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The spherical Couette flow between two concentric spheres with only the inner sphere
rotating is simulated by solving the 3D incompressible Navier-Stokes equations with
a fifth order upwind compact finite difference method. Two moderate clearance ratios,
β = (R2 − R1)/R1 = 0.14 and 0.18, respectively, are chosen for comparison with
previous experimental and numerical results. First, the spiral Taylor-Görtler (TG)
vortex flow at Re = 1110 for β = 0.14 [W. M. Sha and K. Nakabayashi, “On the
structure and formation of spiral Taylor-Görtler vortices in spherical Couette flow,” J.
Fluid Mech. 431, 323–345 (2001)] is found to develop traveling waves at Re = 1800.
A wavy TG vortex flow formed at low Re numbers can return to steady TG vortex as
Re number is increased to a critical value Re = 6600, thus confirming the occurrence
of a reverse Hopf bifurcation from limit cycle to fixed point [K. Nakabayashi, W.
M. Sha, and Y. Tsuchida, “Relaminarization phenomena and external-disturbance
effects in spherical Couette flow,” J. Fluid Mech. 534, 327–350 (2005)]. Second,
multiple supercritical flows for β = 0.18 [M. Wimmer, “Experiments on a viscous
fluid flow between concentric rotating spheres,” J. Fluid Mech. 78, 317–335 (1976)]
are simulated for a wide range of Re numbers from the first instability (Re ≈ 655)
up to the proximity of transition to turbulence (Re ≈ 8000). The simulation confirms
Wimmer’s experimental observation that a periodic 2-vortex flow coexists with the
steady 0- and 1-vortex flows in certain low Re range. There is also a reverse Hopf
bifurcation for this periodic wavy 2-vortex flow at Re = 2270. As Re number is
further increased, the steady 0- and 2-vortex flows begin to form spiral waves in
the secondary flow region for Re ≥ 6500, while the 1-vortex flow has similar spiral
disturbances for Re = 8000. Multiple higher modes with different numbers of spiral
waves can be generated by using different wavenumbers in the imposed perturbation.
Detailed description of these multiple higher modes is given in terms of rotational
frequency, wavenumber, and spatial structure. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4772196]

I. INTRODUCTION

The spherical Couette flow (SCF) between two concentric rotating spheres can give rise to
a rich variety of flow structures and instability mechanisms in the laminar-turbulent transition.
Geometrically, a spherical shell can be considered as a combination of two other simpler systems
with cylindrical annulus near the equator and parallel disks in the pole region, thus SCF is similar
to the circular Couette flow near the equatorial region, and to the flow between two rotating disks
in a stationary housing near the polar region. SCF is an important template for studying various
mechanisms of the laminar-turbulent transition of rotating fluid in enclosed cavity, and is also relevant
to engineering applications like bearings and gyroscopes (Wimmer1).
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In this paper we consider the SCF with the inner sphere rotating and the outer sphere stationary.
Superficially, there are two control parameters that determine various flow regimes: a Reynolds
number Re = �R2

1/ν and a clearance ratio β = (R2 − R1)/R1, with ν the kinematic viscosity, �

the angular velocity of the inner sphere, and R1 and R2 the radii of the inner and outer spheres. In
fact, other factors such as initial conditions, rotational acceleration rate, and perturbations imposed,
may also have impact on the formation of different flow disturbances (structures) when the control
parameters (Re, β) are located in bifurcation regimes. A lot of studies were conducted on SCF in
the past (Sawatzki and Zierep,2 Munson,3 Wimmer,4 Yavorskaya,5 Bartels,6 Nakabayashi et al.,7, 8

Bühler,9 Shrauf,10 Marcus,11 and Yuan12) and a rich variety of distinct flow modes were identified.
In a recent work,13 Nakabayshi et al. categorized known disturbances of SCF into two types: a
cylinder-type that is similar to that in the circular Couette flow, and a disk-type that is similar to
that in the flow between two rotating disks in a stationary housing. Furthermore, they also found
several new types of disturbances which are specific to SCF, such as ring vortices, letter-X-like
waves, twists, and internal waves within toroidal Taylor-Görtler (TG) vortices.14 It is well known
that toroidal TG vortices, spiral TG vortices, and traveling waves on TG vortices are cylinder-
type disturbances, while Stuart vortices and shear waves are disk-type disturbances. Different types
of disturbances and their characteristics strongly depend on the clearance ratio β. The Taylor
instability in the form of axisymmetric and toroidal Taylor vortices occurs as the first instability for
narrow gaps and medium gaps,3, 10, 11 while the cross-flow instability in the form of spiral waves or
spiral vortices occurs as the first instability for wide gaps (Dumas,15 Egbers,16 Zikanov,17 Araki,18

