
Applied Mathematics and Computation 215 (2009) 2565–2577
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
On optimal message vector length for block single parallel partition
algorithm in a three-dimensional ADI solver

Li Yuan a,*, Hong Guo a, Zhaohua Yin b

a LSEC and Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, PR China
b National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
a r t i c l e i n f o

Keywords:
Tridiagonal equation
Single parallel partition
ADI scheme
Message vectorization
Optimal message vector length
0096-3003/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.amc.2009.08.052

* Corresponding author.
E-mail addresses: lyuan@lsec.cc.ac.cn (L. Yuan), g
a b s t r a c t

It has long been recognized that many direct parallel tridiagonal solvers are only efficient
for solving a single tridiagonal equation of large sizes, and they become inefficient when
naively used in a three-dimensional ADI solver. In order to improve the parallel efficiency
of an ADI solver using a direct parallel solver, we implement the single parallel partition
(SPP) algorithm in conjunction with message vectorization, which aggregates several com-
munication messages into one to reduce the communication costs. The measured perfor-
mances show that the longest allowable message vector length (MVL) is not necessarily
the best choice. To understand this observation and optimize the performance, we propose
an improved model that takes the cache effect into consideration. The optimal MVL for
achieving the best performance is shown to depend on number of processors and grid sizes.
Similar dependence of the optimal MVL is also found for the popular block pipelined
method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The alternating direction implicit (ADI) method is widely used for solving multidimensional partial differential equations
in computational sciences such as computational fluid dynamics [1–6]. The ADI method is an iterative algorithm, which di-
vides every iteration step into the same number of sub-steps as the number of dimensions of the problem and updates the
variable by solving a tridiagonal (or multidiagonal) system of equations every sub-step [7]. ADI method can be easily imple-
mented on shared-memory parallel computers, but it is hard to be parallelized on distributed-memory parallel computers
since heavy communications are required. The efficiency of a 2D or 3D parallel ADI solver depends partially on the 1D tri-
diagonal solver used, and partially on the overall parallelization strategy of the ADI solver. Intensive research has been done
to develop better parallel tridiagonal solvers as well as overall parallel strategies. A good survey can be found in references
[8,9]. Here we give a brief review of some developments in the two aspects.

In the aspect of direct parallel tridiagonal solvers, a large number of algorithms with different performances were devel-
oped in the past four decades. Duff and van der Vorst [10] divided these parallel algorithms into four classes based on the
factorization of the tridiagonal matrix used:

1. Twisted factorization, first introduced by Babuska [11], then discussed by van der Vorst [12].
2. Recursive doubling, proposed by Stone [13]. The more recent P-scheme (pre-propagation scheme) proposed by Wakatani

[14,15] also used double recurrences but no LU decomposition.
. All rights reserved.

uoh@lsec.cc.ac.cn (H. Guo), zhaohua.yin@imech.ac.cn (Z. Yin).

http://dx.doi.org/10.1016/j.amc.2009.08.052
mailto:lyuan@lsec.cc.ac.cn
mailto:guoh@lsec.cc.ac.cn
mailto:zhaohua.yin@imech.ac.cn
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

2566 L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577
3. Cyclic reduction, originally appeared in Hockney’s paper [16], later elaborated in [17].
4. Divide and conquer (DAC) approaches, also fall into two classes for different factorizations of the tridiagonal matrix A:
� A ¼ L� R (left matrix multiply right matrix), the well known factorization presented by Wang [18]; later a modifica-

tion was made by Michielse and van der Vorst [19]; parallel Cholesky factorization was presented by Bar-on [20], and
block partitioned (Cholesky) factorization algorithm by Lin and Roest [21]; Lawrie and Samehs’ algorithm [22], Johns-
son’s algorithm [23] and Mattor’s algorithm [24] should also be mentioned here;

� A ¼ DAþ A0 (where DA is the aggregation of some upper and lower diagonal elements cut from A, and A0 is the resid-
ual), the method proposed in [25,26] and also named divide and conquer by Bondeli [26], and after that DAC is used to
refer to a strategy. The method of Bondeli can also be combined with recursive doubling, cyclic reduction or Wang’s
partition method. Later on DAC was applied for solving block tridiagonal systems [27]. Sun proposed the parallel par-
tition LU (PPT) algorithm, the parallel partition hybrid (PPH) algorithm and the parallel diagonal dominant (PDD) algo-
rithm [28,29].

In terms of generality and simplicity, Wang’s partition method [18] is very attractive for solving a very large system on a
parallel computer. However, it needs large data transport, which costs too much time in communication. Later, a method
modified from Ref. [18] and named single parallel partition algorithm (SPP) was introduced in Ref. [30]. This algorithm,
by modifying the sequence of elimination and reducing the diagonal elements to one, results in considerable reduction in
waiting time and transported data, whereas the number of operation for executing the complete algorithm does not increase
significantly.

With aspect to the overall parallel strategy for an ADI solver, many methods such as the transpose strategy [31], the pipe-
lined method [32], the skewed block data partition [33], and the message vectorization [15,34,35], were developed. The
transpose strategy can take full advantage of the classic pursuit method (Gauss elimination specialized for linear tridiagonal
equations), but it is not efficient because of huge communication requests. It was shown that the transpose strategy is slower
than the message vectorization scheme [31]. The skewed block data partition [33] seems a bit more complicated.

The message vectorization [15,34,35] is aggregate data sending instead of ‘‘one by one” sending. Wakatani [15] combined
message vectorization with his parallel tridiagonal solver, the P-scheme [14], to solve two-dimensional ADI equations with a
wide range of problem sizes, and obtained super-linear speedup for a 16;386� 16;386 problem. It has long been recognized
that message vectorization can improve the efficiency of a parallel ADI solver, but how the message vector length (MVL) af-
fects the performance is not well understood.

The pipelined method in Ref. [32] used the pursuit method in a pipelined fashion. Good parallel efficiency was obtained in
2D and 3D problems. Later an improved version named the block pipelined method was developed in Ref. [36]. Actually, the
main idea of blocking the pipelined method is similar to that of the message vectorization, which is to apply the basic tri-
diagonal-system solver aggregately to a block instead of a single line. The results in Ref. [36] shown that the block pipelined
method has higher parallel efficiency than the ‘‘one by one” pipelined method.

