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1 Introduction

The nature of the interface between two fluids has been the 
subject of extensive investigations in scientific and engi-
neering applications. However, there are several causes of 
difficulty in formulating accurate solution models even for 
the simplest set of systems. For example, physical prop-
erties like interfacial tension make multi-fluid flows diffi-
cult to treat analytically and numerically. In an immiscible 
two-fluid system, the components are separated by a sharp 
interface that evolves in time with the fluid flow. From the 
mathematical point of view, this problem is called mov-
ing boundary or free surface problem. There are two types 
of models to formulate the interfacial flow problems, the 
sharp interface and the diffusive interface models.

The initial investigations on free surface problems by 
Young, Laplace and Gauss [1] considered the sharp inter-
face endowed with some physical properties such as sur-
face tension between two fluids. Many surface properties 
such as capillarity, are associated with the surface tension 
through special boundary conditions on the interfaces 
[2–5]. In classical sharp interface approaches like front-
tracking method [6], boundary integral method [7], level 
set method [8], and coupled level set/VOF method [9], 
the physical properties are discontinuous across the inter-
face and are described by some physical boundary condi-
tions and the interface usually evolves in time. The draw-
back of this approach is the need to explicitly track the 
dynamic interface at each time step. On the other hand, 
in the (diffusive interface) phase field models [10, 11], 
the sharp fluid interface is replaced by a thin but nonzero 
thickness transitional layer where the interfacial forces 
are smoothly distributed. One does not need to track the 
moving interface explicitly at each time step. The most 
appealing feature of the phase field model is its ability to 
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deal with distinct problems (immiscible or miscible) by a 
single set of equations, therefore, phase field models are 
becoming popular choices for modeling multi-phase flows 
and a wide range of phase transition problems in material 
sciences.

In a previous study [12], we found that numerical dis-
cretization and coding of the phase field model were simple 
in the framework of the artificial compressibility method 
(ACM) [13], in the belief that time (pseudo-time) march-
ing of a hyperbolic system may be easier than mixed time 
marching and solving of an elliptic system with large 
gradients at interfaces. The time accuracy of the ACM 
for unsteady flows was no longer a big problem with the 
advent of dual-time stepping technique [14, 15]. We have 
used WENO scheme together with the ACM in [12], but 
found that although WENO scheme was very robust to cal-
culate flows with thin interface layer, it incurred excessive 
numerical diffusion near the interface layer. A high-order 
accurate, high-resolution central compact finite difference 
scheme with suitable filtering [16, 17] is expected to better 
resolve the thin diffusive layer, especially for cases where 
there are massive vortex flows developed from the inter-
faces. In the present paper we apply an eighth-order central 
compact finite difference scheme with tenth-order filtering 
as proposed in [16, 17] for solving the Allen–Cahn phase 
field model [11, 18].

The rest of the paper is organized as follows. The gov-
erning equations for the mixture of two incompressible flu-
ids are given in Sect. 2. In Sect. 3, the artificial compressi-
bility formulation is written in conservative form. Section 4 
explains the spatial discretization. Time discretization 
and approximate factorization-based alternating direction 
implicit (AF-ADI) algorithm are given in Sect. 5. Numeri-
cal tests in several two-dimensional problems on the mix-
ture of two incompressible fluids are given in Sect. 6 and 
finally conclusions are given in Sect. 7.

2  Phase field model for mixture of two 
incompressible fluids

Let � be a two-dimensional physical domain with the Car-
tesian coordinate system. We further assume that � is filled 
with two incompressible viscous fluids separated by a free 
moving interface. The phase-field function φ(x,t) assumes 
distinct constant values in each bulk phase and under-
goes rapid but smooth variation in the interfacial region. 
The phase-field is used to identify the two fluids and the 
interface at any time t. For simplicity, we only consider a 
specific type of mixture of two incompressible fluids with 
same density (ρ = 1) and same viscosity constants [11]. We 
have the following system of equations: 

(1a)∇·u = 0,

 The coupled nonlinear system (1) will be subject to the ini-
tial conditions

and appropriate boundary conditions. u is the fluid velocity, 
p = p+ 1

2
|∇φ|2 is the redefined pressure [20] and constant 

µ is the viscosity, � is the surface tension coefficient, γ the 
elastic relaxation time of the two-fluid system and f (φ) is a 
given polynomial function [11]. The buoyancy force b with 
gravitational acceleration g in the negative y direction is 
given as

with ρ =
1+ φ

2
ρ1 +

1− φ

2
ρ2, where ρ1 and ρ2 are the 

densities of fluid 1 and fluid 2, respectively, if φ = 1 then 

ρ = ρ1 and if φ = −1 then ρ = ρ2. The role of the Lagrange 
multiplier ξ(t) in the Allen–Cahn Eq. (1c) is to change the 
asymptotic constant values (±1) of the phase function φ so 
as to conserve the volume fraction. The original ξ(t) is mod-
ified as ξ(t)