Wulf,19 and Sha20). Reference 13 divided β into four regions in the gross. The narrow-gap region
refers to β ≤ βN ≈ 0.1–0.13 for which cylinder-type disturbances such as spiral TG vortices
and traveling waves play an important role. An intermediate-gap region is particularly delineated
as 0.13 ≤ β ≤ βI ≈ 0.17 for which the spiral TG vortices or traveling waves occurring after
the second instability will disappear with increasing Re number (reverse Hopf bifurcation, also
called “relaminarlization phenomenon” in Ref. 21, i.e., the disappearance of velocity fluctuation
with increasing Re). The medium-gap region refers to βI ≤ β ≤ βW ≈ 0.3 for which there is
absence of spiral TG vortices and traveling waves, yet disk-type disturbances such as Stuart vortices
and shear waves occur at high Re. The wide-gap region refers to β > 0.3 for which the cross-
flow instability (spiral waves or spiral vortices) instead of the Taylor instability occurs as the first
instability.

A well-known feature of SCF is that a variety of distinct flow modes, or the same flow mode
but with different subcharacteristics such as wavenumbers and modulations can occur at the same
supercritical Re number. The most famous example is the coexistence of multiple steady-state Tay-
lor vortex flows with different numbers of vortices at a low Re number. This multiplicity is due
to bifurcations of solutions of the Navier-Stokes (NS) equations (cf. Ladyzhenskaya22). Previous
experiments have shown that the formation of multiple flow modes depends on initial conditions
and the Reynolds number history.4, 8 Experiments have obtained multiple Taylor vortex flows,2, 4

multiple traveling waves on TG vortices,5, 8 multiple shear waves with different wavenumbers,
and rotational frequencies.9 Experimental techniques used to generate these multiple flow states
include different accelerations of the inner sphere, different initial flow modes, and different per-
turbations such as temporary rotation of the outer sphere in the same or opposite direction. The
characteristics of many higher flow modes were described in a series of papers by Nakabayashi and
coauthors.7, 8, 13, 14, 20, 21

Numerical studies of SCF, on the other hand, have only obtained steady multiple flow modes with
axisymmetric toroidal TG vortices via either time marching methods6, 11, 12 or bifurcation methods
(Shrauf,10 Mamun and Tuckerman23), and a few higher modes such as spiral TG vortices15, 20 and
shear waves17, 18, 24 via time stepping approaches. A careful numerical exploration20 was carried
out to reveal structure and formation mechanism of the spiral TG vortices. However, a wide range
of Re numbers needs to be explored in order to clarify abundant experimental findings such as
the coexistence of periodic flows with steady flows at the same lower Re number4 and the reverse
Hopf bifurcation, and to further obtain multiple higher flow modes and reveal how they develop
into turbulence. In a broader sense, knowledge of transition to turbulence in SCF will be helpful in
establishing a general hydrodynamic transition map for rotating flow in enclosed domain.
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The objective of the present study is to investigate multiple flow solutions of SCF with only the
inner sphere rotating and their development with increasing Re number, especially the occurrence
of the reverse Hopf bifurcation and the multiple periodic solutions in moderate gap widths. In
a previous study,24 we implemented the artificial compressibility method in conjunction with a
third-order upwind compact finite difference for solving the three-dimensional incompressible NS
equations in general curvilinear coordinates system. The computed supercritical steady TG vortex
flows were found in good agreement with literature. But for unsteady multiple flows, we found that
the formation of higher disturbances needs much longer evolution time and appropriate choice of
initial conditions and artificial perturbations. Besides, high-order accuracy of the numerical scheme
and mesh independent study are generally required. All these will incur huge computational cost
such that it is not easy to make systematic simulation.