In this paper, we study a parallel ADI solver which combines the above mentioned SPP algorithm [30] with message vec-
torization technique, and analyze its performance with emphasis on the role of the optimal MVL in maximizing the compu-
tational efficiency. Because previous studies on parallelization of ADI solvers are numerous, it is worthwhile to point out the
peculiarity of the present work. First, after analyzing and testing several typical parallel tridiagonal solvers, i.e., the SPP [30]
(DAC), the P-scheme [15] (recursive doubling), and the cyclic reduction [16], we find that both communication and compu-
tation costs of the SPP are the least of them. Second, the SPP is combined with message vectorization for an ADI solver, which
has not been done in literature. Third, we present an improved parallel model to predict the optimal MVL. Finally, we show
that other parallel ADI solvers like the block pipelined method can also benefit from using an optimal MVL.

The paper is organized as follows: Section 2 briefly describes our ADI scheme used for solving the incompressible Navier–
Stokes equations, Section 3 provides the description of the original SPP algorithm and a comparison with the P-scheme. Sec-
tion 4 presents implementation of the SPP with message vectorization, analysis with an existing model, and a refined model
to predict the optimal MVL. The parallel performance of the resulting block SPP is also shown. Extension of the optimal MVL
concept to the block pipelined method is given in Section 5. Conclusions are given finally.

2. The ADI scheme for the 3D Navier–Stokes equations

Our ADI scheme is constructed for finite difference solution to the three-dimensional unsteady incompressible Navier–
Stokes equations in artificial compressibility formulation, which is written in generalized curvilinear coordinates ðn;g; fÞ as
@Q
@s
þ Im

@Q
@t
þ @ E� Evð Þ

@n
þ F� Fvð Þ

@g
þ @ G� Gvð Þ

@f
¼ 0; ð1Þ
where Q ¼ 1
J ðp;u;v ;wÞ

T , with p being the static pressure, and u;v and w the velocity components in Cartesian coordinates,
respectively. J is the Jacobian of coordinate transformation, Im is a modified identity matrix whose first element is zero, E; F
and G are the convective flux vectors, and Ev ; Fv and Gv are the viscous flux vectors. By using the dual-time stepping tech-
nique, the Beam–Warming approximate factorization [2], and the diagonalized form as given in Ref. [6], we have

L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577 2567
P1 Dþ hdn K1 � c1Idnð Þ½ �P�1
1 D�1P2 Dþ hdg K2 � c2Idg

� �� �
P�1

2 D�1P3 Dþ hdf K3 � c3Idfð Þ½ �P�1
3 DQ nþ1;m ¼ RðQ nþ1;mÞ; ð2Þ
where h ¼ DsJ;DQ nþ1;m ¼ Q nþ1;mþ1 � Q nþ1;m;D ¼ ð1þ 1:5 Ds
DtÞI; dn; dg; df are the finite difference operators, n is the physical

time level, m is the pseudo-time level, c1; c2 and c3 are viscous coefficients, K1;K2 and K3 are the diagonal matrices whose
elements are eigenvalues of Jacobian matrices of the convective flux vectors in the n;g, and f directions, respectively,
P1;P2;P3 and P�1

1 ;P�1
2 ;P�1

3 are corresponding right and left eigenvector matrices in the three directions, respectively, and
R is the residual operator. For more detail, see Ref. [6]. Numerical solution to Eq. (2) is equivalent to solving three one-dimen-
sional linear systems of equations in sequence
Dþ hdn K1 � c1Idnð Þ½ �DQ ��� ¼ P�1
1 RðQ nþ1;mÞ; ð3aÞ

Dþ hdg K2 � c2Idg
� �� �

DQ �� ¼ P�1
2 DP1DQ ���; ð3bÞ

Dþ hdf K3 � c3Idfð Þ½ �DQ � ¼ P�1
3 DP2DQ ��; ð3cÞ
and then compute
DQ nþ1;m ¼ P3DQ �; Q nþ1;mþ1 ¼ Q nþ1;m þ DQ nþ1;m: ð4Þ
If we choose the first-order upwind scheme for the convective terms and the second-order central scheme for the viscous
terms in the left-hand sides of Eqs. (3a)–(3c) but use high-order finite difference schemes in the residual operator R to obtain
desired high-order accuracy, then linear tridiagonal systems of equations can be obtained. Due to the use of diagonalization,
only four independent scalar tridiagonal systems of equations will be solved along each grid line. The SPP algorithm to be
described below is then used to solve each scalar tridiagonal system of equations.

3. The SPP algorithm

3.1. A brief description of the algorithm

Consider a tridiagonal system of linear equations of order n
Ax ¼

d1 c1

a2 d2 c2

. .
. . .

. . .
.

. .
. . .

. . .
.

an�1 dn�1 cn�1

an dn

0BBBBBBBBBB@

1CCCCCCCCCCA

x1

x2

..

.

..

.

xn�1

xn

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

b1

b2

..

.

..

.

bn�1

bn

0BBBBBBBBBB@

1CCCCCCCCCCA
¼ b: ð5Þ
We restrict to the situation where there exists a unique solution for given right-hand side b and nonsingular coefficient ma-
trix A. The matrix A is subdivided into p groups of k rows (p equals the number of processors denoted as N0; . . . ;Np�1, and for
convenience we assume n ¼ p� k). All processors have a local memory and the data have been spread over the local mem-
ories so that the local memory of processor Ni�1 contains only the matrix-elements and vector-elements of k consecutive
rows of the ith group: aj; dj; cj; bj; j ¼ ikþ 1; . . . ; ðiþ 1Þk.

