 1 . (28) 

he time partial derivative ∂ t U is similarly determined from 2D

uasi-linear system (12) as 

∂U 

∂t 

)
i, j 

= S ( U i, j ) − A ( U i, j ) 
σx 

i, j 

�x 
− B ( U i, j ) 

σy 
i, j 

�y 
. (29) 

gain, the bed slopes in S ( U i, j ) are computed with a special finite

ifference to be given in Eq. (34) in Section 3.3 in order to ensure

he well-balanced property. The limited undivided slopes σx 
i, j 

and
y 
i, j 

are computed in dimension-by-dimension way. Computational

ffects using different limiter functions have been compared in [5] .

ased on their study, the minmod limiter is used in this work. The

ourant–Friedrichs–Levy (CFL) condition is 

t max 

( | c max 
x | 
�x 

, 
| c max 

y | 
�y 

)
≤ 1 

2 

, (30) 

here c max 
x , c max 

y are the maximum wave speeds in the x - and y -

irections, respectively, which are estimated from Pelanti’s prepo-

ition 2.1 . The NOC scheme is formally second-order accurate. 

.3. Modify the NOC scheme for well-balancedness 

Compared with conventional shallow water equations, the two-

hase shallow water model poses additional difficulties to develop-

ng well-balanced scheme because nonconservative terms need to

e considered and the volume fraction φ needs to preserve a con-

tant for quiescent steady states. Further, the staggered-grid NOC

cheme contains quadrature terms of the linear reconstructions,

.g., the first two terms in (20) , and they also have to be consid-

red. In this work, we show analysis of 1D NOC scheme and the

ell-balanced modification in detail. Extension to 2D NOC scheme

s straightforward. 

Consider 1D NOC scheme (20) . The well-balanced property

tates that if the numerical solution U 

n 
i 

satisfies quiescent steady

tates (3) in the sense that h n 
s,i 

+ h n 
f,i 

+ b i = Const , h n 
s,i 

/ (h n 
s,i 

+ h n 
f,i 

) =
onst , and u 

n 
i 

= 0 , ∀ i, then the numerical solution U 

n +1 

i + 1 
2 

pre-

erves the same quiescent steady states, i.e., h n +1 

s,i + 1 
2 

+ h n +1 

f,i + 1 
2 

+
 

i + 1 
2 

= Const , h n +1 

s,i + 1 
2 

/ (h n +1 

s,i + 1 
2 

+ h n +1 

f,i + 1 
2 

) = Const , and u 

n +1 

i + 1 
2 

= 0 , ∀ i . 

For scheme (20) with corresponding discretizations (21) - (24) ,

e can prove that the conservative flux terms, the nonconserva-

ive product terms, and the bed slope source terms cancel exactly
nder quiescent steady state conditions, leading to the following

roposition 3.1 . But the first two terms in scheme (20) do not

ecessarily satisfy the well-balanced property. A special correction

rocedure to ensure the well-balancedness will be introduced later.

e first prove Proposition 3.1 . 

roposition 3.1. For scheme (20) , the discrete flux gradients, noncon-

ervative products, and bed slope source terms cancel exactly at qui-

scent steady states. 

roof. For the first component in Eq. (20) , the sum of the flux gra-

ient, nonconservative product, and bed slope source terms is 

( �h s ) sum 

= − �t 

�x 

[ 
( h s u s ) 

n + 1 2 

i +1 
− ( h s u s ) 

n + 1 2 

i 

] 
. (31) 

he numerical flux ( h s u s ) 
n + 1 

2 
i 

is obtained from the 1st-order Tay-

or expansion (22) with respect to the cell center value (h s u s ) n i 
to-

ether with (23) . Hence, 

(h s u s ) 
n + 1 2 

i 
= (h s u s ) 

n 
i + 

�t 

2 

(
∂(h s u s ) 

∂t 

)n 

i 

= (h s u s ) 
n 
i + 

�t 

2 

[
S n, (2) 

i 
− A 

n, (2) 
i 

σn 
i 

�x 

]
. (32) 

here superscript 2 denotes the second row of a vector or matrix.

nserting S n, (2) 
i 

as in (5) and A 

n, (2) 
i 

as in (7) evaluated at quiescent

teady states into (32) , and replacing σn 
i 

by limited finite difference

¯U 

n 
i 

as in (24) , Eq. (32) becomes 

(h s u s ) 
n + 1 2 

i 
= 

�t 

2 

{ 

−gh 

n 
s,i 

[ (
δb 

δx 

)
i 

+ 

(
δ̄h s 

�x 

)n 

i 

+ 

(
δ̄h f 

�x 

)n 

i 

] 

− g 
1 − γ

2 

[ (
h f 

δ̄h s 

�x 

)n 

i 

−
(

h s 

δ̄h f 

�x 

)n 

i 

] } 

, (33) 

efine ηn 
i 

:= b i + h n 
s,i 

+ h n 
f,i 

. If ( δb / δx ) i in (33) is approximated

ith 

δb 

δx 

)
i 

= 

(
δ̄η

�x 
− δ̄h s 

�x 
− δ̄h f 

�x 

)n 

i 

, (34) 

hen the first term in (33) becomes zero at quiescent steady

tates because ηi = Const , ∀ i . Note that quiescent steady states

f two-phase shallow flows also imply 
(
h s /h f 

)
i 
= Const , ∀ i, thus

h f δ̄h s / �x 
)n 

i 
−

(
h s ̄δh f / �x 

)n 

i 
= 0 is easily satisfied. Therefore, nu-

erical flux (33) is zero at quiescent steady states. It immediately

ollows that the result of (31) is zero. 
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Consequently, the conclusion for the first component of scheme

(20) is proved. In a similar way, it is easy to prove the third com-

ponent of (20) . 

Before we prove the more involved second and fourth compo-

nents of (20) , we note that for quiescent steady states, Taylor ex-

pansion (22) together with (23) gives 

(h s ) 
n + 1 2 

i 
= (h s ) 

n 
i + 

1 

2 

�t 

(
∂h s 

∂t 

)n 

i 

= (h s ) 
n 
i + 

1 

2 

�t 

(
− δ̄( hu s ) 

�x 

)n 

i 

= (h s ) 
n 
i , (35)

and similarly, (h f ) 
n + 1 

2 
i 

= (h f ) 
n 
i 
. As the fourth component is simpler

than the second component, we start from the fourth component.

