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a b s t r a c t

In this paper, the application of an HLLC-type approximate Riemann solver in conjunction with the third-
order TVD Runge–Kutta method to the seven-equation compressible two-phase model on multiple
Graphics Processing Units (GPUs) is presented. Based on the idea proposed by Abgrall et al. that ‘‘a
multiphase flow, uniform in pressure and velocity at t ¼ 0, will remain uniform on the same variables
during time evolution’’, discretization schemes for the non-conservative terms and for the volume frac-
tion evolution equation are derived in accordance with the HLLC solver used for the conservative terms.
To attain high temporal accuracy, the third-order TVD Runge–Kutta method is implemented in conjunc-
tion with operator splitting technique, in which the sequence of operators is recorded in order to com-
pute free surface problems robustly. For large scale simulations, the numerical method is implemented
using MPI/Pthread-CUDA parallelization paradigm for multiple GPUs. Domain decomposition method
is used to distribute data to different GPUs, parallel computation inside a GPU is accomplished using
CUDA, and communication between GPUs is performed via MPI or Pthread. Efficient data structure and
GPU memory usage are employed to maintain high memory bandwidth of the device, while a special
procedure is designed to synchronize thread blocks so as to reduce frequencies of kernel launching.
Numerical tests against several one- and two-dimensional compressible two-phase flow problems with
high density and high pressure ratios demonstrate that the present method is accurate and robust. The tim-
ing tests show that the overall speedup of one NVIDIA Tesla C2075 GPU is 31� compared with one Intel
Xeon Westmere 5675 CPU core, and nearly 70% parallel efficiency can be obtained when using 8 GPUs.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Compressible two-phase flows exist broadly in nature and
industry (like bubbles in ocean, cavitations in hydraulic machinery,
flows in chemical reactors and cooling circuits of power plants).
Numerical simulations of compressible two-phase flows are
important research topics. As this type of flows are complex and
diverse, a variety of two-phase models with various levels of com-
plexity were proposed in literature, like the complete seven-equa-
tion model [1–3], the reduced six-equation model [4], and the
more reduced five-equation model [5], to mention just a few. Most
two-phase models are derived from integrating individual balance
equations weighted by a characteristic function for each phase.
This volume average procedure removes the interfacial
detail while introducing additional non-conservative terms for
describing interactions between phases. The resultant two-phase

models pose challenge to numerical solutions mainly due to the
complicated characteristics of the equation system and the trou-
blesome non-conservative terms.

In this paper, we are interested in numerical solution of the
compressible seven-equation two-phase model [2,3]. In this model,
each phase is assumed to have its own velocity, pressure and den-
sity, which satisfy respective balance equations. The evolution
equation of volume fraction is introduced from integrating the
characteristic function to describe how fluid compositions change
with time. Due to non-equilibrium of velocity and pressure, drag
forces appear between phases causing momentum and energy
exchange. In the case of one space dimension, the model has seven
equations (two sets of mass, momentum, and energy equations,
one volume fraction evolution equation). The advantage of this
model is that it is unconditionally hyperbolic, and can treat a wide
range of applications including non-equilibrium dispersive multi-
phase flows as well as free-surface multi-fluid flows [3]. For the
latter case, the velocity and pressure of all phases on each side of
the interface must be in equilibrium from a physical point of view
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[2,3,6], which can be realized by infinite pressure and velocity
relaxation process in the model. As the volume fraction only stands
for the constitutive fluid distribution, the material surface is indi-
rectly represented by location where large gradient occurs. The
bulk interface is tracked without considering the details even when
the distortion is complicated (cavitation, breakdown and coales-
cence of bubbles, etc.). Of course, the computational cost is larger
than a free-surface oriented method, e.g., it is about three times
as that of the ghost fluid method according to our experience.

Although the seven-equation model is unconditional hyper-
bolic, the numerical solution has particular difficulties because it
is hard to solve the associated Riemann problem with a large sys-
tem of equations, and careless approximations to the non-conser-
vative terms in the momentum and energy equations and the non-
conservative evolution equation (the volume fraction equation)
will often lead to failure in computation. Therefore, the key in
numerical solution is to construct an accurate and efficient approx-
imate Riemann solver and at the same time derive corresponding
discretization schemes for the non-conservative terms and the
non-conservative volume fraction equation.

Many studies have devoted to numerical solution of compress-
ible two-phase models in various variants. Saurel et al. [2,3] used
operator splitting approach to treat the hyperbolic part and the
relaxation terms of their seven-equation model, but the adopted
HLL approximate Riemann solver led to excessive numerical diffu-
sion of contact discontinuities due to the use of only two waves in
lieu of full waves. Li et al. [7] developed a simple HLLC scheme for
the seven-equation model, but they only considered the subsonic
case, and used Roe average for the unknown intermediate state
of the volume fraction. Zein et al. [8] also presented a simple
HLLC-type scheme for the seven-equation model that took into
account the heat and mass transfer through relaxation effects.
Combining the thin layer theory with special choice for interfacial
variables in liquid–solid problems, Tokareva and Toro [9] proposed
a HLLC-type approximate Riemann solver which took into account
full waves for the Baer-Nunzatio model. Tian et al. [10] imple-
mented the path-conservative method and a simple HLLC solver
for the reduced five-equation model. Yeom and Chang [4] pre-
sented a modified HLLC-type scheme for a six-equation model
which restores the characteristic fields that have been neglected
in the Zein’s simple HLLC-type scheme [8]. A more thorough effort
to construct approximate Riemann solver for the Saurel-Abgrall
model was made recently by Ambroso et al. [11]. Their definition
of Riemann problem included not only convective terms and
non-conservative terms, but also source terms associated with
gravity and drag forces (the drag force source is often separately
treated as velocity relaxation process), while pressure relaxation
process was split from them alone. In all the work mentioned
above, the multiphase flow equations were approximated by
numerical methods, but a strategy proceeded in the opposite
way was proposed by Abgrall [12], which dealt with mixtures
and interfaces under a unique formulation. They started from the
pure phase Euler equations at the microscopic level, and gave cor-
responding numerical approximations via the Godunov scheme
and the HLLC flux. After randomization, ensemble average proce-
dures and estimation of the various coefficients of these approxi-
mations, numerical scheme for the averaged multiphase flow
equations was derived.