(

1− φ2
)

 because this will keep the maximum 
principle for φ as noted in [19]. The new ξ(t) can be calcu-
lated by using the following formula got from (1d)

3  Artificial compressibility formulation

By adding the artificial compressibility terms with dual-
time stepping technique, and using the function f  given in 
[11] and new ξ(t), the system (1) in two space dimensions 
can be rewritten as follows:

Write the above equations in conservative form:

(1b)ut + (u·∇)u − µ�u+∇p = b− ��φ∇φ,

(1c)φt + (u · ∇)φ − γ�φ = γ (−f (φ)+ ξ(t)),

(1d)
d

dt

∫

�

φdx = 0.

u|t=0 = u0, φ|t=0 = φ0

b = (0,−g(ρ − ρ0))
T

=

(

0,−
1

2
g(1+ φ)(ρ1 − ρ0)−

1

2
g(1− φ)(ρ2 − ρ0)

)T

ξ(t) =

∫

�

f (φ)dx/

∫

�

(

1− φ2
)

dx.

(2)

pτ + β
(

ux + vy
)

= 0,

uτ + ut +
(

u2 + p
)

x
+ (uv)y − µ

(

uxx + uyy
)

= bx − �φx
(

φxx + φyy
)

,

vτ + vt + (uv)x +
(

v2 + p
)

y
− µ

(

vxx + vyy
)

= by − �φy
(

φxx + φyy
)

,

φτ + φt + (uφ)x + (vφ)y − γ
(

φxx + φyy
)

= γ

(

1− φ2
)

(

φ

η2
+ ξ(t)

)

.

(3)Qτ + ImQt + (E− Ev)x + (F− Fv)y = Sint,
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with

and

  Here Q is the solution vector, u and v are Cartesian velocity 
components, p is the redefined pressure [20], φ is the phase 
variable of the species, constant η represents the diffusive 
interface width, β is the artificial compressibility parameter, 
τ is the pseudo-time and t is the physical time. The matrix 
Im is a modified identity matrix. Subscripts τ , t, x, y repre-
sent partial derivatives. Because of the addition of the artifi-
cial compressibility terms, Eq. (3) become hyperbolic with 
respect to the pseudo-time, evidenced from all real eigenval-
ues of the Jacobian matrices A = ∂E/∂Q and B = ∂F/∂Q 
of the inviscid flux vectors. The viscous Jacobian matrices 
Av and Bv of the viscous flux vectors, which will be utilized 
in the approximate factorization scheme, are

It is possible to diagonalize A and B as

where diagonal matrices �A and �B contain the eigenvalues 
of matrices A and B:

with c1 =
√

u2 + β and c2 =
√

v2 + β being the pseudo-
speeds of sound. The matrices X and Y are the right eigen-
vectors matrices, while X−1 and Y−1 are their inverses, 
respectively. The detail is given in [12].

4  Spatial discretization: central compact scheme 
and filtering scheme

The eighth-order implicit central compact scheme in tri-
diagonal form proposed by [21], is used to approximate the 
convective terms in Eq. (3) which can be expressed as

Q =









p

u

v

φ









, E =









βu

u2 + p

uv

uφ









, F =









βv

uv

v2 + p

vφ









,

Im =









0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









, Ev =









0

µux

µvx

γφx









Fv =









0

µuy

µvy

γφy









,

Sint =









0

bx − �φx
�

φxx + φyy
�

by − �φy
�

φxx + φyy
�

γ
�

1− φ2
��

φ/η2 + ξ(t)
�









.

(4)

Av =
∂Ev

∂Q
= diag(0,µ,µ, γ )∂x , Bv =

∂Fv

∂Q
= diag(0,µ,µ, γ )∂y.

(5)A = X�AX
−1, B = Y�BY

−1,

(6)diag�A = {u, u+ c1, u− c1, u}, diag�B = {v, v+ c2, v − c2, v},

The values of the coefficients a, b, c and α in Eq. (7) for dif-
ferent order of the schemes are given in [21]. For the eighth-
order scheme, the values are a = 25

16
, b = 1

5
, c = − 1

80
 and 

α = 3
8
.