Using quiescent steady states and discretization (21) , the sum of

the discrete flux gradient, nonconservative product, and bed slope

source terms for the fourth component is 

�(h f u f ) sum 

= −�t 

⎧ ⎨ ⎩ 

(
g 
2 

h 

2 
f 

)n + 1 2 

i +1 
−

(
g 
2 

h 

2 
f 

)n + 1 2 

i 

�x 
+ g 

(
h 

n + 1 2 

f,i +1 
+ h 

n + 1 2 

f,i 

)h 

n + 1 2 

s,i +1 
− h 

n + 1 2 

s,i 

2�x 

+ g 

(
h 

n + 1 2 

f,i +1 
+ h 

n + 1 2 

f,i 

)b 
n + 1 2 

s,i +1 
− b 

n + 1 2 

s,i 

2�x 

} 

. (36)

Notice that since h 
n + 1 

2 

s, f 
= h n 

s, f 
, we omit sup-script n + 

1 
2 and extract

the factor g /2 �x out of the big bracket. Then the remaining part

becomes (
h 

2 
f,i +1 − h 

2 
f,i 

)
+ (h f,i +1 + h f,i ) ( h s,i +1 − h s,i ) 

+(h f,i +1 + h f,i ) ( b i +1 − b i ) 

= 

(
h 

2 
f,i +1 − h 

2 
f,i 

)
+ (h f,i +1 + h f,i ) ( h s,i +1 − h s,i + b i +1 − b i ) 

= 

(
h 

2 
f,i +1 − h 

2 
f,i 

)
+ (h f,i +1 + h f,i )( const − h f,i +1 − const + h f,i ) 

= 0 . (37)

Similarly, for the second component in (20) , the sum can be writ-

ten as 

�(h s u s ) sum 

�t 

= −
(

g 
2 

h 

2 
s + 

g 
2 
(1 − γ ) h s h f 

)n + 1 2 

i +1 
−

(
g 
2 

h 

2 
s + 

g 
2 
(1 − γ ) h s h f 

)n + 1 2 

i 

�x 

−γ g(h 

n + 1 2 

s,i +1 
+ h 

n + 1 2 

s,i 
) 

h 

n + 1 2 

f,i +1 
− h 

n + 1 2 

f,i 

2�x 
− g(h 

n + 1 2 

s,i +1 
+ h 

n + 1 2 

s,i 
) 

b i +1 − b i 
2�x 

(38)

Again, omit superscript n + 

1 
2 and extract the factor −g/ 2�x, the

RHS of (38) reduces to (
h 

2 
s,i +1 − h 

2 
s,i 

)
+ (1 − γ ) 

(
h s,i +1 h f,i +1 − h s,i h f,i 

)
+ γ (h s,i +1 + h s,i ) 

(
h f,i +1 − h f,i 

)
+ (h s,i + h s,i +1 ) ( b i +1 − b i ) 

= 

(
h 

2 
s,i +1 − h 

2 
s,i 

)
+ (1 − γ ) 

(
h s,i +1 h f,i +1 − h s,i h f,i 

)
+(γ − 1)(h s,i +1 + h s,i ) 

(
h f,i +1 − h f,i 

)
+(h s,i + h s,i +1 ) 

(
h f,i +1 − h f,i + b i +1 − b i 

)
= 

(
h 

2 
s,i +1 − h 

2 
s,i 

)
+ (1 − γ ) 

(
h s,i +1 h f,i − h s,i h f,i +1 

)
+(h s,i + h s,i +1 ) ( const − h s,i +1 − const + h s,i ) 

= (1 − γ ) 
(
h s,i +1 h f,i − h s,i h f,i +1 

)
= 0 , (39)
where the last equality results from the condition (h s /h f ) i =
onst , ∀ i . 

In summary, the sum of discrete flux terms, nonconservative

erms and topography source terms in scheme (20) is zero at qui-

scent steady states. This ends the proof. �

Next, we consider how to make the results from the first two

erms in scheme (20) , i.e., the quadrature terms for the linear re-

onstructions, satisfy the well-balanced property. The second and

ourth components of the two terms at quiescent steady states give

he solid and fluid momentums, 

( h s u s ) 
n +1 

i + 1 2 

= 

1 

2 

[
(h s u s ) 

n 
i + (h s u s ) 

n 
i +1 

]
+ 

1 

8 

(
σn, (2) 

i 
− σn, (2) 

i +1 

)
, 

( h f u f ) 
n +1 

i + 1 2 

= 

1 

2 

[
(h f u f ) 

n 
i + (h f u f ) 

n 
i +1 

]
+ 

1 

8 

(
σn, (4) 

i 
− σn, (4) 

i +1 

)
. (40)

ince u 

n 
i 

= 0 , ∀ i, all terms in the RHS of (40) are equal to zero,

iving h u 

n +1 

i + 1 
2 

= 0 so that the first item of well-balanced condition

3) is satisfied. But the first and third components of the first two

erms in (20) need special treatment. The first and third compo-

ents of the two terms at quiescent steady states give the solid

nd fluid heights, 

h 

n +1 

s,i + 1 2 

= 

1 

2 

(
h 

n 
s,i + h 

n 
s,i +1 

)
+ 

1 

8 

(
σn, (1) 

i 
− σn, (1) 

i +1 

)
, 

 

n +1 

f,i + 1 2 

= 

1 

2 

(
h 

n 
f,i + h 

n 
f,i +1 

)
+ 

1 

8 

(
σn, (3) 

i 
− σn, (3) 

i +1 

)
. (41)

ith 

(
h s /h f 

)n 

i 
= Const , it is easy to show the results from (41) sat-

sfy 
(
h s /h f 

)n +1 

i + 1 
2 

= Const , thus the last item of well-balanced condi-

ion (3) is satisfied. However, the new free surface level at a stag-

ered gird point as calculated from (41) is 

 

n +1 

s,i + 1 2 

+ h 

n +1 

f,i + 1 2 

+ b i + 1 2 

= 

1 

2 

[(
h 

n 
s,i + h 

n 
f,i + b i 

)
+ 

(
h 

n 
s,i +1 + h 

n 
f,i +1 + b i +1 

)]
+ 

1 

8 

(
σn, (1) 

i 
+ σn, (3) 

i 
− σn, (1) 

i +1 
− σn, (3) 

i +1 

)
+ b i + 1 2 

− 1 

2 

( b i + b i +1 ) 

= Const + 

1 

8 

(
σn, (1) 

i 
+ σn, (3) 

i 
− σn, (1) 

i +1 
− σn, (3) 

i +1 

)
−1 

2 

( b i + b i +1 ) + b i + 1 2 
. (42)

ince h n 
s,i 

and h n 
f,i 

may vary from point to point, the second term

n the second equality of (42) are not zero in general, and this may

ause h n +1 

s,i + 1 
2 

+ h n +1 

f,i + 1 
2 

+ b 
i + 1 

2 

 = Const if b i , b i +1 and b 

i + 1 
2 

are prede-

ned irrespective of the flow solution. We give a modification pro-

edure to cure this problem. 