In this study, the first objective is to develop a robust high res-
olution numerical method for the Saurel-Abgrall’s seven-equation
compressible two-phase model, which has the simple form of a
conventional HLLC scheme and the high temporal accuracy of the
third-order TVD Rung-Kutta method. We advance the solution
with the third-order TVD Runge–Kutta method, inserting the split-
ting strategy [3] for the hyperbolic operator and the relaxation
operators into every sub-step of the Runge–Kutta method. We

reorder the sequence of the split operators so that the resulting
Runge–Kutta method can work robustly for extreme compressible
gas–liquid two-fluid flow problems with high density and high
pressure ratios. To obtain a simple scheme, we apply the conven-
tional HLLC flux to the conservative part of the two-phase model
in a way similar to Li [7] and Zein [8], and then utilize the homo-
geneity idea for a multi-phase system [6] to derive discrete formu-
las for the non-conservative terms and the non-conservative
evolution equation corresponding to the HLLC flux used. Our deri-
vation takes into account both subsonic and supersonic cases of the
HLLC scheme rather than only subsonic case as did in Ref. [7].

The second objective of this study is to efficiently reduce the
simulation time posed by numerical solution of the seven-equation
two-phase model. To this end, we implement our numerical
method using CUDA-GPU parallel computing technology. CUDA
(Compute Unified Device Architecture) [13] is a programming
model for realizing general purpose GPU (Graphics Processing
Unit) computing. Recently there is a surge in hybrid CPU/GPU com-
putations using rapidly evolving GPU architectures and CUDA pro-
gramming paradigm [14]. In single GPU computing, Ref. [15]
accelerated a solver for the Euler equations, and observed 29�
and 16� speedups for 2D and 3D problems respectively. Ref. [16]
pioneered GPU acceleration of problems on non-uniform and irreg-
ular grids for the 3D compressible Euler equations, and obtained
15� to 40� speedups using NVIDIA 8800GTX GPU compared with
a single Intel Core 2 Duo E6600(2.4 GHz) CPU. When conducting
GPU computing on multiple GPUs, three parallel modes are avail-
able: single-thread multi-stream mode (CUDA 4.0 and above), in
which every involved device is bounded to a CUDA stream;
multi-thread multi-GPU mode (Pthread- or OpenMP-CUDA), in
which more than one threads are invoked and each thread controls
one GPU; multi-process multi-GPU mode (MPI-CUDA). The former
two modes are applicable only to a shared memory machine with
several GPUs, while the third one is also applicable to a cluster
with many GPUs. Ref. [17] implemented 3D incompressible
Navier–Stokes equations in CUDA with the help of Pthread. Using
four Tesla C870 GPUs, the computation time was reduced to
1=100 of single AMD Opteron 2.4 GHz CPU, and 1=3 of a single
GPU. Ref. [18] obtained linear speedup for fewer than four GPUs
when solving a 3D equation using a high order finite difference
method. Ref. [19] optimized a finite difference code for direct
numerical simulations of turbulence on a GPU accelerated cluster,
and obtained a speedup of 20� for 192 M2070 Fermi GPUs vs. 192
Xeon Westmere 2.93 GHz CPU cores. In their implementation, all
computations were packed in kernel functions for running in the
devices (GPUs), and the communication between devices was done
through MPI. The boundary cells of each subdomain were dealt
with first, and data copy as well as message passing process were
synchronized with inner cell computation, through which the
time latency due to data copy and message passing was hidden
efficiently.

In our implementation, we use both hybrid MPI-CUDA and
Pthread-CUDA parallelization on a shared memory AMAX machine
with 2� Intel Xeon Westmere 5675 3.06 GHz six-core CPUs, con-
nected via PCIE2 slot to 8� NVIDIA Tesla C2075 Fermi GPUs. Each
computational grid point is mapped to a GPU thread, and appropri-
ate data structure is adopted to exploit the high memory band-
width of GPU. We design a special procedure including atom
operator to synchronize thread blocks. This make reduction opera-
tions like min or max execute completely inside GPU without exit-
ing a kernel, thus eliminating numerous kernel-launching
overheads. Besides, we use domain decomposition method for
multi-GPU computing. The computation of every subdomain is
assigned to a device, while the communication between devices
is performed through MPI or Pthread. Both modes are compared
in numerical tests.
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The paper is organized as follows. We begin with a brief discus-
sion of PDEs of the seven-equation model and their physical expla-
nation in Section 2. Then, in Section 3, we give the HLLC numerical
flux in 1D case, and derive corresponding discrete schemes for the
non-conservative terms and the volume fraction evolution equa-
tion so as to construct a Godunov-type scheme for the hyperbolic
part. And then we describe the combination of the third-order
TVD Runge–Kutta method with the operator splitting in a way to
realize robust computation of free-surface flows. The implementa-
tion details of the above numerical method on single and multiple
GPUs are introduced in Section 4. Numerical tests involving multi-
phase mixtures and two pure fluids are conducted in Section 5, in
which we compare our method with the Real Ghost Fluid Method
(RGFM) [20] and the HLL scheme [2,3] for the same seven-equation
model, and several large scale problems are simulated using up to
8 GPUs. The last section is a conclusion.

2. Seven-equation model

For the sake of simplicity, we only consider 1D case and exten-
sion of the algorithm to 2D Cartesian grids is traditional (e.g., [3])
which is not discussed in this paper. Suppose that two kinds of
fluid exist in the system, and there is neither mass transfer nor heat
exchange between them. The compressible seven-equation two-
phase model [2] can be written in the following form:

@U
@t
þ @FðUÞ

@x
¼ HðUÞ @a1

@x
þ SvðUÞ þ SpðUÞ; ð1Þ

where

U ¼

a1

a1q1

a1q1u1

a1q1E1

a2q2

a2q2u2

a2q2E2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; FðUÞ ¼

0
a1q1u1

a1q1u2
1 þ a1p1

a1u1ðq1E1 þ p1Þ
a2q2u2

a2q2u2
2 þ a2p2

a2u2ðq2E2 þ p2Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; HðUÞ ¼

�uI

0
pI

uIpI

0
�pI

�uIpI

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

SvðUÞ ¼

0
0

kðu2 � u1Þ
kuIðu2 � u1Þ

0
�kðu2 � u1Þ
�kuIðu2 � u1Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; SpðUÞ ¼

�lðp2 � p1Þ
0
0

lpIðp2 � p1Þ
0
0

�lpIðp2 � p1Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

Here q; u;p and E ¼ eþ 1
2 u2 represent the density, velocity, pressure

and total specific energy respectively, and subscripts k ¼ 1 or 2 is
related to phase k. ak is the volume fraction ranged from 0 to 1,
and satisfies the saturation constraint a1 þ a2 ¼ 1. When ak ¼ 0
there is no k-th fluid. Actually, to avoid infinite density and velocity
computed by mass and energy conservation equations, ak is set a
small value like 10�7 in lieu of ak ¼ 0 at the initial time. l and k
are the pressure and velocity relaxation coefficients, and pI and uI

are the interfacial pressure and the interfacial velocity respectively.
Various choices are possible, for example, in the gas–liquid (or
solid) problem, pI ¼ pgas and uI ¼ uliquid. Here we follow Ref. [3]:

pI ¼
X

akpk; uI ¼
X
ðakqkukÞ=

X
akqk: ð2Þ

3. Numerical method

Based on the operator splitting method [3], Eq. (1) can be
decomposed into three parts: the ODE system of pressure relaxa-

tion Ut ¼ SpðUÞ, that of velocity relaxation Ut ¼ Sv ðUÞ, and the
non-conservative hyperbolic equations Ut þ FðUÞx ¼ HðUÞa1x. The
solution of Eq. (1) at nþ 1 time step was obtained by the succes-
sion of operators:

Unþ1 ¼ LDt
p LDt

v LDt
H ðU

nÞ; ð3Þ

where Lp and Lv denote the pressure and velocity relaxation opera-
tors respectively [2,3,6], and LH denotes the non-conservative
hyperbolic operator. Scheme (3) is only first order accurate in time
and higher accuracy can be obtained by adopting either Strange
splitting or Runge–Kutta methods. In this paper, the third-order
TVD Runge–Kutta method is used, and the implementation detail
will be described in Section 3.2. The relaxation operators can be
solved by the instantaneous relaxation procedures [3] as we assume
the parameters l and k to be infinite in this study. In the following
we will focus on the numerical scheme for the non-conservative
hyperbolic operator.

3.1. Hyperbolic operator

As done in earlier studies [2,3,7,8], the building of a numerical
scheme for multi-phase model is based on the idea proposed in
[6] that‘‘a two phase system, uniform in velocity and pressure at
t ¼ 0 will remain uniform on the same variables during time evo-
lution’’. Nevertheless, there are some freedom in choosing approx-
imate Riemann solvers.

As seen from Eq. (1), the second through seventh component
equations describe mass, momentum and energy conservation of
two fluids, respectively. These two sets of balance equations have
identical forms except a different sign in the non-conservative
terms. For clarity, we only show fluid 1 in Eq. (5) and subsequent
HLLC-type scheme. The hyperbolic equations under consideration
read (we further suppress subscript 1)

@a
@t
þ uI

@a
@x
¼ 0; ð4Þ

@q
@t
þ @fðq;aÞ

@x
¼ hðq;aÞ @a

@x
; ð5Þ

with q ¼ ðaq;aqu;aqEÞT ; fðq;aÞ ¼ ðaqu;aqu2 þ ap;auðqEþ pÞÞT ;
hðq;aÞ ¼ ð0;pI;pIuIÞT .

As shown by Saurel et al. [2,3], the discretization scheme for the
volume fraction evolution Eq. (4) can be derived from the energy
equation discretized with the adopted approximate Riemann sol-
ver for Eq. (5). We will return to this in Section 3.1.1. For Eq. (5)
with both conservative and non-conservative terms, a Godunov-
type finite volume method reads

qnþ1
j ¼ qn

j �
Dt
Dx

fn
jþ1=2 � fn

j�1=2

� �
þ Dthðqn

j ÞH; ð6Þ

where fn
j�1=2 is a numerical flux, and H represents the discrete

form of the non-conservative term @a=@x, which we derive in
Section 3.1.1.

3.1.1. HLLC-type approximate Riemann solver
Traditionally, Riemann solvers are constructed according to a

set of jump conditions derived by characteristic decomposition
technique. This procedure for Eq. (5) would be very complicated
due to its non-conservative nature [9,11]. In a simplified sense,
we directly adopt the conventional HLLC numerical flux [21,22]
for f in Eq. (6) as Refs. [7,8] did:

fHLLC
jþ1

2
¼

fL; if 0 6 sL

fL þ sLðq�L � qLÞ; if sL 6 0 6 s�
fR þ sRðq�R � qRÞ; if s� 6 0 6 sR

fR; if sR 6 0

8>>><
>>>: : ð7Þ
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Replacing the conservative variables and pressure in the conven-
tional HLLC scheme with q and ap respectively, we get the conser-
vative variables near the contact discontinuity, q�L and q�R:

q�K ¼ aKqK
sK � uK

sK � s�
�

1
s�

EK þ ðs� � uKÞ s� þ pK
qK ðsK�uK Þ

h i
8>><
>>: ; K ¼ L;R:

ð8Þ

The wave speeds sL; sR and s� are common to both fluids (this means
that a three-wave approximate Riemann solver is used for the
seven-equation model) and are estimated as

sL ¼minfu1L � c1L;u2L � c2L;u1R � c1R; u2R � c2Rg;
sR ¼maxfu1L þ c1L;u2L þ c2L;u1R þ c1R;u2R þ c2Rg;

s� ¼
�pR � �pL þ �qL�uLðsL � �uLÞ � �qR�uRðsR � �uRÞ

�qLðsL � �uLÞ � �qRðsR � �uRÞ
;

where �qK ; �pK and �uK denote the mixture values for density, pressure,
and velocity on the left (K ¼ L) and right (K ¼ R) sides of a cell inter-
face jþ 1

2:

�qK ¼ a1K q1K
þ a2K q2K

�pK ¼ a1K p1K
þ a2K p2K

K ¼ L;R:
�uK ¼ ða1K q1K

u1K þ a2K q2K
u2K Þ=�qK

8><
>: ð9Þ

Now, the discrete form for H in Eq. (6) and the numerical
scheme for the fraction evolution Eq. (4) will be deduced. Firstly,

make a denotation fHLLC
jþ1=2 ¼ Fð1Þjþ1=2; F

ð2Þ
jþ1=2; F

ð3Þ
jþ1=2

� �T
. Then the discrete

mass and momentum conservation equations in Eq. (6) are

ðaqÞnþ1
j ¼ ðaqÞnj �

Dt
Dx

Fð1Þjþ1=2 � Fð1Þj�1=2

� �
; ð10aÞ

ðaquÞnþ1
j ¼ ðaquÞnj �

Dt
Dx

Fð2Þjþ1=2 � Fð2Þj�1=2

� �
þ DtðpIÞjH: ð10bÞ

According to Ref. [6], if the two-phase system is uniform on velocity
and pressure at t ¼ tn, i.e. ðuIÞnj ¼ un

j�1=2 ¼ un
j ¼ u and

ðpIÞ
n
j ¼ pn

j�1=2 ¼ pn
j ¼ p, then it must remain uniform on the same

variables during time evolution such that unþ1
j ¼ un

j ¼ u and
pnþ1

j ¼ pn
j ¼ p. Substitute these relations into Eqs. (10a) and (10b)

and do (10b)�u�(10a), we get the discrete form of the non-conser-
vative terms @a=@x:

H ¼
/jþ1=2 � /j�1=2

Dx
; ð11Þ

where

/jþ1=2,
Fð2Þjþ1=2�uFð1Þjþ1=2

ðpIÞj
¼

aL; if 06 sL;

aL
pL
ðpIÞj
þ sLaLqL

sL�uL
sL�s�

ðs��uLÞ
ðpIÞj

; if sL606 s�;

aR
pR
ðpIÞj
þ sRaRqR

sR�uR
sR�s�

ðs��uRÞ
ðpIÞj

; if s�606 sR;

aR; if sR60;

8>>>>><
>>>>>:

ð12Þ

in which the adopted HLLC flux has been inserted. Noting that
s� ¼ uL ¼ uR; pI ¼ pL ¼ pR as a result of the uniformity assumption,
Eq. (12) can be simplified to

/jþ1=2 ¼
aL; if s� P 0;
aR; if s� < 0:

�
ð13Þ

Now we return to the derivation of the numerical scheme for
the fraction evolution Eq. (4). The discrete energy conservation
equation is given first

ðaqEÞnþ1
j ¼ ðaqEÞnj �

Dt
Dx

Fð3Þjþ1=2 � Fð3Þj�1=2

� �
þ DtðpIuIÞjH: ð14Þ

By using the definition E ¼ eþ 1
2 u2 and the discrete mass and

momentum conservation Eqs. (10a) and (10b), we can get for the
internal energy

ðaqeÞnþ1
j ¼ ðaqeÞnj �

Dt
Dx

Fð3Þjþ1=2 � uFð2Þjþ1=2 þ
1
2

u2Fð1Þjþ1=2

� ��

� Fð3Þj�1=2 � uFð2Þj�1=2 þ
1
2

u2Fð1Þj�1=2

� ��
: ð15Þ

Again using the uniformity assumption and doing a bit more alge-
braic manipulation with the inserted HLLC flux in Eq. (15), it can
be simplified as

ðaqeÞnþ1
j ¼ ðaqeÞnj �

Dt
Dx

u ðaqeÞHLLC
jþ1=2 � ðaqeÞHLLC

j�1=2

h i
; ð16Þ

We now make use of the stiffened gas EOS: qe ¼ pþcB
c�1 . It follows that

ðqeÞnþ1
j ¼ ðqeÞnj under the condition of pressure uniformity. Extract-

ing qe out of Eq. (16) and noting that u ¼ u� ¼ uI as a result of the
uniformity assumption and aHLLC

jþ1=2 ¼ /jþ1=2 according to Eq. (13), a
simple upwind scheme for the volume fraction evolution Eq. (4)
can be obtained as

anþ1
j ¼ an

j �
Dt
Dx
ðuIÞnj /jþ1=2 � /j�1=2

� �
; ð17Þ

with
/jþ1=2 ¼ajþ1=2;L

/j�1=2 ¼aj�1=2;L

(
for ðuIÞnj P 0;

/jþ1=2 ¼ajþ1=2;R

/j�1=2 ¼aj�1=2;R

(
for ðuIÞnj < 0:

3.1.2. Second-order spatial reconstruction
In complete form, the non-conservative hyperbolic Eqs. 4,5 can

be rewritten as

@U
@t
þ AðUÞ @U

@x
¼ 0; ð18Þ

where U ¼ ða1;a1q1;a1u1;a1E1;a2q2;a2u2;a2E2ÞT , and the matrix

AðUÞ ¼

uI 0 0 0 0 0 0
0 0 1 0 0 0 0

�c1B1 � pI
c1�3

2 u2
1 ð3� c1Þu1 c1 � 1 0 0 0

�c1B1u1 � pIuI
c1�1

2 u3
1 � u1H1 H1 � ðc1 � 1Þu2

1 c1u1 0 0 0
0 0 0 0 0 1 0

c2B2 þ pI 0 0 0 c2�3
2 u2

2 ð3� c2Þu2 c2 � 1

c2B2u2 þ pIuI 0 0 0 c2�1
2 u3

2 � u2H2 H2 � ðc2 � 1Þu2
2 c2u2

2
6666666666664

3
7777777777775
;
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H ¼ Eþ p
q
¼ c2

c� 1
þ u2

2
; p ¼ ðc� 1Þqe� cB; c2 ¼ cðpþ BÞ

q
:

We adopt TVD-MUSCL reconstruction of Van Leer [23] with the
help of Eq. 18

Ujþ1=2;L ¼ Uj þ
1
2

Rj I � Dt
Dx

Kj

� �
dWj;

Uj�1=2;R ¼ Uj �
1
2

Rj I þ Dt
Dx

Kj

� �
dWj;

dWj ¼ minmod LjDj�1=2U; LjDjþ1=2U
	 


;

Djþ1=2U ¼ Ujþ1 � Uj;

ð19Þ

where I is identity matrix, Lj;Rj and Kj denote the left and right
eigenvector matrixes, and the diagonal matrix of eigenvalues of
matrix AðUjÞ. They are given in Appendix A.

3.2. Third-order TVD Runge–Kutta scheme

For Eq. (1), Godunov splitting scheme (3) can be regarded as the
operator Unþ1 ¼ Un þ DtLðUnÞ in the standard TVD Runge–Kutta
scheme. A naive implementation of the third-order TVD Runge–
Kutta method to Eq. (1) is like this:

Uð1Þ ¼ UnþDtLðUnÞ
Uð2Þ ¼ 3

4Unþ 1
4Uð1Þ þ 1

4DtLðUð1ÞÞ
Unþ1 ¼ 1

3Unþ 2
3Uð2Þ þ 2

3DtLðUð2ÞÞ

8>><
>>: !

Uð1Þ ¼ LDt
p LDt

v LDt
H Un

Uð2Þ ¼ 3
4Unþ 1

4LDt
p LDt

v LDt
H Uð1Þ

Unþ1 ¼ 1
3Unþ 2

3LDt
p LDt

v LDt
H Uð2Þ

8>><
>>: :

ð20Þ

However, the problem with Eq. (20) is that it does not guarantee the
pressure and velocity are in equilibrium at the end of each sub step.
To show this, we denote Uð1�Þ ¼ LDt

p LDt
v LDt

H Uð1Þ and substitute it into
the mass and momentum equations for Uð2Þ, then we get

uð2Þ1 ¼
ð3an

1qn
1Þun

1 þ að1�Þ1 qð1�Þ1

� �
uð1�Þ1

3an
1qn

1 þ að1�Þ1 qð1�Þ1

;

uð2Þ2 ¼
ð3an

2qn
2Þun

2 þ að1�Þ2 qð1�Þ2

� �
uð1�Þ2

3an
2qn

2 þ að1�Þ2 qð1�Þ2

:

It is easy to see that uð2Þ1 ¼ uð2Þ2 is not always true because the coef-
ficients may be different even though un

1 ¼ un
2 and uð1�Þ1 ¼ uð1�Þ2 are

satisfied. Similarly, pð2Þ1 ¼ pð2Þ2 is not always true either. That is to
say, pressure and velocity equilibrium between phases are not
always fulfilled for Uð2Þ and Unþ1. This will often lead to computation
breakdown according to our practise. To eliminate this problem, we
reorder the sequence of operators

Uð1Þ ¼ LDt
H LDt

p LDt
v Un; ð21Þ

Uð2Þ ¼ 3
4

Un þ 1
4

LDt
H LDt

p LDt
v Uð1Þ; ð22Þ

Uð3Þ ¼ 1
3

Un þ 2
3

LDt
H LDt

p LDt
v Uð2Þ; ð23Þ

Unþ1 ¼ LDt
p LDt

v Uð3Þ: ð24Þ

Fig. 1. CUDA programming model.

