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ABSTRACT

A two-phase shallow granular flow model consists of mass and momentum equations for the solid and
fluid phases, coupled together by conservative and non-conservative momentum exchange terms. Devel-
opment of classic Godunov methods based on Riemann problem solutions for such a model is difficult
because of complexity in building appropriate wave structures. Non-oscillatory central (NOC) differencing
schemes are attractive as they do not need to solve Riemann problems. In this paper, a staggered NOC
scheme is amended for numerical solution of the two-phase shallow granular flow equations due to Pit-
man and Le. Simple discretization schemes for the non-conservative and bed slope terms and a simple
correction procedure for the updating of the depth variables are proposed to ensure the well-balanced
property. The scheme is further corrected with a numerical relaxation term mimicking the interphase
drag force so as to overcome the difficulty associated with complex eigenvalues in some flow conditions.
The resultant NOC scheme is implemented on multiple graphics processing units (GPUs) in a server by
using both OpenMP-CUDA and multistream-CUDA parallelization strategies. Numerical tests in several
typical two-phase shallow granular flow problems show that the NOC scheme can model wet/dry fronts
and vacuum appearance robustly, and can treat some flow conditions associated with complex eigenval-
ues. Comparison of parallel efficiencies shows that the multistream-CUDA strategy can be slightly faster

or slower than the OpenMP-CUDA strategy depending on the grid sizes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Landslides, rock avalanches, and debris flows are dangerous ge-
ological disasters that may cause great loss of properties and lives.
Reliable prediction of geophysical mass movements is thus of fun-
damental importance for planning strategies for hazard risk mitiga-
tion. Nevertheless, the processes behind these phenomena are very
complicated as they include continuous and discontinuous motion
regimes and multiphase, polydisperse, multiscale, erosive and rhe-
ologically complicated materials. They have drawn great attention
from numerous researchers in various fields. It is recognized that
the basic ingredients in real geological disasters are granular ma-
terials composed of solid particles and interstice fluids, thus, study
of the dynamics of granular materials can provide the scientific un-
derpinnings for modeling diverse geological mass motions [1].

Savage and Hutter [2] first made their pioneering work to
model dry granular avalanche flows by using depth-integrated
Saint Venant like equations obeying Coulomb-type yield. Their
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model (now called the Savage-Hutter (SH) equations) was elab-
orated on and generalized by many researchers [1,3-6]. Fluids
are found to play an important role in the mobility of granular
avalanche flows. To take into account effects of interstice fluids
in granular materials, Iverson and Denlinger [7,8] came up with
a mixture model. Later, Pitman and Le [9] proposed the original
two-phase (two-fluid) shallow flow model from depth averaging of
the two-phase Navier-Stokes equations for the mixture of Coulomb
materials and Newtonian fluids. The Pitman-Le model was subse-
quently reformulated and studied for its mathematical properties
[10] and numerical solutions [11,12].

In this article we focus on efficient numerical solution for a
popular variant of the original Pitman-Le two-phase shallow gran-
ular flow model. In this variant [10,13], the fluid momentum equa-
tions are recast into a semi-conservative form similar to the solid
momentum equations. Compared with the single phase model, the
major difficulties for the two-phase shallow granular flow model
are the lack of explicit expressions for the eigenvalues of the
quasilinear system, and hence the lack of knowledge of the exact
or full-wave approximate Riemann solution, the presence of non-
conservative terms, and the occurrence of complex roots in certain
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flow conditions, all of which make some popular Riemann problem
solution-based Godunov methods hard to apply.

Several researchers have developed numerical methods for the
Pitman-Le two-phase flow model. Pelanti et al. [10,11] constructed
a Roe approximate Riemann solver with a relaxation technique for
simulating two-phase shallow granular flow over variable topog-
raphy. While possessing high resolution and several other mer-
its, this method is complicated. Dumbser et al. [14] developed a
family of well-balanced path-conservative one-step ADER (Arbi-
trary DERivative in space and time) finite volume and discontinu-
ous Galerkin finite element schemes for hyperbolic partial differ-
ential equations with non-conservative products and stiff source
terms, but solution of an approximate Riemann problem is still
a complicated thing. More recently, Ref. [15] developed a simpler
HLLEM Riemann solver that works for general conservative and
non-conservative systems of hyperbolic equations, and applied to
the Pitman-Le two-phase flow model. Ref. [16] presented a class
of first order finite volume solvers called PVM (polynomial viscos-
ity matrix) and applied the solvers to 2D Pitman-Le model. Later
on, a second order numerical scheme which was constructed by
using a suitable decomposition of a Roe matrix by means of the
PVM was presented in [17] and proved to be well-balanced with
respect to the water-at-rest solution. Ref. [12] applied the space-
time conservation element and solution element (CE/SE) method
to simulating single and two-phase shallow granular flows with
bottom topography, and shown higher resolution results compared
with the kinetic flux-vector splitting method [18].

Non-Oscillatory Central Differencing (NOC) schemes [19] were
first introduced for one-dimensional case and later elaborated by
many others (e.g., [20,21]). The original NOC scheme [19] is time-
space staggered. Ref. [22] translated the staggered scheme into
non-staggered one for convenience of dealing with complex ge-
ometries and boundary conditions. NOC schemes belong to the
class of Riemann-problem-solver-free Godunov methods. In spite
of fewer applications in three dimensions due to complicated
3D space-time staggered grids and many quadrature points, NOC
schemes are relatively simple and widely used for two-dimensional
hyperbolic systems of conservation laws. The schemes do not need
to solve Riemann problems, and this makes them attractive for
complicated systems like the Pitman-Le two-phase model. Both
staggered NOC [5,23] and non-staggered NOC schemes [24]| have
been applied to single-phase shallow granular flow equations. Ex-
tension to 1D two-layer shallow water equations was made in [25].
However, there seems to be a lack of application of NOC schemes
to the Pitman-Le two-phase model up to now.

Over the last decade or so, graphics processing units (GPUs)
have been increasingly used in high-performance computing. Com-
pared to CPU, GPU has many more lightweight compute cores,
and enables execution of many similar arithmetic operations. Al-
though GPU programming is still somewhat cumbersome and
time-consuming, the research community utilizing GPUs is contin-
uously growing [26], and GPU hardware and programming envi-
ronment have been steadily improved. Nowadays popular GPU pro-
gramming languages are CUDA (Compute Unified Device Architec-
ture) and OpenCL. CUDA is based on extension to C/C++ languages,
and has well established tools like debuggers and profilers. There
are a couple of papers on shallow water simulation using multiple
GPUs in both single nodes [27] and clusters [28].

In this article, we extend the staggered NOC scheme developed
for single phase SH model [5] to the Pitman-Le two-phase shallow
granular flow model. In the extension, we have to specify a way
the nonconservative terms and the bed slope source terms are dis-
cretized. This is very important for the numerical scheme to solve
exactly the stationary solutions corresponding to water at rest, i.e.,
the C-property or well-balanced property (e.g., [29,30]). An obsta-
cle to designing well-balanced staggered NOC scheme stems from

the additional quadrature terms due to the staggered grid arrange-
ment of the scheme. We have to design a special correction proce-
dure to achieve the well-balanced property.

Implementation of the NOC scheme on multiple graphics pro-
cessing units (GPUs) is another concern of this article. Here we fo-
cus on single node system with several GPUs connected through
the PCI Express bus to the motherboard. There are several strate-
gies to implement multi-GPU computing in a single node, and
different strategies may have different efficiencies depending on
the specific device and optimization technique as well as grid
scale used. We compare two frequently used strategies for run-
ning multiple GPUs in a node, one is Open Multiprocessing in-
terface (OpenMP) which spawns several CPU threads with each
thread managing a GPU, another is CUDA’s multistream multi-GPU
capability. The comparison may be useful in gaining experience for
choosing a better strategy for running multiple GPUs in a node.