In this paper, we adopt a fifth-order accurate upwind compact scheme (Abdullah25) for the
flow solution, and more notably, we parallelize the code with MPI so that it can run many cases in
feasible time. After successfully reproducing the spiral TG vortices for the clearance ratio β = 0.14
in Ref. 20, we investigate the development of the flow in this β with increasing Re number up to the
range in which a reverse Hopf bifurcation happens. Then we revisit the medium gap β = 0.18 which
corresponds to Wimmer’s experiment.4 Multiple higher flow modes for Re ≥ 6500 are simulated after
long evolution time. Further, it will be shown that the wavenumber of the artificial perturbation used
plays an important role in generating multiple spiral waves in the flows. Our simulation reproduces
for the first time Wimmer’s experimental result that a periodic double TG vortex flow can coexist
with multiple steady TG vortex flows in a lower Re number range. Development of spiral waves
(shear waves) imposed on the TG vortex flows for higher Re numbers are explored systematically
in terms of fundamental and rotational frequencies, wavenumbers, and spatial structures.

II. NUMERICAL METHOD AND COMPUTATIONAL SETUP

A. Numerical method

The computational domain is an annulus between two concentric spheres filled with an in-
compressible Newtonian fluid with constant density and kinematic viscosity ν. The inner sphere is
constrained to rotate around the vertical axis from west to east with a prescribed angular velocity
�, while the outer sphere is stationary. The artificial compressibility method is used to solve the
three-dimensional incompressible NS equations. The dual-time stepping technique is used to obtain
time-accurate solution. The convective terms and the viscous terms are discretized with the fifth-
order upwind compact scheme and the second-order central difference scheme, respectively. The
discretized equations are solved with the diagonalized Beam-Warming scheme. The detail of the
numerical scheme and its parallel implementation can be found in Refs. 25 and 26.

B. Computational setup

The spherical annulus is divided into a number of grids in the radial (r), circumferential (θ ), and
azimuthal (φ) directions, respectively. The grids are uniform in the circumferential and azimuthal
directions, but are clustered near both walls in the radial direction. In Ref. 20, grid numbers 22(r)
× 361(θ ) × 91(φ) were found sufficient to resolve the spiral TG vortex flow for the gap β = 0.14
at Re = 1110. In this work, we use grid numbers 21 × 361 × 129 for reproducing the result in
Ref. 20, and 34 × 512 × 201 for higher Re number for the gap β = 0.14, and 34 × 360 × 153 and
34 × 480 × 257 for the gap β = 0.18. The nondimensional physical time step �t = �t̃� = 0.01 is
used. The pseudo-time marching is implemented with approximate Newton iteration by setting the
pseudo-time step to infinity. The subiteration process (pseudo-time marching) is terminated when
L2 norm of the residuals drops 10−3 from its initial magnitude or when the subiteration number
exceeds 20.

On inner and outer spheres, non-slip conditions are applied to velocities, and the pressure
is obtained by the radial component momentum equation written in spherical coordinates. The
numerical boundary condition on the polar axis is treated by setting values on the axis equal to



124104-4 Li Yuan Phys. Fluids 24, 124104 (2012)

averaging neighboring points next to the axis. A reference pressure is taken at a fixed point in the
interior of the computational domain.

An important issue associated with numerical simulation of multiple solutions of SCF is the
dependence of final solutions on initial conditions, time history of Re number (equivalent to angular
acceleration of the inner sphere in experiment), and artificial perturbation imposed. We adopt a
form of perturbation similar to that used by Schroeder and Keller27 to trigger traveling waves of the
circular Couette flow:

vr = −4ε1
(r − R1)(r − R2)

(R2 − R1)2
cos

[
π

(
1 − 2z



− ε2α

)]
,

vθ = ε1 sin

[
π

2

(r − R1)(r − Rm)(r − R2)

(R2 − R1)3

]
sin

[
π

(
1 − 2z



− ε2α

)]
1

β
,

(1)

where z = Rm

(π

2
− θ

)
, Rm = 0.5(R1 + R2), α = sin(maφ), and 
 = 2(R2 − R1) is roughly the

wavelength of the TG vortex in the circumferential direction. The perturbation amplitude ε1 for
velocities is set to 10−4, and the perturbation amplitude ε2 for the azimuthal variation is set to 0.4 as
Ref. 27. Different azimuthal wavenumbers ma will be used for generating different patterns of spiral
waves. Perturbation (1) is used for computing spiral waves for β = 0.18, which is imposed either at
t = 0 only, or for a duration of viscous diffusion time across the gap td = (R2 − R1)2/ν.