For the domain consisting of N points, the eighth-order 
compact scheme is applied directly to the interior points 
but for a non-periodic boundary, we used one-sided higher-
order biased schemes of Zhang and Qian [22] to retain the 
original tri-diagonal form because adequate boundary clo-
sure is required for a non-periodic boundary for highly effi-
cient computations. If the order of the boundary scheme is 
only one order lower than the interior points, the global for-
mal accuracy will generally not degrade [23] and the stabil-
ity of the computation can also be retained. Therefore, in 
the present numerical tests we used the seventh and sixth-
order formulas near to boundary points. The seventh-order 
accuracy is expected and a tri-diagonal form is retained. 
Since the central compact schemes are non-dissipative and 
susceptible to numerical instabilities, high-order numeri-
cal filtering procedure is needed to control the instabili-
ties originated from mesh non-uniformities, nonlinear flow 
features and boundary conditions. Spectral-type filters are 
applied as a post-processing stage after each time step 
integration to each component p, u, v and φ of the solution 
vector Q separately. If the unfiltered component of solu-
tion vector is denoted by ψ and the filtered component by 
ψ̂ then tenth-order implicit filtering scheme [16] is of the 
form

For multi-dimensional problems, the filter is applied 
sequentially in each of the three directions. Equation (8) 
provides a 2Mth-order formula on a 2M + 1 point stencil. 
The M + 1 coefficients, a0, a1, a2,..., aM−1, aM are derived 
in terms of the free parameter αf . The parameter αf  which 
is in the range −0.5 < αf < 0.5, determines the filtering 
properties. High values of the parameter αf  yield less dis-
sipative filters. Special treatments are required at points 
near the boundary because of the relatively large stencil of 
the filter. In this paper, The higher-order one-side biased 
formulas introduced in [17] are used to retain the accu-
racy of the scheme. Details of the filtering schemes can 
be found in [16], in which the values at the end boundary 
points are not filtered and can be given directly by physi-
cal or artificial boundary conditions, as suggested by those 
authors. The relatively large stencil of high-order filters 

(7)

αE′
i−1 + E′

i + αE′
i+1 = a

Ei+1 − Ei−1

2�x

+ b
Ei+2 − Ei−2

4�x
+ c

Ei+3 − Ei−3

6�x
.

(8)αf ψ̂i−1 + ψ̂i + αf ψ̂i+1 =

M
∑

m=0

am

2
(ψi+m + ψi−m)
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requires special formulations at several points near the 
boundaries. For instance, the tenth-order (M = 5) interior 
filter require 11-points stencil and thus cannot be applied 
at the near-boundary points 1, . . . , 5 and corresponding at 
imax− 4, . . . , imax, so the following formulas retain the 
tri-diagonal form of the scheme,

The values at points i = 1 and imax are specified explic-
itly through the boundary conditions and are not filtered. 
The extensive list of the coefficients for the higher-order, 
one-side filters at the left and right boundary is given in 
[16].

5  Implicit approximate factorization scheme

The approximate factorization (AF) method [24] is an 
extension of the alternating direction implicit (ADI) 
method to the system of the Euler and Navier–Stokes equa-
tions. Applying backward difference to the pseudo-time 
derivative and three-point, second-order backward differ-
ence to the physical-time derivative, we obtain

where �Qn+1,m = Qn+1,m+1 −Qn+1,m, the superscript 
n is the physical-time level and m is the pseudo-time level 
(the number of sub-iterations). �τ is the pseudo-time step 
size which is determined based on the CFL number and 
�t is the physical-time step size determined according to 
temporal resolution and trial. The equations are iterated in 
pseudo-time so that Qn+1,m+1 approaches the physical Qn+1 
when the iteration is converged. The residual terms at m+ 1 
pseudo-time level are linearized with respect to the previous 
level m by using first-order Taylor’s expansion, e.g.,

From now on, the superscript n+ 1 is omitted for brevity. 
One can obtain the unfactored implicit delta form from 
Eq. (9) as

αf ψ̂i−1 + ψ̂i + αf ψ̂i+1 =

11
∑

m=1

am,iψm, (2 ≤ i ≤ 5),

αf �̂i−1 + �̂i + αf ψ̂i+1 =

10
∑

m=0

am,iψm, (imax− 4 ≤ i ≤ imax− 1).

(9)

�Qn+1,m

�τ
+ Im

1.5Qn+1,m+1 − 2Qn + 0.5Qn−1

�t

+

[

∂(E− Ev)

∂x
+

∂(F− Fv)

∂y

]n+1,m+1

= S
n+1,m
int

(10)

Em+1 ≈ Em +

(

∂E

∂Q

)m

(Qm+1 −Qm) = Em + Am�Qm.