The paper is organized as follows. In Section 2, we give formu-
lation of the Pitman-Le two-phase model. In Section 3, we derive
a well-balanced NOC scheme for this model and analyze its well-
balanced and positive-preserving properties. In Section 4, the detail
of implementing the NOC scheme with OpenMP and multistream
strategies is given. In Section 5, some numerical examples, includ-
ing one- and two-dimensional two-phase flows for a wide range of
flow conditions, are presented, and concluding remarks are given
in Section 6.

2. Two-phase shallow granular flow equations
2.1. One-dimensional equations

The Pitman-Le two-fluid shallow granular flow model we con-
sidered here is the variant [10,13] in which the fluid momentum
equation is rewritten as a form similar to the solid momentum
equation and the basal friction is neglected, which describes the
dynamics of a shallow layer of mixture of solid granular material
and fluid over a nearly horizontal surface. The solid and fluid com-
ponents are assumed to be incompressible with densities ps and
ps, where pg < ps. Let h denote the flow height and ¢ denote the
solid volume fraction. The solid and fluid heights can be defined as
follows,

he=gh. hp=(1-¢)h (1)

In a Cartesian coordinate system with x being horizontal, the one-
dimensional two-phase shallow flow model consisting of mass and
momentum equations for the two constituents can be written as
[11,12]

d¢hs + 9y (hsus) =0,
3 (hstis) + O (hsu? + §h2 + §(1 — y)hshy) + y ghsdyhy
= —ghydb + Y FP, (2)
3[hf + ax(thf) =0,
a[thf + ax(hfu% + %h%) +ghf8,<h5 = —ghfaxb — FD,

where us and uy are the solid and fluid velocities in the x direc-
tion, respectively, y = ps/ps is the fluid/solid density ratio and g
is the gravitational constant, b := b(x) is the basal topography, and
FP is the inter-phase drag force which can be expressed as FP =
D(hs + hy)(uy —us) where D is the drag function. In this paper, the
inter-phase drag force is neglected in designing the NOC scheme.
However, since the inter-phase drag is important for maintaining
flow conditions in the hyperbolic regime [11,31], it will be ac-
counted for as a numerical remedy to make the NOC scheme be-
have normally when the loss of hyperbolicity of system (2) may
happen (Section 3.5).
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2.2. Quiescent steady states

The quiescent steady state for Newtonian fluid has an impor-
tant feature that the free surface level is horizontal. This feature
should be maintained by a good numerical scheme (so called well-
balanced scheme in literature). For the two-fluid system (2) with-
out Coulomb friction, the quiescent steady states are solution of
lake at rest and constant ratio of volume fractions everywhere
[10],

Us = Uy = 0,

hs+ h;+b=Const, ¢ = =Const. (3)

hf
2.3. Quasi-linear form and eigenstructure

Rewrite system (2) without inter-phase drag terms into com-
pact form, it reads

dU oF(U au
8tJra(X)JrH(U, a){) —S(U), (4)
where
hs hsug
U— hgus F(U) _ hsu? + %hsz + %(1 — )/)hshf
hf ’ hfllf ’
0 0
()h/r —oh ab
(030 |7F | s-| R
ghf dhg _ghf%

(5)

Here, F is the conservative flux vector, H is the non-conservative
terms which have non-conservative products that couple the dy-
namics of the solid and fluid phases in the momentum equations,
and S is the contribution from the varying basal topography.

Let us further rewrite the compact form (4) in quasi-linear form
for later reference:

U
N a2 = s, ()
where matrix A is
0 1 0 0
—u2 +ghs +g5 hy  2us  glYh 0
A(U) = s 2 7
U) 0 0 0 1 (7)

ghf 0 —u%+ghf 2l1f

In general cases, there are no simple explicit expressions of the
eigenvalues of the matrix A(U), but there is a theoretical result
proved in [10] as follows.

Proposition 2.1. Matrix A(U) has always at least two real eigenval-
ues Ay, 4, and moreover, the eigenvalues A of A(U), satisfy the follow-
ing inequalities:

Unin — 0 < A1 = R(A2) < R(A3) < Ag < Umax + 0 (8)
where a = \/g? = \/‘m Upin = Min(U, Us), Umax = Max(uj,
us), and R(-) denotes the real part. Furthermore:
i If
‘/%(1 —@)(1—y) <1) then all the eigenvalues are real.

If one of these inequalities are strictly satisfied, and the eigen-
values are also distinct, then system (6) is strictly hyperbolic.

(i) If 2aB < |us — us| < 2a then the internal eigenvalues 1, 3 may
be complex.

lus —ug| <2aB  or |us—ug|>2a (where f=

Pelanti et al. [10,11] used Newton'’s iteration method to compute
all eigenvalues of matrix A(U) as needed by their Roe type solver.
We remark that one can also calculate these eigenvalues according
to Vieta's formula for polynomials. However, for the NOC scheme
presented in this article, there is no need to compute the eigen-
values at all, and only the lower bound, u,, —a, and the upper
bound, umax + a, are used to calculate the time step based on a
CFL condition.

2.4. Two-dimensional equations

Similarly, the two-dimensional two-phase shallow flow model
without inter-phase drag force terms can be written as
Oths + 0x (hsus) + 0y (hsvs) =0
3 (hsuis) + dy(hst? + §h2 + § (1 — y)hshy) + y (hsusvs)
+)/ghs3th = —ghsdxb,

0t (hsvs) + Ox (hsusvs) + ay(hsvg + %hf + %(1 - V)hshf)
+yghsdyhy = —ghsd,b,

3thf + 8x(hfuf) + 8y(hfvf) =0

3thfllf + ax(hfll? + %h})
+8y(hfufuf) +ghf8xhs =

at(hf]/f) + 8x(hfuﬂ/f) + ay(hﬂ/% +
= —gthyb,

—gh;d,b,
£h2) + gh;dyh

where vs and vy is the solid and fluid velocities in the y direction,
respectively, and basal topography b(x, y) is a function of both x
and y coordinates. Write system (9) into compact form

dU OJF(U) 0JG(U) ou Juy\
Tt oay tH(U G gy ) =S (10)
where
hs hsug
hgus hsu2 + $h2 + £ (1 — y)hshy
U— hsvs F(U) = hsusvs ’
hy hsuy
hfllf hfu% + %h%
hyvy hyugvy
hsvs
hsugvg
G(U): hsvg+%h52+§(1 —]/)hshf ’
hyvy
hyugvg
th? + %h?
0 0
v 8hsoxhy —ghsdxb
au ou )/ghsayhf _ghsayb
H(U Ty 8y> 0 ,S(U) = 0 . (11)
ghff)xhs —ghfaxb
ghfayhs —ghfayb
Rewrite system (10) in quasi—linear form
ou
50 A(U) + B(U) =S(U), (12)

where matrices A and B are
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Fig. 1. Sketch of staggered grid for NOC scheme.
0 1 0 0 0 0
—uZ+ghs+$(1—y)hy 2us O £(1+y)hs 0 0
—UsVs Vs Us 0 0 0
AU) = 0 0 0 0 1 0
ghy 0 0 —uf+ghy  2u; 0
0 0 0 —Llfo Vf Uf
0 0 1 0 0 0
—UsVs Vs Us 0 0 0
B(U) = —v2+ghs+8(1—y)hy 0 2v £(0+y)hs O 0
- 0 0 0 0 0 1
0 0 0 7Uf1/f Uf uf
ghy 0 0 ~v7 +ghy 0 2u
(13)

From (13), it is easy to verify that matrix A has two eigenvalues u;
and uy (see 3rd row and 3rd column, and 6th row and 6th column),
and the remaining eigenvalues are exactly the same as those in the
1d case. Similarly, matrix B has two eigenvalues vs and vy, and the
remaining eigenvalues are analogous to those of matrix A. Hence,
we can continue to make use of Proposition 2.1 for each matrix.
Again, only the lower and upper bounds of the eigenvalues, uy,;, —
a, Umax + @, Vmin — @, and Umax + a, are utilized to calculate the time
step in the present NOC scheme.