The SPP algorithm [30] can be described in four steps:

Step 1. Eliminate lower entries ai and upper entries ci using local data.
For Ni; i ¼ 0; . . . ; p� 2, reduces dikþ1 to 1, then eliminates aikþ2, then reduces dikþ2 to 1, and go on forward until
aikþj; j ¼ 2; . . . ; k are all eliminated;For Ni; i ¼ 1; . . . ; p� 1, reduces dikþk to 1, then eliminates cikþk�1, then reduces
dikþk�1 to 1, and go on backward until cikþj; j ¼ 1; . . . ; k� 1 are all eliminated. Now we have all di ¼ 1; i ¼ 1; . . . ;n.
This step can be readily parallelized in p� 1 processors.

Step 2. Eliminate ci entries using non-local data.
For Np�1, send first-row elements aðp�1Þkþ1 and bðp�1Þkþ1 to Np�2.
For Ni; i ¼ p� 2; . . . ;1, receive elements sent from Niþ1, use the elements of ðiþ 1Þk-th row to eliminate the newly
received aðiþ1Þkþ1, reduce resulting dðiþ1Þkþ1 to 1, and then eliminate cikþ1 on the first row. After that, send the new
aikþ1 and bikþ1 to Ni�1.For N0, upon receiving element akþ1 and bkþ1 sent from N1, eliminate ck on N0, then reduce
resulting dk to 1. When the sending and receiving are completed, eliminate all ci left on N1; . . . ;Np�2.

Step 3. Eliminate ai entries using non-local data. For N0, send bk to N1.
For Ni; i ¼ 1; . . . ; p� 2, receive elements bik sent from Ni�1, eliminate last row’s aðiþ1Þk, and then send bðiþ1Þk to Niþ1.
For Np�1, receive elements sent from Np�2, and then eliminate first row’s aðp�1Þkþ1. When the sending and receiving
are completed, eliminate the left offdiagonal elements remained on each processor.

At the end of Step 3, bi; i ¼ 1; . . . ; n are the answers to Eq. (5).

2568 L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577
3.2. Comparison with the P-scheme

According to [18,30], the SPP has fewer operation counts than most of earlier parallel tridiagonal algorithms such as the
cyclic reduction [16]. It is emphasized that the diagonal elements need not be transferred after they are reduced to 1 in the
SPP. However, data propagation stages in Steps 2 and 3 are still sequential.

For each processor on multiprocessors, the total time ðTsumÞ is the sum of the computation time ðTcompÞ and the commu-
nication time ðTcommÞ, where ðTcommÞ consists of transmission time ðTsendrecvÞ and latency time ðTdelayÞ [37]
Table 1
Timing

p

2
4
8
10
16

Table 2
Timing

p

2
4
8
10
16
Tsum ¼ Tcomp þ Tcomm ¼ Tcomp þ Tsendrecv þ Tdelay: ð6Þ
In the following, tc denotes the per-element computational time in a single processor, tsendrecv denotes the time to transmit an
element between two processors, and tdelay denotes the latency time for a message passing.

For each data transport in one direction among processors one by one, processors should receive data first and then send
it to the next one. Therefore, every processor will do transportation twice. Step 2 has 2 data transferred backward, and Step 3
has 1 data transferred forward, so the total transmitted data are 3. Furthermore, we assume computation is not overlapped
with communication, and the computational time is equal for plus, minus, multiply and divide operations. Then we made a
detailed count for all computational operations in the algorithm. In that way, we can get the total time for one processor on
multiprocessors for the SPP
Tspp ¼ 26
n
p
þ 15p

� �
tc þ 6 p� 1ð Þtsendrecv þ 4ðp� 1Þtdelay; p > 1: ð7Þ
Similarly, we can obtain the total time for one processor on multiprocessors for the P-scheme [14,15]
Tpsch ¼ 32
n
p
þ 17p

� �
tc þ 6ðp� 1Þtsendrecv þ 6ðp� 1Þtdelay; p > 1: ð8Þ
Comparing Eqs. (7) and (8), we can find both the computation cost and the latency cost of the SPP algorithm are less than
those of the P-scheme. To further demonstrate the superiority of the SPP over the P-scheme, we implement the SPP and the
P-scheme for solving a scalar tridiagonal system of equations using MPI on LSSC2 Lenovo DeepComp 1800 cluster. This
supercomputer has 512 computing nodes with each node having 2 Intel 2.0 GHz Xeon processors and 1.0 Gigabyte memory.
Different nodes are connected through Myrinet 2000 network. A careful measurement on this machine shows that
tdelay ’ 5� 10�6 s; tsendrecv ’ 2� 10�8 s, and tc is around 10�9 s.

Table 1 shows the measured total times and predicted ones based on Eq. (7) for the SPP algorithm on LSSC2. Table 2 shows
the measured total times and the predicted by Eq. (8) for the P-scheme algorithm. We can see that the SPP algorithm needs
less wall time than the P-scheme for the same n and p. Thus we show that the SPP algorithm is faster than the P-scheme
under the same condition.

The computational cost of the pursuit method (Gauss elimination) on one processor is (cf. [26]):
Tpurs ¼ 8n� 7ð Þtc: ð9Þ
results of the SPP algorithm.

n ¼ 104 n ¼ 105 n ¼ 106

Measured Predicted Measured Predicted Measured Predicted

1.99E�4 2.15E�4 1.83E�3 1.97E�3 1.21E�2 1.95E�2
1.37E�4 1.58E�4 1.20E�3 1.04E�3 7.52E�3 9.81E�3
2.13E�4 1.90E�4 8.29E�4 6.29E�4 4.93E�3 5.02E�3
2.45E�4 2.20E�4 7.01E�4 5.71E�4 4.14E�3 4.08E�3
3.66E�4 3.27E�4 7.56E�4 5.46E�4 3.03E�3 2.74E�3

results of the P-scheme algorithm.

n ¼ 104 n ¼ 105 n ¼ 106

Measured Predicted Measured Predicted Measured Predicted

2.35E�4 2.70E�4 2.15E�3 2.43E�3 2.11E�2 2.40E�2
1.88E�4 2.11E�4 1.53E�3 1.29E�3 1.53E�2 1.21E�2
4.42E�4 2.71E�4 9.31E�4 8.11E�4 8.12E�3 6.21E�3
5.14E�4 3.19E�4 7.43E�4 7.51E�4 6.87E�3 5.07E�3
6.65E�4 4.82E�4 8.27E�4 7.52E�4 4.69E�3 3.45E�3

L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577 2569
It is easy to see that either the SPP or the P-scheme has much more redundant computational counts compared with the
pursuit method.