III. RESULTS

Two clearance ratios, β = 0.14 and 0.18, are selected to be the same as those studied by
Nakabayashi et al.20, 21 and Wimmer,4 respectively. According to the category of Ref. 13, these
two ratios fall into so-called intermediate-gap and medium-gap regions, respectively (see the
Introduction). The Reynolds numbers in this study cover 900 ≤ Re ≤ 6600 for β = 0.14 and
650 ≤ Re ≤ 8000 for β = 0.18, respectively.

For convenience of discussion, notations used by Ref. 13 are adopted in the following context.
The flow regime is characterized by “flow region I, II, III, and IV” + “kinds of disturbances,” where
flow region I is a laminar basic flow region, II is a TG vortex flow region, III is a transitional flow
region, and IV is a turbulent flow region. The kinds of disturbances refer to vortices and waves in the
flow, such as TG vortex (T), spiral vortex (S), traveling waves (W), shear waves (Sh), Stuart vortices
(Su), etc. The flow regime is further classified by the flow state expressed in terms of the cell number
of toroidal TG vortices N (the pair number T = N/2 is more frequently used, denoted as T-vortex),
the pair number of spiral vortices SP, and the wavenumber of traveling waves on TG vortices m, that
of shear waves SH or Stuart vortices SU. For example, IITS(T = 1, SP = 3) refers to the spiral TG
vortex flow studied in Ref. 20. If the numbers of spirals are different in the northern and southern
hemispheres, then the numbers of the spiral vortices/waves in the northern and southern hemispheres
are separated by a colon, e.g., IIIWTS(N = 2, m = 5, SP = 3:2) indicates a transitional 2-cell TG
vortex flow with 5 wavenumbers for azimuthal traveling waves, and 3 and 2 spiral vortices in the
northern and southern hemispheres, respectively.

A. β = 0.14

For this clearance ratio, Taylor instability in the form of steady 1-vortex flow IIT(T = 1) occurs
first in the equatorial region with increasing Re number.7, 20 The 1-vortex flow has an inflow (ur < 0)
boundary between the two toroidal TG vortices at the equator.4 The occurrence of the 1-vortex flow
is related to the presence of symmetry-breaking bifurcation.10, 11 In three-dimensional simulation,
round-off errors intricately contain non-equatorially symmetric and nonaxisymmetric perturbations.
It is easy to produce the 1-vortex flow for 900 ≤ Re ≤ 990 by computing from either rest or Stokes
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flow, where Rec1 ≈ 900 (determined with a resolution �Re = 10) is the critical Reynolds number
for the onset of the TG vortex. Once produced, the 1-vortex flow will remain stable for 900 ≤ Re
< 1090, where Rec2 ≈ 1090 is the Hopf bifurcation point at which the steady 1-vortex flow becomes
periodic spiral TG vortex IITS(T = 1, SP = 3). On the other hand, we can obtain the steady 2-vortex
flow IIT(T = 2) easily for 1000 ≤ Re ≤ 1540 by computing from either rest or Stokes flow. The
lower bound Re ≈ 1000 for the 2-vortex flow is not a bifurcation point as explained in Ref. 11, while
the upper bound Rec3 ≈ 1540 is a Hopf bifurcation point at which the steady 2-vortex flow becomes
a wavy TG vortex flow.

To compare with literature, we reproduce the spiral TG vortex flow at Re = 1110 which was
first computed by Sha et al.20 Re number is increased quasi-statically with the same acceleration
as that in Ref. 20 (dR*/dt = 0.0006, where R* is defined as R* = Re/Rec1). The initial con-
dition is the 1-vortex flow at Re = 940, and the mesh number used is 21 × 361 × 129 close to
21 × 361 × 91 used in Ref. 20. As Re number is gradually increased to Re = 1110, the flow becomes
unstable due to exceeding the secondary instability point Rec2 = 1090. After a long transitional time,
a completely periodic spiral TG vortex flow with three pairs of spiral vortices is established (IITS(T
= 1, SP = 3)). Figures 1(a)–1(d) show time sequences of (φ, θ )-plane distributions of the azimuthal

vorticity component, ωφ = 1

r

[
∂(ruθ )

∂r
− ∂ur

∂θ

]
. This quantity is integrated along the radial direction

over the gap. The figures are projected onto the (φ, θ )-plane in Cartesian coordinates and plotted
over the range 0◦ ≤ φ ≤ 360◦ and 50◦ ≤ θ ≤ 130◦. The four instants, t = 108π , 227π , 239π , and
277π , are nearly the same as those in Figures 10(a)– 13(a) in Ref. 20. We see that the time scenario
is comparable.

