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In this article, the dynamics of colliding particles immersed in a viscous fluid is numerically investigated.
An improved fictitious domain (FD) method for a solid–fluid system is developed and a collision strategy
for multiple particles is presented. In earlier methods, a repulsive force is applied to the particles when
their separation distance is less than a critical value and depending on the magnitude of this artificial
repulsive force, collision of two or more particles may bounce unrealistically. In the present method,
when the collision of two or more particles happens, the collision force acting on each colliding particle
is determined by using the Discrete Element Method (DEM). Furthermore, the improved FD method
employs a discrete d-function in the form of bi-function to transfer quantities between the Eulerian
and Lagrangian nodes similar to the immersed boundary method. This feature avoids the need to use
Lagrange multipliers for imposition of the rigid body motion. Numerical results for motions of one or sev-
eral particles in a viscous fluid are presented.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In order to accurately predict the behavior of particulate flows,
a fundamental knowledge of the dynamics of particle collision is
required. Classical lubrication theory predicts that the lubrication
force becomes singular as the distance between two smooth
spheres approaches zero and hence prevent spheres from touching.
In practice, no general numerical method can afford the computa-
tional cost of resolving the flow in the narrow gaps between
closely-spaced particles and therefore some modeling is needed.
Physically, the surface of particles has some roughness, and the
bumps make physical contact possible due to the discrete molecu-
lar nature of the fluid and/or the attractive London-van der Waals
forces. Thus further approach is prevented as the solid–solid con-
tact occurs [1]. Many numerical methods adopt a heuristic repulse
force the solid–solid contact [1,10,12,14].

Historically, the non-boundary-fitted (or Cartesian grid)
method is a popular choice for the numerical solution of
incompressible fluid flow problems in complex geometries or with
moving boundaries. A variety of non-boundary-fitted approaches
have been developed, and they can be roughly classified into two
families [2,3,13]: the body-force based method (e.g., [4]) and the
non-body-force based method (e.g., [2]). For the former, a body
force (or momentum forcing) is introduced into the momentum
equations. The fractional step methods are often used in the
body-force based method to simplify the computation in the fol-
lowing way: the Navier–Stokes equations are solved for the known
body-force obtained at the previous fractional steps, with the
boundary condition on the immersed boundary disregarded, and
the boundary condition is used to determine the body-force at
the subsequent fractional steps. There exist various body-force
based methods in the literature that differ in the way how the
body-force is calculated. Unlike the body-force based method,
the non-body-force based method such as the immersed interface
method (IIM) does not introduce a body-force, instead, the method
(like IIM) accounts for the boundary condition by either transform-
ing it into independent equations [5] or using it to modify the
expressions of differential operators for the Eulerian nodes in the
immediate vicinity of the boundary [6,7]. One advantage of the
non-body-force based method is that the jump boundary condi-
tions on the surface can be handled more accurately. But its disad-
vantage is the increased complexity.

We are concerned with numerical simulation of particulate
flows in the present study. In principle, all aforementioned meth-
ods can be applied to calculating particulate flows, however, the
body-force based method has been predominantly used so far.
We also follow this line and focus on one type of such
methods-the fictitious domain (FD) method. A common feature
for the body-force based method is that the hydrodynamic force
acting on the particles can be calculated from the body-force
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without integrating the pressure and shear stresses acting on the
particle surface. For the distributed-Lagrange-multiplier/fictitiou
s-domain (DLM/FD) method proposed by Glowinski et al., the par-
ticle velocities and the body-force (Lagrange multiplier) are solved
simultaneously [4,11] with the implicit scheme, while for the
immersed boundary method, they are obtained explicitly. The
DLM/FD method has been successfully applied to a wide range of
particulate flow problems [9]. However, its calculation procedure
and iterative determination of the particle velocity and
body-force is more involved and more expensive than the
direct-forcing immersed boundary (IB) method. At the same time,
most previous DLM/FD methods do not allow direct contact when
two particles are closer. The aim of the present study is to present a
simpler non-Lagrange-multiplier version of FD method without
sacrificing the accuracy by employing a discrete d-function in the
form of bi-function to transfer explicitly quantities between the
Eulerian grids and the Lagrangian nodes, as done as in the
immersed boundary method. Also, we used a collision strategy of
discrete element method (DEM), in which no repulsive force model
is applied to the particles, rather, the contact force between parti-
cles is computed by using the DEM. Compared with the IB method,
the particle velocity in the present method is not updated explic-
itly thus preventing numerical instabilities often encountered in
IB method.