4. Optimal message vector length in the block SPP algorithm

4.1. Message vectorization

For multidimensional systems, both the size of transported data and the number of times for message passing become
larger than one dimensional system of the same size, especially the number of times for message passing. In solving multiple
tridiagonal systems, SPP can be applied aggregately to several data instead of the ‘‘one by one” approach, as shown in Fig. 1.
By aggregating m values into one message, the communication cost for m values is reduced to tdelay þmtsendrecv instead of
mðtdelay þ tsendrecvÞ. It is called ‘‘message vectorization” strategy in Ref. [15]. In this paper, we call the SPP combined with mes-
sage vectorization the block SPP algorithm.

Let (idm; jdm; kdm) denote the number of points in the n;g and f directions, respectively. If the n direction of the grid is di-
vided across the number of processors, then the size of message transmitted from one processor to another in one commu-
nication, m, could be arranged from 1 to jdm � kdm. The message vector length (MVL) used in this paper refers to this number
of grid points, rather than the number of transmitted data which may be several times larger than MVL.

4.2. Experiments with the block SPP algorithm in the ADI scheme

We implement the block SPP algorithm into the solution of the first direction of the ADI scheme, i.e. Eq. (4a). The n direc-
tion is divided by p processors. For example, for a 643 problem, each processor is in charge of a 64=p� 64� 64 area. Other
two directions have no datum transport and the pursuit method can be used.

In our study, every grid point has 4 unknown values ðp;u;v ;wÞ, which should be combined into one message to decrease
the number of communications. In the following description, we will treat a combined message of the four values as one
message.

For the 643 problem, a tridiagonal system of equations with a size of 64 should be solved 64� 64 times on a single com-
puter. On p processors, the SPP with a size of 64=p should be iterated 64� 64 times when the message vector length is 1, but
it should be iterated 2� 64 times when the message vector length is 32, thus in Steps 2 and 3 of the SPP, the message with a
length of 32 should be sent or received only 2� 64 times.

We measure the wall time for solving Eq. (3a) in the n direction. Here the wall time includes those for the block SPP algo-
rithm and for generating matrices P�1

1 ;K1 and the right-hand-side vector. Detailed formulas of these matrices [6] can be used
to give the computation counts for generating matrices P�1

1 ;K1, and the right-hand-side vector:
Oothers ’ 6
idmjdmkdm

p
n3

eq; ð10Þ
where neq ¼ 4 represents ðp;u;v ;wÞ in the Navier–Stokes equations.
From Eqs. (7) and (10), the total computation counts for the n direction are:
On ¼ jdmkdmneq 26
idm

p
þ 15p

� �
þ Oothers ¼ jdmkdmneq 26

idm

p
þ 15pþ 6n2

eq
idm

p

� �
: ð11Þ
For convenience, performance measure will be presented in Gflops for the above computational counts:
Pn ¼
On

Tmn
� 10�9; ð12Þ
where Tmn is the measured execution time in seconds for the n direction.
Fig. 2 shows measured performances of the n direction sweep in the ADI scheme with different MVLs for different prob-

lem sizes. We can see that the performance improves when MVL increases from 1, and attains a peak at some intermediate
values for each fixed number of processors. However, the performance will decrease and remain flat when MVL is large en-
Fig. 1. Aggregation of communication messages.

1 4 16 64 256 1024 4096
0

0.05

0.1

0.15

0.2

0.25

0.3
(a)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

2 Processors
4 Processors
8 Processors
16 Processors

1 4 16 64 256 1024 4096
0

0.05

0.1

0.15

0.2

0.25

0.3
(b)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

2 Processors
4 Processors
8 Processors
12 Processors
16 Processors
24 Processors
32 Processors

1 4 16 64 256 1024 4096 16384
0

0.05

0.1

0.15

0.2

0.25
(c)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

4 Processors
8 Processors
16 Processors
32 Processors

1 4 16 64 256 1024 4096 16384
0

0.05

0.1

0.15

0.2
(d)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

8 Processors
10 Processors
16 Processors
20 Processors
32 Processors
40 Processors

1 4 16 64 256 1024 4096 16384
0

0.05

0.1

0.15
(e)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

16 Processors
24 Processors
32 Processors
48 Processors
64 Processors

1 4 16 64 256 1024 4096 16384 65536
0

0.05

0.1
(f)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

32 Processors
64 Processors

Fig. 2. Measured performances in the n direction vs. MVL for different problem sizes: (a) 643; (b) 963; (c) 1283; (d) 1603; (e) 1923; (f) 2563.

2570 L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577
ough, and the lower the idm=p, the worse the performance. The latter may be explained by the dominance of communication
costs associated with large MVL over computation costs that is proportional to idm=p on each processor. The occurrence of
optimal MVL and its variation with the problem size and number of processors will be examined in following subsections.
It will be meaningful if we can predict varying trends of MVL based on an analytical model.

4.3. A parallel model for the n-direction sweep

The performance of a parallel algorithm is affected by many factors which are difficult to account for, so we can only use
an approximate parallel model to analyze its performance. We first apply the parallel model for the block pipelined method

L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577 2571
[32] to a pure block SPP algorithm alone, and then make modification by taking into account variations of the cache effect
with the MVL when applied to the n-direction sweep of the ADI scheme.

4.3.1. Original model for the block SPP alone
In a pure block SPP alone, jdm � kdm lines of unrelated scalar tridiagonal systems are to be solved. We assume the size of

the MVL is m and the n direction of the grid is evenly divided by p processors. Then we have the number of iterations for all of
the message vectors to be sent
Table 3
Measur

n

643

963

1603
l ¼ jdm � kdm

m
: ð13Þ
In the data propagation process in the block SPP algorithm, because all processors except the first one must wait for the data
to be sent by the previous processor, the time for the last processor to receive the message will be the time for the first pro-
cessor to begin its pth iteration sending. The job is not done until all processors finish their own iterations. Therefore, the
whole number of iterations of sending throwing off the overlapped ones is lþ p� 1. Moreover, the operation counts in Step
1, which can be completely parallelized, are much larger than the serial operation counts in Steps 2 and 3. Therefore, these
serial operation counts will be ignored here.

