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This article presents a time-accurate numerical method using high-order accurate compact
finite difference scheme for the incompressible Navier–Stokes equations. The method
relies on the artificial compressibility formulation, which endows the governing equations
a hyperbolic–parabolic nature. The convective terms are discretized with a third-order
upwind compact scheme based on flux-difference splitting, and the viscous terms are
approximated with a fourth-order central compact scheme. Dual-time stepping is imple-
mented for time-accurate calculation in conjunction with Beam-Warming approximate
factorization scheme. The present compact scheme is compared with an established
non-compact scheme via analysis in a model equation and numerical tests in four bench-
mark flow problems. Comparisons demonstrate that the present third-order upwind com-
pact scheme is more accurate than the non-compact scheme while having the same
computational cost as the latter.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The viscous incompressible Navier–Stokes equations (INSE) are fundamental governing equations in fluid mechanics. The
numerical solution of these equations is an indispensable tool for studying incompressible fluid flow problems. Numerous
computational methods for solving these equations have been developed in the past five decades, see Refs. [1,2] for a review.
However, with ever increasing interest in numerical calculations demanding high accuracy for a wide range of length scales,
such as large-eddy simulation and direct numerical simulation of turbulence, high-order numerical methods become a major
concern. Particularly, high-order finite difference, finite volume and finite element methods have received more attention
than traditional globally high-order methods such as spectral methods [3,4] because the former are more robust in handling
complicated geometries and boundary conditions than the latter.

High-order compact finite difference schemes [5–7] provide an effective way of combining the robustness of finite differ-
ence schemes and the accuracy of spectral methods. Generally, the computation of derivatives in compact finite differences
is implicit in the sense that the derivative values at a particular node are computed not only from the function values but also
from the values of the derivative at the neighboring nodes. The compact schemes are global schemes yet the computational
cost is not high since solution of the resulting multi-diagonal sparse system can be carried out efficiently. Compared to non-
compact schemes of the same order of accuracy, compact schemes utilize a smaller stencil, have smaller truncating errors,
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and give better resolution especially at higher wave numbers. Extensive study of high-order compact schemes on a uniform
grid was carried out by Lele [7] in 1992. Since then compact schemes have attained wide popularity in solving various engi-
neering problems involving incompressible [8,9,15,10–12] and compressible flows [13,14,16–19].

Compact finite difference schemes can generally be classified into two broad categories: central and upwind. Central
compact schemes have the advantage of achieving higher-order accuracy with fewer grid points in the stencil, but they
are non-dissipative, and using central compact schemes on non-staggered meshes for convection terms might cause numer-
ical oscillations even for flows without discontinuities. Reducing or removing such oscillations requires the introduction of
dissipation terms or the use of filtering approach [20]. However, filtering adds dissipation to the numerical scheme and this
often results in a loss of sharp flow features in the computed solution [21], Furthermore, filtering is often treated implicitly
and this again needs to solve multi-diagonal sparse system so as to double the computational cost for evaluating derivatives.
In contrast, upwind compact schemes with dissipative properties do not need filtering. Fu and Ma [15,16] among others
[17,22] have developed some upwind compact schemes. As these upwind compact schemes can automatically provide
grid-scale linkage for each variable to avoid odd-even decoupling and built-in dissipation mechanism to prevent non-phys-
ical oscillations, they are suitable for discretizing the convective terms on collocated grids for the primitive formulation, and
this will make it easy to develop solution methods capable of handling problem with complicated geometries.

The difficulty in solving the primitive variable form of the INSE is the lack of a time derivative term in the continuity equa-
tion, which limits the straight forward application of time marching numerical methods. Some of the primitive variable for-
mulations for solving these equations are MAC method [23], fractional step (or projection) methods [24,25], SIMPLE method
[26], and the artificial compressibility (AC) method [27]. It is remarked that designing a higher than three-order projection
method or SIMPLE method is a nontrivial task. However, it is quite straight forward to develop high-order schemes based on
the AC method.