This paper is arranged as follows. A mathematical formulation
of the basic scheme is first described. Numerical implementation
of the scheme in a staggered grid, finite-volume framework is pro-
vided next. The motion of freely falling circular particles at differ-
ent Reynolds numbers is simulated and the results are compared
with previous numerical studies. Concluding remarks are given
in the final section.
2. Numerical method

2.1. Theoretical formulation

For particulate flows, the governing equations in the fluid
domain are

qf
du
dt
¼ r � r in Xf ; ð1aÞ

r � u ¼ 0 in Xf ; ð1bÞ

u ¼ Uþx� r on @P; ð1cÞ

ujt¼0 ¼ u0ðxÞ in Xf ; ð1dÞ

where qf is the fluid density, u the fluid velocity, and r the fluid
stress. U is ith particles translational velocity, and x is ith particles
angular velocity. The initial velocity u0 satisfies the continuity equa-
tion. Only the Newtonian fluid is considered in this study, thus
r ¼ �pIþ 2lD, with p being the fluid dynamic pressure, l the
dynamic viscosity and D the rate-of-strain tensor.

The governing equations in the particle domain are (we ignore
the collision force for the time being)

m
dU
dt
¼ FH þ 1� 1

qr

� �
mg; ð2aÞ

dðJ �xÞ
dt

¼ TH; ð2bÞ

where m; J; U and x are the particle mass, moment of inertia ten-
sor, translational velocity and angular velocity, respectively. g is the
gravitational acceleration and qr is the solid–fluid density ratio. FH
and TH are the hydrodynamic force and torque on the particle,
respectively, defined by

FH ¼
Z
@P

n � rds; ð3aÞ
TH ¼
Z
@P

r� ðn � rÞds; ð3bÞ

where n is the unit outward normal on the particle surface and r is
the position vector with respect to the particle mass center. r is the
fluid stress without the gravity. Note that the gravity term is absent
in (1), which has no effect on the flow except producing a hydro-
static pressure and thereby a buoyance force on the particle. Since
the buoyance force is not considered in FH , but it has effect on the
total force rather than on the torque, we need to include it directly
in the first equation of (2).

As in the DLM/FD method, the interior of the particle is filled
with the fluid and a pseudo body-force is introduced over the par-
ticle inner domain to enforce the fictitious fluid to satisfy the
rigid-body motion constraint, namely, the following equations
are introduced for the interior of the particle:

qf
du
dt
¼ r � rþ k in P; ð4aÞ
r � u ¼ 0 in P: ð4bÞ

Manipulating (2a) –
R

P (4a) dx, (2b) –
R

P r � (4a) dx, FH and r terms
are eliminated to get the following the equations.

1� 1
qr

� �
m

dU
dt
� g

� �
¼ �

Z
P

kdx in P; ð5aÞ
1� 1
qr

� �
ðdJ �xÞ

dt
¼ �

Z
P

r� kdx in P: ð5bÞ

Then the governing equations are non-dimensionalized by
introducing the following scales: Lc for length, Uc for velocity,
Lc=Uc for time, qf U2

c for pressure p and qf U2
c=Lc for the pseudo

body-force. For convenience, we write the dimensionless quanti-
ties in the same form as their dimensional counterparts, unless
otherwise specified. The dimensionless equations for the incom-
pressible fluid can be written as follows:

@u
@t
þ u � ru ¼ r � s

Re
�rpþ k in X; ð6aÞ
r � u ¼ 0 in X; ð6bÞ
u ¼ Uþx� r in P; ð6cÞ
qr � 1ð ÞV�p
dU
dt
� Fr

g
g

� �
¼ �

Z
P

kdx for P; ð6dÞ
qr � 1ð Þ ðdJ� �xÞ
dt

¼
Z

P
r� kdx for P: ð6eÞ

In the above equations, Re represents the Reynolds number defined
by Re ¼ qf UcLc=l; Fr the Froude number defined by Fr ¼ gLc

U2
c
, V�p the

dimensionless particle volume define by V�p ¼ m
qsLd

c
and J� the dimen-

sionless moment of inertia tensor defined by J� ¼ J
qsLdþ2

c
, where qs is

the particle density and d is the dimensionality of the problem
involved. Note that the pseudo body-force k in (6) is defined only
in the solid domain P.
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2.2. Numerical implementation

A finite-volume method using a staggered grid for incompress-
ible flow is implemented. The SIMPLE algorithm is used to solve
the fluid equations with modifications to account for the presence
of particles. The implicit Euler scheme is used for time
discretization.