3. Non-oscillatory Central Differencing scheme (NOC)

Tai et al. [23,32] and Wang et al. [5] applied the staggered NOC
scheme to numerical simulations of single-phase shallow granular
flows. In this work, we apply the staggered NOC scheme to two-
phase shallow granular flow equations. The well-balanced prop-
erty of the resulting NOC scheme is ensured with a modification
procedure, and the scheme is proven to be positivity-preserving. A
numerical treatment [31] using the relaxation term to recover the
hyperbolicity of the system is adopted to make the scheme work
fine for flow conditions in which the loss of hyperbolicity happens.

3.1. One-dimensional NOC scheme

We first illustrate one-dimensional time-space staggered NOC
scheme. As a Godunov method, the solution variables U are the cell
averages on interval [xifl,le] at t =t" and on staggered interval

2 2

[x, x;.1] at t =¢™+1 (Fig. 1). With MUSCL reconstruction, one can
reconstruct the piecewise linear distribution as
n

Li(x, t") = Ui(t") + (x —=xi) -, X;_

Ax SX<X1 (14)

i+5

defined as U;(t") =

AX fXHZ U(x,t")dx, and o]'/Ax is the slope and o] could be

where cell average at time (" is

some hmiter for undivided differences of U;. Integrate system
(4) over control volume [x;, x;,1] x [t", t"1] as shown in Fig. 2,

/ U(x, t”“)dx/ U(x, t")dx

tn+l tn+1
+ / Fr,0) — [ F(xi0)de
tﬂ n
¢+ Xit1 ¢+ Xit1
/ Hdxdr+ f / sdxd, (15)
tn Xi

Divide Eq. (15) by Ax, and define cell average at time t"*! which
is the unknown solution as

U = Aix /x U ey, (16)
then
1 Xist 1 Xipl Xit1
H/xi U(x, t")dx = Ax /X 2U(x, t”)dx+/x. 1 U(x, t")dx
in1
_1 /XH% Li(x, t")dx+ /XM Li 1 (x, t")dx
Ax | Jy, X1
1/=n —n 1 2
= 5 (T + T )+ (o7 —oty). (17)

The time-integration of flux F can be approximated by midpoint
rule of integral (o points in the right frame of Fig. 2),

1 fiaal At n+l
H/tn F(x;,, 0)dt ~ AxF(UiHZ),

1 At (sl
o[ Fewodes T F(U ) (18)
To proceed, we need to evaluate the integration of non-
conservative term H(U, Uyx) in Eq. (15). Because the second and
fourth components of vector H are similar as seen from Eq. (5), we
take the fourth component as example. For clarity, we omit con-
stant g. If it is approximated with

Xit1 8h5 ~
Axf[ /xi hy S dxde AX/t (hsBhs),, e

Ax @fghs)?:;

At 1
- A—XH?:;, (19)

tn+1 th+1

22

ZZ

where (hf)?:f/zz and (ghs)?:]l/zz are suitable approximations to

(hf)?:ll/zz and ((Shs)?ﬁ/zz, and if the last bed slope term in Eq.
(15) is also discretized properly, then (15) becomes NOC scheme

—n+1 1/=n —n 1
Ui = j(Ui +Ui+1) + g("in ~0ly1)

At ntld nel
- PO - F(u) ]

Alymey | Al gney (20)

AxHHz Ax i3

The RHS of (20) consists of four parts: the quadrature terms
from the reconstruction (first two terms), the flux terms (third
term), the nonconservative terms (fourth term), and the bed slope
source terms (fifth term). As will be shown later, suitable second-
order discretization schemes for the nonconservative and bed slope



94 J. Zhai et al./ Computers and Fluids 134-135 (2016) 90-110

4
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P o3
n+l ——
n . : ° : .
1 i+1 1+2 x

i+1/2
n+l *

1 i+l x

Fig. 2. Diagram of a NOC scheme in the x — t plane. The left frame shows grid points in the NOC scheme. The right frame shows the NOC integration stencil, where e indicate
the grid points at time level n and n + 1, o represent the quadrature points for fluxes F across the cell boundaries and the data points for discretizing non-conservative terms

H and bed slope source terms S.

terms for ensuring the well-balanced property are

0

s,i s,i+1

n+ n+ n+ n+
1 VTg(h 2+h ’ (hfr-zl_h 2)

)

1 1
Nty pnts
(hs.i+l hs.i )

T
i
|
\./O\_/

n+1
%(h ‘ +hf1+1

0

1 hn-f—z I hn-%—2
s e 5 (biy1 = bi)
S 2=
i+ 0 ’
n+3 n+3
_ghf,i+21 +hg
2

(21)

(biz1 — by)

By letting cell average ﬁ? coincide with point (i, n) (second-order
1
approximation in space), the required middle time values of U;Hz

1
and U?:lz are obtained by the first-order Taylor expansions,

1o Atfau)
U?:qz =Up,+ 5 <8t> . q=0,1, (22)
itq
au

where ((’Tt):] are computed according to discretization of quasi-
linear system (6) at (i, n),

ou ! —n —n O'in
(31“)1_ =S(U;) - A(Y; )Ai)(' (23)

The limiter we used for the undivided slope ¢ in (23) is
0; = 8U; = minmod (U; - U;_;, Uyy; — U). (24)

It is remarked that the bed slope term S(U;) in (23) should be

approximated with a finite difference to be given in Eq. (34) in

Section 3.3 s? gs to ensure the well-balanced property. It is differ-
n+1/

ent from Sz+1/2 in Eq. (21).

3.2. Two-dimensional NOC scheme

The 2D NOC scheme is similar to 1D NOC scheme (20) but is
more involved due to the 2D staggered grids (see Fig. 3). We follow
[5] to give the 2D staggered NOC scheme for system (10). The final
2D NOC scheme also consists of four parts and is written as

—n+1
Uer2 J+i = (U + U1+1 it Ux gt U1+1 j+l>
X n X,n X.n
16( 1+1 j + az j+1 ai+l,j+1)
1
(Y y.n y.n
T 16 (‘7 ije1 T O~ %, J+1)

At n+l n+d
- 2 F(U) ~F(U)

n+ 3 n+
() - R(u)]
At n+ld nel
- 2y S(U5) - &)

n+y n+
+ G<Ui+l2.j+1) - G<Ui+fj)]

- Am"”] | +At5”+2

AT

(25)

where o7 iy " and ay " represent limited undivided “slopes” in the x
and y directions, respectlvely Suitable second-order discretizations
for the nonconservative terms and the bed slope source terms are
similar to previous 1d case, i.e., the same quadrature points @ as

for fluxes at the middle time level n + % are used:

vg n+2 +hn+2 n+2 n+%
4Ax 51] s,i+1,j f1+11 fzj

n+ n+d n n+
+(hs.i,]z+1 + hs H—zl ]+1) (hf i+1,j+1 f: ]Z+l>
n+
fi

f11+1 fij
n+1 n-+—2 n+Z
'H,H% _ +(hs.i+1 j sH—l ]+1)(h i+1,j+1 f1+1] > 26
i+dj+d T . (26)
2 2
g n+2 I hn+2 n+2 n+%
4Ax flj fi+1,j st+1j 51]’
n e s s B i
f.i,j+1 f1+1 Jj+1 sx+1 j+1 51j+1

g n+2 n+2 n+2 _thr2 .
4Ay fl] f1]+1 51j+1 S0, j
+(hnf; s )( s B ]

ve n-¢—2 n+3 n-¢—2 _ n+1 .
W[( s,i,j +hsl]+]) h )

fi+1,j fl+1 Jj+1 Si+1,j+1 sr+1,j _’
0,
— 1% :(h:?ﬁ 1t hs:;+1)(bi+1‘j+1 - bi.j+1)
Jr(izg,*;1 b )(bi“,,- _ bi‘j)],
~1y _(h??fl i Hh ,) (bis1.j+1 = i1 ))
n+% _ +<h?;r.12+1 + hs ij )(bi~j+1 - blﬁj):l’ (27)
i+1.j+3 7 )0,
— 2z :(h?,rf] it hf”H)(bm,jH —bij1)
+(njh, +hf,])(bi+1,j ~byy)|
~ahy (hﬁﬁ s ])(bi+]>j+] —bit1j)
+<h;firj'+1 + hf1 ]+1)(bi.j+1 - bi,j):I,
The required middle time values of Un+2, Ul":]%] U?;ré] U?:éjﬂ

for evaluating fluxes, nonconservative terms, and bed slope terms,
are calculated according to the first-order Taylor expansions with
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a ‘ n+1
(43+3)
g 1
n+—
2
///.('i"jjz “'A‘"“"' (i+1.j+1)
y n
A A
[
(.7) (i+1.7)