The AC method has been extensively developed for time-accurate flow computation by many investigators including [28–
32]. The common way is to add pseudo-time derivatives to the continuity equation as well as the momentum equations, and
then to utilize dual-time stepping technique [30,31], i.e., in each physical-time step, sub-iteration are performed to drive the
velocity divergence to zero. Various discretization and solution strategies borrowed from compressible flow methods were
implemented in conjunction with the AC method, such as upwind biased schemes based on flux-difference splitting (FDS)
[28,29,33], MUSCL scheme [34,32] and WENO scheme [35]. However, applications of compact schemes in conjunction with
the AC method are quite few [36,37].

The objective of the present study is to extend our previous work [37] for steady state problems to time-accurate simu-
lation of unsteady incompressible flow problems. The upwind compact scheme developed in [37] combined Fu and Ma’s up-
wind compact scheme [15,16] with flux-difference splitting. The advantage of Fu and Ma’s upwind compact schemes lies in
that, their implicit parts involve only two points while most other upwind compact schemes involve three or five points
[18,38]. This will reduce a reasonable amount of computational costs.

In this paper, implementation of the flux-difference splitting based third-order upwind compact scheme [37] for the con-
vective terms in Cartesian coordinates is given in detail. The explicit part of the compact scheme is computed according to
Rogers’ implementation of flux-difference splitting [28], while the implicit part of the compact scheme retains the same bi-
diagonal equations as Fu and Ma’s upwind compact scheme [15,16]. To show the third-order accuracy for our upwind com-
pact scheme, we employ a fourth-order central compact scheme for the viscous terms. We use the well established dual time
stepping technique [30,31] for achieving time accuracy. The efficiency of the sub-iteration procedure is not concerned in this
paper, so the traditional Beam-Warming approximate factorization scheme is used. The accuracy and efficiency of the pres-
ent upwind compact schemes are compared with the established non-compact scheme [28,29] through numerical tests in
several two-dimensional benchmark problems.

The rest of the paper is organized as follows: In Section 2, formulations for the artificial compressibility method are briefly
outlined. Section 3 describes the spatial discretization including the upwind compact scheme and the non-compact scheme
for the convective terms. Section 4 describes the solution method to the discretized equations. In Section 5 boundary con-
ditions are given. Section 6 deals with analysis of the compact and non-compact schemes in a model problem. Tests for order
of accuracy and comparison with the non-compact scheme are made via calculating several 2D unsteady flow problems in
Section 7. Finally, conclusions are drawn in Section 8.

2. Governing equations

The governing equations for two-dimensional incompressible Navier–Stokes equations in Cartesian coordinates ðx; yÞ in
dimensionless form and in the absence of body forces are:
r � u ¼ 0; ð2:1Þ

ut þ ðu � rÞuþrp� 1
Re
r2u ¼ 0; ð2:2Þ
here u is the velocity field, p is the static pressure and Re is the Reynolds number. By introducing pseudo-time terms into the
continuity and momentum equations with the dual-time stepping technique (pseudo-time s + physical-time t), we have
[28]:
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where b is the artificial compressibility parameter whose value is important to the performance of the AC method. Eqs. 2.3,
2.4 and 2.5 can also be written as
@Q
@s
þ Im

@Q
@t
þ @ðE� EvÞ

@x
þ @ðF� FvÞ

@y
¼ 0: ð2:6Þ
where Q ¼ ½p;u; v�T is the solution variable vector, E, F, and Ev ; Fv are the inviscid and viscous flux vectors, respectively i.e.,
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2
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The matrix Im ¼ diagð0;1;1Þ is a modified identity matrix.
Because of the added AC term, the equations become hyperbolic type in time, with flux Jacobian matrices A and B being
A ¼ @E
@Q
¼

0 b 0
1 2u 0
0 v u

2
64

3
75; B ¼ @F

@Q
¼

0 0 b

0 v u
1 0 2v

2
64

3
75:
It is possible to diagonalize A and B by using similarity transform as
A ¼ XKAX�1; B ¼ YKBY�1;
where diagonal matrices KA and KB contain the eigenvalues of matrices A and B:
diagðKAÞ ¼ fu� c1;u; uþ c1g;diagðKBÞ ¼ fv � c2; v; v þ c2g;
with c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b

p
and c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ b

p
being the pseudo-speeds of sound in both directions. X and Y are the matrices of the

right eigenvectors, while X�1 and Y�1 are their inverses, respectively. The eigenvalues of the Jacobian matrix play an impor-
tant role in understanding the mathematical characteristics of the governing equations. More importantly, it gives us the
speed and direction of propagation of information providing basis for the development of an upwind scheme.