The discretised momentum equations for 2-D flows in the x and
y directions

ai;Ju�i;J ¼
X

anbu�nb �
p�I;J � p�I�1;J

dx
DVu þ bi;J þ k�xi;J ; ð7Þ

aI;jv�I;j ¼
X

anbv�nb �
p�I;J � p�I�1;J

dy
DVv þ bI;j þ k�yI;j: ð8Þ

The pressure correction equation is

aI;Jp0I;J ¼ aI�1;Jp0I�1;J þ aIþ1;Jp0Iþ1;J þ aI;J�1p0I;J�1 þ aI;Jþ1p0I;Jþ1 þ b0I;J : ð9Þ

After solving Eqs. (7)–(9), correct the pressure and velocity as
traditional SIMPLE do

pI;J ¼ p�I;J þ p0I;J ; ð10Þ

ui;J ¼ u�i;J þ di;Jðp0I�1;J � p0I;JÞ; ð11Þ

v I;j ¼ v�I;j þ dI;jðp0I;J�1 � p0I;JÞ; ð12Þ

then, calculate Unþ1, xnþ1 according to the (13) and (14),

qrV
�
p

Unþ1

Dt
¼ ðqr � 1ÞV�p

Un

Dt
þ Fr

g
g

� �
þ
Z

P

u
Dt
� k�

� �
dx; ð13Þ

qr
ðJ� �xnþ1Þ

Dt
¼ðqr�1Þ J� �xn

Dt
�xn�ðJ� �xnÞ

� �
þ
Z

P
r� u

Dt
�k�

� �
dx;

ð14Þ

and update the body force:

k ¼ k� þ Unþ1 þxnþ1 � r� IðuÞ
Dt

; ð15Þ

where I is interpolation operator that transfers fluid velocity from
Eulerian nodes to Lagragian nodes.

Transfer the force correction ðk� k�Þ to Eulerian nodes to
update fluid velocity

unþ1� ¼ uþ DtDðk� k�Þ; ð16Þ

where the D is the distribution operator that transfers particle
velocity from Lagragian nodes to Eulerian nodes.

Then set k� ¼ k; u ¼ unþ1�; p� ¼ p, loop Eqs. (7)–(15), until the
equations are convergence. After convergence, we go to the next
time level and update the position of particles

rnþ1 ¼ rn þ DtðUnþ1 þxnþ1 � rnþ1 þ Un þxn � rnÞ=2: ð17Þ

When the position of particles is changed, the collision should be
checked. If collision happens, DEM is used to update the position.

Because k is defined at the Lagrangian nodes instead of (13),
(14) and (16), which will be discussed later, it needs to be trans-
ferred to Eulerian nodes. Also u need to be interpolated to
Lagrangian nodes for imposing rigid body motion. Different nodes
are shown in Fig. 1.

Therefore, we use the discrete d-function to transfer a quantity
between the Eulerian and lagrangian frames explicitly as in the
immersed boundary method. This can improve the computational
efficiency than the Uzawa iteration [11,12]. In the present study,
we adopt the linear function (bi-linear for 2D) as a discrete
approximation to the d-function. For the case of 3D, the discrete
d-function is defined by
dhðrÞ ¼ dhðrxÞ � dhðryÞ � dhðrzÞ;

where rx; ry and rz denote the components of r, and dhðrÞ is define
by

dhðrÞ ¼
1 � r

h

��� ��� for rj j < h;

0 otherwise;

8<
:

in which h is the mesh size of the homogeneous Eulerian grid. Using
the discrete d-function, a discrete quantity f is transferred between
the Eulerian (xi) and Lagrangian (Xl) frames as follows:

I ¼ f E!L : f LðXlÞ ¼
X

i

f EðxiÞdhðxi � XlÞ;

D ¼ f L!E : f EðxiÞ ¼
X

l

f LðXlÞdhðxi � XlÞDV�l ;

where f EðxiÞ and f LðXlÞ represent the values of f at the Eulerian
nodes xi and at the Lagrangian nodes Xl, respectively, DV�l is the
ratio of length size of the control volume for Lagrangian node to that
for Eulerian node.