Fig. 3. Diagram of a 2D NOC scheme in the (x,y) —t space. (a) Perspective view, where

b

e indicate the computational grid points at time levels n and n + 1, red triangles A

are quadrature points for the piecewise linear reconstruction at time level n, and @ are quadrature points for fluxes F and G across cell boundaries of the control volume,
and data points for discretizing nonconservative terms H and source terms S. (b) Top view of (a) onto the (x, y) plane, where e is the projected grid point for (i + % j+ %) at
time n + 1, O are the quadrature points for the piecewise linear reconstruction at time level n, and @ are quadrature points for the flux terms and data points for discretizing
the nonconservative terms and source terms, which coincide with the computational points at time n. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

respect to piece-wise integer grid points at time level n,

n

n+% o At [ dU

Uiigjer = Uirgjer + 5 (ar oooar=0t (28)
i+q.j+r

The time partial derivative d;U is similarly determined from 2D
quasi-linear system (12) as
y

au i = Oif ol
<3f>ij =SUij) — AU x5 ~BUD Zy- (29)

Again, the bed slopes in S(U; j) are computed with a special finite
difference to be given in Eq. (34) in Section 3.3 in order to ensure
the well-balanced property. The limited undivided slopes o7 | and

al?' j are computed in dimension-by-dimension way. Computational

effects using different limiter functions have been compared in [5].
Based on their study, the minmod limiter is used in this work. The
Courant-Friedrichs-Levy (CFL) condition is

max max
|Cx | |Cy | < l
Ax B Ay |~ 2
where c®, cj®* are the maximum wave speeds in the x- and y-

directions, respectively, which are estimated from Pelanti’s prepo-
sition 2.1. The NOC scheme is formally second-order accurate.

At max( (30)

3.3. Modify the NOC scheme for well-balancedness

Compared with conventional shallow water equations, the two-
phase shallow water model poses additional difficulties to develop-
ing well-balanced scheme because nonconservative terms need to
be considered and the volume fraction ¢ needs to preserve a con-
stant for quiescent steady states. Further, the staggered-grid NOC
scheme contains quadrature terms of the linear reconstructions,
e.g., the first two terms in (20), and they also have to be consid-
ered. In this work, we show analysis of 1D NOC scheme and the
well-balanced modification in detail. Extension to 2D NOC scheme
is straightforward.

Consider 1D NOC scheme (20). The well-balanced property
states that if the numerical solution U} satisfies quiescent steady
states (3) in the sense that h]; + h”,,. + b; = Const, hgi/(hg_i + h”Y,.) =

Const, and uf =0,Vi, then the numerical solution U:‘*} pre-

serves the same quiescent steady states, i.e., h”ﬂ] +h””1 +
fits

b,y = Const, h”“ /(h”ﬂ1 + h;ﬂ ) = Const, and u”+1 =0,Vi.

For scheme (20) with correspondmg dlscretlzatlons (21)-(24),
we can prove that the conservative flux terms, the nonconserva-
tive product terms, and the bed slope source terms cancel exactly

under quiescent steady state conditions, leading to the following
Proposition 3.1. But the first two terms in scheme (20) do not
necessarily satisfy the well-balanced property. A special correction
procedure to ensure the well-balancedness will be introduced later.
We first prove Proposition 3.1.

Proposition 3.1. For scheme (20), the discrete flux gradients, noncon-
servative products, and bed slope source terms cancel exactly at qui-
escent steady states.

Proof. For the first component in Eq. (20), the sum of the flux gra-
dient, nonconservative product, and bed slope source terms is

At 1 1
(Ahs)gum = _E[(hSUS)?LZ _ (hsus);’+2:|, (31)

1
The numerical flux (hsus)?+2 is obtained from the 1st-order Tay-
lor expansion (22) with respect to the cell center value (hsus)} to-
gether with (23). Hence,

n+y n 0 (hsus)
(hsus) = (hsus) -5 ( 9t )
n n.(2) n.) 9
= (hsus)f + |:S - A ij| (32)

where superscript 2 denotes the second row of a vector or matrix.
Inserting S?'(z) as in (5) and A?’(z) as in (7) evaluated at quiescent
steady states into (32), and replacing o} by limited finite difference
SUT as in (24), Eq. (32) becomes

i A 8b\ |, (Bh\" (Shs'
(hsus)l-+2 = 7 _gh?,i (5?{) + (A;) + (A){)
i i t
1-y[ (. 3n Shy )"
- gT <hf )1 <hSAx i ’ )

Define nj' :=b;+hy;+h},. If (8b/éx); in (33) is approximated
with

8b\ _ (én _Shs _Shp\' G4

5x I,_ Ax  Ax  Ax )
then the first term in (33) becomes zero at quiescent steady
states because n; = Const, Vi. Note that quiescent steady states
of two-phase shallow flows also imply (hs/hf)l. = Const, Vi, thus
(hfghs/Ax):l - (hSShf/Ax);1 =0 is easily satisfied. Therefore, nu-
merical flux (33) is zero at quiescent steady states. It immediately
follows that the result of (31) is zero.
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Consequently, the conclusion for the first component of scheme
(20) is proved. In a similar way, it is easy to prove the third com-
ponent of (20).

Before we prove the more involved second and fourth compo-
nents of (20), we note that for quiescent steady states, Taylor ex-
pansion (22) together with (23) gives

a1 oh;
(hs)' + 2At< 5

a1 S(hus) "
_(hs),-+2At<— = >,-

= (ho)], (35)

(h)[** =

and similarly, (hf):.H% = (hp)}. As the fourth component is simpler
than the second component, we start from the fourth component.
Using quiescent steady states and discretization (21), the sum of
the discrete flux gradient, nonconservative product, and bed slope
source terms for the fourth component is

A(hfuf)sum

gp2\"2 gh2\"2 n+ n+1

(fhf)iﬂ _(7hf)i +g(hn+2 +h"+z)h51+21_h :
fi+1 2AX

+ (W 717;;1_1;”2 (36)
E\MNpin 2Ax [

Notice that since h = h? ., we omit sup-script n + 2 and extract

the factor g/2Ax out of the big bracket. Then the remaining part
becomes

(h% i1 —h3) + (pisr + hp) (Bsiwr — hsy)
+(hyiq +hgi) (b — by)
= (%11 = 153) + (hpier + M) (Mg igq — hyi+ bisy — by)
= (h% sy — %) + (hpieq + hy) (const — ;g — const + hyy)
=0. (37)

Similarly, for the second component in (20), the sum can be writ-
ten as

A (hsus) sum
At
(8R4 5 —y)hhy) T — (§h2 + 51— y)hshy)
N Ax
hn+2 "*,% b
1 T LI g T
(38)

Again, omit superscript n +% and extract the factor —g/2Ax, the
RHS of (38) reduces to

(h2ip1 = h2) + (1 = y) (hisahyi — hihy)
+y (Mg ir + hs i) (Rpivn — hyi) + (s + b 1) (biy — by)
= ( 2 —h2)+ Q- V)( sisthpion = hihy;)
+(y = D(hg i + hs,i)(hf,i+1 - hf,i)
+(hsi+ h 1) (Rpipn — by + bi — by)
= (h2iy —h2)) + (U = y) (hsisthypi — hsihpig)
+(hs; + hs 1) (const — hg ;1 — const + hg ;)

= (1= ) (hsizrhpi — hsihgis)
=0, (39)

where the last equality results from the condition (hs/hf); =
const, Vi.