Modification procedure for well-balancedness . This modifica-

ion makes use of the fact that the total mass equation using the

ree surface level η = h s + h f + b as solution variable can automat-

cally ensure the solution of lake at rest [33] , where basal topog-

aphy b is assumed to be time-independent. It only modifies the

olid and fluid heights as computed from the first and third equa-

ions of scheme (20) . 

To avoid confusion, the following variables are not quiescent

teady states. By adding the two mass equations in Eq. (2) , we ob-

ain the total mass equation 

∂η

∂t 
+ 

∂ 
(
h s u s + h f u f 

)
∂x 

= 0 . (43)
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y applying NOC scheme (20) to (43) , we additionally com-

ute the free surface level 

n +1 

i + 1 2 

= 

1 

2 

(
ηn 

i + ηn 
i +1 

)
+ 

1 

8 

(
σn, (η) 

i 
− σn, (η) 

i +1 

)
− �t 

�x 

[ (
h s u s + h f u f 

)n + 1 2 

i +1 
−

(
h s u s + h f u f 

)n + 1 2 

i 

] 
, (44) 

here σn, (η) 
i 

is limited difference of ηn 
i 

= h n 
s,i 

+ h n 
f,i 

+ b i . According

o previous analysis in Proposition 3.1 , the mass fluxes in (44) are

ero for quiescent steady states, thus (44) satisfies ηn +1 

i + 1 
2 

= Const at

uiescent steady states. In general cases, variable η
n + 1 

2 

i + 1 
2 

computed

rom (44) is used to modify the solid and fluid heights h n +1 

s,i + 1 
2 

and

 

n +1 

f,i + 1 
2 

computed from scheme (20) in the following way: 

if ( h n +1 

s,i + 1 
2 

+ h n +1 

f,i + 1 
2 

+ b 
i + 1 

2 

 = ηn +1 

i + 1 
2 

) then 

 

n +1 , mod 

s,i + 1 2 

= 

h 

n +1 

s,i + 1 2 

h 

n +1 

s,i + 1 2 

+ h 

n +1 

f,i + 1 2 

×
(
ηn +1 

i + 1 2 

− b i + 1 2 

)
, 

 

n +1 , mod 

f,i + 1 2 

= 

h 

n +1 

f,i + 1 2 

h 

n +1 

s,i + 1 2 

+ h 

n +1 

f,i + 1 2 

×
(
ηn +1 

i + 1 2 

− b i + 1 2 

)
, (45) 

lse no modification is made to h 
n + 1 

2 

s,i + 1 
2 

and h 
n + 1 

2 

f,i + 1 
2 

as computed from

cheme (20) . 

The topography b 
i + 1 

2 
in (45) can be defined as b 

i + 1 
2 

= 

1 
2 (b i +

 i +1 ) or z b 
(
x i +1 / 2 

)
and never changes with time stepping. The solid

nd fluid heights after modification (45) are then used as the fi-

al solution for (n + 1) th time step. It is seen that (45) leads

o h n +1 , mod 

s,i + 1 
2 

+ h n +1 , mod 

f,i + 1 
2 

+ b 
i + 1 

2 
= ηn +1 

i + 1 
2 

, which can keep the con-

tant at quiescent steady states. And the ratio h n +1 , mod 

s,i + 1 
2 

/h n +1 , mod 

f,i + 1 
2 

=
 

n +1 

s,i + 1 
2 

/h n +1 

f,i + 1 
2 

= Const is reserved. 

.4. Positivity preserving 

We can prove that NOC scheme (20) is positivity-preserving un-

er a suitable CFL condition. 

roposition 3.2. Assume that system (2) is solved with NOC scheme

20) and that h n 
s,i 

≥ 0 , h n 
f,i 

≥ 0 , ∀ i. Then h n +1 

s,i + 1 
2 

≥ 0 , h n +1 

f,i + 1 
2 

≥ 0 , ∀ i,

rovided that 

t ≤ �x min 

(
CFL 

S , 
1 

4 U 

)
(46) 

here 

 = max 
i 

(
max (| u 

n 
s,i | , | u 

n 
f,i | ) 

)
, 

S = max 
i 

(∣∣∣max (u 

n 
s,i , u 

n 
f,i ) + 

√ 

g(h 

n 
s,i 

+ h 

n 
f,i 

) 

∣∣∣, ∣∣∣min (u 

n 
s,i , u 

n 
f,i ) −

√ 

g(h 

n 
s,i 

+ h 

n 
f,i 

) 

∣∣∣). (47) 

roof. Since the mass equations of fluid and solid are similar, we

ake the fluid mass equation as example. The third component of

OC scheme (20) gives 

 

n +1 

f,i + 1 2 

= 

1 

2 

(
h 

n 
f,i + 

1 

4 

δ̄h 

n 
f,i + h 

n 
f,i +1 −

1 

4 

δ̄h 

n 
f,i +1 

)
− �t 

�x 

[ 
(h f u f ) 

n + 1 2 

i +1 
− (h f u f ) 

n + 1 2 

i 

] 
, (48) 
here δ̄h n 
f,i 

represents the limited difference. The numerical flux

(h f u f ) 
n +1 / 2 
i 

is computed according Taylor expansion (22) , 

(h f u f ) 
n + 1 2 

i 
= (h f u f ) 

n 
i + 

�t 

2 

∂(h f u f ) 

