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a b s t r a c t

We present an artificial compressibility based numerical method for a phase field model for simulating
two-phase incompressible viscous flows. The phase model was proposed by Liu and Shen [Physica D.
179 (2003) 211–228], in which the interface between two fluids is represented by a thin transition region
of fluid mixture that stores certain amount of mixing energy. The model consists of the Navier–Stokes
equations coupled with the Allen–Cahn equation (phase field equation) through an extra stress term
and a transport term. The extra stress in the momentum equations represents the phase-induced capil-
lary effect for the mixture due to the surface tension. The coupled equations are cast into a conservative
form suitable for implementation with the artificial compressibility method. The resulting hyperbolic
system of equations are then discretized with weighted essentially non-oscillatory (WENO) finite differ-
ence scheme. The dual-time stepping technique is applied for obtaining time accuracy at each physical
time step, and the approximate factorization algorithm is used to solve the discretized equations. The
effectiveness of the numerical method is demonstrated in several two-phase flow problems with topolog-
ical changes. Numerical results show the present method can be used to simulate incompressible two-
phase flows with small interfacial width parameters and topological changes.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The nature of the interface between two fluids has been the
subject of extensive investigation in many scientific and engineer-
ing applications for two centuries. The initial investigations dated
back to Young, Laplace and Gauss, who considered the interface
between two fluids as a zero thickness (sharp) surface endowed
with some physical properties such as surface tension [1]. Latter,
Poisson, Maxwell and Gibbs recognized that the interface in fact
represented a rapid but smooth transition layer, where the physi-
cal quantities smoothly changed between two different bulk
values. Such a diffuse-interface idea gained further development
later, and in the works of Rayleigh [2], van der Waals [3], among
others, it was shaped into gradient theories for the interface based
on thermodynamical principles.

A contemporary representative theory for the diffuse-interface
notion that had root in Rayleigh and van der Waals ideas is the
phase field (PF) model. In a PF model, the sharp fluid interface is
replaced by a thin but nonzero thickness transition layer, where

the interfacial force is smoothly distributed as a capillary stress
tensor. Within this transition layer, fluids are mixed and have to
store certain amount of mixing energy. The mixture can be treated
as a special type of non-Newtonian fluid. The final rheology prop-
erty reflects the competition between the kinetic energy and the
elastic mixing energy [4]. The energetics of the thermodynamic
system described in terms of either the grand potential or the total
energy function can be modified to incorporate the effects of the
evolving phase field, thus gaining similarity with the energy contri-
butions from the surface excess quantities introduced in the Gibbs
formulation of surface thermodynamics [5]. When the capillary
width approaches zero, the PF model reduces properly to the clas-
sical sharp interface model.

From the methodology point of view, the PF model can be
viewed as a physically motivated indicator function method (typi-
cal indicator functions include level-set, volume of fraction, etc.).
Rather than choosing an artificial smoothing function for the inter-
face, which contaminates the results in non-trivial ways if the
radius of interfacial curvature approaches that of the interfacial
thickness [6], the PF model describes the interface by physically
profound mixing energy. The main attraction of the phase field
model is its capability to easily incorporate the complex rheology
of microstructured fluids with smooth transition of physical quan-
tities. Thus, the PF model provides a sound alternative for problems
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with topologically complex interfaces and problems, where the
interface thickness is comparable to the length scale of the phe-
nomena being involved. In recent years, the PF model is an increas-
ingly popular choice for modeling many kinds of application
problems ranging from free surface flows to critical phenomena
(see reference [7] for a detailed review, and [8] for advantages
and challenges and references there in).