From the above description and Eq. (7), we can get the total time used for solving all jdm � kdm scalar systems by the block
SPP:
T ¼ ðlþ p� 1Þ 6� jdm � kdm

l
� tsendrecv þ 4� tdelay

� 	
þ l� jdm � kdm

l
� 26

idm

p
þ 15p

� �
� etc

� 	
ð14Þ

¼ a=lþ b� lþ c; ð15Þ
where
a ¼ 6jdmkdmðp� 1Þtsendrecv;

b ¼ 4tdelay;

c ¼ 6jdmkdmtsendrecv þ 4ðp� 1Þtdelay þ jdmkdm 26
idm

p
þ 15p

� �
etc;
and e 6 1 is a factor representing the influence of the cache hit rate on computational time. In this subsection, we assume e is
constant. From Eq. (15), it can be shown that there is an equilibrium l that makes T minimal:
lopt ¼
ffiffiffi
a
b

r
: ð16Þ
Thus we have the optimal MVL for the block SPP algorithm:
mopt ¼ jdm � kdm �
ffiffiffi
b
a

r
¼

ffi
2� jdm � kdm � tdelay

3ðp� 1Þtsendrecv

s
: ð17Þ
For Lenovo Deepcomp 1800 supercomputer we used, tdelay=tsendrecv � 250, and in practice jdm � kdm is normally larger than
3600. Thus from Eq. (17), we can easily see that mopt is in the range of 1 < mopt < jdm � kdm, and this proves the existence of an
‘‘optimal MVL” within practically available range.

Table 3 shows comparison of the measured optimal MVLs with those predicted by Eq. (17) for the block SPP algorithm
alone. We can see that the measured optimal MVL increases with increasing value of jdm � kdm for the same number of pro-
cessors except p ¼ 2 (note that Eq. (7) is not valid for two-processor case), and it decreases with increasing number of pro-
cessors for the same value of jdm � kdm. These two measured trends are in agreement with what Eq. (17) predicts, even
though the numbers differ.
ed optimal MVLs for the block SPP algorithm alone in comparison with predictions by Eq. (17).

p

2 4 8 16

Measured Predicted Measured Predicted Measured Predicted Measured Predicted

4096 826 512 477 512 312 512 213

1536 1239 1152 716 1152 468 768 320

2560 2066 1280 1193 1280 781 800 533

2572 L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577
Next, we turn back to check the varying trends in Fig. 2 for the n-direction sweep in our ADI solver. We can see from Fig. 2
that the optimal MVL decreases with increasing value of jdm � kdm for the same number of processors in most cases, and it
increases with increasing number of processors for the same value of jdm � kdm. Both trends are contrary to what Eq. (17) pre-
dicts. The reason may be that the cache effect was not considered to vary in the model Eq. (14). We will try to consider it in
following modified model.
4.3.2. A modified model for the n-direction sweep
We notice that in the n direction sweep in Eq. (3a), extra computation counts (Eq. (10)) in addition to the block SPP will be

undertaken, and jdm � kdm � neq tridiagonal matrix equations instead of jdm � kdm equations will be solved in the n direction
sweep. In the following, we will improve the model Eq. (14) to describe the n direction sweep of our ADI solver by taking
varying cache effect into account.

We try to find relationship between the computation time and the communication time. Table 4 shows the timing results
corresponding to Fig. 2a. We can see that the total execution times on 4 processors and 8 processors are equal at m ¼ 16
(corresponding l ¼ 642=m ¼ 256). The whole number of iterations of communication on 8 processors, lþ p� 1 ¼ 256þ 7,
is 4 more than lþ p� 1 ¼ 256þ 3 on 4 processors, but ðidm=4� idm=8Þ � jdm � kdm ¼ 32768 fewer grid points should be com-
puted per processor on 8 processors than on 4 processors. If we substitute numbers of (l; p; jdm; kdm) for p ¼ 4 and p ¼ 8,
respectively into a modified formula similar to Eq. (14):
T ¼ ðlþ p� 1Þ 6� jdm � kdm

l
� neq � tsendrecv þ 4� tdelay

� 	
þ jdm � kdm �

idm

p
� bT comp; ð18Þ
and subtract, we can obtain
4� 6m� neqtsendrecv þ 4tdelay
� �

¼ 32768� bT comp; ð19Þ
where we have assumed the computation time for each grid point per processor, bT comp, is the same on 4 processors and 8
processors. Eq. (19) gives a relationship between the computation time and the communication time. Similar relationship
between the computation time and the communication time can also be found from other timing results for cases in
Fig. 2b–f.

As a generalization from above case study, we assume bT comp is proportional to the communication time between any two
processors
bT comp ¼ dð6m� neqtsendrecv þ 4tdelayÞ; ð20Þ
where d depends on the cache effect. By using (20), Eq. (18) can be rewritten as:
T ¼ ðlþ p� 1Þ 6� jdm � kdm

l
� neqtsendrecv þ 4tdelay

� 	
þ l� jdm � kdm

l
� idm

p
� bT comp

� 	
¼ ðlþ p� 1Þ 6neq

jdm � kdm

l
tsendrecv þ 4tdelay

� 	
þ idm � jdm � kdm � d

p

� �
6neq

jdm � kdm

l
tsendrecv þ 4tdelay

� 	
¼ lþ p� 1þ idm � jdm � kdm � d

p

� �
6neq

jdm � kdm

l
tsendrecv þ 4tdelay

� 	
ð21Þ

¼ 6neq p� 1þ idm � jdm � kdm � d
p

� �
jdm � kdm

l
tsendrecv þ 4tdelay � l

þ 4 p� 1þ idm � jdm � kdm � d
p

� �
tdelay þ 6neqjdm � kdm � tsendrecv

¼ a=lþ b� lþ c; ð22Þ
which represents the total time for executing the n direction sweep of the ADI scheme. Therefore, the optimal MVL is:
mopt ¼ jdm � kdm �
ffiffiffi
b
a

r
¼

ffi
2� jdm � kdm � tdelay

3neq p� 1þ idm�jdm�kdm�d
p

h i
tsendrecv

vuut ’
ffi

2� p� tdelay

3neq � idm � d� tsendrecv

s

ðif p2 � idmjdmkdm � dÞ: ð23Þ
It is clear from Eq. (23) that mopt decreases with increasing idm for the same number of processors, and it increases with
increasing number of processors for the same idm. This is in agreement with the varying trends shown in Fig. 2.