∂t 

∣∣∣∣n 

i 

. (49) 

he second term can be ignored as it is O(�t) higher. Hence,

48) can be rewritten as 

 

n +1 

f,i + 1 2 

= 

1 

2 

[
h 

n 
f,i + 

1 

4 

δ̄h 

n 
f,i + 

2�t 

�x 

(
h f u f 

)n 

i 

]
+ 

1 

2 

[
h 

n 
f,i +1 −

1 

4 

δ̄h 

n 
f,i +1 −

2�t 

�x 

(
h f u f 

)n 

i +1 

]
= 

1 

2 

[
1 

2 

(
h 

n 
f,i + 

1 

2 

δ̄h 

n 
f,i 

)
+ h 

n 
f,i 

(
1 

2 

+ 

2�tu 

n 
f,i 

�x 

)]
+ 

1 

2 

[
1 

2 

(
h 

n 
f,i +1 −

1 

2 

δ̄h 

n 
f,i +1 

)
+ h 

n 
f,i +1 

(
1 

2 

−
2�tu 

n 
f,i +1 

�x 

)]
(50) 

ased on the monotonicity of the minmod-MUSCL interpolation,

e have h n 
f,i 

+ 

1 
2 δ̄h n 

f,i 
≥ 0 and h n 

f,i +1 
− 1 

2 δ̄h n 
f,i +1 

≥ 0 if h n 
f,i 

≥ 0 , ∀ i . In

rder to make the second terms in the square brackets in (50) be

on-negative, time step �t must satisfy 

�t| u 

n 
f,i 
| 

�x 
≤ 1 

4 

, ∀ i. (51) 

ith (51) holding, the result of (50) is non-negative. A similar time

tep constraint can also be obtained for the solid phase. 

It is evident that (46) is the minimal time step constrained by

he positivity preserving condition (51) for fluid and solid phases

nd by the original CFL condition of NOC scheme, 

t = CFL 
�x 

S . (52) 

herefore, if (46) is satisfied, then h n +1 

s,i + 1 
2 

≥ 0 , h n +1 

f,i + 1 
2 

≥ 0 , ∀ i . �

.5. Numerical treatment for the loss of hyperbolicity 

Although NOC scheme (20) with well-balanced correction

45) is stable even if the matrices of the system have complex

igenvalues, strong unphysical oscillations may appear in the nu-

erical solutions when the modulus of the complex eigenvalues

re big enough. Therefore, we adopt a similar predictor/corrector

trategy [31] to recover the hyperbolic nature of the two-

hase shallow-water system once the necessary condition (ii) of

roposition 2.1 is present. The predictor step is scheme (20) with

ell-balanced correction (45) , which gives the first set of approxi-

ations at time t n +1 , U 

n +1 , ∗ = [ h n +1 , ∗
s,i 

, h n +1 , ∗
f,i 

, (hu ) n +1 , ∗
s,i 

, (hu ) n +1 , ∗
f,i 

] T .

n the corrector step, the state U 

n +1 is computed by a numerical

elaxation procedure 

h 

n +1 
s,i 

= h 

n +1 , ∗
s,i 

, 

h 

n +1 
f,i 

= h 

n +1 , ∗
f,i 

, 

( hu ) 
n +1 
s,i = ( hu ) 

n +1 , ∗
s,i + γ�tD 

n +1 
i 

(
h 

n +1 
s,i 

+ h 

n +1 
f,i 

)(
u 

n +1 
f,i 

− u 

n +1 
s,i 

)
, 

( hu ) 
n +1 
f,i = ( hu ) 

n +1 , ∗
f,i − �tD 

n +1 
i 

(
h 

n +1 
s,i 

+ h 

n +1 
f,i 

)(
u 

n +1 
f,i 

− u 

n +1 
s,i 

)
. (53) 

he last two equations in (53) are rewritten as follows 

 

n +1 
s,i 

= u 

n +1 , ∗
s,i 

+ 

γ�tD 

n +1 
i 

(
h 

n +1 
s,i 

+ h 

n +1 
f,i 

)
h 

n +1 
s,i 

(
u 

n +1 
f,i 

− u 

n +1 
s,i 

)
, 

 

n +1 
f,i 

= u 

n +1 , ∗
f,i 

−
�tD 

n +1 
i 

(
h 

n +1 
s,i 

+ h 

n +1 
f,i 

)
h 

n +1 
f,i 

(
u 

n +1 
f,i 

− u 

n +1 
s,i 

)
. (54) 
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Fig. 4. Sketch of organization of a CUDA program. 
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Fig. 5. Domain decomposition and each GPU takes charge of one subdomain. 
By subtracting and deducing the common factor we obtain 

u 

n +1 
f,i 

− u 

n +1 
s,i 

= 

u 

n +1 , ∗
f,i 

− u 

n +1 , ∗
s,i 

1 + �tD 

n +1 
i 

(
h 

n +1 
f,i 

+ h 

n +1 
s,i 

)( 

1 

h 

n +1 
f,i 

+ 

γ

h 

n +1 
s,i 

) (55)

In order to ensure hyperbolicity, the new velocity difference from

(55) must satisfy the sufficient condition (i) of Proposition 2.1 ,

which leads to 

| u 

n +1 , ∗
f,i 

− u 

n +1 , ∗
s,i 

| ∣∣∣∣∣1 + �tD 

n +1 
i 

(
h 

n +1 
f,i 

+ h 

n +1 
s,i 

)( 

1 

h 

n +1 
f,i 

+ 

γ

h 

n +1 
s,i 

) 

∣∣∣∣∣
≤ 2 aβ, or 

| u 

n +1 , ∗
f,i 

− u 

n +1 , ∗
s,i 

| ∣∣∣∣∣1 + �tD 

n +1 
i 

(
h 

n +1 
f,i 

+ h 

n +1 
s,i 

)( 

1 

h 

n +1 
f,i 

+ 

γ

h 

n +1 
s,i 

) 

∣∣∣∣∣
≥ 2 a, 

with a = 

√ 

g(h 

n +1 
f,i 

+ h 

n +1 
s,i 

) , (56)

For the first inequality, D 

n +1 
i 

≥ 0 , and for the second inequality,

D 

n +1 
i 

≤ 0 . So D 

n +1 
i 

must satisfy 

max 

⎛ ⎜ ⎝ 

0 , 

| �u 

∗| 
2 aβ

− 1 

�t 

(
1 

1 − φ
+ 

γ

φ

)
⎞ ⎟ ⎠ 

≤ D 

n +1 
i 

, 

or D 

n +1 
i 

≤ min 

⎛ ⎜ ⎝ 

0 , 

| �u 

∗| 
2 a 

− 1 

�t 

(
1 

1 − φ
+ 

γ

φ

)
⎞ ⎟ ⎠ 

, (57)

where �u ∗ = | u n +1 , ∗
f,i 

− u n +1 , ∗
s,i 

| , φ = h n +1 
s,i 

/ (h n +1 
f,i 

+ h n +1 
s,i 

) . The rele-

vant hyperbolic regime for applications is the one corresponding

to small | u f − u s | . It is understood that real inter-phase drag forces

tend to drive phase velocities closer. Therefore, the first equality in

(57) is chosen. 