In summary, the sum of discrete flux terms, nonconservative
terms and topography source terms in scheme (20) is zero at qui-
escent steady states. This ends the proof. O

Next, we consider how to make the results from the first two
terms in scheme (20), i.e., the quadrature terms for the linear re-
constructions, satisfy the well-balanced property. The second and
fourth components of the two terms at quiescent steady states give
the solid and fluid momentums,

1 1
(hsus)l'f':; = j[(hsus);? + (hsus)f, 1 | + §(a;t(z) — o),

1 1
(thf)nJr] = j[(thf),n + (hfllf)&_]] + g(o'in’(‘l) — O'anr(]‘D) (40)
since u] =0,Vi, all terms in the RHS of (40) are equal to zero,

giving hu”+1 =0 so that the first item of well-balanced condition

(3)is satlsﬁed But the first and third components of the first two
terms in (20) need special treatment. The first and third compo-
nents of the two terms at quiescent steady states give the solid
and fluid heights,

1 1
1 (1) (1)
h::rz - E(hn +hs 1+1) + g(aln _Gﬁrl )’
1 1
1 .(3) .(3)
ity = 5 (Wi +hjia) + g (o™ —olld”). (41)

With (hs/hf)n = Const, it is easy to show the results from (41) sat-
isfy (hs/hf) 1= = Const, thus the last item of well-balanced condi-

tion (3) is satlsﬁed. However, the new free surface level at a stag-
gered gird point as calculated from (41) is

n+1 n+1
hsx+‘ + hfz+‘ + b'+1

= ’[(h?.i +hi 4 bi) + (R + 1+ bi )]

1 1 3 1 3
+8( oV 4o I”Jr(]> I”Jr(l))—i—bw— (bi + bis1)
1 oD 4 gh B _gn(h _ gn0
= Const + §( +oi —olV —alY)
1
_j(bi +bis1) + by (42)

Since h” and h" r; may vary from point to point, the second term

in the second equallty of (42) are not zero in general, and this may
cause h’;;:% + h;ﬁ% +by, 1 # Const if by, byyy and by, ; are prede-
fined irrespective of the flow solution. We give a modification pro-
cedure to cure this problem.

Modification procedure for well-balancedness. This modifica-
tion makes use of the fact that the total mass equation using the
free surface level n = hs +h Ft b as solution variable can automat-
ically ensure the solution of lake at rest [33], where basal topog-
raphy b is assumed to be time-independent. It only modifies the
solid and fluid heights as computed from the first and third equa-
tions of scheme (20).

To avoid confusion, the following variables are not quiescent
steady states. By adding the two mass equations in Eq. (2), we ob-
tain the total mass equation

an 8(h5l15+thf) _
W+T =0. (43)
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By applying NOC scheme (20) to (43), we additionally com-
pute the free surface level

1
M = () g (ol-"‘") ~a")

- %[(h us+thf)

n,(n)

(hsus +hfl,lf):]+%:|, (44)

where o; is limited difference of n = h; + hj'l_l. + b;. According

to previous analysis in Proposition 3.1, the mass fluxes in (44) are
zero for quiescent steady states, thus (44) satisfies nf”* 11 = Const at

1
quiescent steady states. In general cases, variable 17 2 computed
from (44) is used to modify the solid and fluid helghts h?it:] and
L)
h;ﬁl computed from scheme (20) in the following way:
A3

. n+1 n+1 e
lf(hs.i+% + hfvi_,_% + bi+% # 77i+%) then

n+1
n+1,mod _ Sty n+1
"7 gt p.
hs,i+% thrl1 + AT ’71+% bl+% ’
Si+3 fi+d
n+1
n+1,mod __ fits n+1
-1, x (n™! —b. , 45
fi+d hn+11 + R nH—% i3 (45)
Si+3 fi+d

I‘l+2

else no modification is made to h and h

scheme (20).
The topography le in (45) can be defined as le = %(bi+
2 2

1 as computed from
2 +32

biq) or z, (xi+1/2) and never changes with time stepping. The solid
and fluid heights after modification (45) are then used as the fi-
nal solution for (n+ 1)th time step. It is seen that (45) leads

prtmod | prilmod b, i1 = n””, which can keep the con-
s 1+% fit+ 2
stant at quiescent steady states. And the ratio h”” smod /pn+1,mod _

st fitl

R /h"“ = Const is reserved.
ity fiv)

3.4. Positivity preserving

We can prove that NOC scheme (20) is positivity-preserving un-
der a suitable CFL condition.

Proposition 3.2. Assume that system (2) is solved with NOC scheme

(20) and that h?; = 0.h}; =0, Vi Then >0, B >0,V
S,i+5 fit+3
provided that
CFL 1

At < A 46

e (2. ) w
where
U = max (max(|u?i L lun .|)),

; : :
S = miax (‘max(u;‘j, u?’i) + g(h?j +ht|
‘min(ugi, up) — . /&hg; + h”j)‘)l (47)

Proof. Since the mass equations of fluid and solid are similar, we
take the fluid mass equation as example. The third component of
NOC scheme (20) gives

et =]( O Sh}H])

fi+d

Ax [(hfuf)?:f - (hf“f)?+7]’ (48)

where Sh?i represents the limited difference. The numerical flux

(hfuf):.”l/2 is computed according Taylor expansion (22),

At a(hfllf) g

(e 4 2

= (hlef)? + (49)

The second term can be ignored as it is O(At) higher. Hence,
(48) can be rewritten as

1[ 1¢ 2A

Wt = o |+ B t(hfuf) }

fi+3 2
1 2At
+§ |:h? i1 8h? i+1 (hf f)1+l}
171 1 ZAtH?J
=§_2< 50 ¢ “( T

1 1 2Atuf 1
+ 2|: (h?l+1 8h?’1+1>+hf1+1(2 _TH

(50)

Based on the monotonicity of the minmod-MUSCL interpolation,
we have h', 1(Sh” >Oandhf,+l 16hfl+]>01fhf >0,Vi. In
order to make the second terms in the square brackets in (50) be
non-negative, time step At must satisfy

AtIU},»I 1

Ax  ~ 4
With (51) holding, the result of (50) is non-negative. A similar time
step constraint can also be obtained for the solid phase.

It is evident that (46) is the minimal time step constrained by
the positivity preserving condition (51) for fluid and solid phases
and by the original CFL condition of NOC scheme,

AX

At = CFL—-. 2
t=C S (52)

Therefore, if (46) is satisfied, then h"+!, >0, b1,
Sty fit+y

Vi. (51)

>0,Vi. O

3.5. Numerical treatment for the loss of hyperbolicity

Although NOC scheme (20) with well-balanced correction
(45) is stable even if the matrices of the system have complex
eigenvalues, strong unphysical oscillations may appear in the nu-
merical solutions when the modulus of the complex eigenvalues
are big enough. Therefore, we adopt a similar predictor/corrector
strategy [31] to recover the hyperbolic nature of the two-
phase shallow-water system once the necessary condition (ii) of
Proposition 2.1 is present. The predictor step is scheme (20) with
well-balanced correction (45), which gives the first set of approxi-
mations at time ¢"+1, Un1x = [T, h"+l ¥, (hu)tt (hu)"+1 7.

In the corrector step, the state U”“ is computed by a numerical
relaxation procedure
h"'.H — h",ﬂ’*
hn-{—] — hn-{—l‘*
1 1,%
(hu)gi' = (hu)ei ™ +y AeDP (REF + R (u! —ulf'),
1 1,%
(huyit = (huyit — AEDF (RE T+ W) (uf! —uff!).  (53)
The last two equations in (53) are rewritten as follows

y AtDI*(hET 4 b

n+1 _ ,n+lx n+1 n+1
us,i _us‘i pntl (uf,i _uS,i )’
AtD',H] (hn{rl + hnﬂ)
n+l _ g ntl, i s.i fi n+1 n+1
upp =g - P (' —uei). (54)
fii
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Fig. 4. Sketch of organization of a CUDA program.