Fig. 2. Correspondence between CUDA threads and computational meshes for a
kernel function with gridDim = 4, blockDim = n.
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Eqs. (21)–(23) are the three sub-steps of the Runge–Kutta method,
and Eq. (24) is an additional step. In each sub-step, we first do
velocity and pressure relaxation to ensure equilibrium, then solve
the hyperbolic equations. After the third step, we do additional
relaxation. Actually, solution Unþ1 of Eq. (24) will not be modified
by relaxation operators in Eq. (21) in the next time step, so only
hyperbolic operator in Eq. (21) is executed (the only exception is
at t ¼ 0 when initial data are not in equilibrium). As a result, the
total computational count is not increased compared with the naive
implementation Eqs. (20).

4. Implementation on GPUs

In this section, we first provide a very brief description of the
elements of NVIDIA’s Compute Unified Device Architecture (CUDA)
programming model, then describe techniques used for implemen-
tation of the present numerical method for 2D problems on a single
GPU, and hybrid MPI/Pthread-CUDA parallelization paradigm for
application on multiple GPUs.

4.1. CUDA

Because of their intrinsic highly-parallel microprocessors and a
dedicated high-bandwidth memory device, GPUs are ideally suit-
able for computationally intensive data-parallel applications. A
detailed description of GPU hardware and CUDA programming
model can be found on the web (e.g., [14]). Fig. 1 illustrates the
main idea of CUDA. A CUDA program generally includes two
parts, serial and parallel codes. The serial codes that run on the
host (CPU) side are responsible for variables declaration, initiali-
zation, data transmission, and kernel invocation. The parallel
codes (called ‘‘kernel function’’) running on the device (GPU) side
are executed in parallel by massive threads (the minimal process-
ing unit) organized to match the GPU hardware feature and to
allow for mapping typical data structures (arrays, matrices). A
number of threads makes up a block, and many blocks make up
a grid, which is the counterpart of a kernel function. The block
may be organized into 1D, 2D or 3D arrays, while the grid may
be 1D or 2D arrays. Limited by the hardware and for ease of map-
ping typical data structures to threads, the number of threads in
one block and the number of blocks in one grid should be prop-
erly selected in the program.

4.2. Optimization for single GPU

The present numerical method (21)–(24) are explicit ones, and
in our application, 2D structured Cartesian meshes are used.
Therefore, the solution algorithm is well suited to GPU comput-
ing. On a single GPU, repeated operations of reconstruction,
hyperbolic solver, and pressure–velocity relaxation have to be
done for the whole computational mesh cells. These three opera-
tions are encapsulated into three kernel functions. In a kernel
function, the whole computational mesh cells are divided into
many pieces such that each piece fits into the maximum thread
number per thread block allowed by a GPU, and the computation
of each piece is assigned to a CUDA block. Each mesh cell is
mapped to one thread, and one thread may be in charge of sev-
eral mesh cells belonging to different parts when the total piece
number exceeds the maximum block number allowed by a CUDA
grid. This is illustrated in Fig. 2. A pseudo code demonstrating
how this assignment works is given in Algorithm 1. The optimiza-
tion techniques used inside this slice of code are introduced
below.

Algorithm 1. Pseudo code to demonstrate how an operation L is
implemented for the whole computational grid points with
Nx � Ny

1: // operation L can be one of LH; Lp and Lv
2: __global__ void kernel_OpLForWholeArea (var)
3: {
4: //get the mesh cell index in 1D array
5: int tid_in_grid = blockDim * blockId + threadId;
6:
7: //deal with one part of cells sized blockDim�gridDim
8: //at a time within a CUDA grid and then move to the

next part
9: for (int i = tid_in_grid; i < Nx � Ny;)

10: {
11: //operation L in single mesh cell
12: OpLForSingleCell (var, i);
13: //move to the corresponding cell in the next part
14: i += blockDim � gridDim;
15: }
16: }
17:
18: __device__ void OpLForSingleCell (var, i)
19: {
20: //load primitive variables from global memory
21: density = var [den_shift + i];
22: velocity = var [vel_shift + i];
23: pressure = var [pre_shift + i];
24: . . .

25: }

First of all, to obtain a good global memory throughput, the
primitive variables are loaded and stored in data organization
scheme of Structure of Array (SoA), which is different from that
of Array of Structure (AoS) generally adopted in CPU implementa-
tion. The latter one has the feature of object oriented and good
readability, but code of SoA is easier to be parallelized and enables
coalescence and alignment of global memory access of GPU. This is
a crucial issue to many applications since global memory access
optimization is of dominant importance in achieving satisfactory
performance in GPU. For a computational grid of Nx � Ny, primitive
variables (say, ag ;qg ; ug ; pg ;ql;ul; pl;uI; pI , where index g and l stand
for different phases and I for interface) are stored in a global
array var

var ¼ ag1;ag2; . . . ;agNx�Ny|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nx�Ny

;qg1;qg2; . . . ;qgNx�Ny|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nx�Ny

;

ug1;ug2; . . . ;ugNx�Ny|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nx�Ny

;pg1;pg2; . . . ;pgNx�Ny|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nx�Ny

;

ql1;ql2; . . . ;qNx�Ny|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Nx�Ny

;ul1;ul2; . . . ;uNx�Ny|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nx�Ny

;

pl1;pl2; . . . ;pNx�Ny|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Nx�Ny

;uI1;uI2; . . . ;uINx�Ny|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nx�Ny

;

pI1; pI2; . . . ;pINx�Ny|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nx�Ny

: ð25Þ

The second important optimization we made is about the all
reduction operation. We design a procedure for the all reduce oper-
ation (like min;max) to be completed within a kernel function, thus
CPU operation is not needed. It resolves the problem of synchroni-
zation between different blocks in a CUDA grid, making it possible
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to encapsulate as many as possible calculations within one kernel
function, which accelerates the code. The pseudo code in Algorithm
2 describes how to find the maximum value in a list of numbers.
Firstly, array A to be compared is divided into many parts each
of which corresponds to a thread block, and the maximum of each
part is computed and saved at C[0] within a block using shared
memory C, which is traditional (lines 6–11). Secondly, C[0] of each
block is loaded to global memory B in the order of block ID (lines
13–16), in which atom operator is used to record the number of
blocks that have finished the data load (count). Thirdly, all other
blocks wait idly while block 0 is computing the maximum of array
B (lines 18–24). There are two details deserving attention: 1, we
use the criterion ‘‘count%gridDim==0’’ to decide whether the grid-
Dim elements have been completely loaded into B (line 20) before
block 0 starts the comparison; 2, a global flag refreshed by thread 0
of block 0 (line 23) is utilized to synchronize thread blocks (line
24), and lines 36–43 describe how the synchronization works.