4. GPU implementation 

In this section, we will describe GPU implementation for 2D

NOC scheme (25) . This scheme is explicit and therefore ideal for

the parallel execution on GPUs. We start from single GPU imple-

mentation as it is the building block of multiple GPU implementa-

tion. 
.1. Single GPU 

A CUDA program on single GPU includes two kinds of codes, the

erial codes and the parallel codes [34,35] . The serial codes that

un on the host (CPU) side are responsible for variables declaration,

nitialization, data transmission, and kernel invocation. The paral-

el codes (called ”kernel functions”) running on the device (GPU)

ide are executed in parallel by massive light-weight threads orga-

ized to match the GPU hardware feature and allow for mapping

ypical data structures (arrays, matrices). Many warps of threads

1 warp = 32 in most architectures) make up a block, and many

locks stack together to make up a grid, which is the counterpart

f a kernel function. The block can be organized into 1D, 2D or 3D

rray of threads, while the grid may also be in 1D, 2D or 3D array

f blocks. In Fig. 4 , a 2D block and two 2D grids are illustrated.

n single GPU, the NOC scheme (25) is implemented similar to

he predictor–corrector Davis method as explained in our previous

aper [36] . After initialization, the CPU code loops a stepping func-

ion to advance the solution in time. The stepping function invokes

everal different CUDA kernels, which do all the computations of

he NOC scheme including slope limiter, reconstruction, numeri-

al flux, source term S , nonconservative term H, as well as solu-

ion update U 

n +1 
. These are explicit stencil computations can be

un in parallel on GPU. The global time step which involves reduc-

ion operation is also computed on GPU. We used 2D arrays rather

han conventional 1D arrays in GPU global memory to enhance the

eadability of the code but sacrifice efficiency. For more detail, see

36] . 
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Table 1 

Comparison of running times using OpenMP-CUDA and multistream-CUDA for 1–3 

GPUs with meshes 200 × 200 and 800 × 800 respectively. Result using a CPU with 

OpenMP is also shown. 

Number of GPUs n x × n y OpenMP-CUDA Multistream-CUDA 

1 200 × 200 2478 ms 

800 × 800 115938 ms 

2 200 × 200 2080 ms 2190 ms 

800 × 800 68799 ms 68200 ms 

3 200 × 200 2035 ms 2260 ms 

800 × 800 51523 ms 49980 ms 

10 cores CPU 200 × 200 7354 ms 

800 × 800 492586 ms 
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.2. Multiple GPUs 

For using multiple GPUs in a single node, there are several

hoices of strategies. One can use multistream technique pro-

ided by CUDA, or multiple threads with OpenMP (or Pthread), or

essage passing interface (MPI), with each stream/thread/process

anaging a GPU executing a partitioned task. The MPI approach

s mainly suited to GPU clusters, so in this work, we only imple-

ent the OpenMP-CUDA and the multistream-CUDA strategies and

ompare their performances. The computational domain is divided

nto multiple subdomains for multiple GPUs to handle. The subdo-

ains have an overlap of four ghost cells for the purpose of com-

unication, two from each of the neighboring subdomains, as ex-

mplified in Fig. 5 . In the OpenMP-CUDA strategy, as the code runs

n the OpenMP parallel region , the main program spawns multi-

le threads equal to the number of subdomains, and each thread

s attached to a GPU that initializes and computes a correspond-

ng subdomain. In the multistream-CUDA strategy, the main pro-

ram issues multiple streams in turn, and each stream attaches to

 GPU. The OpenMP-CUDA strategy is shown in procedure 1. It is

een that there is no need to do initialization in CPU and copy data

o GPU. But device synchronization is performed after step 6 for

alculating a global time step and in step 8 for exchanging over-

apped cells between GPUs (“download” and “upload” in Fig. 5 ).

he multistream-CUDA strategy is shown in procedure 2. The only

ifference between the two strategies is that the starting of GPU

xecution is synchronous in the OpenMP strategy while it is asyn-

hronous in the multistream strategy. 

rocedure 1. OpenMP-CUDA procedure: 

: Set the number of OMP threads and the same number of GPU de-

vices. 

: � pragma omp parallel shared ( �t, ghost variables...) { 
/* Start parallel region executed by OpenMP threads. Declare

ghost variables as shared variables in order to transfer data be-

tween GPUs. */ 
ig. 6. Simple Riemann problem. Results computed with 100 grid cells (symbols) are com

epresent the initial conditions. 
: Each OpenMP thread binds with a GPU device, allocate the shared

variables, and initialize a subdomain, e.g. the current thread k =
omp get thread num ( void ) will take charge of a subdomain with

index (b x , b y ) for the 2D decomposition of the computational

domain being 

(b x , b y ) = (k % OMPthreadnumber x , 

k % OMPthreadnumber y ) 

: InitCon <<< BLOCKs, THREADs >>> (variable list including GPU id

k ) 

/* This kernel function computes initial conditions; run in parallel

on all GPUs. Need not copy data to GPU. */ 

: while (T < totaltime) do 

: Execute getdeltat <<< BLOCKs, THREADs >>> (variable list including

GPU id k ) 

/* this kernel returns �t(k ) of each subdomain. Subsequently,

synchronize all threads and then apply Op enMP reduce op eration

to all threads’ �t(k ) to get a minimum �t of the whole domain.

*/ 

: Execute kernels for the NOC formula (25) to compute solution vari-

ables. 

: Synchronize all threads, and then exchange the ghost variables be-

tweenGPUs. Can use the p eer-to-p eer function to exchange data

in new device like K40 GPU used in this work. 

: enddo while 

0: Copy data back to CPU and write the data file. 

1: } // end of OMP parallel region 

ultiStream-CUDA procedure: 

: Set the number of streams and the same number of GPU devices. 

: Use for loop to create stream, and define variables and allocate cor-

responding global memories on each GPU device corresponding

to each stream. 

/* Streams are created serially but execute own contexts in par-

allel asynchronously */ 

: Each stream executes InitCon <<< BLOCKs, THREADs, 0,

stream[k] >>> (variable list)on kth GPU. 

/* This is done in a for loop , but streams managing

corresponding GPUs run in parallel and asynchronously. */ 

: while T < totltime) do 
pared with reference solution obtained with 10 0 0 cells (solid lines). Dashed lines 
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Fig. 7. Rarefaction into vacuum for the fluid constituent. Results computed with 100 grid cells (symbols) are compared with reference solution obtained with 10 0 0 cells 

(solid lines). Dashed line is the initial conditions. 