We further see how the spiral TG vortex flow (IITS(T = 1, SP = 3)) evolves for higher
Re number. The mesh number used is 34 × 512 × 201. Re number is increased from 1110
(R* = 1.23) to 1800 (R* = 2.0) with an acceleration dR*/dt = 0.004. Figure 2 shows the (φ, θ )-plane
distributions of the same integrated azimuthal vorticity component as in Figure 1, plus a slice of
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FIG. 1. (φ, θ )-plane distributions of the azimuthal vorticity component at four different times in the formation process of
the spiral TG vortex flow IITS(T = 1, SP = 3) for β = 0.14, Re = 1110. The quantity is integrated along the radial direction
over the gap. The contour levels range from −0.12 to 0.12 in (a) and (b), and from −0.14 to 0.14 in (c) and (d), in step of
0.02. Solid lines show positive values while dashed lines show negative values.
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FIG. 2. (φ, θ )-plane distributions of the azimuthal vorticity component as in Figure 3, plus velocity vectors in one meridional
plane (φ = 360◦) for the wavy spiral TG vortex flow IIWTS(T = 1, SP = 3, m = 6) for Re = 1800, β = 0.14. The contour
levels range from −0.28 to 0.28 in step of 0.04.

velocity vectors in one meridional plane (φ = 360◦) to show the vortices. We can see that one pair
of toroidal TG vortices still exist near the equator with an inflow boundary ur < 0 between them, but
traveling waves with wavenumber m = 6 are formed on the toroidal and spiral TG vortices, so the
flow mode is labeled as IIWTS(T = 1, SP = 3, m = 6). The spiral and wavy disturbances rotate in the
same direction as �. To analyze the frequencies, Figure 3 shows time history of the circumferential
velocity component vθ at a middle point on the equator for these two Re numbers. The oscillation
is symmetric with respect to the equator for Re = 1110, but shifts south for Re = 1800. From
Figure 3 we can calculate the nondimensional rotational frequency of the spiral vortices, defined

time

V
θ

10 20 30 40 50
-0.08

-0.04

0

0.04

0.08
Re=1110
Re=1800Trot,w

Ts=2Tw

FIG. 3. Time history of the circumferential velocity component at a point (r, θ , φ) = (1 + 0.5β, 0.5π , 0). The fundamental
period of the spiral TG vortex (Re = 1110) is simply counted between every solid peak, and its rotational period is simply
Trot, s = 3Ts due to SP = 3. The fundamental periods Tw and Ts of the wavy spiral TG vortex flow (Re = 1800) are indicated
in the graph, and the rotational period Trot,w of the flow is counted between every six peak intervals due to m = 6. Clearance
ratio β = 0.14.
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as
frot,s

f
= 1

Sp

fs

f
= 2π

T̃rot,s�
= 2π

Trot,s
, and that of the traveling waves,

frot,w

f
= 1

m

fw
f

= 2π

Trot,w
(f being the rotational frequency of the inner sphere, fs the fundamental frequency of spiral dis-
turbances, and fw that of wavy disturbances passing a fixed point in the laboratory reference

frame, SP = 3, m = 6). It is found that
frot,s

f
= 0.427 for Re = 1110 and

frot,w

f
= 0.419 for Re

= 1800, respectively. These numbers are in close agreement with experimental data (cf. Figure 17 in
Ref. 28).

Next, we simulate the reverse-Hopf bifurcation phenomenon of SCF which was investigated
experimentally by Nakabayashi et al.21 A reverse-Hopf bifurcation occurs in some nonlinear dy-
namical systems, which refers to the bifurcation from a limit cycle to a fixed point as the control
parameter goes toward more unstable regime.

Nakabayashi et al.21 observed that in the laminar-turbulent transition for β < 0.2, the flow starts
from steady-state basic laminar flow, and generally goes through periodic, quasi-periodic, chaotic
and fully developed turbulent states successively with increasing Re number. However, for β = 0.14,
the periodicity occurring at low Re number disappears completely with increasing Re (they called
this “relaminarization phenomenon,” which may not be appropriate as shown at the end of this
subsection), although, with a further increase of Re number, the flow becomes fluctuating again and
evolves into a fully developed turbulent flow. They observed that the “relaminarization” occurred
for 0.13 < β < 0.17.