Table 4
Timing results corresponding to Fig. 2a.

MVL p

2 4 8 16

1 0.285 0.382 0.691 1.450
2 0.279 0.274 0.424 0.816
4 0.273 0.222 0.292 0.522
8 0.265 0.183 0.207 0.343
16 0.268 0.165 0.165 0.233
32 0.281 0.159 0.132 0.172
64 0.315 0.172 0.120 0.136
128 0.286 0.170 0.121 0.125
256 0.317 0.175 0.126 0.127
512 0.307 0.194 0.131 0.122
1024 0.312 0.191 0.140 0.124
2048 0.312 0.191 0.141 0.130
4096 0.310 0.190 0.140 0.129

L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577 2573
As seen from Eq. (20), larger d corresponds to less cache effect and longer computation time. To determine one value of d,
we fitted Eq. (23) to a measured optimal MVL = 20 for the 1603 problem with p ¼ 8. In this test, 90% memory on every pro-
cessor was used, and the cache effect was assumed to be little. The fitted value was
Table 5
Measur

n

1283

1603

1923

2563
d ¼ 0:005: ð24Þ
Using Eq. (23) with d ¼ 0:005, we can predict optimal MVLs for other cases with different memory occupations on each
processor. Table 5 shows comparison of measured and predicted optimal MVLs. We can see that the predicted values gen-
erally match the measured data better for smaller number of processors (say p ¼ 4), but underestimates the measured opti-
mal MVL much for larger number of processors, especially p ¼ 32. This is because the value d ¼ 0:005 represents large-
memory occupation cases, and is inappropriately large for the same mesh size to be distributed on larger number of proces-
sors (p ¼ 32) where each processor will use a small fraction of its total memory so that the cache effect should be expected
larger. In such a situation, d should be adjusted to smaller value, hence making mopt predicted from Eq. (23) larger to better
match the measured value. Our new model can predict the varying trend and give crude estimation of optimal MVLs. It
should be remarked that exact optimal MVLs can only be found via numerical tests.

4.4. Performance of the 3D parallel ADI solver

As stated in Section 4.2, our parallel ADI solver consists of the block SPP for the divided n direction and the pursuit method
for the undivided g and f directions. We measure the wall time for executing one iteration of the ADI solution.

Most programs will have better performance per processor when they are run on processors with large memory capacity.
Therefore, a more useful measure is the performance versus processors at a fixed memory utilization [31]. In this study, for
each set of tests which were run on the same number of processors, linear extrapolation was used to estimate the perfor-
mance when 90% memory of each processor was utilized. The curve marked ‘‘ 90% mem” are quadratic least squares fits
through these 90% estimate points. A constant value of the performance per processor over a range of processors implies
scalability for that range.

Fig. 3 is a plot of the n direction results with measured optimal MVLs. For a fixed grid size, the performance deteriorates
with increasing number of processors. However, the scalability marked by the 90% memory begins to level above 32 proces-
sors, indicating the scalability is good.

Fig. 4 shows the performances in the g and f directions. In these two directions, the pursuit method is used to solve the
tridiagonal systems. The timings include all operation counts in the g and f directions like those in the n direction, thus extra
operation counts in addition to those of a pure pursuit method are included. The performances in the g and f directions are
ed optimal MVLs for the n direction sweep in comparison with predictions by Eq. (23) with d ¼ 0:005 to account for cache effect.

p

4 8 16 32

Measured Predicted Measured Predicted Measured Predicted Measured Predicted

16 16 32 23 128 32 512 46

– 14 40 20 64 29 512 41

– 13 – 19 64 26 384 37

– 11 – 16 – 23 64 32

0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

Number of Processors

G
flo

ps
/P

ro
ce

ss
or

64*64*64
96*96*96
128*128*128
160*160*160
192*192*192
256*256*256
90% mem

Fig. 3. Optimal performances in the n direction.

0 10 20 30 40 50 60
0.12

0.125

0.13

0.135

0.14

0.145

0.15

Number of Processors

G
flo

ps
/P

ro
ce

ss
or

64*64*64
96*96*96
128*128*128
160*160*160
192*192*192
256*256*256
90% mem

Fig. 4. Optimal performances in the g and f directions.

0 10 20 30 40 50 60
0.08

0.1

0.12

0.14

0.16

0.18

Number of Processors

G
flo

ps
/P

ro
ce

ss
or

64*64*64
96*96*96
128*128*128
160*160*160
192*192*192
256*256*256
90% mem

Fig. 5. Optimal performances of the 3D ADI with the block SPP implemented only in the n direction.

2574 L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577
almost constant, and this is expected since there is no communication between processors in the g and f directions for the
present implementation. The performance drops down slightly as the number of processors increases, and remains around
0.135 when p > 32.

L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577 2575
Fig. 5 shows three-direction performances of the ADI solver with the bock SPP implemented in the n direction only. It
looks like Fig. 3. This is as excepted since the n-direction performance with greater variation will dominate the overall per-
formance of the ADI solver.