Fig. 8. Test 1. Results at t = 1 computed with 100 grid cells (symbols) in comparison with reference solution obtained with 40 0 0 cells (solid lines). The eigenvalues are 

computed according to formulas in [11] . 
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T

5: Each stream executes getdeltat <<< BLOCKs, THREADs, 0,

stream[k] >>> (variable list) 

/* Each stream executes this kernel function to compute �t(k )

for each subdomain. Subsequently, synchronize all streams and

then reduce to get the min-value of �t of the whole domain. */

6: Each stream executes kernels for NOC formula (25) in a correspond-

ing GPU device to compute the solution variables. 

7: Synchronize all streams, and then exchange the ghost variables be-

tweenGPUs. Can use the p eer-to-p eer function to do so in K40
GPU. 
: enddo while 

: Copy data back to CPU, write the data file and destroy all

streams. 

In this work, Nvidia K40 GPU is used which enables the peer-

o-peer (GPU to GPU) memory copy [37] , we avoid the copy of

PU → CPU → GPU for transferring the overlapped ghost cells.

he function of peer-to-peer copy is [37,38] 

cudaError t cudaMemcpyPeer(void *dst, int dstDevice, const void 

*src, int srcDevice, size t count) 
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Fig. 9. Test 2. Results t = 0 . 5 computed with 100 grid cells (symbols) compared with reference solution obtained with 40 0 0 cells (solid lines). The eigenvalues are computed 

according to formulas in [11] . 
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hich copies count bytes of data from pointer src in source device

rcDevice to pointer dst in destination device dstDevice . 

In our numerical simulations, we used a server with 2 × Intel

eon E5-2690v2 (3.0GHz, 10 cores) CPUs, 64 GB DDR3-1600 mem-

ry, and 3 × Tesla K40 GPUs (2880 cores). Table 1 shows compar-

son of wall times for two multi-GPU strategies. It is seen that the

ultistream-CUDA strategy can be slightly faster or slower than

he OpenMP-CUDA one in some grid sizes. On the 800 × 800 cells,

-GPU parallel efficiency is 77%, and the speedup of GPU/CPU(10-

ore OpenMP) is 4.2. There is space to improve single GPU perfor-

ance. 

. Numerical examples 

We now present numerical results for the 1D and 2D two-phase

ow models, Eqs. (4) and (10) , respectively. Neither inter-phase

rag nor basal friction force are considered. In all the examples we

et γ = 0 . 5 . 

.1. 1D simple Riemann problem 

This Riemann problem was studied in Refs. [10,12] . The initial

onditions consists of two constant states separated by an interface

ocated at x = 0 . The left and right states are 

(h, φ, u s , u f ) l = (3 , 0 . 7 , −1 . 4 , 0 . 3) , 

(h, φ, u s , u f ) r = (2 , 0 . 4 , −0 . 9 , −0 . 1) , (58) 

he value g = 9 . 81 , the bottom is flat, i.e. b(x ) = constant , the

omputational domain is [ −5 , 5] , and CFL = 0 . 2 . In Fig. 6 , we dis-
lay the results at t = 0 . 5 obtained with 100 grid cells (symbols)

nd 10 0 0 cells (solid lines) for flow height variables h, h s , h f , the

olid volume fraction φ and the phase velocities u s , u f . It is ob-

erved that the Riemann solution of this problem consists of a 1-

arefaction wave, a 2-shock wave, a 3-rarefaction wave, and a 4-

hock wave ( n - wave means that the wave is associated with the

 th eigenvalue in Eq. (8) ). 

.2. Rarefaction into vacuum of the fluid constituent (dam break 

roblem for liquid) 

The problem in [11,12] is considered here. The fluid mixture has

he same height over the whole spatial domain, and the right side

tates for the fluid phase is a vacuum zone. The initial data are 

(h, φ, u s , u f ) l = (1 , 0 . 8 , 0 , 0) , if x ≤ 0 , 

(h, φ, u s , u f ) r = (1 , 1 , 0 , 0) , if x > 0 , (59) 

he gravity constant g = 9 . 81 , and the bottom is flat with b(x ) =
onstant . The numerical results obtained with 100 cells and 10 0 0

ells at t = 1 are shown in Fig. 7 . The Riemann solution for the

ixture contains a 2-rarefaction across which h f vanishes. More-

ver, in the far left zone of x < −2 , which is the pure solid mate-

ial, a 1-shock is formed, and in the far right zone of x > 2, which

s also pure solid material, a 4-rarefaction wave occurs. The third

ave associated to eigenvalue λ3 is not evident as explained in

11] . The present results are in fair agreement with those in [11] ,

nd the resolution is comparable to the CE/SE method [12] but

ower than the VFRoe solver [11] . 
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Fig. 10. Test 3. Results t = 0 . 5 computed with 100 grid cells (symbols) compared with reference solution obtained with 40 0 0 cells (solid lines). The eigenvalues are computed 

according to formulas in [11] . 

Table 2 

Initial data for the test cases of dry bed formation. 

Test ( h, φ, u s , u f ) l ( h, φ, u s , u f ) r 

1 (0.1, 0.4, −3, −3) (0.1, 0.7, 3, 3) 

2 (0.1, 0.4, 0, 0) (0.1, 0.7, 6, 6) 

3 (0.2, 0.4, −3, −3) (0.1, 0.8, 3, 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Initial conditions for the numerical test of perturbation of a steady state at 

rest. Left: total flow height h + b, Right: solid volume fraction φ. (Here ̃  h and ˜ φ are 

made much larger than the values used in the calculation in order to make it clear 

for the readers.) 
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5.3. Dry bed generation 

This problem in [11,12] is concerned with the formation of a

dry bed zone. Three test cases of the Riemann problems are con-

sidered. The solutions consist of two opposite moving rarefaction

fans between which a dry bed region is generated. The initial data

are given in Table 2 : 

In all test cases, the initial interface is located at x = 0 and

the bottom is constant, i.e. b(x ) = constant . The computational do-

main is [ −5 , 5] , CFL = 0 . 5 , and g = 9 . 81 . Our model is the same as

[12] in that no inter-phase drag is used whereas [11] used infinitely

large drag force so that so that | u s − u f | is instantaneously driven

to zero. Figs. 8 –10 display results at t = 1 , t = 0 . 5 , t = 0 . 5 for the

three cases, respectively. 