We directly compute the steady 2-vortex flow IIT(T = 2) at Re = 1000 from the Stokes flow,
and search for flow regimes with step of �Re = 10–100 and acceleration of dR*/dt = 0.01–0.001
from state at previous Re. The flow becomes a wavy TG vortex flow with five traveling waves on the
toroidal TG vortices (labeled as IIWT(T = 2, m = 5)) at Rec3 ≈ 1540. This wavy TG vortex flow
remains stable for 1540 ≤ Re ≤ 6600. At Rec4 = 6600, the flow returns to steady state supercritical
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FIG. 4. Variations of the wavy TG vortex flow IITW(T = 2, m = 5) with increasing Re number. For each frame, the left graph
is instantaneous iso-values of the azimuthal angular velocity quantity (ω = vφ/r sin θ ) in the unwrapped middle spherical
surface r = (1 + β)/2, 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , the middle graph is that in the meridional plane at φ = 2π , and the right
graph is velocity vectors (vr , vθ ) in the same meridional plane. The clearance ratio β = 0.14.
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2-vortex flow. Figure 4 shows the development of the flow with Re number. For each Re number,
the left graph is iso-values of the azimuthal angular velocity quantity defined as vφ/r sin θ in the
unwrapped middle spherical surface, the middle graph is the same quantity in the meridional plane
at φ = 2π to show the outward or inward shifting of the rotational fluid, and the right graph is the
velocity vectors (vr , vθ ) in the same meridional plane to show the vortices. We see that the amplitude
of the traveling waves gets larger first with increasing Re number, but diminishes later, and finally

disappears when Re > 6600. The dimensionless rotational frequencies of the traveling waves,
frot,w

f
,

are 0.451(Re = 1540), 0.478(Re = 2500), and 0.452(Re = 5400), respectively, which are close to
experimental data (cf. Figures 10 and 15 in Ref. 8). The variation of the flow mode with increasing
Re number shows a change from periodic wavy TG vortex to steady TG vortex. However, the wavy
TG vortex flow between Re = 1540 and 6600 is essentially laminar periodic state, so, it would be
better to call the transition “reverse Hopf bifurcation” rather than “relaminarization.”

B. Medium gap β = 0.18

For this medium gap, both cylinder-like disturbances such as wavy TG vortex flows in the
equatorial region and secondary-flow instabilities9 such as spiral waves in the high latitude re-
gion may occur for high Re number. The multiplicity of steady-state TG vortex flow and periodic
flow at the same Re number for β = 0.18 was reported in experiment,4 but has not been sim-
ulated numerically. In this study, we have successfully simulated the oscillating 2-vortex flow
(called mode “Va” in Ref. 4) for low Re number range where supercritical steady 0- and 1-vortex
flows can exist stably. This oscillating 2-vortex flow has five traveling waves, and also returns
to supercritical 2-vortex flow for higher Re number, showing there is a reverse Hopf bifurcation.
We have also simulated multiple TG vortex flows with shear waves for the same high Re num-
ber by imposing perturbation (1) with different values of ma either at t = 0 generally, or for a
short duration of the viscous diffusion time across the gap, td ≈ (R2 − R1)2/ν, in some special
case.

In previous axisymmetric simulation12 for β = 0.18 and Re ≤ 1500, we found that the super-
critical 0-vortex flow existed for 1220 ≤ Re ≤ 1500, 1-vortex flow existed for 655 ≤ Re ≤ 1500,
and 2-vortex flow existed for 775 ≤ Re ≤ 1500. However, no periodic flow state was obtained for
Re ≤ 1500. Reference 11 shown that the 0-vortex and 2-vortex flows are of the same branch, and
their lower bounds in the supercritical regime are just linearly stable bounds having no relationship
with dynamic bifurcations. In present three-dimensional simulation, we find that the oscillating (ac-
tually wavy) 2-vortex flow can be obtained easily for 1280 ≤ Re ≤ 2270 by direct calculation from
rest or Stokes flow, and any initially steady state 2-vortex flow in the ranges of 775 ≤ Re ≤ 1280
and Re ≥ 2270 will become wavy once Re number is relocated in the range of [1280, 2270].
Figures 5(a) and 5(b) show the fully developed wavy 2-vortex flows at Re = 1300 and Re = 1700,
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FIG. 5. The same as Figure 4 but for clearance ratio β = 0.18.
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respectively. Both periodic flows have five traveling waves, and the rotational frequency of the