Algorithm 2. Pseudo code of finding the maximum in a list of
numbers

1: //B[0] = maxm
i¼0 A[i]. Suppose m < blockDim�gridDim,

otherwise treat like Algorithm 1
2: __device__ int flag = 0;
3: __device__ int count = 0;
4: __global__ void kernel_AllReduce (double* A, double* B,

int m)
5: {
6: //load one part of A into shared memory C
7: __shared__ double C[blockDim];
8: C[threadId] = A[blockDim * blockId + threadId];
9: __syncthreads ();

10: //get maximum value of C

11: GetMax (C, blockDim, threadId);
12:
13: // load C[0] =maxblockDim�1

i¼0 C[i] to global memory
B[blockId]

14: if (threadId == 0) {
15: B[blockId] = C[0];
16: count++;//must use atomicAdd to avoid conflict

among multiple writes}
17:
18: if (blockId == 0) {
19: //wait until all blocks have finished loading C[0] into

B[blockId]
20: SyncBlocks (threadId, count%gridDim + 1);
21: //block 0 calculate maximum value of B and store it

at B[0]
22: GetMax (B, gridDim, threadId);
23: if (threadId == 0) flag = 1;// a signal to free other

block’s wait}
24: else {SyncBlocks (threadId, flag);}// other blocks wait

idly
25: }
26:
27: //make the comparison within a CUDA block
28: //S[0]¼ maxn

i¼0 S[i]. Suppose n<blockDim
29: void GetMax (double* S, int n, int threadId)
30: {
31: for (int j = n/2; j>0; j/=2) {
32: if (threadId < j) S[threadId] = max (S[threadId],

S[threadId + j]);
33: __syncthreads ();}
34: }
35:
36: void SyncBlocks (int threadId, int flag)
37: {
38: //thread 0 keeps on looping until flag is changed to 1
39: if (threadId == 0) {
40: while (1){if (flag == 1) break;}}
41: //all other threads in current block wait until thread 0

finishes above looping
42: __syncthreads ();
43: }

Fig. 3. Grid and mission assignment to four GPUs. (a) Decomposition of the whole domain into non-overlapped sub-domains. A sub-domain is computed by a corresponding
GPU. Symbol �denotes inner cells to be auxiliary cells for neighboring sub-domains; (b) Controlled domain for a GPU. Solid points denote initial cells allocated to the current
GPU while hollow points mark auxiliary cells.

Table 1
Memory usage.

GPU memory Variable description

Constant memory CFL, thermodynamic constants,
machine zero, maximum iteration number

Register Intermediate variables, mostly scalars
Shared memory Intermediate variables, mostly array
Global memory Primitive variables: a;q;u; p
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Fig. 4. Data exchange between devices. G stands for grid, and the blue area stands for boundary data that passed between devices. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Computational flow chart for multi-GPU implementation.
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Fig. 6. Flow distributions in the gas–liquid shock tube problem.
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Fig. 7. Flow distributions in the problem of underwater explosion.
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Finally, the usage of different types of GPU memory in Table 1 is
discussed. The access of global memory is slow, but the on-chip
register and shared memories are fast. So only essential variables
passing through different kernels to keep the computation going
on are stored in global memory. In this work, these variables are
only loaded and refreshed once respectively in a kernel, so shared
memory is used to store intermediate variables instead of those
transfered from global memory to save the data copy time. On
the other hand, considering that registers are rare resources in
GPU memory, if all intermediate variables are put into registers,
it is expected that some of the variables will be implicitly allocated
in local memory which is off-chip and not cached. This will dra-
matically decrease the speed of this kernel since the access to local
memory is as slow as that of global memory. So it is necessary to
release the pressure on register by allocating shared memory for
intermediate variables. Furthermore, the shared memory can also
be used to load those non-contiguous accessed data used by
numerical schemes from the global memory.

4.3. Implementation on multi-GPUs

Although a single GPU has achieved good performance in many
applications, the compute capacity required for simulating large-
scale multi-phase flow problems is far beyond what a single GPU
can deliver. Consequently, it is worthwhile to develop multi-GPU
parallelization techniques.

In our work, domain decomposition method is used. A 2D grid
of Nx � Ny is divided into m and n parts along its two coordinate
directions respectively, which makes the total sub-domain number
m� n (Fig. 3(a)). The computation of each sub-domain is assigned

to different GPUs. There are two principles to follow: firstly, m� n
equals the total number of GPUs in use; secondly, the shape of each
sub-domain should be as square-like as possible to reduce the
amount of information exchanged between GPUs. Indeed, flow
variables of a sub-domain always reside in the global memory of
corresponding GPU from the very beginning to the end of a simu-
lation, and they will be exported to different files when the simu-
lation ends. A five point difference stencil, including the target cell
and the four cells that adjacent to it in 2D, is needed to support the
MUSCL reconstruction; and the reconstructed values of two adjoin-
ing cells are used to evaluate the numerical flux across their com-
mon cell face. Therefore, as sketched in Fig. 3(b), two layers of
auxiliary cells are defined at every boundary of a sub-domain to
couple computation. Take sub-domains G1 and G2 in Fig. 3(a) for
example, the left two layers of auxiliary cells (marked by symbol
�) for G2 are updated according to the two layers of inner cells
near the right boundary of G1.

To facilitate communications, data of the two layers of inner
cells near the submodmain boundary are passed between devices
by means of MPI or Pthread, which is operated in CPU. Considering
that most computation is performed in GPU, to avoid frequent data
copy between CPU and GPU, mapped pinned memory is used to
store auxiliary boundary data, which has two addresses: one in
the host and the other in the device. When boundary computation
of a sub-domain is finished, each device uploads the boundary data
that others need to mapped pinned memory, and then downloads
the auxiliary boundary data for next time step computation. As
seen in Fig. 4, there is a little difference in MPI-CUDA and
Pthread-CUDA application: in Pthread-CUDA, all CPU threads share
a common mapped pinned array as in Fig. 4(a), and no data trans-
fer is performed; while in MPI-CUDA, data is stored in different
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Fig. 8. Flow distributions in the problem of shock tube with mixtures.
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arrays belonging to different MPI processes which is then sent and
received between MPI processes as in Fig. 4(b).