By subtracting and deducing the common factor we obtain

n+lx un+1,*

Ug; 5.

n+1 un+1 —

ut (55)

1 )4
1+AtD?+1 (hn+1 +hn+1) hn-{—l + hn-f—l

In order to ensure hyperbolicity, the new velocity difference from
(55) must satisfy the sufficient condition (i) of Proposition 2.1,
which leads to

|un+1 . n+1 *
<2ap, or
n+1 n+1 n+1
1+ AtD] h +hi <h”+1 h"“
|un+1 * n+1 *
> 24,
n+1 n+1 n+1
T+ AtD h h ( n+1 hn+1

with a= /g +hh), (56)

For the first inequality, D?“ >0, and for the second inequality,
D1 < 0. So D! must satisfy

|AU*|_]
max 0,% <Dt
At(—+—)
1-¢ ¢
|[Au|
or D' <min|0, —2¢ |, (57)
1 1 y
At( 4 )
-9 ¢

where Au* = |u"+1 *_

ulth*|, ¢ = ht! /(h;y +h!'tT). The rele-
vant hyperbolic reglme for applications is the one corresponding
to small |uf — us|. It is understood that real inter-phase drag forces
tend to drive phase velocities closer. Therefore, the first equality in

(57) is chosen.

4. GPU implementation

In this section, we will describe GPU implementation for 2D
NOC scheme (25). This scheme is explicit and therefore ideal for
the parallel execution on GPUs. We start from single GPU imple-
mentation as it is the building block of multiple GPU implementa-
tion.

4.1. Single GPU

A CUDA program on single GPU includes two kinds of codes, the
serial codes and the parallel codes [34,35]. The serial codes that
run on the host (CPU) side are responsible for variables declaration,
initialization, data transmission, and kernel invocation. The paral-
lel codes (called "kernel functions”) running on the device (GPU)
side are executed in parallel by massive light-weight threads orga-
nized to match the GPU hardware feature and allow for mapping
typical data structures (arrays, matrices). Many warps of threads
(1 warp =32 in most architectures) make up a block, and many
blocks stack together to make up a grid, which is the counterpart
of a kernel function. The block can be organized into 1D, 2D or 3D
array of threads, while the grid may also be in 1D, 2D or 3D array
of blocks. In Fig. 4, a 2D block and two 2D grids are illustrated.
On single GPU, the NOC scheme (25) is implemented similar to
the predictor-corrector Davis method as explained in our previous
paper [36]. After initialization, the CPU code loops a stepping func-
tion to advance the solution in time. The stepping function invokes
several different CUDA kernels, which do all the computations of
the NOC scheme including slope limiter, reconstruction, numeri-
cal flux, source term S, nonconservative term #, as well as solu-
tion update U™, These are explicit stencil computations can be
run in parallel on GPU. The global time step which involves reduc-
tion operation is also computed on GPU. We used 2D arrays rather
than conventional 1D arrays in GPU global memory to enhance the
readability of the code but sacrifice efficiency. For more detail, see
[36].

Global domain

Download

Ghost cell
overlap

Upload

~ Download |

Fig. 5. Domain decomposition and each GPU takes charge of one subdomain.
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Table 1

Comparison of running times using OpenMP-CUDA and multistream-CUDA for 1-3
GPUs with meshes 200 x 200 and 800 x 800 respectively. Result using a CPU with
OpenMP is also shown.

Number of GPUs Ny x Ny OpenMP-CUDA Multistream-CUDA
1 200 x 200 2478 ms
800 x 800 115938 ms
2 200 x 200 2080 ms 2190 ms
800 x 800 68799 ms 68200 ms
3 200 x 200 2035 ms 2260 ms
800 x 800 51523 ms 49980 ms
10 cores CPU 200 x 200 7354 ms
800 x 800 492586 ms

4.2. Multiple GPUs

For using multiple GPUs in a single node, there are several
choices of strategies. One can use multistream technique pro-
vided by CUDA, or multiple threads with OpenMP (or Pthread), or
message passing interface (MPI), with each stream/thread/process
managing a GPU executing a partitioned task. The MPI approach
is mainly suited to GPU clusters, so in this work, we only imple-
ment the OpenMP-CUDA and the multistream-CUDA strategies and
compare their performances. The computational domain is divided
into multiple subdomains for multiple GPUs to handle. The subdo-
mains have an overlap of four ghost cells for the purpose of com-
munication, two from each of the neighboring subdomains, as ex-
emplified in Fig. 5. In the OpenMP-CUDA strategy, as the code runs
in the OpenMP parallel region, the main program spawns multi-
ple threads equal to the number of subdomains, and each thread
is attached to a GPU that initializes and computes a correspond-
ing subdomain. In the multistream-CUDA strategy, the main pro-
gram issues multiple streams in turn, and each stream attaches to
a GPU. The OpenMP-CUDA strategy is shown in procedure 1. It is
seen that there is no need to do initialization in CPU and copy data
to GPU. But device synchronization is performed after step 6 for
calculating a global time step and in step 8 for exchanging over-
lapped cells between GPUs (“download” and “upload” in Fig. 5).
The multistream-CUDA strategy is shown in procedure 2. The only
difference between the two strategies is that the starting of GPU
execution is synchronous in the OpenMP strategy while it is asyn-
chronous in the multistream strategy.

Procedure 1. OpenMP-CUDA procedure:

1: Set the number of OMP threads and the same number of GPU de-
vices.

2: gpragma omp parallel shared (At, ghost variables...) {
/* Start parallel region executed by OpenMP threads. Declare
ghost variables as shared variables in order to transfer data be-
tween GPUs. */

3: Each OpenMP thread binds with a GPU device, allocate the shared
variables, and initialize a subdomain, e.g. the current thread k =
omp_get_thread_num(void)will take charge of a subdomain with
index (bx, by) for the 2D decomposition of the computational
domain being

(bx, by) = (k % OMPthreadnumber_x,
k % OMPthreadnumber._y)

'y

: InitCon<<<BLOCKs, THREADS>>>(variable list including GPU id
k)
/* This kernel function computes initial conditions; run in parallel
on all GPUs. Need not copy data to GPU. */

9]

: while (T <totaltime) do

[=1]

: Execute getdeltat<<<BLOCKs, THREADs>>>(variable list including
GPU id k)
/* this kernel returns At(k) of each subdomain. Subsequently,
synchronize all threads and then apply OpenMP reduce operation
to all threads’ At(k) to get a minimum At of the whole domain.
*/

: Execute kernels for the NOC formula (25) to compute solution vari-
ables.

N

8: Synchronize all threads, and then exchange the ghost variables be-
tweenGPUs. Can use the peer-to-peer function to exchange data
in new device like K40 GPU used in this work.

9: enddo while
10: Copy data back to CPU and write the data file.
11: } // end of OMP parallel region

MultiStream-CUDA procedure:

1: Set the number of streams and the same number of GPU devices.

2: Use for loop to create stream, and define variables and allocate cor-
responding global memories on each GPU device corresponding
to each stream.

/* Streams are created serially but execute own contexts in par-
allel asynchronously */

3: Each stream executes InitCon<<<BLOCKs,
stream[k]>>> (variable list)on kth GPU.
[* This is done in a for loop, but streams managing
corresponding GPUs run in parallel and asynchronously. */

THREADs, 0,

4: while T<totltime) do
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Fig. 6. Simple Riemann problem. Results computed with 100 grid cells (symbols) are compared with reference solution obtained with 1000 cells (solid lines). Dashed lines

represent the initial conditions.
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Fig. 8. Test 1. Results at t = 1 computed with 100 grid cells (symbols) in comparison with reference solution obtained with 4000 cells (solid lines). The eigenvalues are

computed according to formulas in [11].

5: Each stream executes
stream[k]>>> (variable list)

getdeltat<<<BLOCKs,

THREADs, 0,

/* Each stream executes this kernel function to compute At (k)
for each subdomain. Subsequently, synchronize all streams and
then reduce to get the min-value of At of the whole domain. */

6: Each stream executes kernels for NOC formula (25) in a correspond-
ing GPU device to compute the solution variables.

7: Synchronize all streams, and then exchange the ghost variables be-
tweenGPUs. Can use the peer-to-peer function to do so in K40

GPU.

8: enddo while

9: Copy data back to CPU, write the data file and destroy all
streams.