traveling waves (
frot,w

f
= 2π

Trot,w
) are 0.424 (Re = 1300) and 0.420 (Re = 1700), respectively. We

find that as Re number increases, the wavy TG vortex flow first occurs at Rec2 ≈ 1280 (Hopf bifurca-
tion point), remains stable with respect to perturbation, and returns to the steady-state 2-vortex flow at
Rec3 ≈ 2270 (reverse Hopf bifurcation point). On the other hand, the supercritical 0-vortex flow ex-
ists for 1470 ≤ Re ≤ 6500, while the steady 1-vortex flow exists from the first instability point
Rec1 ≈ 655 up to the onset of the shear waves at Re ≈ 8000. Thus, we confirm experimen-
tal observation4 that periodic double-vortex flow coexists with steady 0- and 1-vortex flows for
1470 ≤ Re ≤ 2270, and steady-state 0-, 1-, and 2-vortex flows coexist for 2270 ≤ Re ≤ 6500.

In the following, we present several new higher modes in region “III” for Re number that is
greater than Rec4 ≈ 6500 but below the onset of turbulence. By using 0-, 1-, and 2-vortex flows
at Re = 2500 as initial flowfields, respectively, and perturbation (1) with different numbers of ma,
multiple periodic solutions with shear waves at the same Re number can be obtained. Specifically,
they are computed through linear acceleration from Re = 2500 to a Re > 6500 in dimensionless
time of 60 followed by imposing perturbation (1) for one time step, or for dimensionless time of 50
for the 2-vortex with m = 10 case.

Figures 6(a)–6(c) show three 0-vortex flows with 7, 8, and 9 shear waves, respectively, at
Re = 7200. Among them, the 8-shear wave flow is most natural to obtain: no perturbation or
perturbation (1) with ma = 1, 2, 4–6, 8, 10–18 can lead to it. It is remarked that this flow pattern
corresponds to the non-axisymmetric instabilities with 8 wavenumbers in Fig. 3 of Ref. 29. The
7-shear wave flow can be obtained with ma = 7, and the 9-shear wave flow can be obtained with
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FIG. 6. Multiple 0-vortex flows with different numbers of shear waves at Re = 7200 for clearance ratio β = 0.18. For each
frame, the left graph is instantaneous iso-values of the circumferential velocity component vθ in the unwrapped spherical
surface r = 1 + 0.7β, 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , the middle graph is that in the meridional plane at φ = 2π , and the right graph
is velocity vectors (vr , vθ ) in the same meridional plane. (a) 7 shear waves; (b) 8 shear waves; (c) 9 shear waves.
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FIG. 7. The same as Figure 6 but for multiple 2-vortex flows with different numbers of shear waves. (a) 8 shear waves;
(b) 9 shear waves; (c) 10 shear waves.

m = 3 or 9, both of which need a moderate amount of amplitude ε1 = 10−4. The 7-shear waves
appear to be quasi-periodic while the 8- and 9-shear waves are fully periodic flows. The outflow
boundary at the equator is wavy due to the influence of the shear waves. The shear waves look like
spiral vortices as shown Figure 2, but they do not have vortex cells across the whole gap width,
which would appear for β = 0.14 (this can be seen from the velocity vectors in Figure 2). They are
formed near the outer sphere due to the viscous cross-flow instability.9, 13 Similar shear waves were
also found in a wider gap by Araki18 (they called it spiral waves). We note that the shear waves
remain stable even after two hundreds of inner sphere rotation, but will change into chaotic state at
slightly higher Re number. Therefore, the shear wave flows at Re = 7200 can be categorized to the
transitional flow regime “III.”

Figures 7(a)–7(c) show three 2-vortex flows with 8, 9, and 10 shear waves, respectively, at
Re = 7200, where the 9-shear wave flow is most natural to obtain. The 8-shear wave flow can be
obtained with ma = 2, 4, 8, and the 10-shear wave flow can be obtained with ma = 5, 10 for longer
imposition of perturbation (1). Both of which need moderate amplitudes like ε1 = 10−4, and very
larger values like ε1 = 10−2 or very small values like ε1 = 10−12 often make the flow develop into the
default 9-shear wave flow irrespective of what ma. The 9-shear wave flow can be obtained without
perturbation or with perturbation with ma = 1, 3, 6, 7, 9 as well as other integer numbers that are
not divisors of 8 or 10. We observe that the outflow boundaries of the TG vortices are wavy due to
the influence of the shear waves away from the equator, but remain toroidal near the equator. As Re
number is increased further, the 2-vortex flow with shear waves will change into 1-vortex flow with
massively chaotic flow in the secondary flow region, and finally to turbulence.