The main flowchart is described in Fig. 5. Notice that almost all
the field computations are performed on the GPUs, leaving the CPU
almost idle during the computation except performing iteration
check, data copy and communication.

5. Numerical results

In this section, numerical tests with several 1D and 2D com-
pressible gas–liquid two-fluid problems are provided. For 1D cases,
we compared our method with available RGFM [20] as well as HLL
method [2] using the same MUSCL reconstruction. RGFM can cap-
ture material interface with little diffusion, but it is not a conserva-
tive method. HLL is robust, but too diffusive. We use examples with
high density and high pressure ratios to compare these numerical

methods. Besides, a true two-phase flow problem is simulated to
show the capability of our method in dealing with multiphse mix-
tures. 2D problems are computed using GPUs, and speedups of sin-
gle- and multi-GPU are presented.

5.1. 1D gas–liquid shock tube with high pressure ratio [24]

We consider a shock tube filled on the left side with high pres-
sure gas and on the right side with liquid. For x 2 ½0;1�, the initial
data are

ðq;u;p; c;BÞ ¼
ð1:27; 0; 8000; 1:4; 0Þ; x 6 0:4;
ð1:0; 0; 1:0; 7:15; 3309Þ; x > 0:4:

�
In this problem, the pressure ratio at the gas–liquid interface is

up to 8000 : 1, while density ratio is 1:27 : 1. There are 200
uniform cells in [0,1], and the instant time step size is decided by
Dt ¼ CFL � ðDx=max jkjÞ, where CFL = 0.05 and k stands for
eigenvalue of matrix A in Eq. (18). Numerical simulation was
conducted up to t ¼ 0:002. Pressure, velocity, and density distribu-
tions near the material interface are shown in Fig. 6. The solid black
line is results obtained by RGFM method. It can be seen that there
is a density decrease at the interface which might be caused by the
non-conservative error of RGFM. Results of present multiphase
method (the dashed line) look closer to the analytical solution
(the solid grey line).

5.2. 1D underwater explosion [25]

Consider a one-dimensional domain of [0,1], the two flow states
are separated at x ¼ 0:5 initially:

ðq;u;p; c;BÞ ¼
ð0:01; 0; 1000; 2; 0Þ; x 6 0:5;
ð1:0; 0; 1:0; 7:15; 3309Þ; x > 0:5:

�
Rarefaction wave with very high speed will appear on the left

side. 200 uniform cells are used in our simulation, and the time
step size is computed the same as that in Section 5.1 with

Table 3
Multi-GPU speedup vs. one GPU for 1024� 256 mesh size.

GPU number Speedup Efficiency (%)

MPI-CUDA Pthread-CUDA MPI-CUDA Pthread-CUDA

1 1 1 100 100
2 1.801 1.836 90.06 91.83
4 3.212 3.266 80.31 81.64
8 5.460 4.935 68.25 61.69

Table 2
Speedup (GPU vs. single CPU core).

Grid number CPU time GPU time Speedup

128 � 32 0.097503 0.002830 34.45
256 � 64 0.358785 0.011469 31.28
512 � 128 1.434512 0.042854 33.47

1024 � 256 4.634705 0.167221 27.71
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Fig. 9. Comparison of experiment (left) and computed density contours (right) in shock-bubble interaction problem. (a) t ¼ 32 ls, (b) t ¼ 52 ls, (c) t ¼ 62 ls, (d) t ¼ 72 ls.
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CFL = 0.1. At a very short time t ¼ 0:000718, corresponding pres-
sure, velocity and density distributions are shown in Fig. 7. Results
of HLL scheme [2] and present HLLC method are compared. HLL
scheme uses only two waves instead of three as in HLLC, and con-
tact discontinuity is severely smeared out. This might also explain
why the velocity distribution is abnormal near the interface.
Results computed by HLLC scheme are more accurate and have less
numerical diffusion.

5.3. 1D shock tube with fluid mixtures [2]

This gas–liquid shock tube problem is a little different from that
in Section 5.1. In this case, uniform volume fraction initial condi-
tion (a ¼ 0:5) is used, which makes it a true two-phase mixture
problem. The gas and liquid densities are 1 and 20, respectively,
in the entire domain of [0,1]. A diaphram located at x ¼ 0:5 sepa-
rates the mixtures. The initial pressure in the left chamber is 104

and 1 in the right chamber. 200 uniform cells are used and
CFL = 0.05. The results at t ¼ 0:004 are shown in Fig. 8. The volume
fraction varies across the rarefaction and shock waves, which is in
agreement with results of HLL scheme [2].

5.4. 2D shock–bubble interaction

This is a classical problem [26–28]. A 2D bubble filled with
helium initially in equilibrium is surrounded by air. Initially the
bubble is located at x ¼ 175 and y ¼ 44:5; its radius is equal to
25. A shock initially at x ¼ 225 from the right of the bubble is char-
acterized by Mach number Ms ¼ 1:22. The data are

ðq;u;v;p;cÞ¼
ð1:3764; �0:394; 0; 1:5698; 1:4Þ; postshock;
ð1; 0; 0; 1; 1:4Þ; preshock;
ð0:138; 0; 0; 1:0; 1:67Þ; inside bubble:

8><
>:

The computational domain is ½0;325� � ½0;89�. Characteristic
boundary conditions are used for the left and right boundaries,
while reflective conditions are used for the upper and bottom
boundaries. The simulation is done with GPUs and several mesh
resolutions ranging from 128� 32 to 1024� 256 are used. Using
a single GPU, we observe 27� to 34� speedup relative to a
single-core CPU computation as seen from Table 2. On the
1024� 256 resolution, linear speedup can be achieved by multi-
GPU parallel computing although there might be a little decrease
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Fig. 10. Comparison of experiment (left) and computed density contours (right) in shock-bubble interaction problem. (e) t ¼ 82 ls, (f) t ¼ 102 ls, (g) t ¼ 245 ls, (h)
t ¼ 427 ls, (i) t ¼ 674 ls, (j) t ¼ 983 ls.
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in per-GPU performance when more GPUs are used, as shown in
Table 3. It also shows that the parallel efficiency of MPI-CUDA is
slightly lower than that of Pthread-CUDA when using fewer than
4 GPUs, but is evidently higher when using 8 GPUs.

To verify the computed results on multiple GPUs, Figs. 9 and
10 show the time history of computed density contours using
512� 128 meshes in comparison with experimental Schlieren

images. The time instants are counted after the shock first
touches the bubble, and are identical for both simulation and
experiment: 32 ls, 52 ls, 62 ls, 72 ls, 82 ls, 102 ls, 245 ls,
427 ls, 674 ls, 983 ls. The bubble outline is displayed in bold
line by volume fraction contour a1 ¼ 0:5. It is seen that the
numerical results are comparable to the bubble-shock interaction
experiment of [26].