In this work, Nvidia K40 GPU is used which enables the peer-
to-peer (GPU to GPU) memory copy [37], we avoid the copy of
GPU — CPU — GPU for transferring the overlapped ghost cells.
The function of peer-to-peer copy is [37,38]

cudaError_t cudaMemcpyPeer(void *dst, int dstDevice, const void
*src, int srcDevice, size_t count)
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Fig. 9. Test 2. Results t = 0.5 computed with 100 grid cells (symbols) compared with reference solution obtained with 4000 cells (solid lines). The eigenvalues are computed

according to formulas in [11].

which copies count bytes of data from pointer src in source device
srcDevice to pointer dst in destination device dstDevice.

In our numerical simulations, we used a server with 2 x Intel
Xeon E5-2690v2 (3.0GHz, 10 cores) CPUs, 64 GB DDR3-1600 mem-
ory, and 3 x Tesla K40 GPUs (2880 cores). Table 1 shows compar-
ison of wall times for two multi-GPU strategies. It is seen that the
multistream-CUDA strategy can be slightly faster or slower than
the OpenMP-CUDA one in some grid sizes. On the 800 x 800 cells,
3-GPU parallel efficiency is 77%, and the speedup of GPU/CPU(10-
core OpenMP) is 4.2. There is space to improve single GPU perfor-
mance.

5. Numerical examples

We now present numerical results for the 1D and 2D two-phase
flow models, Eqs. (4) and (10), respectively. Neither inter-phase
drag nor basal friction force are considered. In all the examples we
set y =0.5.

5.1. 1D simple Riemann problem

This Riemann problem was studied in Refs. [10,12]. The initial
conditions consists of two constant states separated by an interface
located at x = 0. The left and right states are

(h, ¢, us,up) = (3,07, —1.4, 0.3),
(h, ¢, us, up), = (2,0.4,-0.9,-0.1), (58)

The value g=9.81, the bottom is flat, i.e. b(x) = constant, the
computational domain is [-5, 5], and CFL = 0.2. In Fig. 6, we dis-

play the results at t = 0.5 obtained with 100 grid cells (symbols)
and 1000 cells (solid lines) for flow height variables h, hs, hy, the
solid volume fraction ¢ and the phase velocities us, uy. It is ob-
served that the Riemann solution of this problem consists of a 1-
rarefaction wave, a 2-shock wave, a 3-rarefaction wave, and a 4-
shock wave (n-wave means that the wave is associated with the
nth eigenvalue in Eq. (8)).

5.2. Rarefaction into vacuum of the fluid constituent (dam break
problem for liquid)

The problem in [11,12] is considered here. The fluid mixture has
the same height over the whole spatial domain, and the right side
states for the fluid phase is a vacuum zone. The initial data are

(h.¢.us,uf); = (1,0.8,0,0), if x=<0,
(h,¢.us,up)y = (1, 1,0,0), if x>0, (59)

The gravity constant g=9.81, and the bottom is flat with b(x) =
constant. The numerical results obtained with 100 cells and 1000
cells at t =1 are shown in Fig. 7. The Riemann solution for the
mixture contains a 2-rarefaction across which hy vanishes. More-
over, in the far left zone of x < —2, which is the pure solid mate-
rial, a 1-shock is formed, and in the far right zone of x > 2, which
is also pure solid material, a 4-rarefaction wave occurs. The third
wave associated to eigenvalue A3 is not evident as explained in
[11]. The present results are in fair agreement with those in [11],
and the resolution is comparable to the CE/SE method [12] but
lower than the VFRoe solver [11].
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Fig. 10. Test 3. Results t = 0.5 computed with 100 grid cells (symbols) compared with reference solution obtained with 4000 cells (solid lines). The eigenvalues are computed

according to formulas in [11].

Table 2

Initial data for the test cases of dry bed formation.
Test (h, ¢, us, up) (h, @, us, ug)r
1 (0.1, 04, -3, -3) (0.1,0.7, 3, 3)
2 (0.1,04, 0, 0) (0.1, 0.7, 6, 6)
3 (0.2, 04, -3, -3) (0.1,0.8, 3, 3)

5.3. Dry bed generation

This problem in [11,12] is concerned with the formation of a
dry bed zone. Three test cases of the Riemann problems are con-
sidered. The solutions consist of two opposite moving rarefaction
fans between which a dry bed region is generated. The initial data
are given in Table 2:

In all test cases, the initial interface is located at x =0 and
the bottom is constant, i.e. b(x) = constant. The computational do-
main is [-5,5], CFL = 0.5, and g = 9.81. Our model is the same as
[12] in that no inter-phase drag is used whereas [11] used infinitely
large drag force so that so that |us — uf| is instantaneously driven
to zero. Figs. 8-10 display results at t =1, t = 0.5, t = 0.5 for the
three cases, respectively.

In Fig. 8 we display for test 1 the plots of the flow height h, hs,
hf, solid volume fraction ¢, velocities us, ug, and the four eigen-
values Aq, Ay, A3, A4 of matrix A in (7), respectively. As the fluids
separate outward at x = 0, a region of vacuum is generated. From
Fig. 8(a) it is seen that both 4000 grid cells (solid lines) and 100
grid cells (symbols) capture a vacuum region (defined as where

h+batt=0

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
datt=0
T T T T T T T T T T
0.6
0 1 1 1 1 1 1 1 1 1 1
-0.8 -0.6 -0.4 -0.2 0 02 0.4 0.6 0.8 1

Fig. 11. Initial conditions for the numerical test of perturbation of a steady state at
rest. Left: total flow height h -+ b, Right: solid volume fraction ¢. (Here h and ¢ are
made much larger than the values used in the calculation in order to make it clear
for the readers.)

h < 1073) . The distribution of the solid fraction and velocity inside
this vacuum region may be abnormal but we plot them in the vac-
uum region for completeness rather than leaving them blank as in
[11]. We can see that there are overshot and undershot in ¢ near
the edges of the vacuum region, but they diminish for 4000 cells.
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Fig. 12. Perturbation of a steady state at rest(fl = <13 = 10-3). Circles: solution computed with 200 grid cells; solid line: reference solution computed with 3000 grid cells. Red
bold lines over [0.4, 0.6] and [0.8, 1.0] : region where b(x) # 0.
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Fig. 13. The same problem as Fig. 12 but without using the correction method (45). Circles: solution computed with 200 grid cells; solid line: reference solution computed
with 3000 grid cells. Red bold lines over [0.4, 0.6] and [0.8, 1.0]: region where b(x) # 0.

The eigenvalues of the solution states are real at this moment as
shown in Fig. 8(d), and the solution evolves entirely in the hyper-
bolic regime.

Fig. 9 shows similar results for test 2, except that a right trans-
lation of initial velocities is observed, and the rarefaction in the
left is transonic. The vacuum region is not well resolved with 100
grid cells (symbols) while it is captured with 4000 cells, and it is
smaller than that in test 1. There are also overshot and undershot
in the solid volume fraction. The eigenvalues are all real.

In Fig. 10 for test 3, initial discontinuity is present in the flow
height. The results are similar to test 1 and the vacuum on 4000
cells is captured but is smaller than that in test 1. But overshot and
undershot are still present in the solid volume fraction even if the
eigenvalues are real this time.

5.4. Perturbation of a steady state at rest in 1D

To check the well-balanced property of the present NOC
scheme, we consider a test problem of variable bottom topogra-
phy. This test problem was presented in [10,12], but we add a dis-
continuous rectangular topography in the right side to show the
capability of our well-balanced scheme.

In this problem we look at the behavior of a small perturbation
of steady state conditions at rest over a bottom topography defined
as

0.25(cos(107 (x — 3)) + 1), if [x—0.5| <0.1
b(x) = {0.25, if [x—0.9] <0.1. (60)
0, otherwise

Initially, we take a small perturbation of the flow depth h and of
the solid volume fraction ¢:

h(x,0) =hg+h and ¢(x,0) = for —0.6 <x < —0.5,

(61)

where hy+b(x) =1, ¢pg=0.6, and h =@ = 10-3. Fig. 11 shows
the initial data for the total flow height h + b and the solid volume
fraction ¢. In order to make the initial conditions more clear,
we make h and ¢ much larger. The computational domain is
[-0.9,1.1], and free flowing boundary conditions are used. More-

over, we take g=1 and y =0.5. We compute the solution with

$o— @,

200 grid cells and compare it with a fine grid reference solution
obtained with 3000 grid cells.