There are many varieties of PF models. Recently, Liu and Shen
proposed a new formulation of PF model [4]. Their model was
based on an energetic variational formulation, and was shown to
be suitable for a wide range of applications and numerical methods
[9–16]. In their formulation, a mixing energy is defined based on
the phase variable /, through which a convection–diffusion equa-
tion governing the evolution of the interfacial profile is derived.
The dynamic of / can be driven by either Allen–Cahn [17] or
Cahn–Hilliard [18] types of gradient flows, depending on the
choice of dissipative mechanism. The elastic (mixing) energy is
responsible for the appearance of the induced elastic stress in the
momentum equations. The variable / assumes distinct constant
values in each bulk phase and undergoes rapid but smooth varia-
tion in the interfacial region. When thickness of the interface
approaches zero, this PF model is proven convergent to the sharp
interface level-set formulation [19–21].

In this work, numerical solution to the PF model of Liu and Shen
for incompressible two-fluid mixture [4] was realized by using the
artificial compressibility method [22]. The numerical simulation of
small thickness cases poses difficulty to numerical methods. Since
numerical implementation of the Allen–Cahn type of dynamics is
simpler than the Cahn–Hilliard type which involves the fourth-or-
der differential operator, we choose the former formalism. It is
well-known that Allen–Cahn type of dynamics induces volume
dissipation, yet this can be controlled by introducing a Lagrange
multiplier [4,14]. Thus, the present PF model consists of the
incompressible Navier–Stokes equations with two additions: the
Allen–Cahn type equation for the phase field variable /, and an
extra stress tensor in the momentum equations which represents
capillary effect for the mixture due to the surface tension.

In previous numerical implementation of this PF model, projec-
tion methods were often used [16,23,24]. These methods are gen-
erally very accurate for divergence-free constraint and efficient for
time-dependent problems. However, their extension to general
curvilinear coordinates is rather involved, and the stiffness of very
thin transitional layer may incur exceedingly small time step. On
the other hand, numerical discretization of the artificial compress-
ibility method will be simpler in general curvilinear coordinates
and easier to solve than an elliptic system, as a conservative form
of pseudo-time hyperbolic system is formulated and a time march-
ing scheme can be used. For such conservative laws, many high-or-
der high-resolution schemes like WENO scheme [25,26] can be
used to better capture the thin diffusive layer and various implicit
schemes can be utilized to relieve time step limitation, especially
for cases, where the width parameter of the diffusive layer is set
to small value. Of course, the artificial compressibility method
has a major disadvantage that the incompressibility constraint is
satisfied only when the hyperbolic system is marched in pseudo-
time to a converged state, which is generally inefficient for time-
dependent problems. Nevertheless, it may not be a big problem
if the dual-time stepping technique [27,28] is used together with
an efficient sub-iteration method.

This paper is organized as follows. In Section 2, the governing
equations for the mixture of two incompressible fluids are pro-
vided with relevant details. In Section 3, formulations based on
the artificial compressibility method are rewritten in conservative
form. Section 4 explains the spatial discretization. Time discretiza-
tion and numerical implementation are given in Section 5. Numer-
ical tests in several two-dimensional problems on the mixture of

two incompressible fluids are given in Section 6. Section 7 con-
cludes this paper.

2. Phase field model for mixture of two incompressible fluids

Let X be a two-dimensional physical domain that is filled with
two incompressible viscous fluids separated by a thin transitional
layer. The phase field function /(x, t) assumes distinct constant val-
ues in each bulk phase and undergoes rapid but smooth variation
in the interfacial region. It is used to identify the two fluids and
the interface at any time t by the following relation

x : /ðx; tÞ ¼ �1 fluid 1;
x : /ðx; tÞ ¼ 0 interface;
x : /ðx; tÞ ¼ 1 fluid 2:

8><
>:

We have adopted the PF model [4] which uses the familiar Ginz-
burg–Landau form of elastic (mixing) energy for the interaction be-
tween the two fluids

Wð/;r/Þ ¼
Z

X

1
2
jr/j2 þ Fð/Þ

� �
dx; ð2:1Þ

where

Fð/Þ ¼ 1
4g2 j/j

2 � 1
� �2

; ð2:2Þ

is a usual double-well potential of the bulk energy with g being the
interfacial width (width of the mixing layer).