When the collision happens, the DEM is used in place of (13)
and (14). It means that a new force FDEM is added to the particles:

FDEMðtÞ þmg� bU ¼ m dU
dt ;

MðtÞ � bx ¼ J dx
dt ;

8<
: ð18Þ

where MðtÞ ¼ FDEMðtÞ � r is the torque, and b is damping coefficient
for b ¼ 0 means that there is no damping. In this paper, we adopt
Hertz–Mindlin (no slip) model to deal with the force:

FDEM ¼ kaþ c _a;

where k is the linear spring stiffness, c is the dashpot coefficient, a is
the overlap, and _a is the overlap velocity. Because the DEM just
works for short time, we use the mixed forward Euler-trapezoidal
rule method to solve Eq. (18), just as follows

UðtÞ ¼ Uðt � DtiÞ
m=Dti � b=2
m=Dti þ b=2

þ FDEM þmg
m=Dti þ b=2

;

xðtÞ ¼ xðt � DtiÞ
J=Dti � b=2
J=Dti þ b=2

þ MðtÞ
J=Dti þ b=2

;



Fig. 2. The contact model of DEM (left) two particle particles collide; (right) the particle collides with the wall.
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where Dti ¼ Dt=Ni is the DEMs time step according to particles
material. The contact model of DEM is showed in Fig. 2.
3. Numerical experiments

3.1. Sedimentation of a circular particle in channel

Throughout the present study, the results are computed and
presented in the dimensionless form, thus we need to define the
characteristic velocity and length for each case. For low Reynolds
numbers, there exists an analytical expression for the drag force
on a circular particle settling in a channel at the velocity U:
Fd ¼ 4pKlU; ð19Þ

where K is a constant related to the effect of the channel width on
the drag force and can be expressed in terms of the ratio of the
channel width to the particle diameter W⁄ (i.e., W/D) [8]:

K ¼ 1

lnW� �0:9157þ1:7244=ðW�Þ2�1:7302=ðW�Þ4þ2:4056=ðW�Þ6�4:5913=ðW�Þ8
:

ð20Þ

By taking the characteristic velocity as Uc

Uc ¼
D2

16Kl
ðqs � qf Þg; ð21Þ
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the dimensionless terminal settling velocity is expected to be unity.
The characteristic length is the particle diameter. We take the
Reynolds number Re and the density ratio qr as the independent
Time
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Fig. 6. Histories of the x-coordinate (left) and y-coordinate (r
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Fig. 7. Histories of the x-component (left) and y-component (right
dimensionless control parameters, and then the Froude number Fr
is not independent, but can be expressed in terms of Re and qr as
follows:

Fr ¼ 16K
ðqr � 1ÞRe

: ð22Þ

We will consider the sedimentation of a circular particle in a
vertical channel at Re = 0.1. The characteristic velocity is defined
by (21) for Re = 0.1 and is expected to be unity. For the circular par-
ticle, we distribute the collocation points on the concentric rings as
show in Fig. 1: one point at the particle center, and 6i points on the
ith ring for i ¼ 1; . . . ;Na, where Na is the number of the rings. Each
Lagrangian point’s distance is hL. In order to avoid the possibility
that there are two collocation nodes in a Cartesian cell,
hL P 1:45h is good choice. For h ¼ D=16 (D is circular particle’s
diameter), Na ¼ 6 is good choice. The particle is released at the cen-
ter of the channel. Fig. 3 shows the time development of the set-
tling velocity at different Dt for Re ¼ 0:1; W=D ¼ 4; qr ¼ 1:2, and
Eulerian mesh size h ¼ D=16. From Fig. 3 (left), we can see that
the results. The results exhibit a satisfactory time-step indepen-
dence. Using Dt ¼ 0:0005, the simulation of the acceleration pro-
cess from zero velocity to the steady-state velocity (almost to the
unity) only requires less than 200 time steps. The characteristic
velocity is well within the range of results that theoretical analysis
gets (21). At the same time, the total iterations developments of
SIMPLE are show in Fig. 3 (right). These show that the total number
of iteration changes linearly with the time. This is because of the
flow field changes little for the small Re ¼ 0:1. This experiment
shows our code is right.
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We also performed numerical test by varying hL for Re = 0.1.
Fig. 4 shows the time development of the settling velocity and
SIMPLE methods total iterations for different numbers of rings of
Lagrangian nodes: Na ¼ 12;13;14. We can see that for different
Na, results are almost the same. The steady-state velocity of parti-
cle is almost unity. The total iterations’ development of SIMPLE is
not change. From this, it is known that when hL changes in the
vicinity of 1:45h, the code’s cost time is almost the same.

For larger Re, we compute the same Example 8.3.3 in Ref. [12].
We set initial computational domain is X ¼ ð0;2Þ � ð0;6Þ and the
fluid velocity is 0. The boundary of X is wall. The fall of the disk
in the viscous fluid has been simulated for d ¼ 0:25; qr ¼

qsolid
qfluid
¼

1:25 and l ¼ 0:1. We set Re ¼ qf ULc=l � 30. Assuming that at
t ¼ 0 the center G of disk is located at ð1;4Þ. The Eulerian mesh size
hE ¼ 1=64 and the Lagrangian size is hL ¼ D=14. The time step
Dt ¼ 0:005. The DEM parameters used in the collision model are
b ¼ 0; k ¼ 150 and c ¼ 0. Fig. 5 shows the flow and the particle
position at t ¼ 0:4. Other results and comparisons with Example
8.3.3 of Ref. [12] are shown in Figs. 6–8.