In Fig. 12, we display the results for h+ b and ¢ at six different
times. The red bold line over the two intervals of x € [0.4, 0.6] and
x € [0.8, 1.0] on the x-axis in the left frames for h + b marks the
region where the topography b(x) # O.

Fig. 12(a,b) is almost the same as Fig. 9(a) of [10], in which the
initial perturbation splits into four waves: two right-going waves
and two left-going waves which leave the domain from the left
edge. Fig. 12(c,d) shows at t = 1.25 the right-going external wave
has just passed over the obstacle at the bottom, and it has been
partially reflected. This wave has gone out of the right bound-
ary of the domain in Fig. 12(e,(f), and the reflected wave gener-
ated by it has passed through the incoming right-going internal
wave. In Fig. 12(g,h) this right-going internal wave has moved pass
the hump and has produced its own reflected wave, which can
be clearly distinguished in Fig. 12(g,h). Fig. 12(i,j) shows the time
at which the second internal wave goes of the right boundary.
Fig. 12(k,1) shows the final situation in which all the disturbances
have exited from the computational domain and the lake-at-rest
equilibrium is attained.

If the same example is computed without the correction
method (45), the results will have nonphysical disturbances as
shown in Fig. 13(a) and (c) for t = 0.25 and t = 20. This indicates
that our modification is effective in preserving the solution of lake
at rest.

5.5. Perturbation of a steady state at rest in 1D with complex
eigenvalues

This test [31] is to assess the predictor/corrector strategy in
Section 3.5 to enforce the hyperbolicity for the present two-phase
shallow granular flow model. The test has an initial condition
which is far beyond the hyperbolicity regime. We consider a flat
channel (b(x) = 0) whose axis is given by the interval [-5, 5]. The
initial condition is

04, if —-05<x<05
h 0) = ’ - h 0)=1-h 0
s(x,0) {0.5’ otherwise . hs(x,0) 7(x,0),
us(x,0) = 0.2, up(x,0)=— (62)
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Fig. 14. Evolution of free surface level 7, solid height hs, and fluid height hy. The left column is the result without the inter-phase drag force corrector step, while the right
column is that with the inter-phase drag force corrector step. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

Free boundary conditions are imposed. The CFL parameter is set to
0.5 and Ax =0.01, y = 0.99. Note that

lus—us| =05, 2a=2,/98x1=626 ¢ =05 or 06,

B :\/;(1 —$)(1-0.99) < 0.05, (63)

the necessary  condition (i), 2af <|us —us| <2a,  of
Proposition 2.1 is satisfied at every point, therefore, the sys-
tem may lose hyperbolicity initially.

Fig. 14 shows the free surface level n and partial heights hs; and
hfatt=0s,t=05sandt =1 s obtained with the well-balanced

NOC scheme without (left) or with (right) the corrector step de-
scribed in Section 3.5. It is seen that the initial perturbation grows
without the corrector step while it not the case when the corrector
step is performed. Similar results can be observed for the velocities
(see Fig. 15).

5.6. Perturbation of a steady state at rest in 2D
This example is modified from a classical example [39] to de-

scribe the perturbation of the stationary state of water. The topog-
raphy and the initial free surface level used are same as those in
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[39] except that an initial steady solid fraction ¢g = 0.6 is used in
the present work.

The system is simulated in a rectangular domain [0, 2] x [0, 1].
The bottom topography is an isolated elliptical shaped hump:

b(X, Y) = 0.8@750{70'9)2 —50(y—0.5)? . (64)
The surface is initially given by
1-b 0.01 if 0.05 0.15
h(x,y,0) = (x.y) + i <x= |
1-bx.y) otherwise
$(x.y.0) =06,
hu(x,y,0) = hv(x,y,0) = 0. o)

Hence, the surface is almost flat except for 0.05 < x < 0.15,
where h is perturbed upward by 0.01. Fig. 16 displays contours
of the free surface b+h at six times (t = 0.12, 0.24, 0.36, 0.48,
0.6 and 15) computed by using 2D scheme (25) with 600 x 300
mesh cells. For t = 0.48 and 0.6 we compare our results with the
single-phase shallow water simulations in [40], and for t = 0.36
and 15 we also compare the results between with and without
using well-balanced modification (45). The results indicate that
our scheme can resolve the complex small features of the flow
very well. Fig. 16 (i) and (j) show that at t = 15 the free surface
level 1 recovers static status with the modification but has much
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Fig. 16. Perturbation of a steady state at rest(h = 10-2). Solution of h + b computed with 600 x 300 mesh cells. Shallow water solutions at t = 0.48 and t = 0.6 from [40] are

also shown in (f) and (h). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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larger perturbation without the modification, indicating that our
NOC scheme can keep the well-balanced property very well.

5.7. A 2D circular dam break problem

Now we simulate the 2D example of [16] by using scheme
(25) together with the well-balanced correction (45). Consider
a [-2,2] x[-2,2] square domain. The bottom function is given
by b(x,y) — 0.5~ 5®*+)_ As initial conditions we set (us, v5) =
(ug,vg) = (0,0) and

_ . )
h(X,y, O) — 1.5 b(XyJ/) if /x +y 505’
1-b(x,y) otherwise,
0.1 if./x2 + 2~ 05’
¢(x,y,0) = V< -
09 otherwise.

The gravity constant g = 9.8, CFL=0.2, and the computational time
is t =0.4. Wall boundary conditions are set: U -n=u;-n=0,
where n is the unit normal vector to the boundary. The upper
two frames in Fig. 17 display the counter line of n =h+ b com-
puted with meshes of 200 x 200 and 800 x 800, respectively. The
fine 800 x 800 meshes give a sharper front than the coarse 200
x 200 meshes. The lower two frames are taken from [16], which
were computed with the first order and second order PVM (poly-
nomial viscosity matrix) schemes using the 200 x 200 mesh. We
can see that our contours on the 200 x 200 mesh (upper left) are
very similar to the second-order PVM result (lower right), but the
first order PVM result totally did not keep the radial symmetry of
the solution (lower left). Fig. 18 shows comparison of two profiles
across the center of the domain. From the lower two frames, we
see that the 1st-order PVM result on the 200 x 200 mesh has
smaller height at x = 0 compared with the reference solution com-
puted with the 1st-order PVM on 800 x 800 mesh, while the 2nd-
order PVM result on the 200 x 200 mesh has a little larger height
compared to the same reference solution. Our results on the 200 x
200 mesh (upper left frame) show a trend similar to the 2nd-order
PVM (lower right frame). It is seen that there is some difference
between profiles across y = 0 and y = x for our results on the 200
x 200 mesh, but this difference becomes small on the 800 x 800
mesh, and the results on the fine mesh are close to the reference
solution of PVM.

6. Conclusions

In this article, we have applied the staggered NOC scheme to
numerical solution of a two-phase shallow granular flow model.
The NOC scheme does not need to solve a Riemann problem. We
propose a simple and oscillation-free discretization scheme for the
nonconservative terms. To obtain well-balanced property, we give
a correction procedure which uses additionally evolved total sur-
face level to correct the solid and fluid heights evolved from the
NOC scheme. A predictor/corrector strategy by using a numerical
inter-phase drag relaxation term is adopted to enforce hyberbol-
icity. The resulting numerical method is implemented on multiple
GPUs using both OpenMP-CUDA and multistream-CUDA strategies
to compare their performance. Numerical tests in both 1D and 2D
problems demonstrate that the present NOC scheme is able to han-
dle a wide range of flow conditions involving shock, dry bed region
and vacuum formation. The calculated results are in good agree-
ment with literature. The computational efficiencies of OpenMP-
CUDA and multistream-CUDA strategies differ a little and depend
on specific grid sizes used. It does not matter to use either strat-
egy, but it is critical to optimize the performance of single GPU
computing, which will be our future work.
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