The evolution of / is governed by either of the following
equations:

/tþu �r/¼
�cdW

d/ ¼c D/� f ð/Þð Þ Allen—Cahn equation;

r� crdW
d/

� �
¼�cD D/� f ð/Þð Þ Cahn—Hilliard equation:

8<
:

ð2:3Þ

Here dW/d/ represents the variation of the energy W with respect to
/, f(/) is a polynomial of / such that f ð/Þ ¼ F 0ð/Þ ¼ /ð/2�1Þ

g2 , and con-
stant c represents the elastic relaxation time. The Allen–Cahn equa-
tion differs from the Cahn–Hilliard equation in that the later
satisfies the volume fraction conservation constraint. However,
numerical solution of the Cahn–Hilliard equation is more difficult
than the Allen–Cahn equation because of the more complicated
fourth-order Laplacian operator and the nonlinear terms. In this
work, we choose the modified Allen–Cahn equation[14] which gives
simplification in formulation and satisfies the volume fraction con-
servation constraint. The momentum equation for the fluid flow
takes the form

q ut þ ðu � rÞu½ � ¼ �rpþr � r; ð2:4Þ

where q is the density of mixture, p is the pressure and r is the
stress tensor that includes the viscous tensor and the induced elas-
tic stress tensor (due to mixing of different fluids) and is given by

r ¼ l ruþ ðruÞT
h i

� kr/�r/; ð2:5Þ

where l is the fluid viscosity of mixture, k is the surface tension
coefficient and (r/ �r/)ij =ri/rj/ is the usual tensor product.
By using the identity

r � r/�r/ð Þ ¼ D/r/þr 1
2
jr/j2

� �
; ð2:6Þ

the momentum equation is further simplified by redefining the
pressure term: p ¼ pþ 1

2 kjr/j2.
In this work, we restrict to a specific type of mixture of two

incompressible fluids with same density (q = 1 for simplicity)
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and same viscosity constants (l1 = l2 = l) [4,14]. So, we have the
following system of governing equations:

r � u ¼ 0; ð2:7aÞ
ut þr � ðuuÞ � lDuþrp ¼ �kD/r/; ð2:7bÞ
/t þr � ðu/Þ � cD/ ¼ c �f ð/Þ þ nðtÞð Þ; ð2:7cÞ
d
dt

Z
X

/dx ¼ 0; ð2:7dÞ

where the momentum equation and the Allen–Cahn equation are
written in divergence form by virtue of (2.7a). The coupled nonlin-
ear system (2.7) will be subject to the initial conditions

ujt¼0 ¼ u0; /jt¼0 ¼ /0;

and appropriate boundary conditions. The role of the Lagrange mul-
tiplier n(t) in the Allen–Cahn equation is to change the asymptotic
constant values (±1) of the phase function / so as to conserve the
volume fraction (2.7d). In practice, the n(t) in Eq. (2.7c) is modified
as n(t)(1 � /2) because this will keep the maximum principle for /
as noted in [14]. The new n(t) can be calculated by using the follow-
ing formula

nðtÞ ¼
Z

X
f ð/Þdx=

Z
X
ð1� /2Þdx:

3. Artificial compressibility formulation

By adding the artificial compressibility terms for dual-time
stepping technique, the system (2.7a)–(2.7c) in two space dimen-
sions can be rewritten as follows:

ps þ bðux þ vyÞ ¼ 0; ð3:1aÞ
us þ ut þ ðu2 þ pÞx þ ðuvÞy � lðuxx þ uyyÞ ¼ �k/xð/xx þ /yyÞ;

ð3:1bÞ
vs þ v t þ ðuvÞx þ ðv2 þ pÞy � lðvxx þ vyyÞ ¼ �k/yð/xx þ /yyÞ;

ð3:1cÞ
/s þ /t þ ðu/Þx þ ðv/Þy � cð/xx þ /yyÞ

¼ cð1� /2Þ /
g2 þ nðtÞ
� �

: ð3:1dÞ

Write the above equations in conservative form with source term:

Q s þ ImQ t þ E� Evð Þx þ F� Fvð Þy ¼ Sint; ð3:2Þ

with

Q ¼

p

u

v
/

2
6664

3
7775; E¼

bu

u2 þ p

uv
u/

2
6664

3
7775; F¼

bv
uv

v2 þ p

v/

2
6664

3
7775; Im ¼

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
6664

3
7775;

and

Ev ¼

0
lux

lvx

c/x

2
6664

3
7775; Fv ¼

0
luy

lvy

c/y

2
6664

3
7775; Sint ¼

0
�k/xð/xx þ /yyÞ
�k/yð/xx þ /yyÞ

cð1� /2Þð/=g2 þ nðtÞÞ

2
6664

3
7775:

Here Q is the solution vector, u and v are Cartesian velocity compo-
nents, p is the redefined pressure, / represents the phase variable of
the species, l is the viscosity constant, b is the artificial compress-
ibility factor, s is the pseudo-time and t is the physical time. The
matrix Im is a modified identity matrix. Sint is the contribution from
the capillary effect and the nonlinear term in the phase field equa-
tion. Subscripts s, t, x,y represent partial derivatives. Because of the
addition of the artificial compressibility terms, the equations

become hyperbolic with respect to the pseudo-time, with Jacobian
matrices A and B of the inviscid flux vectors E and F respectively
and are given by

A ¼ @E
@Q
¼

0 b 0 0
1 2u 0 0
0 v u 0
0 / 0 u

2
6664

3
7775; B ¼ @F

@Q
¼

0 0 b 0
0 v u 0
1 0 2v 0
0 0 / v

2
6664

3
7775:

The viscous Jacobian matrices Av and Bv of the viscous flux vec-
tors Ev and Fv respectively, which will be utilized in the approxi-
mate factorization scheme are

Av ¼
@Ev

@Q
¼ diagð0;l;l;cÞ@x; and Bv ¼

@Fv

@Q
¼ diagð0;l;l;cÞ@y:

ð3:3Þ

It is possible to diagonalize A and B as

A ¼ XKAX�1; B ¼ YKBY�1; ð3:4Þ

where diagonal matrices KA and KB contain the eigenvalues of
matrices A and B respectively:

diagKA ¼ fu;uþ c1;u� c1;ug; diagKB ¼ fv ;v þ c2;v � c2;vg;
ð3:5Þ

with c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b

p
and c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ b

p
being the pseudo-speeds of

sound. The matrices X and Y are the right eigenvectors matrices,
while X�1 and Y�1 are their inverses respectively. These matrices
are given by

X ¼

0 c1ðc1 � uÞ c1ðc1 þ uÞ 0
0 c1 �c1 0
1 v v 0
0 / / 1

2
6664

3
7775;

X�1 ¼ 1

ðc1Þ2

�v �uv c2
1 0

1
2

1
2 ðc1 þ uÞ 0 0

1
2 � 1

2 ðc1 � uÞ 0 0
�/ �u/ 0 c2

1

2
6664

3
7775

and

Y ¼

0 c2ðc2 � vÞ c2ðc2 þ vÞ 0
1 u u 0
0 c2 �c2 0
0 / / 1

2
6664

3
7775;

Y�1 ¼ 1

ðc2Þ2

�u c2
2 �uv 0

1
2 0 1

2 ðc2 þ vÞ 0
1
2 0 � 1

2 ðc2 � vÞ 0
�/ 0 �v/ c2

2

2
6664

3
7775

4. Spatial discretization

To overcome the difficulty caused by the stiffness of sharp
interface situations (the interface width g ? 0), we will use the
weighted essentially non-oscillatory (WENO) scheme [25,26] for
discretizing the convective terms. WENO scheme is a high order
and high-resolution shock-capturing scheme widely used for solv-
ing the compressible Euler equations. Conventional second-order
central schemes will be used for the viscous terms and the surface
tension terms. We use a finite difference version of WENO scheme
similar to that implemented for the artificial compressibility meth-
od in [26] but with different split fluxes. Uniform Cartesian meshes
are used in this work. Let the mesh size in the x-direction be Dx
and the grid point be xj = jDx. Various quantities at xj will be
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identified by the subscript j. The WENO scheme which approxi-
mates Ex at xj will take the conservative form