Fig. 7 (right) shows that the cylinder quickly reaches a uniform
falling velocity until it hits the bottom of the cavity. A careful
examination of Fig. 6 shows that a symmetry breaking of small
amplitude is taking place with the disk moving slightly on the
right, away from the vertical symmetry axis of the cavity. Fig. 8
shows that the rotational component of the kinetic energy is small
compared with the translational component. The differences
between present and those in Ref. [12] are small. From Fig. 7 (left),
we can see that x-component of translation velocity of the disk is
smaller than in Ref. [12]. Therefore the disk of present calculation
is less deviated to the right shown in Fig. 6 (left). This shows that
our method is more closer to the reality. In Fig. 7 (right), we can
see that y-component of translation velocity of the disk changed
more slowly than Ref. [12] at the beginning. However, steady state
falling velocity is the almost the same. In Ref. [12], artificial repul-
sive force was used to make the particle do not reach the wall. Our
collision use the DEM that allows the particle to contact with the
wall and bounce back elastically. Therefore, the y-component of
translation velocity of our method is more slowly approaching to
zero.

The translational kinetic energy of the disk in our method is
smaller than that in Ref. [12] at first and approaches to zero more
slowly. This is consistent with the velocity of the particle in Fig. 7.
From Figs. 7 and 8 (right), when the particle contacts with the wall
at t ¼ 0:75, the velocity and rotational kinetic energies of disk in
Ref. [12] have a big change because of the artificial force added
to particle. However, our method is more smooth and more in
agreement with practice.
3.2. Sedimentation of several circular particles in channel

We now consider the sedimentation of 18 circular particles in a
vertical channel. We set the same computational parameters as the
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Fig. 10. Sedimentation of 18 disks in a closed box (Up) vertical velocity contours and (Down) streamlines contours at t ¼ 0:4; t ¼ 0:58; t ¼ 1; t ¼ 1:8 from left to right.

Fig. 11. Histories of the x-component (left) and y-component (right) of translation velocity of the 18 particles.
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second example in this paper. Assuming that at t ¼ 0, the 18 parti-
cles are located at Gijð0Þ ¼ ðxi; yjÞ; xi ¼ 0:5þ 2ðj� 1Þ; yj ¼
6� 2ði� 1Þ; i ¼ 1; . . . ;6; j ¼ 1;2;3. Figs. 9 and 10 present the par-
ticles patterns together with vertical velocity and streamlines
contours.

We see that the flow regime is clearly regular at the beginning
time. However, particles have collisions after some time and some
particles temporarily move up. The DEM solver handles collisions
between particle–particle and particle–wall without any trouble.
Simulation ends as all particles have settled to the bottom of the box.

For the more detail, we can see the histories of the x-component
(left) and y-component (right) of translation velocity of the disks
from Figs. 11–13. When t 2 ð0;0:1Þ, the particles move just like
one particle. But as time goes on the upper particle will sick the
lower particles until the collision happens. When t 2 ð0:1;0:3Þ,
the collision did not happen. The middle-column 6 particles almost
remain in the center. However, some of left-column 6 particles will
move left and some of right 6 particles move right. When
t 2 ð0:3;0:5Þ, some particles have collisions with other particles,
but the collision of particles-wall does not happen. When
t 2 ð0:5;1Þ, the particle–particle collision and particle–wall colli-
sion happen. This makes the particle settle to the bottom of the
box. When t P 1, the particles will pack together and the velocity
trends to zero. From Fig. 13, we can see that the number of SIMPLE
methods total iterations increase linearly with the time. However,
when the collision happens for t 2 ð0:3;1Þ, the number of iterations



Fig. 12. Histories of the x-coordinate (left) and y-coordinate (right) of the center of the 18 particles.

Fig. 13. Histories of the trajectory (left) of the center of the 18 particles, (right) number of SIMPLE methods total iterations.
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will also non-linear increase. The more frequent the collision, the
more the number of iterations.

4. Conclusion

A hybrid FD-DEM solver is developed for rigid particulate flow
with collision. A collision strategy based on DEM is introduced for
multi-particle system. In this method, the contact force in particle–
particle and particle–wall is calculated and the method can be gener-
alized for collisions including friction. Several benchmark examples
are given to show the effectiveness of the present method.
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