3. Spatial discretization

3.1. Third-order upwind compact scheme

Due to the hyperbolic nature of the system (2.6), the convective terms can be split in two parts, i.e., along the x-direction
Ex ¼ Eþx þ E�x : ð3:1Þ
Eþ corresponds to the flux in the positive x direction with information being propagated from left to right by the positive
eigenvalues and E� corresponds to the flux in the negative x direction with information being propagated from right to left
by the negative eigenvalues. To evaluate the split derivatives, we use the third-order upwind compact scheme developed by
Fu and Ma [15,16] in the following form
2
3
ðEþx Þi þ

1
3
ðEþx Þi�1 ¼

55iE
þ þ4iE

þ

6Dx
; OðDx3Þ ð3:2aÞ

2
3
ðE�x Þi þ

1
3
ðE�x Þiþ1 ¼

5iE
� þ 54iE

�

6Dx
; OðDx3Þ ð3:2bÞ
where 4if ¼ fiþ1 � fi and 5if ¼ fi � fi�1. Eq. (3.2b) can be explicitly marched forward and Eq. (3.2a) backward to get all the
derivatives once the right-hand side (RHS) and the boundary derivative is given. The RHS of (3.2b) and (3.2a) involves the
difference of split fluxes between neighboring points, which can be computed with flux-difference splitting (FDS) originally
being approximate Riemann solver for the Euler equations [39]. The Roe formula is [39]:
E�iþ1 � E�i � 4E�iþ1
2
¼ A�ðQ ÞðQ iþ1 � Q iÞ; ð3:3Þ
where 4E�iþ1
2

is the flux difference across the positive or negative traveling waves. The split Jacobian matrix is calculated by

A�ðQ Þ ¼ XK�A X�1 with K�A ¼ 1
2 ðKA � jKAjÞ, which is evaluated using some intermediate value Q . For incompressible flows, the
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Roe properties [39], which are necessary for a conservative scheme, are satisfied if Q is taken as the arithmetic average of the
surrounding points [28,29,33]
Q ¼ 1
2

Q i þ Q iþ1

� �
:

To close the third-order interior scheme, an explicit, dissipative, and third-order one-sided boundary scheme [19] is used
at boundary points:
at i ¼ 1 : ðEþx Þi ¼
�11Eþi þ 18Eþiþ1 � 9Eþiþ2 þ 2Eþiþ3

6Dx
¼

11DEþiþ1
2
� 7DEþiþ3

2
þ 2DEþiþ5

2

6Dx
; OðDx3Þ; ð3:4aÞ

at i ¼ N : ðE�x Þi ¼
11E�i � 18E�i�1 þ 9E�i�2 � 2E�i�3

6Dx
¼

11DE�i�1
2
� 7DE�i�3

2
þ 2DE�i�5

2

6Dx
; OðDx3Þ: ð3:4bÞ
3.2. Third-order non-compact scheme

The established third-order upwind biased scheme in Refs. [28,29] essentially is
ðEþx Þi ¼
2DEþiþ1

2
þ 5DEþi�1

2
� DEþi�3

2

6Dx
; OðDx3Þ; ð3:5aÞ

ðE�x Þi ¼
2DE�i�1

2
þ 5DE�iþ1

2
� DE�iþ3

2

6Dx
; OðDx3Þ: ð3:5bÞ
We compare computational counts between Eqs. (3.5b), (3.5a) and (3.2b), (3.2a) with given boundary derivatives. We find
both the upwind compact scheme and the non-compact scheme have identical computational cost.

3.3. Fourth-order central compact scheme for the viscous terms

The discretization of the viscous terms is much more simpler than that of the convective terms because viscous
diffusion occurs in all directions, and the discretization of the viscous terms is always performed with central formulas.
Therefore, the second derivative in the viscous terms of Eq. (2.6) is approximated by a fourth-order central compact scheme
[16], i.e.,
1
12
ðSi�1 þ 10Si þ Siþ1Þ ¼

ui�1 � 2ui þ uiþ1

Dx2 ; ð3:6Þ
where S approximates @2u=@x2 in fourth-order accuracy. To obtain Si, a linear system of equations with a tri-diagonal matrix
has to be solved.