Ex ¼
eEjþ1=2 � eEj�1=2

Dx
; ð4:1Þ

where eEjþ1=2 and eEj�1=2 are the numerical fluxes. We implement
WENO scheme in the characteristic way. Designate f sþ

k and f s�
k

respectively the local Lax–Friedriches fluxes in the sth characteristic
field:

f s�
k ¼

f s
k � asW

s
k

2
; k ¼ j� 2; � � � ; jþ 3; ð4:2Þ

with

f s
k ¼ Ls

jþ1
2
� Ek; Ws

k ¼ Ls
jþ1

2
� Q k;

where Ls
jþ1

2
is the sth left eigenvector, evaluated for arithmetic aver-

age state between j and j + 1, and as is the maximum magnitude of
the sth eigenvalue of Jacobian matrix Akþ1

2
over the range of

(k = j � 2, . . . , j + 2) for the local flux splitting. Following contents
of this section are identical to that given in Ref. [26]. First, we
describe the approximation of the numerical fluxes in the sth
characteristic field. The WENO numerical flux for the positive part
~f sþ

jþ1
2

is

~f sþ
jþ1

2
¼ xþ0

2
6

f sþ
j�2 �

7
6

f sþ
j�1 þ

11
6

f sþ
j

� �
þxþ1 �

1
6

f sþ
j�1 þ

5
6

f sþ
j þ

2
6

f sþ
jþ1

� �

þxþ2
2
6

f sþ
j þ

5
6

f sþ
jþ1 �

1
6

f sþ
jþ2

� �
; ð4:3Þ

where

xþk ¼
aþk

aþ0 þ aþ1 þ aþ2
; k ¼ 0;1;2

aþ0 ¼
1

10
ð�þ ISþ0 Þ

�2
; aþ1 ¼

6
10
ð�þ ISþ1 Þ

�2
;

aþ2 ¼
3

10
ð�þ ISþ2 Þ

�2
; � ¼ 10�6

and

ISþ0 ¼
13
12

f sþ
j�2 � 2f sþ

j�1 þ f sþ
j

� �2
þ 1

4
f sþ
j�2 � 4f sþ

j�1 þ 3f sþ
j

� �2

ISþ1 ¼
13
12

f sþ
j�1 � 2f sþ

j þ f sþ
jþ1

� �2
þ 1

4
f sþ
j�1 � f sþ

jþ1

� �2

ISþ2 ¼
13
12

f sþ
j � 2f sþ

jþ1 þ f sþ
jþ2

� �2
þ 1

4
3f sþ

j � 4f sþ
jþ1 þ f sþ

jþ2

� �2
:

Similarly, the WENO numerical flux for the negative part ~f s�
jþ1

2
is

~f s�
jþ1

2
¼ x�0 �

1
6

f s�
j�1 þ

5
6

f s�
j þ

2
6

f s�
jþ1

� �
þx�1

2
6

f s�
j þ

5
6

f s�
jþ1 �

1
6

f s�
jþ2

� �

þx�2
11
6

f s�
jþ1 �

7
6

f s�
jþ2 þ

2
6

ss�
jþ3

� �
; ð4:4Þ

where

x�k ¼
a�k

a�0 þ a�1 þ a�2
; k ¼ 0;1;2

a�0 ¼
3

10
ð�þ IS�0 Þ

�2
; a�1 ¼

6
10
ð�þ IS�1 Þ

�2
;