The terms Av and Bv are the viscous Jacobian matrices in 
Eq. (4). The Beam–Warming approximate factorization 
scheme [24] can be symbolically written as

To obtain block tri-diagonal equations, convective terms in 
LHS of Eq. (11) are discretized by first-order upwind dif-
ference and viscous terms by conventional second-order 
central difference, e.g.,

Remember that high-order central compact scheme 
is still used for the convective terms and a sixth-order 
central compact difference scheme [21] for the second 
derivative in the viscous and capillary terms in the RHS. 
After discretization of the LHS, one obtains the follow-
ing form

In order to make use of the diagonal algorithm which 
saves computational cost [25, 26], we change Im to I and 
diag(0,µ,µ, γ ) to max(µ, γ )I in the LHS of Eq. (13), 
which alters convergence rate but not accuracy. Denote 
(

1+ 1.5�τ
�t

)

I = H, then the equation becomes

As tradition, by adding cross-derivative terms to LHS, 
which is the same order of �τ 3 as the truncated terms of 
original equations, we can obtain the AF scheme according 
to x and y directions in the following form

(11)

[

I+ 1.5
�τ

�t
Im +�τ

(

∂(A− Av)

∂x
+

∂(B− Bv)

∂y

)]m

�Qm

= −�τ

(

∂(E− Ev)

∂x
+

∂(F− Fv)

∂y
− Sint

)m

−
�τ

�t
Im

(

1.5Qm − 2Qn + 0.5Qn−1
)

= Sm,

(12)£ ·�Qm ≈ £x£y ·�Qm = Sm.

δ+x fi =
fi+1 − fi

�x
, δ−x fi =

fi − fi−1

�x
, and

δ2x fi =
(fi+1 − 2fi + fi−1)

�x2
.

(13)

[

I+ 1.5
�τ

�t
Im +�τ

(

δ−x A
+ + δ+x A

− − δxAv

)

+�τ

(

δ−y B
+ + δ+y B

− − δyBv

)]m

�Qm = Sm.

[

H+�τ

(

δ−x X�
+
AX

−1 + δ+x X�
−
AX

−1 − µIδ2x

)

+�τ

(

δ−y Y�
+
BY

−1 + δ+y Y�
−
BY

−1 − µIδ2y

)]m

�Q
m = S

m
.

(14)

[

H+�τ

(

δ−x X�
+
AX

−1 + δ+x X�
−
AX

−1 − µIδ2x

)]

H
−1

×
[

H+�τ

(

δ−y Y�
+
BY

−1 + δ+y Y�
−
BY

−1 − µIδ2y

)]

�Q
m

= S
m
.
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The system (14) can be solved with the well-known ADI 
scheme. In each direction, we need to solve a system of 
scalar tri-diagonal equations like

αi�Ui−1 + βi�Ui + γi�Ui+1 = ri, i = 2, . . . , i max− 1

with appropriate boundary conditions. In order to keep 
numerical stability, the split eigenvalues in the LHS of 
Eq. (14) are constructed as �± = 1

2
(�± κ|�|), where κ is 

a constant that is greater than or equal to unity to ensure 

Fig. 1  Contours of φ for the 
cross to circle problem at 
different times with Lagrange 
multiplier. a t = 0.0, b t = 0.04, 
c t = 0.1, d t = 0.4, e t = 0.6, f 
t = 19.8

(a) (b) (c) 

(d) (e) (f)

Fig. 2  Contours of φ for the 
cross to circle problem at dif-
ferent times without Lagrange 
multiplier. a t = 0.0, b t = 0.08, 
c t = 4.0, d t = 8.0, e t = 16.0, 
f t = 19.8

(a) (b) (c)

(d) (e) (f)
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the split eigenvalue is strictly positive or negative. κ = 1 is 
used throughout this work.

6  Numerical examples

In this section, the numerical method developed in pre-
vious sections is tested against several 2D problems of 

incompressible two-fluid mixture with the same density as 
well as slightly different fluid density (the latter is treated 
with Boussinesq approximation as in [11]). In all computa-
tions, we have used following fixed physical parameters

and the computational grid is 321× 321 uniform grid 
points for a square solution domain [0, 2π ]× [0, 2π ]. Time 
step �t is set to 0.002 to be comparable to that used in ref-
erences [11, 19, 27]. The maximum number of subitera-
tions is set to 100. The initial velocity and pressure are all 
zero, while the initial condition for φ is specified in each 
example. We remark that the mesh size 2π/320 = 0.0196 
is comparable to the interfacial width η = 0.02, implying 
that the diffusive layer is under-resolved.