5. Extension of optimal message vector length to the block pipelined method

Vectorization is widely used as a parallel technique. Here we will show that the block pipelined method can also benefit
from utilizing an optimal MVL. In implementing the block pipelined method, we only distribute grid points in the n direction
among processors.
1 4 16 64 256 1024 4096
0

0.05

0.1

0.15

0.2

0.25
(a)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

2 Processors
4 Processors
8 Processors
16 Processors

1 4 16 64 256 1024 4096
0

0.05

0.1

0.15

0.2

0.25
(b)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

2 Processors
4 Processors
8 Processors
12 Processors
16 Processors
24 Processors
32 Processors

1 4 16 64 256 1024 4096 16384
0

0.05

0.1

0.15

0.2
(c)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

4 Processors
8 Processors
16 Processors
32 Processors

1 4 16 64 256 1024 4096 16384
0

0.02

0.04

0.06

0.08

0.1

0.12
(d)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

8 Processors
10 Processors
16 Processors
20 Processors
32 Processors
40 Processors

1 4 16 64 256 1024 4096 16384
0

0.02

0.04

0.06

0.08 (e)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

16 Processors
24 Processors
32 Processors
48 Processors
64 Processors

1 4 16 64 256 1024 4096 16384 65536
0

0.01

0.02

0.03

0.04
(f)

Vector Length

G
flo

ps
/P

ro
ce

ss
or

32 Processors
64 Processors

Fig. 6. Performances of the block pipelined method in the n direction for different problem sizes: (a) 643; (b) 963; (c) 1283; (d) 1603; (e) 1923; (f) 2563.

2576 L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577
First, we check under what conditions the present block SPP algorithm is faster than the block pipelined method. The SPP
has 2 communications and 3 values to be transmitted between two processors. The pipelined method has 3 communications
(2 in the elimination step and 1 in the back substitution step) and each communication has 1 value to be transmitted be-
tween any two processors. But 2 communications in the elimination step can be packed together and 1 communication
can be saved. Thus the communication counts of the pipelined method are the same as those of the SPP. However, the block
pipelined method uses the pursuit method whose computation counts are much smaller than those of the SPP. According to
Ref. [32] and Eq. (14), the total wall time for the block pipelined method and the block SPP is:
Tbpip ¼ ðlþ p� 1Þ Tcomm þ Tcomp
� �

; ð25Þ
Tbspp ¼ ðlþ p� 1ÞTcomm þ lQTcomp; ð26Þ
where Q is the ratio of the computational complexity of the SPP algorithm to that of the pursuit method. For most parallel
tridiagonal solvers, Q > 2 [15]. Assuming that the computational time per block data, Tcomp, is the same for both algorithms,
it can be easily shown from above formulas that if
lðQ � 1Þ < ðp� 1Þ; ð27Þ
then the block SPP will be faster than the block pipelined method, otherwise, the block SPP will be slower.
Next we measured the wall time for the ADI scheme with the block pipeline method implemented in the n direction only.

The timings include extra operations for generating matrices P1;K1, and the right-hand-side vector, just the same as in the
block SPP.

Fig. 6 shows performances of the block pipelined method in the n direction sweep in the ADI scheme versus different
MVLs for different problem sizes. We can see that the optimal MVL decreases with increasing grid size for the same number
of processors in most cases, and it increases with increasing number of processors for the same grid size. These trends are in
agreement with what our new model Eq. (23) predicts.

6. Conclusions

We have presented an improved version of SPP algorithm and demonstrated that a 3D ADI solver implemented with this
block SPP can obtain better performance with appropriate choice of the message vector length (MVL). The existence and
varying trends of the optimal MVL with different number of processors and problem sizes are predicted based on a refined
parallel model. We have shown that the optimal MVL can also benefit the block pipelined method. In this paper, fewer than
64 processors were used and only one direction was divided. For more processors, 2 or 3 directions need to be divided to get
better performances. This is the work we will do in the future.

In practice, it is a challenging task to tune a code on any parallel computer to the optimal efficiency. For the ADI solver
discussed in this paper, we propose the following procedure:

1. If the tridiagonal system will be solved only for several times, the analytical models developed in this paper can be
used to guess an optimal MVL.

2. If the tridiagonal system will be solved for thousands of times, it is worth measuring the computing time for all pos-
sible MVL values and a number of processors to decide an optimal MVL precisely for a given problem size in prelimin-
ary runs. This evaluating process can be facilitated with the present modified model.

Actually, this is also the procedure adopted in some of the most popular calculating packages like FFTW (http://
www.fftw.org).

Acknowledgments

This work was supported by Natural Science Foundation of China (G10476032, G10531080) and state key program for
developing basic sciences (2005CB321703). The computation was conducted on LSSC2 cluster at LSEC, Institute of Compu-
tational Mathematics, Chinese Academy of Sciences. ZY was supported by National Nature Science Foundation of China
(G10502054).

References

[1] W. Briley, H. McDonald, Solution of the three-dimensional Navier–Stokes equations by an implicit technique, in: Proceedings of the Fourth
International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, vol. 35, Springer-Verlag, Berlin, 1975.

[2] R. Beam, R. Warming, An implicit finite-difference algorithm for hyperbolic systems in conservation law form, J. Comput. Phys. 22 (1976) 87–110.
[3] A. Averbuch, L. Ioffe, M. Israeli, L. Vozovoi, Two-dimensional parallel solver for the solution of the Navier–Stokes equations with constant and variable

coefficients using ADI on cells, Parallel Comput. 24 (1998) 673–699.
[4] U.W. Rathe, P. Sanders, P.L. Knight, A case study in scalability: an ADI method for the two-dimensional time-dependent Dirac equation, Parallel

Comput. 25 (1999) 525–533.
[5] P.E. Morgan, M.R. Visbal, P. Sadayappan, Development and application of a parallel implicit solver for unsteady viscous flows, Int. J. Comput. Fluid Dyn.