a�2 ¼
1

10
ð�þ IS�2 Þ

�2
; � ¼ 10�6

and

IS�0 ¼
13
12

f s�
j�1 � 2f s�

j þ f s�
jþ1

� �2
þ 1

4
f s�
j�1 � 4f s�

j þ 3f s�
jþ1

� �2

IS�1 ¼
13
12

f s�
j � 2f s�

jþ1 þ f s�
jþ2

� �2
þ 1

4
f s�
j � f s�

jþ2

� �2

IS�2 ¼
13
12

f s�
jþ1 � 2f s�

jþ2 þ f s�
jþ3

� �2
þ 1

4
3f s�

jþ1 � 4f s�
jþ2 þ f s�

jþ3

� �2
:

Next, we convert the numerical flux back to the physical space.
Denote Rs

jþ1
2

(column vector) the sth right eigenvector of Jacobian
Ajþ1

2
. The numerical fluxes obtained in each characteristic field

can be projected back to the physical space by

eEjþ1
2
¼
X4

s¼1

~f s
jþ1

2
Rs

jþ1
2
¼
X4

s¼1

~f sþ
jþ1

2
þ ~f s�

jþ1
2

� �
Rs

jþ1
2
: ð4:5Þ

Other directions can be treated similarly.

5. Implicit approximate factorization scheme

The approximate factorization (AF) method [29] is an extension
of the alternating direction implicit (ADI) method to the system of
the Navier–Stokes equations. Applying backward difference to the
pseudo-time derivative and three point, second-order backward
difference scheme to the physical time derivative in Eq. (3.2), we
obtain

DQ nþ1;m

Ds
þ Im

1:5Q nþ1;mþ1 � 2Q n þ 0:5Q n�1

Dt

þ @ðE� EvÞ
@x

þ @ðF� FvÞ
@y

� �nþ1;mþ1

¼ Snþ1;m
int ; ð5:1Þ

where DQn+1,m = Qn+1,m+1 � Qn+1,m, the superscript n is the physical
time level, and m is the pseudo-time level (the number of sub-iter-
ations). Ds is the pseudo-time step size which is determined based
on the CFL number and Dt is the physical time step size. In this
work, we treat Sint explicitly. The equations are iterated in pseu-
do-time so that Qn+1,m+1 approaches the physical Qn+1 when the
iteration is converged. The residual terms at m + 1 pseudo-time le-
vel are linearized with respect to the previous level m by using Tay-
lor’s expansion, e.g.

Emþ1 � EðQ mÞ þ @E
@Q

� �m

ðQ mþ1 � Q mÞ ¼ Em þ AmDQ m: ð5:2Þ

From now on, the superscript n + 1 is omitted for brevity. One can
obtain the unfactored implicit delta form as

Iþ 1:5
Ds
Dt

Im þ Ds @ðA� AvÞ
@x

þ @ðB� BvÞ
@y

� �� �m

DQ m

¼ �Ds @ðE� EvÞ
@x

þ @ðF� FvÞ
@y

� Sint

� �m

� Ds
Dt

Im 1:5Q m � 2Q n	
þ 0:5Q n�1

�
¼ Rm: ð5:3Þ

The terms Av and Bv are the viscous Jacobian matrices given in
Eq. (3.3). The Beam–Warming approximate factorization scheme
[29] can be symbolically written as

£ � DQ m � £x£y � DQ m ¼ Rm: ð5:4Þ

To obtain block tri-diagonal equations, convective terms in LHS
of Eq. (5.3) are discretized by first-order upwind difference and
viscous terms by second-order central difference, e.g.

dþx fi ¼
fiþ1 � fi

Dx
; d�x fi ¼

fi � fi�1

Dx
; and d2

x fi ¼
ðfiþ1 � 2f i þ fi�1Þ

Dx2 :

Remember that WENO scheme is still used for the convective
terms and central difference for the viscous and capillary terms
in RHS. Thus, Eq. (5.3) becomes the following form