6.1  Surface tension effect: cross to circle

In this example, initially a cross is centered at [x, y] = [π ,π ].  
φ is taken 1 inside the cross and −1 otherwise as shown in 
Fig. 1. The computational domain [0, 2π ] × [0, 2π ] is par-
titioned with uniform mesh size. The cross initially with 
sharp corners is finally deformed into a circle. This evolu-
tion of phase exhibits the fact that the Allen–Cahn equa-
tion handles the sharp corners and minimizes the size of 
the interface. The final state of deformation is a steady state 
circle with a minimum size of the interface. The results in 
Fig. 1 shows that the cross deforms into circle because of 
surface tension effect. However, if we remove the Lagrange 
multiplier from the phase field equation, the cross will start 

η = 0.02, � = 0.1, µ = 0.1, and γ = 0.1

Fig. 3  Total volume fraction (
∫

�
φdx) versus time to show mass con-

servation

Fig. 4  Evolution of phase 
contours of coalescence of two 
bubbles at different times. a 
t = 0.0, b t = 0.1, c t = 0.4,  
d t = 0.8, e t = 1.6, f t = 4.0

(a) (b) (c)

(d) (e) (f)
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shrinking as shown in Fig. 2. With Lagrange multiplier, 
the volume of the bubble is preserved while it decreases 
gradually without Lagrange multiplier, as shown in Fig. 3. 
The results obtained with the present central scheme are in 
good agreement with those obtained with the finite element 
method [28].

6.2  Coalescence of two bubbles

This example is to study coalescence of two kissing bub-
bles due to surface tension and is simulated at different 
times. The computational domain is [0, 2π ] × [0, 2π ] with 
uniform mesh size. Initially, two unit circular bubbles are 
centered at [π , 3.5] and [π , 2] with radius 1, respectively. 
As the time evolves, first the two bubbles coalesce into one 
big and an elliptical bubble, which then transfigure and 
deforms into a circular bubble Fig. 4. This is the combi-
nation of the surface tension effect and the elastic effect 
from the phase equation. The results shown in Fig. 4 are 
well comparable with the results of Bao et al. [29]. The 

Fig. 5  The phase φ along y = 3.0. The symbol circle represents 
numerical solution and solid line represent exact value at t = 4.0

Fig. 6  Comparison of evolu-
tion of phase contours for 
ρ1 − ρ2 = −0.1, g = 10 at t  
= 0.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4
.5, 5.0
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distribution of computed φ along y = 3.0 is shown in 
Fig. 5 for t = 4.0 having smooth values at the sharp corners 
(shown by zooming the left corner) and comparable with 
exact values of φ.

6.3  Rising bubbles

In this example, slightly different densities inside and out-
side of a bubble is considered. Boussinesq approximation 
as used in [11, 12] is adopted here. This example of ris-
ing bubble consists of a circular bubble of radius r = 1 cen-
tered at (x0, y0) = (π , 1.2) in a domain of [0, 2π ] × [0, 2π ] 
with solid boundary walls using grid size 321× 321. The 
density of the bubble is smaller than that of the surrounding 
fluid. The evolution of the bubbles are tracked for differ-
ent times with Reynolds number Re = 10(µ = 0.1) while 
the density difference is ρ1 − ρ2 = −0.1 and g = 10. The 
results are shown in Fig. 6 which are well comparable with 
the results of [11]. We have also checked the preservation 
of the magnitude of the phase field function φ everywhere. 
It is expected to satisfy �φ(·, t)� = 1 because we have used 
the modified formula (1c) in which ξ(t) is replaced by 
ξ(t)(1− φ2). Table 1 shows that the φ is satisfactorily kept 
at ±1, when the grid refines, the error is <10 −4.

7  Conclusions

We have developed a numerical method using high-order 
central compact scheme for simulating incompressible two-
phase flows. The governing equations are Allen–Cahn type 
phase field equation for the mixture of two incompressible 
fluids and the incompressible Navier–Stokes equations. 
The eighth-order central compact scheme with tenth-order 
filtering is successfully applied to the artificial compress-
ibility formulation of the phase field model. The resulting 
linear system is solved with the approximate factorization-
based alternating direction implicit (AF-ADI) algorithm. 
Several numerical examples have been used to show the 
effectiveness of the present method. The main attraction of 
the phase field model is its capability to easily incorporate 
the interface with smooth transition of physical quantities. 
However, the thickness of the interface is closely related to 
the range of molecular interactions, thus may be very dif-
ferent for various interface dynamics. In particular, cases 

with small thickness pose difficulty to numerical methods. 
In future work, we wish to resolve the thin width difficulty 
and go beyond of the Boussinesq approximation to solve 
more general multi-phase flow problems.
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