4. AF Scheme

The approximate factorization (AF) method [40] is an extension of the alternating direction implicit (ADI) method to the
system of the Navier–Stokes equations. Direct solution methods exist but are computationally expensive, thus the approx-
imate factorization scheme is a better choice. By applying backward difference to the pseudo-time derivative and three
point, second-order backward difference scheme to the physical-time derivative, one obtains
DQ nþ1;m

Ds
þ Im

1:5Q nþ1;mþ1 � 2Q n þ 0:5Q n�1

Dt
¼ � @ðE� EvÞ

@x
þ @ðF� FvÞ

@y

� �nþ1;mþ1

¼ Rnþ1;mþ1 ð4:1Þ
where DQ nþ1;m ¼ Q nþ1;mþ1 � Q nþ1;m, the superscript n is the physical-time level, and m is the pseudo-time level (the number
of sub-iterations). Ds is the pseudo-time step size which is determined based on the CFL number and Dt is the physical-time
step size. For the unsteady formulation, the equations are iterated in pseudo-time so that Q nþ1;mþ1 approaches the physical
Q nþ1 as the iteration is converged. The residual terms at mþ 1 pseudo-time level are linearized with respect to the previous
level m by using Taylor’s expansion, e.g.,
Emþ1 � Em þ @E
@Q

� �m

ðQ mþ1 � Q mÞ ¼ Em þ AmDQ m: ð4:2Þ
From now on, the superscript nþ 1 is omitted for brevity. One can obtain the unfactored implicit delta form as
Iþ 1:5
Ds
Dt

Im þ Ds @ðA� AvÞ
@x

þ @ðB� BvÞ
@y

� �� �m

DQ m ¼ �Ds @ðE� EvÞ
@x

þ @ðF� FvÞ
@y

� �m

� Ds
Dt

Imð1:5Q m � 2Q n þ 0:5Q n�1Þ ¼ Sm; ð4:3Þ
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where
Sm ¼ DsRm � Ds
Dt

Imð1:5Q m � 2Q n þ 0:5Q n�1Þ:
The terms Av and Bv are the viscous Jacobian matrices. For the steady state formulation, terms resulting from derivatives
with respect to t are dropped and the time level nþ 1 represents the steady state. The equations are marched in pseudo-time
until RHS of Eq. (4.3) converges to zero. The Beam-Warming approximate factorization (AF) scheme [40] can be symbolically
written as
£ � DQ m � £x£y � DQ m ¼ Sm: ð4:4Þ
To obtain block tri-diagonal equations, convective terms in LHS of Eq. (4.3) are discretized by first-order upwind difference
and viscous terms by traditional central difference, e.g.,
dþx fi ¼
fiþ1 � fi

Dx
; d�x fi ¼

fi � fi�1

Dx
; and d2

x fi ¼
ðfiþ1 � 2f i þ fi�1Þ

Dx2 :
Remember that the upwind compact scheme is used only for the RHS. Thus, one obtains the following form
Iþ 1:5
Ds
Dt

Im þ Ds d�x Aþ þ dþx A� � dxAv
� �

þ Ds d�y Bþ þ dþy B� � dyBv

	 
� �m

DQ m ¼ Sm: ð4:5Þ
Let Im ! I to make diagonalization possible and denote 1þ 1:5 Ds
Dt

� �
I ¼ H, then
Hþ Ds d�x XKþA X�1 þ dþx XK�A X�1 � I
Re

d2
x

� �
þ Ds d�y YKþB Y�1 þ dþy YK�B Y�1 � I

Re
d2

y

� �� �m

DQ m ¼ Sm: ð4:6Þ
Finally, by adding cross-derivative terms only to the LHS, which is the same order of Ds3 as the truncated terms of original
equations, we can obtain the AF scheme in the following form
Hþ Ds d�x XKþA X�1 þ dþx XK�A X�1 � I
Re

d2
x

� �� �
H�1 � Hþ Ds d�y YKþB Y�1 þ dþy YK�B Y�1 � I

Re
d2

y

� �� �
DQ m ¼ Sm ð4:7Þ
The system (4.7) can be solved with the well-known ADI scheme. To reduce computational cost further, we adopt
the diagonalization procedure [41] to put the left and right eigenvector matrices out of the difference operators to obtain
Hþ Ds d�x KþA þ dþx K�A �
1