A. Shah, L. Yuan / Computers & Fluids 42 (2011) 54–61 57
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Iþ1:5
Ds
Dt

ImþDs d�x Aþþdþx A��dxAv
	 


þDs d�y Bþþdþy B��dyBv

� �� �m

�DQ m¼Rm:

ð5:5Þ

In order to make use of the diagonal algorithm which saves
computational cost [30,31], we change Im to I and diag(0,l,l,c)
to max(l,c)I in the LHS of Eq. (5.5), which alters convergence but
not accuracy. Denote 1þ 1:5 Ds

Dt

	 

I ¼ H; lm ¼maxðl; cÞ, then the

equation becomes

Hþ Ds d�x XKþA X�1 þ dþx XK�A X�1 � lmId2
x

� �h
þ Ds d�y YKþB Y�1 þ dþy YK�B Y�1 � lmId2

y

� �im
DQ m ¼ Rm: ð5:6Þ

As usual, by adding cross-derivative terms to LHS of (5.6), which
is the same order of Ds3 as the truncated terms of original
equations, we can obtain the AF scheme in the following form

Hþ Ds d�x XKþA X�1 þ dþx XK�A X�1 � lmId2
x

� �h i
H�1

� Hþ Ds d�y YKþB Y�1 þ dþy YK�B Y�1 � lmId2
y

� �h i
DQ m ¼ Rm: ð5:7Þ

The system (5.7) can be solved with the well-known ADI
scheme. Since the factor in each direction can be diagonalized,
we only need to solve a system of scalar tri-diagonal equations
like

ajDUj�1 þ bjDUj þ cjDUjþ1 ¼ rj; j ¼ 1; � � � ; jmax� 1

with periodic boundary condition DU1 = DUjmax for all cases in this
work. In order to keep numerical stability, the split eigenvalues in
LHS of Eq. (5.7) are constructed as

K� ¼ 1
2
ðK� jjKjÞ;

where j is a constant that is greater than or equal to unity to ensure
the split eigenvalue is strictly positive or negative. j = 1 is used
throughout this work.

6. Numerical examples

In this section, the numerical method developed in previous
sections is tested on several 2D problems of incompressible two-
fluid mixture. In all computations, we have used following fixed
physical parameters:

g ¼ 0:02; k ¼ 0:1; l ¼ 0:1; and c ¼ 0:1

and the computational grid is 321 � 321 uniform grid points for a
square solution domain [0,2p] � [0,2p]. Time step Dt is set to
0.002 so as to compare our results with the reference solutions
[4,14,16], and CFL number for pseudo-time is set to 5. The maxi-
mum number of sub-iteration is set to 100 and the value of b is
fixed to 10. The initial velocity and pressure are all zero, while the
initial condition for / is specified in each example. We remark that
the mesh size 2p/320 = 0.0196 is comparable to the interfacial
width g, implying that the diffusive layer is under-resolved.

Fig. 1. Evolution of phase contours of an initially rectangle bubble with Lagrange multiplier at t = 0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0.

Fig. 2. Evolution of phase contours of an initially rectangle bubble without Lagrange multiplier at t = 0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0.
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6.1. Example 1 (surface tension effects)

In this example, we give the evolution of a square to a circle to
show the surface tension effects of the test problem. Initially a
rectangular bubble is centered at [p,p] with the side length of 2,
and / is taken 1 inside the bubble and �1 otherwise. As the time
goes, the rectangular bubble deforms into a circular bubble due
to the surface tension effect as shown in Fig. 1. However, if we
remove the Lagrange multiplier from the phase field equation,
the rectangular bubble will start shrinking as shown in Fig. 2. We
observe that the volume of the bubble is preserved quite well with
Lagrange multiplier, while it decreases gradually if no Lagrange
multiplier is used, as shown in Fig. 3. The distribution of phase /
along y = p is shown in Fig. 4 for t = 2.0 which is comparable with
the final steady state circle of radius

ffiffiffiffiffiffiffiffiffi
4=p

p
centered at (p,p). The

pressure contours for this case are shown in Fig. 5 at t = 2.0. These
results suggest the evolution processes of the bubble are in fair
agreement with the reference solution [4].