16 (2002) 21–36.

http://www.fftw.org
http://www.fftw.org

L. Yuan et al. / Applied Mathematics and Computation 215 (2009) 2565–2577 2577
[6] L. Yuan, Comparison of implicit multigrid schemes for three-dimensional incompressible flows, J. Comput. Phys. 177 (2002) 134–155.
[7] W. Press, Numerical Recipes in C, Cambridge, UK, 1988.
[8] J. Ortega, R. Voigt, Solution of partial differential equations on vector and parallel computers, SIAM Rev. 27 (1985) 149–240.
[9] C. Ho, S. Johnsson, Optimizing tridiagonal solvers for alternating direction methods on boolean cube multiprocessors, SIAM J. Sci. Stat. Comput. 11 (3)

(1990) 563–592.
[10] I.S. Duff, H.A. van der Vorst, Developments and trends in the parallel solution of linear systems, Parallel Comput. 25 (1990) 1931–1970.
[11] I. Babuska, Numerical stability in problems of linear algebra, SIAM J. Numer. Anal. 9 (1972) 53–77.
[12] Henk A. van der Vorst, Large tridiagonal and block tridiagonal linear systems on vector and parallel computers, Parallel Comput. 5 (1987) 45–54.
[13] H.S. Stone, An efficient parallel algorithm for the solution of a tridiagonal linear system of equations, J. Assoc. Comput. Mach. 20 (1973) 27–38.
[14] A. Wakatani, A parallel scheme for solving a tridiagonal matrix with pre-propagation, in: Proceedings of the 10th Euro PVM/MPI Conference, 2003.
[15] A. Wakatani, A parallel and scalable algorithm for ADI method with pre-propagation and message vectorization, Parallel Comput. 30 (2004) 1345–

1359.
[16] R.W. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis, J. ACM. 12 (1965) 95–113.
[17] J.J. Lambiotte, R.G. Voigt, The solution of tridiagonal linear systems on the CDC STAR-100 computer, ACM Trans. Math. Soft. 1 (1975) 308–329.
[18] H.H. Wang, A Parallel method for tridiagonal equations, ACM Trans. Math. Soft. 7 (1981) 170–183.
[19] P.H. Michielse, H.A. van der Vorst, Data transport in Wang’s partition method, Parallel Comput. 7 (1988) 87–95.
[20] I. Bar-On, Efficient logarithmic time parallel algorithms for the Cholesky decomposition and Gram–Schmidt process, Parallel Comput. 17 (1991) 409–

417.
[21] H.X. Lin, M.R.T. Roest, Parallel solution of symmetric banded systems. in: G.R. Joubert, D. Trystram, F.J. Peters, D.J. Evans (Eds.), Parallel Computing:

Trends and Applications. 1994, pp. 537–540.
[22] D.H. Lawrie, A.H. Sameh, The computation and communication complexity of a parallel banded system solver, ACM Trans. Math. Soft. 10 (1984) 185–

195.
[23] S.L. Johnsson, Solving tridiagonal systems on ensemble architectures, SIAM J. Sci. Stat. Comput. 8 (1987) 354–392.
[24] N. Mattor, T.J. Williams, D.W. Hewett, Algorithm for solving tridiagonal matrix problems in parallel, Parallel Comput. 21 (1995) 1769–1782.
[25] X.H. Sun, H. Zhang, L.M. Ni, Parallel algorithms for solution of tridiagonal systems on multicomputers, in: Proceedings of the 1989 ACM Int. Conf. on

Supercomputing, Crete, Greece, June 1989.
[26] S. Bondeli, Divide and conquer: a parallel algorithm for the solution of a tridiagonal linear system of equations, Parallel Comput. 17 (1991) 419–434.
[27] V. Mehemann, Divide and conquer methods for block tridiagonal systems, Parallel Comput. 19 (1993) 257–279.
[28] X.H. Sun, H. Zhang, L.M. Ni, Efficient tridiagonal solvers on multicomputers, IEEE Trans. Comput. 41 (1992) 286–296.
[29] X.H. Sun, Application and accuracy of the parallel diagonal dominant algorithm, Parallel Comput. 21 (1995) 1241–1267.
[30] C.R. Wang, Z.H. Wang, X.H. Yang, Computational Ffluid Dynamics and Parallel Algorithms, first ed., National University of Defence Technology Press,

Changsha, China, 2000 (in Chinese).
[31] T.M. Edison, G. Erlebacher, Implementation of a fully-balanced periodic tridiagonal solver on a parallel distributed memory architecture, Concurrency-

pract EX7 (4) (1995) 273–302.
[32] L.B. Zhang, On pipelined computation of a set of recurrences on distributed memory systems, J. Numer. Methods Comput. Appl. 3 (1999) 184–191 (in

Chinese).
[33] M. Smith, R. Wijngaart, M. Yarrow, Improved multi-partition method for line-based iteration schemes, in: Computational Aerosciences Workshop 95,

NASA Ames Reserach Center, Moffett Field, CA, USA, 1995.
[34] V. Balasundaram, G. Fox, K. Kennedy, U. Kremer, An interactive environment for data partitioning and distribution, in: Proceedings Fifth Distributed

Memory Computing Conference, April 1990, pp. 1160–1170.
[35] M.W. Hall, S. Hiranandani, K. Kennedy, C.W. Tseng, Interprocedural compilation of Fortran d for MIMD distributed-memory machines, in: Proceedings

of the 1992 ACM/IEEE Conference on Supercomputing, 1992, pp. 522–534.
[36] X.H. Guo, Research on symmetric super compact difference methods and their parallel algorithm, Doctoral Dissertation, Institute of Computational

Mathematics, Chinese Academy of Sciences, Beijing, 2004, (in Chinese).
[37] Z. Yin, Li Yuan, Tao Tang, A new parallel strategy for two-dimensional incompressible flow simulations using pseudo-spectral methods, J. Comput.

Phys. 210 (2005) 325–341.

	On optimal message vector length for block single parallel partition algorithm in a three-dimensional ADI solver
	Introduction
	The ADI scheme for the 3D Navier–Stokes equations
	The SPP algorithm
	A brief description of the algorithm
	Comparison with the P-scheme

	Optimal message vector length in the block SPP algorithm
	Message vectorization
	Experiments with the block SPP algorithm in the ADI scheme
	A parallel model for the \xi -direction sweep
	Original model for the block SPP alone
	A modified model for the \xi -direction sweep

	Performance of the 3D parallel ADI solver

	Extension of optimal message vector length to the block pipelined method
	Conclusions
	Acknowledgments
	References