Re
d2

x

� �� �
DQ 		 ¼ X�1Sm; ð4:8aÞ

Hþ Ds d�y KþB þ dþy K�B �
1

Re
d2

y

� �� �
DQ 	 ¼ Y�1HXDQ 		; ð4:8bÞ

DQ m ¼ YDQ 	: ð4:8cÞ
Eq. (4.8c) or (4.8a) is a system of scalar tri-diagonal equations of the form
aiDUi�1 þ biDUi þ ciDUiþ1 ¼ ri; i ¼ 2; . . . ; imax� 1
with Dirichlet boundary condition DU1 ¼ DUimax ¼ 0 for general cases, and periodic boundary condition for periodic cases.
In order to provide enough damping for numerical stability, the split eigenvalues in LHS of Eqs. (4.8c) and (4.8a) are con-

structed as
K� ¼ 1
2
ðK� jjKjÞ;
where j is a constant that is greater than or equal to unity to ensure the split eigenvalue is strictly positive or negative.
5. Boundary conditions

The boundary conditions at a wall are specified as follows. The velocity satisfies a Dirichlet condition. For a viscous flow,
the boundary condition on the wall is non-penetration and non-slip, i.e., the velocity is equal to zero. If the problem includes
a moving wall, then the given wall velocity is specified. The pressure at a wall boundary is obtained by setting the pressure
gradient normal to the wall to be zero. Symmetric or periodic boundary conditions are imposed in the symmetry plane. The
boundary conditions at the inflow and outflow boundaries can be defined by considering the characteristic waves traveling
in and out of the computational domain. For each positive (or negative) eigenvalue, there is a wave propagating information
in the positive (or negative) direction. Therefore, we can use the eigenvalues to determine the characteristic waves that bring
information from the interior of the domain to the boundaries.

In the ADI procedure, all the boundary conditions are generally treated explicitly because of the lack of physical meaning
for DQ 	 and DQ 		 at split steps, which can be achieved by setting them to zero on the boundary. However, for a problem with
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periodic boundary conditions, the boundary is treated implicitly and a periodic scalar- or block-tridiagonal solver [42] is
used to solve the system.

6. Model problem

In order to examine approximating behavior of the upwind compact scheme, we use the following model equation as sug-
gested in Ref. [19] and its semi-discrete approximation as follows:
@u
@t
þ c

@u
@x
¼ 0; c > 0; ð6:1aÞ

@uj

@t
þ cFj ¼ 0; ð6:1bÞ
where Fj is the finite difference approximation to @u=@x. With the initial condition uðx;0Þ ¼ eikx, the exact solution of Eq.
(6.1a) is uðx; tÞ ¼ eikðx�ctÞ, and the exact solution of Eq. (6.1b) can be written as uðxj; tÞ ¼ e�kr

ct
Dxeik xj�

ki
kDxct

� �
, where the modified

wave number ke ¼ kr þ iki can be obtained from a given difference scheme. kr is related to the numerical damping of a dif-
ference scheme and ki is related to the phase speed in the numerical solution. For the third-order upwind compact scheme
Eq. (3.2a),
kr ¼
ð1� cos aÞ2

5þ 4 cos a
; ki ¼

sinað8þ cos aÞ
5þ 4 cos a

; ð6:2Þ
where the reduced wave number is a ¼ kDx. For the explicit third-order upwind scheme of Rogers and Ewak [29],
kr ¼
1
6
ð3� 4 cos aþ cos 2aÞ; ki ¼