In Fig. 8 we display for test 1 the plots of the flow height h, h s ,

h f , solid volume fraction φ, velocities u s , u f , and the four eigen-

values λ1 , λ2 , λ3 , λ4 of matrix A in (7) , respectively. As the fluids

separate outward at x = 0 , a region of vacuum is generated. From

Fig. 8 (a) it is seen that both 40 0 0 grid cells (solid lines) and 100

grid cells (symbols) capture a vacuum region (defined as where
 < 10 −5 ) . The distribution of the solid fraction and velocity inside

his vacuum region may be abnormal but we plot them in the vac-

um region for completeness rather than leaving them blank as in

11] . We can see that there are overshot and undershot in φ near

he edges of the vacuum region, but they diminish for 40 0 0 cells.
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Fig. 12. Perturbation of a steady state at rest( ̃ h = 

˜ φ = 10 −3 ). Circles: solution computed with 200 grid cells; solid line: reference solution computed with 30 0 0 grid cells. Red 

bold lines over [0.4, 0.6] and [0.8, 1.0] : region where b ( x ) 
 = 0. 
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Fig. 13. The same problem as Fig. 12 but without using the correction method (45) . Circles: solution computed with 200 grid cells; solid line: reference solution computed 

with 30 0 0 grid cells. Red bold lines over [0.4, 0.6] and [0.8, 1.0]: region where b ( x ) 
 = 0. 
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The eigenvalues of the solution states are real at this moment as

shown in Fig. 8 (d), and the solution evolves entirely in the hyper-

bolic regime. 

Fig. 9 shows similar results for test 2, except that a right trans-

lation of initial velocities is observed, and the rarefaction in the

left is transonic. The vacuum region is not well resolved with 100

grid cells (symbols) while it is captured with 40 0 0 cells, and it is

smaller than that in test 1. There are also overshot and undershot

in the solid volume fraction. The eigenvalues are all real. 

In Fig. 10 for test 3, initial discontinuity is present in the flow

height. The results are similar to test 1 and the vacuum on 40 0 0

cells is captured but is smaller than that in test 1. But overshot and

undershot are still present in the solid volume fraction even if the

eigenvalues are real this time. 

5.4. Perturbation of a steady state at rest in 1D 

To check the well-balanced property of the present NOC

scheme, we consider a test problem of variable bottom topogra-

phy. This test problem was presented in [10,12] , but we add a dis-

continuous rectangular topography in the right side to show the

capability of our well-balanced scheme. 

In this problem we look at the behavior of a small perturbation

of steady state conditions at rest over a bottom topography defined

as 

b(x ) = 

⎧ ⎨ ⎩ 

0 . 25 

(
cos (10 π(x − 1 

2 
)) + 1 

)
, if | x − 0 . 5 | < 0 . 1 

0 . 25 , if | x − 0 . 9 | < 0 . 1 

0 , otherwise 

. (60)

Initially, we take a small perturbation of the flow depth h and of

the solid volume fraction φ: 

h (x, 0) = h 0 + ̃

 h and φ(x, 0) = φ0 − ˜ φ, for − 0 . 6 < x < −0 . 5 , 

(61

where h 0 + b(x ) = 1 , φ0 = 0 . 6 , and 

˜ h = 

˜ φ = 10 −3 . Fig. 11 shows

the initial data for the total flow height h + b and the solid volume

fraction φ. In order to make the initial conditions more clear,

we make ˜ h and 

˜ φ much larger. The computational domain is

[ −0 . 9 , 1 . 1] , and free flowing boundary conditions are used. More-

over, we take g = 1 and γ = 0 . 5 . We compute the solution with
00 grid cells and compare it with a fine grid reference solution

btained with 30 0 0 grid cells. 

In Fig. 12 , we display the results for h + b and φ at six different

imes. The red bold line over the two intervals of x ∈ [0.4, 0.6] and

 ∈ [0.8, 1.0] on the x -axis in the left frames for h + b marks the

egion where the topography b ( x ) 
 = 0. 

Fig. 12 (a,b) is almost the same as Fig. 9 (a) of [10] , in which the

nitial perturbation splits into four waves: two right-going waves

nd two left-going waves which leave the domain from the left

dge. Fig. 12 (c,d) shows at t = 1 . 25 the right-going external wave

as just passed over the obstacle at the bottom, and it has been

artially reflected. This wave has gone out of the right bound-

ry of the domain in Fig. 12 (e,f), and the reflected wave gener-

ted by it has passed through the incoming right-going internal

ave. In Fig. 12 (g,h) this right-going internal wave has moved pass

he hump and has produced its own reflected wave, which can

e clearly distinguished in Fig. 12 (g,h). Fig. 12 (i,j) shows the time

t which the second internal wave goes of the right boundary.

ig. 12 (k,l) shows the final situation in which all the disturbances

ave exited from the computational domain and the lake-at-rest

quilibrium is attained. 

If the same example is computed without the correction

ethod (45) , the results will have nonphysical disturbances as

hown in Fig. 13 (a) and (c) for t = 0 . 25 and t = 20 . This indicates

hat our modification is effective in preserving the solution of lake

t rest. 

.5. Perturbation of a steady state at rest in 1D with complex 

igenvalues 

This test [31] is to assess the predictor/corrector strategy in

ection 3.5 to enforce the hyperbolicity for the present two-phase

hallow granular flow model. The test has an initial condition

hich is far beyond the hyperbolicity regime. We consider a flat

hannel ( b(x ) = 0 ) whose axis is given by the interval [ −5 , 5] . The

nitial condition is 

h s (x, 0) = 

{
0 . 4 , if − 0 . 5 ≤ x ≤ 0 . 5 

0 . 5 , otherwise 
, h s (x, 0) = 1 − h f (x, 0) , 

 s (x, 0) = 0 . 2 , u f (x, 0) = −0 . 3 . (62)
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Fig. 14. Evolution of free surface level η, solid height h s , and fluid height h f . The left column is the result without the inter-phase drag force corrector step, while the right 

column is that with the inter-phase drag force corrector step. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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ree boundary conditions are imposed. The CFL parameter is set to

.5 and �x = 0 . 01 , γ = 0 . 99 . Note that 

 u s − u f | = 0 . 5 , 2 a = 2 

√ 

9 . 8 × 1 = 6 . 26 , φ = 0 . 5 or 0 . 6 , 

= 

√ 

1 

2 

(1 − φ)(1 − 0 . 99) ≤ 0 . 05 , (63) 

he necessary condition (ii), 2 aβ < | u s − u f | < 2 a, of

roposition 2.1 is satisfied at every point, therefore, the sys-

em may lose hyperbolicity initially. 