Finally, to show the time accuracy of the scheme, the residual of
the equations is shown in Fig. 6. We see it reduces by two orders of
magnitude in 100 sub-iterations as evidenced from the enlarged
subset for physical time t = 1.5. The CPU time up to t = 2.0 is about
10 h on a single core of Intel Xeon 5570.

6.2. Example 2 (cross to circle)

In this example, initially a cross is centered at [p,p] with the
side length of 4, / is taken 1 inside the cross and �1 otherwise
as shown in Fig. 7 (t = 0.0). The cross initially with sharp corners
is finally deformed into a circle. This evolution of the phase exhib-
its the fact that the Allen–Cahn equation handles the sharp corners
and minimizes the measure of the interface [32]. The final state of
the deformation is a steady state circle with a minimum size of the
interface. The results shown in Fig. 7 are well comparable to those
obtained by using the finite element method [32].

Fig. 3. Overall volume fraction versus time to show mass conservation.

Fig. 4. Comparison of computed profile of / along y = p at t = 2.0 with the exact
circle of radius

ffiffiffiffiffiffiffiffiffi
4=p

p
centered at (p,p).
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Fig. 5. Pressure contours of an initially rectangle bubble at time t = 2.0.

Fig. 6. Convergence history from physical time at t = 1.4 to t = 1.5 with 100
sub-iteration in psuedo-time. The enlarged subfigure shows the convergence after
100 sub-iteration at physical time t = 1.5.
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6.3. Example 3 (coalescence of two kissing bubbles)

In this example, the coalescence of two kissing bubbles is stud-
ied. Initially, two unit circular bubbles are centered at [p � 1,p]
and [p + 1,p] respectively, As the time evolves, first the two bub-
bles coalesce into a big elliptical bubble, which then transfigures
and deforms into a steady state circular bubble as shown in
Fig. 8. This is the combination of the surface tension effect and
the elastic effect from the phase equation [4].

6.4. Example 4 (coalescence of three kissing bubbles)

This example is to further study coalescence of three equal bub-
bles which are initially kissing each other. Their radii are all equal
to p/4, and / is taken as 1 inside these bubbles and �1 otherwise.
Fig. 9 presents contours of the phase field / at several different
time instants. As the time evolves, first the three bubbles coalesce
into one big bubble due to the surface tension, then that big bubble
deforms into an inverted triangle bubble at t = 0.2. This deforma-

Fig. 7. Evolution of phase contours from a cross to a circle at t = 0, 0.04, 0.12, 0.2, 0.4, 0.8, 1.6, 2.0.

Fig. 8. Contours of phase / for initially two kissing bubbles at t = 0, 0.1, 0.2, 0.4,1.2, 2.0 2.4, 2.8.

Fig. 9. Contours of phase / for initially three kissing bubbles at t = 0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0.
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tion procedure continues alternately until the bubble reaches a
steady circular bubble. The present results are in good agreement
with those obtained by using the moving mesh method [15].

7. Conclusions

We have proposed a new numerical method for the phase field
model for simulating incompressible two-phase flows based on the
artificial compressibility approach. A modified Allen–Cahn type of
phase field equation for the mixture of two incompressible fluids is
coupled with the Navier–Stokes equations in a fairly simple way.
The numerical results demonstrate that high-order high-resolution
WENO schemes can be used in conjunction with the artificial com-
pressibility method, and it can correctly capture a thin diffusive
layer even if meshes are not fine enough to resolve that layer.
The modified Allen–Cahn equation is shown capable of preserving
volume fraction. The present results are comparable to other calcu-
lated ones. Future work may include implicit treatment of capillary
effects and nonlinear terms to relax physical time step, modeling of
different densities and viscosities, and extension to 3D problems.
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