1
6
ð8 sina� sin 2aÞ: ð6:3Þ
Fig. 1 shows variations of ki and kr with the reduced wave number a for the upwind compact scheme and the upwind
biased scheme of Ref. [29]. We can see the compact scheme can approximate the exact dispersion relation ðkE

i ¼ aÞ better
than the non-compact scheme. From the curve of kr , the dissipation error of the present scheme is less than the non-compact
scheme if a < 2:1, and it becomes larger when a > 2:1. Table 1 gives the upper limit of the reduced wave number, which
corresponds to a point in Fig. 1 where kr or ki begins to reach 2% errors relative to their exact solutions, respectively. Larger
upper limit of a implies coarse mesh size ðDxÞ (hence fewer grid points) can be used to resolve a given physical structure. For
example, to approximate the exact wave speed within 2% error, the ratio of grid points needed by the upwind compact
scheme to those needed by the upwind biased scheme is 0:902=1:61 ¼ 0:56 in one dimensional case, and it becomes
ð0:902=1:61Þ2 ¼ 0:31 in two-dimensional case, resulting in significant saving in grid point numbers. In all, the compact
scheme is more efficient than the non-compact scheme when a desired resolution is pursued.

7. Numerical examples

In this section, the present numerical method is tested in one steady flow and three unsteady flow problems. These are
the Kovasznay flow, the oscillating plate, the Taylor decaying vortices, and the doubly periodic shear layer. The first three test
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Fig. 1. Variations of ki and kr vs. a for the compact and non-compact schemes.



Table 1
Upper limits of the reduced wave number when kr and ki of the difference schemes first exceed 2% errors relative to their exact solutions.

Scheme Upper limits of wave number

kr < 2% j1� ki=aj < 2%

Upwind compact scheme 0.91 1.61
Upwind biased scheme 0.72 0.902
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cases have analytical solutions, while the last one has been studied extensively in the literature. In all these cases, the pseu-
do-time step Ds is determined locally with CFL = 10.

7.1. Kovasznay flow

The Kovasznay flow [43] is used for verification of the order of accuracy of the present compact scheme. This problem has
an analytical solution to the two-dimensional steady INSE in a square domain ½�0:5� 1:5�2. The exact solution of the prob-
lem is [44]:
u ¼ 1� ekx cosð2pyÞ;

v ¼ k
2p

ekx sinð2pyÞ;

p ¼ p0 �
1
2

e2kx;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir

where k ¼ Re

2 � Re2

4 þ 4p2
	 


, and p0 is a reference pressure (an arbitrary constant). Drichlet type boundary conditions are

specified using the exact solution. We run the unsteady code with a physical-time step Dt ¼ 0:1 and maximum number of
sub-iteration of 100. The calculation is continued until the residual reaches machine zero. The computed streamlines and
vorticity contours for Re ¼ 40 are shown in Fig. 2a and b, respectively.

Tables 2 and 3 show grid refinement test results for compact and non-compact schemes, respectively, where the order of
accuracy OA is calculated by the formula
OA ¼
lnðe2=e1Þ

ln 2:0
with
e1 ¼ j/e � /f j; e2 ¼ j/e � /cj:
/e;/f and /c stands for the exact solution, the solution on a fine grid and the solution on a coarser grid with half of the points
in all directions. It clearly demonstrates that the spatial order of accuracy of the present scheme is approximately 3.0 as per
our expectation. Looking at the two tables, it is evident that the present compact scheme is a little bit more accurate than the
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Fig. 2. Streamlines and vorticity contours for the Kovasznay flow at Re ¼ 40.



Table 2
Errors and orders of accuracy using the compact scheme for the Kovasznay flow.

Grid Re = 1 Re = 20 Re = 40

L2 error Order L2 error Order L2 error Order

11� 11 4:29� 10�1 – 6:06� 10�2 – 3:26� 10�2 –

21� 21 7:72� 10�2 2.47 1:40� 10�2 2.11 7:37� 10�3 2.15

41� 41 1:38� 10�2 2.48 1:73� 10�3 3.02 9:48� 10�4 2.96

81� 81 1:90� 10�3 2.86 1:62� 10�4 3.42 9:56� 10�5 3.31

161� 161 2:04� 10�4 3.22 1:48� 10�5 3.45 9:60� 10�6 3.32

321� 321 2:48� 10�5 3.04 1:40� 10�6 3.4 9:59� 10�7 3.32

Re = 100 Re = 500 Re = 1000

11� 11 2:75� 10�2 – 1:33� 10�2 – 7:94� 10�3 –

21� 21 3:85� 10�3 2.84 2:33� 10�3 2.51 1:75� 10�3 2.18

41� 41 5:06� 10�4 2.93 3:08� 10�4 2.92 2:35� 10�4 2.90

81� 81 5:18� 10�5 3.29 3:21� 10�5 3.26 2:59� 10�5 3.18

161� 161 5:74� 10�6 3.17 3:38� 10�6 3.25 2:75� 10�6 3.23

321� 321 6:64� 10�7 3.11 3:94� 10�7 3.10 3:17� 10�7 3.12

Table 3
Errors and orders of accuracy using the non-compact scheme for the Kovasznay flow.