Fig. 14 shows the free surface level η and partial heights h s and

 f at t = 0 s, t = 0 . 5 s and t = 1 s obtained with the well-balanced
OC scheme without (left) or with (right) the corrector step de-

cribed in Section 3.5 . It is seen that the initial perturbation grows

ithout the corrector step while it not the case when the corrector

tep is performed. Similar results can be observed for the velocities

see Fig. 15 ). 

.6. Perturbation of a steady state at rest in 2D 

This example is modified from a classical example [39] to de-

cribe the perturbation of the stationary state of water. The topog-

aphy and the initial free surface level used are same as those in
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Fig. 15. Evolution of solid and fluid velocities of u s and u f . The left column is the result without the inter-phase drag force corrector step, while the right column is the 

result with the inter-phase drag force corrector step. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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[39] except that an initial steady solid fraction φ0 = 0 . 6 is used in

the present work. 

The system is simulated in a rectangular domain [0, 2] × [0, 1].

The bottom topography is an isolated elliptical shaped hump: 

b(x, y ) = 0 . 8 e −5(x −0 . 9) 2 −50(y −0 . 5) 2 . (64)

The surface is initially given by 

h (x, y, 0) = 

{
1 − b(x, y ) + 0 . 01 if 0 . 05 ≤ x ≤ 0 . 15 

1 − b(x, y ) otherwise 
, 

φ(x, y, 0) = 0 . 6 , 

hu (x, y, 0) = h v (x, y, 0) = 0 . (65)
Hence, the surface is almost flat except for 0.05 ≤ x ≤ 0.15,

here h is perturbed upward by 0.01. Fig. 16 displays contours

f the free surface b + h at six times ( t = 0 . 12 , 0.24, 0.36, 0.48,

.6 and 15) computed by using 2D scheme (25) with 600 × 300

esh cells. For t = 0 . 48 and 0.6 we compare our results with the

ingle-phase shallow water simulations in [40] , and for t = 0 . 36

nd 15 we also compare the results between with and without

sing well-balanced modification (45) . The results indicate that

ur scheme can resolve the complex small features of the flow

ery well. Fig. 16 (i) and (j) show that at t = 15 the free surface

evel η recovers static status with the modification but has much
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Fig. 16. Perturbation of a steady state at rest( ̃ h = 10 −2 ). Solution of h + b computed with 600 × 300 mesh cells. Shallow water solutions at t = 0 . 48 and t = 0 . 6 from [40] are 

also shown in (f) and (h). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 17. The present counter lines of η = h + b with meshes 200 × 200 and 800 × 800 at t = 0 . 4 in the upper two frames. The lower two frames are from [16] , where the 

lower left is computed with the first order PVM and the right is computed with the second-order PVM schemes using 200 × 200 cells. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 18. Comparison of the profiles of η = h + b across the center at t = 0 . 4 computed with meshes 200 × 200 and 800 × 800 in the present results (upper two frames) 

with those computed in [16] (lower two frames). The reference solution in [16] was obtained using first order PVM method on 800 × 800 meshes. 
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arger perturbation without the modification, indicating that our

OC scheme can keep the well-balanced property very well. 

.7. A 2D circular dam break problem 

Now we simulate the 2D example of [16] by using scheme

25) together with the well-balanced correction (45) . Consider

 [ −2 , 2] × [ −2 , 2] square domain. The bottom function is given

y b(x, y ) = 0 . 5 e −
1 
2 
(x 2 + y 2 ) . As initial conditions we set (u s , v s ) =

(u f , v f ) = (0 , 0) and 

 (x, y, 0) = 

{
1 . 5 − b(x, y ) if 

√ 

x 2 + y 2 ≤ 0 . 5 , 

1 − b(x, y ) otherwise , 

(x, y, 0) = 

{
0 . 1 if 

√ 

x 2 + y 2 ≤ 0 . 5 , 

0 . 9 otherwise . 
(66) 

he gravity constant g = 9 . 8 , CFL = 0.2, and the computational time

s t = 0 . 4 . Wall boundary conditions are set: u s · n = u f · n = 0 ,

here n is the unit normal vector to the boundary. The upper

wo frames in Fig. 17 display the counter line of η = h + b com-

uted with meshes of 200 × 200 and 800 × 800, respectively. The

ne 800 × 800 meshes give a sharper front than the coarse 200

200 meshes. The lower two frames are taken from [16] , which

ere computed with the first order and second order PVM (poly-

omial viscosity matrix) schemes using the 200 × 200 mesh. We

an see that our contours on the 200 × 200 mesh (upper left) are

ery similar to the second-order PVM result (lower right), but the

rst order PVM result totally did not keep the radial symmetry of

he solution (lower left). Fig. 18 shows comparison of two profiles

cross the center of the domain. From the lower two frames, we

ee that the 1st-order PVM result on the 200 × 200 mesh has

maller height at x = 0 compared with the reference solution com-

uted with the 1st-order PVM on 800 × 800 mesh, while the 2nd-

rder PVM result on the 200 × 200 mesh has a little larger height

ompared to the same reference solution. Our results on the 200 ×
00 mesh (upper left frame) show a trend similar to the 2nd-order

VM (lower right frame). It is seen that there is some difference

etween profiles across y = 0 and y = x for our results on the 200

200 mesh, but this difference becomes small on the 800 × 800

esh, and the results on the fine mesh are close to the reference

olution of PVM. 

. Conclusions 

In this article, we have applied the staggered NOC scheme to

umerical solution of a two-phase shallow granular flow model.

he NOC scheme does not need to solve a Riemann problem. We

ropose a simple and oscillation-free discretization scheme for the

onconservative terms. To obtain well-balanced property, we give

 correction procedure which uses additionally evolved total sur-

ace level to correct the solid and fluid heights evolved from the

OC scheme. A predictor/corrector strategy by using a numerical

nter-phase drag relaxation term is adopted to enforce hyberbol-

city. The resulting numerical method is implemented on multiple

PUs using both OpenMP-CUDA and multistream-CUDA strategies

o compare their performance. Numerical tests in both 1D and 2D

roblems demonstrate that the present NOC scheme is able to han-

le a wide range of flow conditions involving shock, dry bed region

nd vacuum formation. The calculated results are in good agree-

ent with literature. The computational efficiencies of OpenMP-

UDA and multistream-CUDA strategies differ a little and depend

n specific grid sizes used. It does not matter to use either strat-

gy, but it is critical to optimize the performance of single GPU

omputing, which will be our future work. 
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