Fig. 11. Dynamics of shock-induced bubble collapse in water: 1:0 ls;1:6 ls;2:2 ls;3:1 ls;3:5 ls, 3:7 ls;3:8 ls;3:9 ls;4:1 ls. For each instant, the upper half is Mach
number contours and the lower half is pressure contours. The solid line is the bubble delineated by volume fraction a ¼ 0:5.
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5.5. 2D shock-induced bubble collapse in water

We now consider an area filled with air in the middle, and water
in the rest region. The computational domain is ½0;24� � ½0;24�, and
the diameter of air bubble is d ¼ 6. A strong shock, which is char-
acterized by Mach number Ms ¼ 1:72, locates at x ¼ 6:6 initially
and moves rightward. The experiment results were given by [29],
and many numerical results could be found [30–35]. We choose
the same initial data as [34], and the non-dimensionalized flow
distribution is as follows.

ðq;u;v;p;c;BÞ¼
ð1:32365; 68:158; 0; 19000; 4:4; 6000Þ; postshock;
ð1; 0; 0; 1; 4:4; 6000Þ; preshock;
ð0:001; 0; 0; 1; 1:4; 0Þ; inside bubble:

8><
>:

Because of the great difference in flow quantity, when the incident
shock reaches the material interface, strong reflected rarefaction
wave is generated at the air–liquid interface moving towards the
contrary direction. Inside the bubble, the pressure ratio on two
sides of the transmitted shock is 33:28, about 1=570 of that of the
incident shock, whose ratio is 19000. In order to capture these com-
plex wave structures, CFL = 0.1 and 1024� 1024 grids are used in
present computation on 8 GPUs. Variations of Mach number and
pressure with time are shown in Fig. 11, and the evolution of pres-
sure at location y ¼ 12 is shown in Fig. 12. There is a small over-
shoot at x ¼ 5 due to the initial discontinuity decomposition by
Godunov type methods which is beyond the scope of this paper.
Around time t ¼ 3:7 ls, the air bubble is highly compressed at
x ¼ 15, which explains the sudden pressure increasing phenome-
non. As the bubble breaks up the pressure at this point begins to
decrease. Fig. 13 shows snapshots of the bubble shape evolution.
It is seen that as time evolves, the air bubble becomes involuted
with a distinct water jet formed at the centerline. Fig. 14 describes
development of the velocity at the bubble tail with time. The veloc-
ity is 287.219 (2.87219 km/s in dimensional unit) when the water
jet hits the other side of the bubble cutting the bubble into two half.
The computed hit velocity is close to the published results: 2.82 km/
s [35] and 2.85 km/s [33,34].

6. Conclusions

A simple HLLC-type Riemann solver-based numerical method
has been presented for solving the compressible seven-equation

Fig. 12. Pressure distribution at y = 12.
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Fig. 13. Evolution of bubble shapes (a ¼ 0:5) from t ¼ 0:01 on, Dt ¼ 0:006.
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Fig. 14. Velocity of the tail of the bubble.
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two-phase model. The conventional HLLC flux is utilized for the
conservative fluxes, and the corresponding discrete schemes for
the non-conservative terms and the volume fraction evolution
equation are constructed, which leads to a simple upwind scheme.
Moreover, the third-order TVD Runge–Kutta method is imple-
mented in conjunction with the operator splitting to obtain a
robust procedure by virtue of reordering the sequence of operators.
The resulting numerical method is implemented by using multi-
GPU parallel computing techniques, and optimization strategies
are undertaken to speedup the code significantly. Numerical tests
with several 1D and 2D compressible gas–liquid two-fluid flow
problems with high density and high pressure ratios demonstrate
that the present numerical method is more accurate and robust
than HLL and RGFM methods, and the resulting multi-GPU code
has effectively reduced the solution time required for the expen-
sive seven-equation compressible two-phase model.
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Appendix A. Eigenvalues and eigenvectors of the matrix AðUÞ in
Eq. (18)

It is complicated to decompose matrix A directly. Notice that
uI ¼ u1 ¼ u2 and pI ¼ p1 ¼ p2 in the reconstruction stage, the
eigen-decomposition of matrix A can be done in the following form
temporarily

A ¼ RKL;

where K is the diagonal matrix of eigenvalues for the matrix A,

K � diagðuI;u1 � c1;u1;u1 þ c1; u2 � c2;u2;u2 þ c2Þ:

L is the matrix composed of left eigenvectors

L ¼ ðl1; l2; l3; l4; l5; l6; l7ÞT ;

where

l1¼ 1;0;0;0;0;0;0ð Þ

l2¼
c1�1

2c2
1

�c1p1þp1

c1�1
;u2

1�H1þc1
u1þc1

c1�1
;�u1�

c1

c1�1
;1;0;0;0

� �

l3¼
c1�1

2c2
1

0;2H1�2u2
1;2u1;�2;0;0;0

	 

l4¼

c1�1
2c2

1

�c1p1þp1

c1�1
;u2

1�H1�c1
u1�c1

c1�1
;�u1þ

c1

c1�1
;1;0;0;0

� �

l5¼
c2�1

2c2
2

c2p2þp2

c2�1
;0;0;0;u2

2�H2þc2
u2þc2

c2�1
;�u2�

c2

c2�1
;1

� �

l6¼
c2�1

2c2
2

0;0;0;0;2H2�2u2
2;2u2;�2

	 

l7¼

c2�1
2c2

2

c2p2þp2

c2�1
;0;0;0;u2

2�H2�c2
u2�c2

c2�1
;�u2þ

c2

c2�1
;1

� �
:

R is composed of right eigenvectors

R ¼ ðr1; r2; r3; r4; r5; r6; r7Þ;

where

r1 ¼ 1;
c1p1 þ p1

c2
1

;
c1p1 þ p1

c2
1

u1;
c1p1 þ p1

c2
1

H1;
c2p2 þ p2

c2
2

;

�

� c2p2 þ p2

c2
2

u2;�
c2p2 þ p2

c2
2

H2

�T

r2 ¼ 0;1;u1 � c1;H1 � u1c1;0;0;0ð ÞT

r3 ¼ 0;1;u1;H1 �
c2

1

c1 � 1
;0;0;0

� �T

r4 ¼ 0;1;u1 þ c1;H1 þ u1c1;0;0;0ð ÞT

r5 ¼ 0;0;0;0;1;u2 � c2;H2 � u2c2ð ÞT

r6 ¼ 0;0;0;0;1;u2;H2 �
c2

2

c2 � 1

� �T

r7 ¼ 0;0;0;0;1;u2 þ c2;H2 þ u2c2ð ÞT :
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