Grid Re = 1 Re = 20 Re = 40

L2 error Order L2 error Order L2 error Order

11� 11 5:23� 10�1 – 1:25� 10�1 – 6:98� 10�2 –

21� 21 9:14� 10�2 2.52 1:65� 10�2 2.92 9:72� 10�3 2.84

41� 41 1:67� 10�2 2.45 2:11� 10�3 2.97 1:20� 10�3 3.02

81� 81 2:54� 10�3 2.72 2:18� 10�4 3.27 1:22� 10�4 3.30

161� 161 3:47� 10�4 2.87 2:43� 10�5 3.17 1:34� 10�5 3.19

321� 321 4:54� 10�5 2.93 2:90� 10�6 3.07 1:59� 10�6 3.07

Re = 100 Re = 500 Re = 1000

11� 11 5:70� 10�2 – 2:99� 10�2 – 1:80� 10�2 –

21� 21 6:99� 10�3 3.03 3:88� 10�3 2.95 2:31� 10�3 2.96

41� 41 8:64� 10�4 3.02 4:89� 10�4 2.99 3:36� 10�4 2.78

81� 81 9:64� 10�5 3.16 6:46� 10�5 2.92 5:14� 10�5 2.71

161� 161 1:17� 10�5 3.04 8:19� 10�6 2.98 6:72� 10�6 2.94

321� 321 1:45� 10�6 3.01 1:04� 10�6 2.98 8:54� 10�7 2.98
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non-compact scheme in term of accuracy. It is to be noted that results in these tables are obtained with the artificial com-
pressibility factor b ¼ 100, but they are almost the same as those obtained with b ¼ 1000. This indicates that the computa-
tional accuracy is independent of b.

Fig. 3 shows convergence histories for both compact and non-compact schemes. It is seen that the level of convergence for
the compact scheme is a little bit lower than that for the non-compact scheme.
7.2. Oscillating plate

The flow over an infinite oscillating plate is known as Stokes second problem (cf. Ref. [28]). The geometry of the problem
is such that the x-axis is set along the plate and the y-axis normal to it. The velocity of the plate is given by
uplate ¼ u0 cosðxtÞ:
The exact solution for this problem is
uðy; tÞ ¼ u0 expð�kyÞ cosðxt � kyÞ;
with k ¼
ffiffiffiffix
2m

p
, and m is the kinematic viscosity. For the present computation, the velocity u0 was set to unity, the angular fre-

quency x was set to 2p and the constant k was also set to unity so that m ¼ p. The computational grid had 65� 121 grid
points distributed uniformly along and normal to the wall direction, respectively. The physical-time step Dt was set to
0.01 and the problem was run over eight cycles after which the transient solution had died and time-periodic response
was reached. Fig. 4a shows comparison of the computed velocity profiles with the exact solutions at four different instants
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within the 9th cycle. The agreement of the numerical solution with the analytic one is very good. Fig. 4b show the numerical
errors for compact and non-compact schemes at t ¼ 8:25. It can be seen that the compact scheme produces smaller errors
averagely.
7.3. Taylor decaying vortices