On the other hand, the 1-vortex flow is more stable than the 0- and 2-vortex flows in that it
has no spiral disturbances developed at Re = 7200. We have used both 34 × 360 × 153 and 34
× 480 × 257 grids to obtain the same conclusion. Figures 8(a)–8(c) show multiple 1-vortex flows
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FIG. 8. The same as Figure 6 but for multiple 1-vortex flows with different numbers of shear waves at Re = 8000. (a) 5
shear waves; (b) 6 shear waves; (c) 6:5 shear waves.

with three different shear-wave patterns at Re = 8000. It is seen that the shear waves have clockwise
spirals from high latitude region to low latitude region when viewed from top of the north pole, and
both the inflow and outflow boundaries of the TG vortices remain almost parallel to the equator.
The spirals are different from the counterclockwise spirals as occurred in 0- and 2-vortex flows.
The 5-shear wave flow seems to be the default for Re = 8000: if perturbation (1) is not imposed or
imposed with ma = 1, 4, 5, 7–9, then the flow goes to the 5-shear wave after long time evolution.
If ma = 2, 3, 6, then the flow goes to the 6-shear wave. An interesting case is when ma = 11, the
flow goes to one with 5-shear waves in one hemisphere and 6-shear waves in the other hemisphere
(Figure 8(c)). All the flows are basically periodic but contain non-periodic fluctuations between
the periodic fluctuations. A more subtle difference is that the north and south shear waves may
be in phase or in differential phase. These reflect the intricate nature of the multiple solutions of
the SCF.

Finally, Table I summarizes rotational frequencies of the multiple TG vortex flows with different
shear waves for clearance ratio β = 0.18. It is remarked that the spiral waves of the 1-vortex flows
move very slowly in the same direction of the inner sphere rotation.

TABLE I. Nondimensional rotational frequencies of TG vortex flows with shear waves for β = 0.18.

Re Baseline TG vortex flow Rotational frequency frot, sh (wavenumber SH)

7200 0-vortex 0.523 (7) 0.524 (8) 0.522 (9)
7200 2-vortex 0.478 (8) 0.476 (9) 0.470 (10)
8000 1-vortex 0.00821 (5) 0.0571 (6:5) 0.0478 (6)
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IV. CONCLUSIONS

The spiral and wavy disturbances of the flow between two concentric spheres with the inner one
rotating and the outer one stationary are investigated numerically for two gap widths (β = 0.14 and
0.18) for a wide range of Reynolds numbers. The numerical simulation is based on solving the three-
dimensional incompressible Navier-Stokes equations with a fifth-order upwind compact method.
For β = 0.14, the computation reproduces the occurrence of the spiral Taylor-Görtler vortices at
Re = 1110 as in literature. Furthermore, a Hopf bifurcation at Rec3 = 1540 for which the steady
2-vortex flow develops into a wavy one, and corresponding reverse Hopf bifurcation at Rec4 = 6600
for which the periodic wavy TG vortices change back to steady toroidal TG vortices, are found.

For β = 0.18, the present simulation reproduces Wimmer’s experimental observation that steady
flows can coexist with periodic flows at the same Reynolds number. The supercritical steady 0-, 1-,
and 2-vortex flows can coexist for 2270 ≤ Re ≤ 6500. The steady 0- and 2-vortex flows first lose
stability to spiral disturbances (shear waves) in the secondary flow region for Re ≥ 6500. On the
other hand, the steady 1-vortex flow does not experience any wavy or spiral disturbance up to Re
≈ 8000, where it loses stability to spiral disturbances with fewer wavenumbers in the secondary
flow region but still remains toroidal near the equator. It is found that the multiple higher modes can
be obtained by using the proposed perturbation with different wavenumbers. These flow modes are
described in terms of rotational frequency, wave number, and spatial structure. The multiplicity in
certain range of Reynolds numbers reflects a nature of rotating fluid constrained in spherical annulus.
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