The problem of Taylor decaying vortices is frequently used for validation of numerical schemes for simulating unsteady
flow problems (cf. Refs. [25,45]). The flow describes an initially periodical vortex structure convected by the flow field and
exponentially decaying due to the viscous decaying. The exact solution of the problem satisfying the 2D INSE, is
uðx; y; tÞ ¼ � cosðxÞ sinðyÞ expð�2t=ReÞ
vðx; y; tÞ ¼ cosðyÞ sinðxÞ expð�2t=ReÞ
pðx; y; tÞ ¼ �0:25ðcos 2xþ cos 2yÞ expð�4t=ReÞ
where Re denote the Reynolds number. We present our results computed on a 65� 65 uniform grid with Dt ¼ 0:05, b ¼ 100
and Re ¼ 100. Fig. 5 shows the computed vorticity contours in domain ½0;2p� � ½0;2p� at t ¼ 2:0. Fig. 6a and b show compar-
isons of computed u- and v-velocity components with the exact solution at four different times on the lines passing through
the geometric center along the y- and x-axis, respectively. The field-averaged absolute error using the present compact
scheme is 2:92� 10�5, while that for the non-compact scheme is 7:43� 10�5. This implies that the non-compact scheme
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must use much more grid points to obtain the same magnitude of error as the compact scheme. In view of this observation
plus the fact that the CPU time of the compact scheme is totally the same as the non-compact scheme, we can say that the
compact scheme is superior to the non-compact scheme.
7.4. Doubly periodic shear layer

The flow problem of a doubly periodic pair of shear layers is governed by the INSE in a unit domain ½0;1� � ½0;1�, subject to
the following initial conditions
uðx; y;0Þ ¼
tanh½qðy� 0:25Þ� for y 6 0:5
tanh½qð0:75� yÞ� for y > 0:5

�
;

vðx; y; 0Þ ¼ v 0 sinð2pxÞ;
pðx; y;0Þ ¼ 0;
where q determines the thickness of the shear layer (larger q corresponds to thinner shear layer), and v 0 determines the
amplitude of the initial perturbation. The correct scenario under the above setup is the perturbed shear layer rolls up into
a single vortex as the flow evolves [47]. This is a benchmark problem for testing the accuracy and the resolution of a time-
dependent numerical scheme. It was introduced by Bell and Colella [46] and examined later by Minon [47] using a number of
schemes to reveal the effects of grid resolution. Di et al. [48] used their moving mesh method to enhance the resolution and
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suppress the spurious vortices. These studies have concluded that under-resolution (in scheme accuracy or mesh size) can
produce non-physical spurious vortices, and grid resolution has substantial effect on the vorticity field.
t=1.0 65x65 t=1.0 129x129

t=1.0 257x257 t=1.0 321x321

Fig. 7. Vorticity contours for the doubly periodic shear layer problem at t ¼ 1:0 obtained on 65� 65;129� 129;257� 257, and 321� 321 grids,
respectively. Spurious vortices occur on the former two grids.
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In our computation, the perturbation amplitude was v 0 ¼ 0:05, the thickness parameter was q ¼ 30, and the Reynolds
number was Re ¼ 10;000. Vorticity contours obtained using four different grid resolutions are shown in Fig. 7 for a time
t ¼ 1. The results obtained with 65 � 65 and 129 � 129 grids have small spurious vortices middle way between two big
rolled vortices, while those obtained with 257 � 257 and 321 � 321 grids do not have. The results obtained with
257 � 257 grid are qualitatively comparable with the results on 513 � 513 mesh with a third-order non-compact scheme
given in [47]. Actually, the grid independent result is nearly obtained on 257 � 257 grid, evidenced from the vorticity dis-
tribution along a vertical line x ¼ 0:5.

Fig. 8 shows comparison between the present compact scheme and its non-compact version on the 257 � 257 grid for
time t ¼ 1. It can be seen that the compact scheme produces smooth contour lines for the value x ¼ 19, but the non-compact
scheme has a small closed contour line for the same vorticity value, which is the trace of a spurious eddy just as shown for
the case of 129 � 129 in Fig. 7. This again shows that the compact scheme is better than the non-compact scheme.

8. Conclusions

We have implemented a third-order accurate upwind compact finite difference scheme for time-accurate numerical solu-
tion of the incompressible Navier–Stokes equations via dual-time stepping technique. The method is based on the artificial
compressibility approach and the flux-difference splitting method. The upwind compact scheme is used to discretize the
convective terms while the viscous terms are approximated with a fourth-order central compact scheme. Formulas for
the compact schemes, their boundary schemes, and their implementation with the Beam-Warming approximate factoriza-
tion, are presented in detail. The upwind compact scheme is tested for 2D benchmark flow problems with low to moderate
Reynolds numbers and compared with the non-compact scheme in terms of accuracy and CPU time. Comparisons demon-
strate that the third-order upwind compact scheme has the same computational cost as the non-compact scheme, but is
more accurate.
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